The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_epoch.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org>
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  *
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 #include <sys/param.h>
   33 #include <sys/systm.h>
   34 #include <sys/counter.h>
   35 #include <sys/epoch.h>
   36 #include <sys/gtaskqueue.h>
   37 #include <sys/kernel.h>
   38 #include <sys/limits.h>
   39 #include <sys/lock.h>
   40 #include <sys/malloc.h>
   41 #include <sys/mutex.h>
   42 #include <sys/pcpu.h>
   43 #include <sys/proc.h>
   44 #include <sys/sched.h>
   45 #include <sys/sx.h>
   46 #include <sys/smp.h>
   47 #include <sys/sysctl.h>
   48 #include <sys/turnstile.h>
   49 #ifdef EPOCH_TRACE
   50 #include <machine/stdarg.h>
   51 #include <sys/stack.h>
   52 #include <sys/tree.h>
   53 #endif
   54 #include <vm/vm.h>
   55 #include <vm/vm_extern.h>
   56 #include <vm/vm_kern.h>
   57 #include <vm/uma.h>
   58 
   59 #include <ck_epoch.h>
   60 
   61 #ifdef __amd64__
   62 #define EPOCH_ALIGN CACHE_LINE_SIZE*2
   63 #else
   64 #define EPOCH_ALIGN CACHE_LINE_SIZE
   65 #endif
   66 
   67 TAILQ_HEAD (epoch_tdlist, epoch_tracker);
   68 typedef struct epoch_record {
   69         ck_epoch_record_t er_record;
   70         struct epoch_context er_drain_ctx;
   71         struct epoch *er_parent;
   72         volatile struct epoch_tdlist er_tdlist;
   73         volatile uint32_t er_gen;
   74         uint32_t er_cpuid;
   75 #ifdef INVARIANTS
   76         /* Used to verify record ownership for non-preemptible epochs. */
   77         struct thread *er_td;
   78 #endif
   79 } __aligned(EPOCH_ALIGN)     *epoch_record_t;
   80 
   81 struct epoch {
   82         struct ck_epoch e_epoch __aligned(EPOCH_ALIGN);
   83         epoch_record_t e_pcpu_record;
   84         int     e_in_use;
   85         int     e_flags;
   86         struct sx e_drain_sx;
   87         struct mtx e_drain_mtx;
   88         volatile int e_drain_count;
   89         const char *e_name;
   90 };
   91 
   92 /* arbitrary --- needs benchmarking */
   93 #define MAX_ADAPTIVE_SPIN 100
   94 #define MAX_EPOCHS 64
   95 
   96 CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context));
   97 SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
   98     "epoch information");
   99 SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  100     "epoch stats");
  101 
  102 /* Stats. */
  103 static counter_u64_t block_count;
  104 
  105 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW,
  106     &block_count, "# of times a thread was in an epoch when epoch_wait was called");
  107 static counter_u64_t migrate_count;
  108 
  109 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW,
  110     &migrate_count, "# of times thread was migrated to another CPU in epoch_wait");
  111 static counter_u64_t turnstile_count;
  112 
  113 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW,
  114     &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait");
  115 static counter_u64_t switch_count;
  116 
  117 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW,
  118     &switch_count, "# of times a thread voluntarily context switched in epoch_wait");
  119 static counter_u64_t epoch_call_count;
  120 
  121 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW,
  122     &epoch_call_count, "# of times a callback was deferred");
  123 static counter_u64_t epoch_call_task_count;
  124 
  125 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW,
  126     &epoch_call_task_count, "# of times a callback task was run");
  127 
  128 TAILQ_HEAD (threadlist, thread);
  129 
  130 CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry,
  131     ck_epoch_entry_container)
  132 
  133 static struct epoch epoch_array[MAX_EPOCHS];
  134 
  135 DPCPU_DEFINE(struct grouptask, epoch_cb_task);
  136 DPCPU_DEFINE(int, epoch_cb_count);
  137 
  138 static __read_mostly int inited;
  139 __read_mostly epoch_t global_epoch;
  140 __read_mostly epoch_t global_epoch_preempt;
  141 
  142 static void epoch_call_task(void *context __unused);
  143 static  uma_zone_t pcpu_zone_record;
  144 
  145 static struct sx epoch_sx;
  146 
  147 #define EPOCH_LOCK() sx_xlock(&epoch_sx)
  148 #define EPOCH_UNLOCK() sx_xunlock(&epoch_sx)
  149 
  150 #ifdef EPOCH_TRACE
  151 struct stackentry {
  152         RB_ENTRY(stackentry) se_node;
  153         struct stack se_stack;
  154 };
  155 
  156 static int
  157 stackentry_compare(struct stackentry *a, struct stackentry *b)
  158 {
  159 
  160         if (a->se_stack.depth > b->se_stack.depth)
  161                 return (1);
  162         if (a->se_stack.depth < b->se_stack.depth)
  163                 return (-1);
  164         for (int i = 0; i < a->se_stack.depth; i++) {
  165                 if (a->se_stack.pcs[i] > b->se_stack.pcs[i])
  166                         return (1);
  167                 if (a->se_stack.pcs[i] < b->se_stack.pcs[i])
  168                         return (-1);
  169         }
  170 
  171         return (0);
  172 }
  173 
  174 RB_HEAD(stacktree, stackentry) epoch_stacks = RB_INITIALIZER(&epoch_stacks);
  175 RB_GENERATE_STATIC(stacktree, stackentry, se_node, stackentry_compare);
  176 
  177 static struct mtx epoch_stacks_lock;
  178 MTX_SYSINIT(epochstacks, &epoch_stacks_lock, "epoch_stacks", MTX_DEF);
  179 
  180 static bool epoch_trace_stack_print = true;
  181 SYSCTL_BOOL(_kern_epoch, OID_AUTO, trace_stack_print, CTLFLAG_RWTUN,
  182     &epoch_trace_stack_print, 0, "Print stack traces on epoch reports");
  183 
  184 static void epoch_trace_report(const char *fmt, ...) __printflike(1, 2);
  185 static inline void
  186 epoch_trace_report(const char *fmt, ...)
  187 {
  188         va_list ap;
  189         struct stackentry se, *new;
  190 
  191         stack_zero(&se.se_stack);       /* XXX: is it really needed? */
  192         stack_save(&se.se_stack);
  193 
  194         /* Tree is never reduced - go lockless. */
  195         if (RB_FIND(stacktree, &epoch_stacks, &se) != NULL)
  196                 return;
  197 
  198         new = malloc(sizeof(*new), M_STACK, M_NOWAIT);
  199         if (new != NULL) {
  200                 bcopy(&se.se_stack, &new->se_stack, sizeof(struct stack));
  201 
  202                 mtx_lock(&epoch_stacks_lock);
  203                 new = RB_INSERT(stacktree, &epoch_stacks, new);
  204                 mtx_unlock(&epoch_stacks_lock);
  205                 if (new != NULL)
  206                         free(new, M_STACK);
  207         }
  208 
  209         va_start(ap, fmt);
  210         (void)vprintf(fmt, ap);
  211         va_end(ap);
  212         if (epoch_trace_stack_print)
  213                 stack_print_ddb(&se.se_stack);
  214 }
  215 
  216 static inline void
  217 epoch_trace_enter(struct thread *td, epoch_t epoch, epoch_tracker_t et,
  218     const char *file, int line)
  219 {
  220         epoch_tracker_t iet;
  221 
  222         SLIST_FOREACH(iet, &td->td_epochs, et_tlink)
  223                 if (iet->et_epoch == epoch)
  224                         epoch_trace_report("Recursively entering epoch %s "
  225                             "at %s:%d, previously entered at %s:%d\n",
  226                             epoch->e_name, file, line,
  227                             iet->et_file, iet->et_line);
  228         et->et_epoch = epoch;
  229         et->et_file = file;
  230         et->et_line = line;
  231         SLIST_INSERT_HEAD(&td->td_epochs, et, et_tlink);
  232 }
  233 
  234 static inline void
  235 epoch_trace_exit(struct thread *td, epoch_t epoch, epoch_tracker_t et,
  236     const char *file, int line)
  237 {
  238 
  239         if (SLIST_FIRST(&td->td_epochs) != et) {
  240                 epoch_trace_report("Exiting epoch %s in a not nested order "
  241                     "at %s:%d. Most recently entered %s at %s:%d\n",
  242                     epoch->e_name,
  243                     file, line,
  244                     SLIST_FIRST(&td->td_epochs)->et_epoch->e_name,
  245                     SLIST_FIRST(&td->td_epochs)->et_file,
  246                     SLIST_FIRST(&td->td_epochs)->et_line);
  247                 /* This will panic if et is not anywhere on td_epochs. */
  248                 SLIST_REMOVE(&td->td_epochs, et, epoch_tracker, et_tlink);
  249         } else
  250                 SLIST_REMOVE_HEAD(&td->td_epochs, et_tlink);
  251 }
  252 
  253 /* Used by assertions that check thread state before going to sleep. */
  254 void
  255 epoch_trace_list(struct thread *td)
  256 {
  257         epoch_tracker_t iet;
  258 
  259         SLIST_FOREACH(iet, &td->td_epochs, et_tlink)
  260                 printf("Epoch %s entered at %s:%d\n", iet->et_epoch->e_name,
  261                     iet->et_file, iet->et_line);
  262 }
  263 #endif /* EPOCH_TRACE */
  264 
  265 static void
  266 epoch_init(void *arg __unused)
  267 {
  268         int cpu;
  269 
  270         block_count = counter_u64_alloc(M_WAITOK);
  271         migrate_count = counter_u64_alloc(M_WAITOK);
  272         turnstile_count = counter_u64_alloc(M_WAITOK);
  273         switch_count = counter_u64_alloc(M_WAITOK);
  274         epoch_call_count = counter_u64_alloc(M_WAITOK);
  275         epoch_call_task_count = counter_u64_alloc(M_WAITOK);
  276 
  277         pcpu_zone_record = uma_zcreate("epoch_record pcpu",
  278             sizeof(struct epoch_record), NULL, NULL, NULL, NULL,
  279             UMA_ALIGN_PTR, UMA_ZONE_PCPU);
  280         CPU_FOREACH(cpu) {
  281                 GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0,
  282                     epoch_call_task, NULL);
  283                 taskqgroup_attach_cpu(qgroup_softirq,
  284                     DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, NULL, NULL,
  285                     "epoch call task");
  286         }
  287 #ifdef EPOCH_TRACE
  288         SLIST_INIT(&thread0.td_epochs);
  289 #endif
  290         sx_init(&epoch_sx, "epoch-sx");
  291         inited = 1;
  292         global_epoch = epoch_alloc("Global", 0);
  293         global_epoch_preempt = epoch_alloc("Global preemptible", EPOCH_PREEMPT);
  294 }
  295 SYSINIT(epoch, SI_SUB_EPOCH, SI_ORDER_FIRST, epoch_init, NULL);
  296 
  297 #if !defined(EARLY_AP_STARTUP)
  298 static void
  299 epoch_init_smp(void *dummy __unused)
  300 {
  301         inited = 2;
  302 }
  303 SYSINIT(epoch_smp, SI_SUB_SMP + 1, SI_ORDER_FIRST, epoch_init_smp, NULL);
  304 #endif
  305 
  306 static void
  307 epoch_ctor(epoch_t epoch)
  308 {
  309         epoch_record_t er;
  310         int cpu;
  311 
  312         epoch->e_pcpu_record = uma_zalloc_pcpu(pcpu_zone_record, M_WAITOK);
  313         CPU_FOREACH(cpu) {
  314                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
  315                 bzero(er, sizeof(*er));
  316                 ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
  317                 TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
  318                 er->er_cpuid = cpu;
  319                 er->er_parent = epoch;
  320         }
  321 }
  322 
  323 static void
  324 epoch_adjust_prio(struct thread *td, u_char prio)
  325 {
  326 
  327         thread_lock(td);
  328         sched_prio(td, prio);
  329         thread_unlock(td);
  330 }
  331 
  332 epoch_t
  333 epoch_alloc(const char *name, int flags)
  334 {
  335         epoch_t epoch;
  336         int i;
  337 
  338         MPASS(name != NULL);
  339 
  340         if (__predict_false(!inited))
  341                 panic("%s called too early in boot", __func__);
  342 
  343         EPOCH_LOCK();
  344 
  345         /*
  346          * Find a free index in the epoch array. If no free index is
  347          * found, try to use the index after the last one.
  348          */
  349         for (i = 0;; i++) {
  350                 /*
  351                  * If too many epochs are currently allocated,
  352                  * return NULL.
  353                  */
  354                 if (i == MAX_EPOCHS) {
  355                         epoch = NULL;
  356                         goto done;
  357                 }
  358                 if (epoch_array[i].e_in_use == 0)
  359                         break;
  360         }
  361 
  362         epoch = epoch_array + i;
  363         ck_epoch_init(&epoch->e_epoch);
  364         epoch_ctor(epoch);
  365         epoch->e_flags = flags;
  366         epoch->e_name = name;
  367         sx_init(&epoch->e_drain_sx, "epoch-drain-sx");
  368         mtx_init(&epoch->e_drain_mtx, "epoch-drain-mtx", NULL, MTX_DEF);
  369 
  370         /*
  371          * Set e_in_use last, because when this field is set the
  372          * epoch_call_task() function will start scanning this epoch
  373          * structure.
  374          */
  375         atomic_store_rel_int(&epoch->e_in_use, 1);
  376 done:
  377         EPOCH_UNLOCK();
  378         return (epoch);
  379 }
  380 
  381 void
  382 epoch_free(epoch_t epoch)
  383 {
  384 #ifdef INVARIANTS
  385         int cpu;
  386 #endif
  387 
  388         EPOCH_LOCK();
  389 
  390         MPASS(epoch->e_in_use != 0);
  391 
  392         epoch_drain_callbacks(epoch);
  393 
  394         atomic_store_rel_int(&epoch->e_in_use, 0);
  395         /*
  396          * Make sure the epoch_call_task() function see e_in_use equal
  397          * to zero, by calling epoch_wait() on the global_epoch:
  398          */
  399         epoch_wait(global_epoch);
  400 #ifdef INVARIANTS
  401         CPU_FOREACH(cpu) {
  402                 epoch_record_t er;
  403 
  404                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
  405 
  406                 /*
  407                  * Sanity check: none of the records should be in use anymore.
  408                  * We drained callbacks above and freeing the pcpu records is
  409                  * imminent.
  410                  */
  411                 MPASS(er->er_td == NULL);
  412                 MPASS(TAILQ_EMPTY(&er->er_tdlist));
  413         }
  414 #endif
  415         uma_zfree_pcpu(pcpu_zone_record, epoch->e_pcpu_record);
  416         mtx_destroy(&epoch->e_drain_mtx);
  417         sx_destroy(&epoch->e_drain_sx);
  418         memset(epoch, 0, sizeof(*epoch));
  419 
  420         EPOCH_UNLOCK();
  421 }
  422 
  423 static epoch_record_t
  424 epoch_currecord(epoch_t epoch)
  425 {
  426 
  427         return (zpcpu_get(epoch->e_pcpu_record));
  428 }
  429 
  430 #define INIT_CHECK(epoch)                                       \
  431         do {                                                    \
  432                 if (__predict_false((epoch) == NULL))           \
  433                         return;                                 \
  434         } while (0)
  435 
  436 void
  437 _epoch_enter_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE)
  438 {
  439         struct epoch_record *er;
  440         struct thread *td;
  441 
  442         MPASS(cold || epoch != NULL);
  443         MPASS(epoch->e_flags & EPOCH_PREEMPT);
  444         td = curthread;
  445         MPASS((vm_offset_t)et >= td->td_kstack &&
  446             (vm_offset_t)et + sizeof(struct epoch_tracker) <=
  447             td->td_kstack + td->td_kstack_pages * PAGE_SIZE);
  448 
  449         INIT_CHECK(epoch);
  450 #ifdef EPOCH_TRACE
  451         epoch_trace_enter(td, epoch, et, file, line);
  452 #endif
  453         et->et_td = td;
  454         THREAD_NO_SLEEPING();
  455         critical_enter();
  456         sched_pin();
  457         td->td_pre_epoch_prio = td->td_priority;
  458         er = epoch_currecord(epoch);
  459         /* Record-level tracking is reserved for non-preemptible epochs. */
  460         MPASS(er->er_td == NULL);
  461         TAILQ_INSERT_TAIL(&er->er_tdlist, et, et_link);
  462         ck_epoch_begin(&er->er_record, &et->et_section);
  463         critical_exit();
  464 }
  465 
  466 void
  467 epoch_enter(epoch_t epoch)
  468 {
  469         epoch_record_t er;
  470 
  471         MPASS(cold || epoch != NULL);
  472         INIT_CHECK(epoch);
  473         critical_enter();
  474         er = epoch_currecord(epoch);
  475 #ifdef INVARIANTS
  476         if (er->er_record.active == 0) {
  477                 MPASS(er->er_td == NULL);
  478                 er->er_td = curthread;
  479         } else {
  480                 /* We've recursed, just make sure our accounting isn't wrong. */
  481                 MPASS(er->er_td == curthread);
  482         }
  483 #endif
  484         ck_epoch_begin(&er->er_record, NULL);
  485 }
  486 
  487 void
  488 _epoch_exit_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE)
  489 {
  490         struct epoch_record *er;
  491         struct thread *td;
  492 
  493         INIT_CHECK(epoch);
  494         td = curthread;
  495         critical_enter();
  496         sched_unpin();
  497         THREAD_SLEEPING_OK();
  498         er = epoch_currecord(epoch);
  499         MPASS(epoch->e_flags & EPOCH_PREEMPT);
  500         MPASS(et != NULL);
  501         MPASS(et->et_td == td);
  502 #ifdef INVARIANTS
  503         et->et_td = (void*)0xDEADBEEF;
  504         /* Record-level tracking is reserved for non-preemptible epochs. */
  505         MPASS(er->er_td == NULL);
  506 #endif
  507         ck_epoch_end(&er->er_record, &et->et_section);
  508         TAILQ_REMOVE(&er->er_tdlist, et, et_link);
  509         er->er_gen++;
  510         if (__predict_false(td->td_pre_epoch_prio != td->td_priority))
  511                 epoch_adjust_prio(td, td->td_pre_epoch_prio);
  512         critical_exit();
  513 #ifdef EPOCH_TRACE
  514         epoch_trace_exit(td, epoch, et, file, line);
  515 #endif
  516 }
  517 
  518 void
  519 epoch_exit(epoch_t epoch)
  520 {
  521         epoch_record_t er;
  522 
  523         INIT_CHECK(epoch);
  524         er = epoch_currecord(epoch);
  525         ck_epoch_end(&er->er_record, NULL);
  526 #ifdef INVARIANTS
  527         MPASS(er->er_td == curthread);
  528         if (er->er_record.active == 0)
  529                 er->er_td = NULL;
  530 #endif
  531         critical_exit();
  532 }
  533 
  534 /*
  535  * epoch_block_handler_preempt() is a callback from the CK code when another
  536  * thread is currently in an epoch section.
  537  */
  538 static void
  539 epoch_block_handler_preempt(struct ck_epoch *global __unused,
  540     ck_epoch_record_t *cr, void *arg __unused)
  541 {
  542         epoch_record_t record;
  543         struct thread *td, *owner, *curwaittd;
  544         struct epoch_tracker *tdwait;
  545         struct turnstile *ts;
  546         struct lock_object *lock;
  547         int spincount, gen;
  548         int locksheld __unused;
  549 
  550         record = __containerof(cr, struct epoch_record, er_record);
  551         td = curthread;
  552         locksheld = td->td_locks;
  553         spincount = 0;
  554         counter_u64_add(block_count, 1);
  555         /*
  556          * We lost a race and there's no longer any threads
  557          * on the CPU in an epoch section.
  558          */
  559         if (TAILQ_EMPTY(&record->er_tdlist))
  560                 return;
  561 
  562         if (record->er_cpuid != curcpu) {
  563                 /*
  564                  * If the head of the list is running, we can wait for it
  565                  * to remove itself from the list and thus save us the
  566                  * overhead of a migration
  567                  */
  568                 gen = record->er_gen;
  569                 thread_unlock(td);
  570                 /*
  571                  * We can't actually check if the waiting thread is running
  572                  * so we simply poll for it to exit before giving up and
  573                  * migrating.
  574                  */
  575                 do {
  576                         cpu_spinwait();
  577                 } while (!TAILQ_EMPTY(&record->er_tdlist) &&
  578                                  gen == record->er_gen &&
  579                                  spincount++ < MAX_ADAPTIVE_SPIN);
  580                 thread_lock(td);
  581                 /*
  582                  * If the generation has changed we can poll again
  583                  * otherwise we need to migrate.
  584                  */
  585                 if (gen != record->er_gen)
  586                         return;
  587                 /*
  588                  * Being on the same CPU as that of the record on which
  589                  * we need to wait allows us access to the thread
  590                  * list associated with that CPU. We can then examine the
  591                  * oldest thread in the queue and wait on its turnstile
  592                  * until it resumes and so on until a grace period
  593                  * elapses.
  594                  *
  595                  */
  596                 counter_u64_add(migrate_count, 1);
  597                 sched_bind(td, record->er_cpuid);
  598                 /*
  599                  * At this point we need to return to the ck code
  600                  * to scan to see if a grace period has elapsed.
  601                  * We can't move on to check the thread list, because
  602                  * in the meantime new threads may have arrived that
  603                  * in fact belong to a different epoch.
  604                  */
  605                 return;
  606         }
  607         /*
  608          * Try to find a thread in an epoch section on this CPU
  609          * waiting on a turnstile. Otherwise find the lowest
  610          * priority thread (highest prio value) and drop our priority
  611          * to match to allow it to run.
  612          */
  613         TAILQ_FOREACH(tdwait, &record->er_tdlist, et_link) {
  614                 /*
  615                  * Propagate our priority to any other waiters to prevent us
  616                  * from starving them. They will have their original priority
  617                  * restore on exit from epoch_wait().
  618                  */
  619                 curwaittd = tdwait->et_td;
  620                 if (!TD_IS_INHIBITED(curwaittd) && curwaittd->td_priority > td->td_priority) {
  621                         critical_enter();
  622                         thread_unlock(td);
  623                         thread_lock(curwaittd);
  624                         sched_prio(curwaittd, td->td_priority);
  625                         thread_unlock(curwaittd);
  626                         thread_lock(td);
  627                         critical_exit();
  628                 }
  629                 if (TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd) &&
  630                     ((ts = curwaittd->td_blocked) != NULL)) {
  631                         /*
  632                          * We unlock td to allow turnstile_wait to reacquire
  633                          * the thread lock. Before unlocking it we enter a
  634                          * critical section to prevent preemption after we
  635                          * reenable interrupts by dropping the thread lock in
  636                          * order to prevent curwaittd from getting to run.
  637                          */
  638                         critical_enter();
  639                         thread_unlock(td);
  640 
  641                         if (turnstile_lock(ts, &lock, &owner)) {
  642                                 if (ts == curwaittd->td_blocked) {
  643                                         MPASS(TD_IS_INHIBITED(curwaittd) &&
  644                                             TD_ON_LOCK(curwaittd));
  645                                         critical_exit();
  646                                         turnstile_wait(ts, owner,
  647                                             curwaittd->td_tsqueue);
  648                                         counter_u64_add(turnstile_count, 1);
  649                                         thread_lock(td);
  650                                         return;
  651                                 }
  652                                 turnstile_unlock(ts, lock);
  653                         }
  654                         thread_lock(td);
  655                         critical_exit();
  656                         KASSERT(td->td_locks == locksheld,
  657                             ("%d extra locks held", td->td_locks - locksheld));
  658                 }
  659         }
  660         /*
  661          * We didn't find any threads actually blocked on a lock
  662          * so we have nothing to do except context switch away.
  663          */
  664         counter_u64_add(switch_count, 1);
  665         mi_switch(SW_VOL | SWT_RELINQUISH);
  666         /*
  667          * It is important the thread lock is dropped while yielding
  668          * to allow other threads to acquire the lock pointed to by
  669          * TDQ_LOCKPTR(td). Currently mi_switch() will unlock the
  670          * thread lock before returning. Else a deadlock like
  671          * situation might happen.
  672          */
  673         thread_lock(td);
  674 }
  675 
  676 void
  677 epoch_wait_preempt(epoch_t epoch)
  678 {
  679         struct thread *td;
  680         int was_bound;
  681         int old_cpu;
  682         int old_pinned;
  683         u_char old_prio;
  684         int locks __unused;
  685 
  686         MPASS(cold || epoch != NULL);
  687         INIT_CHECK(epoch);
  688         td = curthread;
  689 #ifdef INVARIANTS
  690         locks = curthread->td_locks;
  691         MPASS(epoch->e_flags & EPOCH_PREEMPT);
  692         if ((epoch->e_flags & EPOCH_LOCKED) == 0)
  693                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
  694                     "epoch_wait() can be long running");
  695         KASSERT(!in_epoch(epoch), ("epoch_wait_preempt() called in the middle "
  696             "of an epoch section of the same epoch"));
  697 #endif
  698         DROP_GIANT();
  699         thread_lock(td);
  700 
  701         old_cpu = PCPU_GET(cpuid);
  702         old_pinned = td->td_pinned;
  703         old_prio = td->td_priority;
  704         was_bound = sched_is_bound(td);
  705         sched_unbind(td);
  706         td->td_pinned = 0;
  707         sched_bind(td, old_cpu);
  708 
  709         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_preempt,
  710             NULL);
  711 
  712         /* restore CPU binding, if any */
  713         if (was_bound != 0) {
  714                 sched_bind(td, old_cpu);
  715         } else {
  716                 /* get thread back to initial CPU, if any */
  717                 if (old_pinned != 0)
  718                         sched_bind(td, old_cpu);
  719                 sched_unbind(td);
  720         }
  721         /* restore pinned after bind */
  722         td->td_pinned = old_pinned;
  723 
  724         /* restore thread priority */
  725         sched_prio(td, old_prio);
  726         thread_unlock(td);
  727         PICKUP_GIANT();
  728         KASSERT(td->td_locks == locks,
  729             ("%d residual locks held", td->td_locks - locks));
  730 }
  731 
  732 static void
  733 epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused,
  734     void *arg __unused)
  735 {
  736         cpu_spinwait();
  737 }
  738 
  739 void
  740 epoch_wait(epoch_t epoch)
  741 {
  742 
  743         MPASS(cold || epoch != NULL);
  744         INIT_CHECK(epoch);
  745         MPASS(epoch->e_flags == 0);
  746         critical_enter();
  747         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL);
  748         critical_exit();
  749 }
  750 
  751 void
  752 epoch_call(epoch_t epoch, epoch_callback_t callback, epoch_context_t ctx)
  753 {
  754         epoch_record_t er;
  755         ck_epoch_entry_t *cb;
  756 
  757         cb = (void *)ctx;
  758 
  759         MPASS(callback);
  760         /* too early in boot to have epoch set up */
  761         if (__predict_false(epoch == NULL))
  762                 goto boottime;
  763 #if !defined(EARLY_AP_STARTUP)
  764         if (__predict_false(inited < 2))
  765                 goto boottime;
  766 #endif
  767 
  768         critical_enter();
  769         *DPCPU_PTR(epoch_cb_count) += 1;
  770         er = epoch_currecord(epoch);
  771         ck_epoch_call(&er->er_record, cb, (ck_epoch_cb_t *)callback);
  772         critical_exit();
  773         return;
  774 boottime:
  775         callback(ctx);
  776 }
  777 
  778 static void
  779 epoch_call_task(void *arg __unused)
  780 {
  781         ck_stack_entry_t *cursor, *head, *next;
  782         ck_epoch_record_t *record;
  783         epoch_record_t er;
  784         epoch_t epoch;
  785         ck_stack_t cb_stack;
  786         int i, npending, total;
  787 
  788         ck_stack_init(&cb_stack);
  789         critical_enter();
  790         epoch_enter(global_epoch);
  791         for (total = i = 0; i != MAX_EPOCHS; i++) {
  792                 epoch = epoch_array + i;
  793                 if (__predict_false(
  794                     atomic_load_acq_int(&epoch->e_in_use) == 0))
  795                         continue;
  796                 er = epoch_currecord(epoch);
  797                 record = &er->er_record;
  798                 if ((npending = record->n_pending) == 0)
  799                         continue;
  800                 ck_epoch_poll_deferred(record, &cb_stack);
  801                 total += npending - record->n_pending;
  802         }
  803         epoch_exit(global_epoch);
  804         *DPCPU_PTR(epoch_cb_count) -= total;
  805         critical_exit();
  806 
  807         counter_u64_add(epoch_call_count, total);
  808         counter_u64_add(epoch_call_task_count, 1);
  809 
  810         head = ck_stack_batch_pop_npsc(&cb_stack);
  811         for (cursor = head; cursor != NULL; cursor = next) {
  812                 struct ck_epoch_entry *entry =
  813                     ck_epoch_entry_container(cursor);
  814 
  815                 next = CK_STACK_NEXT(cursor);
  816                 entry->function(entry);
  817         }
  818 }
  819 
  820 static int
  821 in_epoch_verbose_preempt(epoch_t epoch, int dump_onfail)
  822 {
  823         epoch_record_t er;
  824         struct epoch_tracker *tdwait;
  825         struct thread *td;
  826 
  827         MPASS(epoch != NULL);
  828         MPASS((epoch->e_flags & EPOCH_PREEMPT) != 0);
  829         td = curthread;
  830         if (THREAD_CAN_SLEEP())
  831                 return (0);
  832         critical_enter();
  833         er = epoch_currecord(epoch);
  834         TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
  835                 if (tdwait->et_td == td) {
  836                         critical_exit();
  837                         return (1);
  838                 }
  839 #ifdef INVARIANTS
  840         if (dump_onfail) {
  841                 MPASS(td->td_pinned);
  842                 printf("cpu: %d id: %d\n", curcpu, td->td_tid);
  843                 TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
  844                         printf("td_tid: %d ", tdwait->et_td->td_tid);
  845                 printf("\n");
  846         }
  847 #endif
  848         critical_exit();
  849         return (0);
  850 }
  851 
  852 #ifdef INVARIANTS
  853 static void
  854 epoch_assert_nocpu(epoch_t epoch, struct thread *td)
  855 {
  856         epoch_record_t er;
  857         int cpu;
  858         bool crit;
  859 
  860         crit = td->td_critnest > 0;
  861 
  862         /* Check for a critical section mishap. */
  863         CPU_FOREACH(cpu) {
  864                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
  865                 KASSERT(er->er_td != td,
  866                     ("%s critical section in epoch '%s', from cpu %d",
  867                     (crit ? "exited" : "re-entered"), epoch->e_name, cpu));
  868         }
  869 }
  870 #else
  871 #define epoch_assert_nocpu(e, td)
  872 #endif
  873 
  874 int
  875 in_epoch_verbose(epoch_t epoch, int dump_onfail)
  876 {
  877         epoch_record_t er;
  878         struct thread *td;
  879 
  880         if (__predict_false((epoch) == NULL))
  881                 return (0);
  882         if ((epoch->e_flags & EPOCH_PREEMPT) != 0)
  883                 return (in_epoch_verbose_preempt(epoch, dump_onfail));
  884 
  885         /*
  886          * The thread being in a critical section is a necessary
  887          * condition to be correctly inside a non-preemptible epoch,
  888          * so it's definitely not in this epoch.
  889          */
  890         td = curthread;
  891         if (td->td_critnest == 0) {
  892                 epoch_assert_nocpu(epoch, td);
  893                 return (0);
  894         }
  895 
  896         /*
  897          * The current cpu is in a critical section, so the epoch record will be
  898          * stable for the rest of this function.  Knowing that the record is not
  899          * active is sufficient for knowing whether we're in this epoch or not,
  900          * since it's a pcpu record.
  901          */
  902         er = epoch_currecord(epoch);
  903         if (er->er_record.active == 0) {
  904                 epoch_assert_nocpu(epoch, td);
  905                 return (0);
  906         }
  907 
  908         MPASS(er->er_td == td);
  909         return (1);
  910 }
  911 
  912 int
  913 in_epoch(epoch_t epoch)
  914 {
  915         return (in_epoch_verbose(epoch, 0));
  916 }
  917 
  918 static void
  919 epoch_drain_cb(struct epoch_context *ctx)
  920 {
  921         struct epoch *epoch =
  922             __containerof(ctx, struct epoch_record, er_drain_ctx)->er_parent;
  923 
  924         if (atomic_fetchadd_int(&epoch->e_drain_count, -1) == 1) {
  925                 mtx_lock(&epoch->e_drain_mtx);
  926                 wakeup(epoch);
  927                 mtx_unlock(&epoch->e_drain_mtx);
  928         }
  929 }
  930 
  931 void
  932 epoch_drain_callbacks(epoch_t epoch)
  933 {
  934         epoch_record_t er;
  935         struct thread *td;
  936         int was_bound;
  937         int old_pinned;
  938         int old_cpu;
  939         int cpu;
  940 
  941         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
  942             "epoch_drain_callbacks() may sleep!");
  943 
  944         /* too early in boot to have epoch set up */
  945         if (__predict_false(epoch == NULL))
  946                 return;
  947 #if !defined(EARLY_AP_STARTUP)
  948         if (__predict_false(inited < 2))
  949                 return;
  950 #endif
  951         DROP_GIANT();
  952 
  953         sx_xlock(&epoch->e_drain_sx);
  954         mtx_lock(&epoch->e_drain_mtx);
  955 
  956         td = curthread;
  957         thread_lock(td);
  958         old_cpu = PCPU_GET(cpuid);
  959         old_pinned = td->td_pinned;
  960         was_bound = sched_is_bound(td);
  961         sched_unbind(td);
  962         td->td_pinned = 0;
  963 
  964         CPU_FOREACH(cpu)
  965                 epoch->e_drain_count++;
  966         CPU_FOREACH(cpu) {
  967                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
  968                 sched_bind(td, cpu);
  969                 epoch_call(epoch, &epoch_drain_cb, &er->er_drain_ctx);
  970         }
  971 
  972         /* restore CPU binding, if any */
  973         if (was_bound != 0) {
  974                 sched_bind(td, old_cpu);
  975         } else {
  976                 /* get thread back to initial CPU, if any */
  977                 if (old_pinned != 0)
  978                         sched_bind(td, old_cpu);
  979                 sched_unbind(td);
  980         }
  981         /* restore pinned after bind */
  982         td->td_pinned = old_pinned;
  983 
  984         thread_unlock(td);
  985 
  986         while (epoch->e_drain_count != 0)
  987                 msleep(epoch, &epoch->e_drain_mtx, PZERO, "EDRAIN", 0);
  988 
  989         mtx_unlock(&epoch->e_drain_mtx);
  990         sx_xunlock(&epoch->e_drain_sx);
  991 
  992         PICKUP_GIANT();
  993 }

Cache object: 8b092bc57ff825ce8b19cd054051bbd9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.