The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_epoch.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org>
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  *
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 #include <sys/param.h>
   33 #include <sys/systm.h>
   34 #include <sys/counter.h>
   35 #include <sys/epoch.h>
   36 #include <sys/gtaskqueue.h>
   37 #include <sys/kernel.h>
   38 #include <sys/limits.h>
   39 #include <sys/lock.h>
   40 #include <sys/malloc.h>
   41 #include <sys/mutex.h>
   42 #include <sys/pcpu.h>
   43 #include <sys/proc.h>
   44 #include <sys/sched.h>
   45 #include <sys/sx.h>
   46 #include <sys/smp.h>
   47 #include <sys/sysctl.h>
   48 #include <sys/turnstile.h>
   49 #ifdef EPOCH_TRACE
   50 #include <machine/stdarg.h>
   51 #include <sys/stack.h>
   52 #include <sys/tree.h>
   53 #endif
   54 #include <vm/vm.h>
   55 #include <vm/vm_extern.h>
   56 #include <vm/vm_kern.h>
   57 #include <vm/uma.h>
   58 
   59 #include <ck_epoch.h>
   60 
   61 #ifdef __amd64__
   62 #define EPOCH_ALIGN CACHE_LINE_SIZE*2
   63 #else
   64 #define EPOCH_ALIGN CACHE_LINE_SIZE
   65 #endif
   66 
   67 TAILQ_HEAD (epoch_tdlist, epoch_tracker);
   68 typedef struct epoch_record {
   69         ck_epoch_record_t er_record;
   70         struct epoch_context er_drain_ctx;
   71         struct epoch *er_parent;
   72         volatile struct epoch_tdlist er_tdlist;
   73         volatile uint32_t er_gen;
   74         uint32_t er_cpuid;
   75 #ifdef INVARIANTS
   76         /* Used to verify record ownership for non-preemptible epochs. */
   77         struct thread *er_td;
   78 #endif
   79 } __aligned(EPOCH_ALIGN)     *epoch_record_t;
   80 
   81 struct epoch {
   82         struct ck_epoch e_epoch __aligned(EPOCH_ALIGN);
   83         epoch_record_t e_pcpu_record;
   84         int     e_in_use;
   85         int     e_flags;
   86         struct sx e_drain_sx;
   87         struct mtx e_drain_mtx;
   88         volatile int e_drain_count;
   89         const char *e_name;
   90 };
   91 
   92 /* arbitrary --- needs benchmarking */
   93 #define MAX_ADAPTIVE_SPIN 100
   94 #define MAX_EPOCHS 64
   95 
   96 CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context));
   97 SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
   98     "epoch information");
   99 SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  100     "epoch stats");
  101 
  102 /* Stats. */
  103 static counter_u64_t block_count;
  104 
  105 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW,
  106     &block_count, "# of times a thread was in an epoch when epoch_wait was called");
  107 static counter_u64_t migrate_count;
  108 
  109 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW,
  110     &migrate_count, "# of times thread was migrated to another CPU in epoch_wait");
  111 static counter_u64_t turnstile_count;
  112 
  113 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW,
  114     &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait");
  115 static counter_u64_t switch_count;
  116 
  117 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW,
  118     &switch_count, "# of times a thread voluntarily context switched in epoch_wait");
  119 static counter_u64_t epoch_call_count;
  120 
  121 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW,
  122     &epoch_call_count, "# of times a callback was deferred");
  123 static counter_u64_t epoch_call_task_count;
  124 
  125 SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW,
  126     &epoch_call_task_count, "# of times a callback task was run");
  127 
  128 TAILQ_HEAD (threadlist, thread);
  129 
  130 CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry,
  131     ck_epoch_entry_container)
  132 
  133 static struct epoch epoch_array[MAX_EPOCHS];
  134 
  135 DPCPU_DEFINE(struct grouptask, epoch_cb_task);
  136 DPCPU_DEFINE(int, epoch_cb_count);
  137 
  138 static __read_mostly int inited;
  139 __read_mostly epoch_t global_epoch;
  140 __read_mostly epoch_t global_epoch_preempt;
  141 
  142 static void epoch_call_task(void *context __unused);
  143 static  uma_zone_t pcpu_zone_record;
  144 
  145 static struct sx epoch_sx;
  146 
  147 #define EPOCH_LOCK() sx_xlock(&epoch_sx)
  148 #define EPOCH_UNLOCK() sx_xunlock(&epoch_sx)
  149 
  150 #ifdef EPOCH_TRACE
  151 struct stackentry {
  152         RB_ENTRY(stackentry) se_node;
  153         struct stack se_stack;
  154 };
  155 
  156 static int
  157 stackentry_compare(struct stackentry *a, struct stackentry *b)
  158 {
  159 
  160         if (a->se_stack.depth > b->se_stack.depth)
  161                 return (1);
  162         if (a->se_stack.depth < b->se_stack.depth)
  163                 return (-1);
  164         for (int i = 0; i < a->se_stack.depth; i++) {
  165                 if (a->se_stack.pcs[i] > b->se_stack.pcs[i])
  166                         return (1);
  167                 if (a->se_stack.pcs[i] < b->se_stack.pcs[i])
  168                         return (-1);
  169         }
  170 
  171         return (0);
  172 }
  173 
  174 RB_HEAD(stacktree, stackentry) epoch_stacks = RB_INITIALIZER(&epoch_stacks);
  175 RB_GENERATE_STATIC(stacktree, stackentry, se_node, stackentry_compare);
  176 
  177 static struct mtx epoch_stacks_lock;
  178 MTX_SYSINIT(epochstacks, &epoch_stacks_lock, "epoch_stacks", MTX_DEF);
  179 
  180 static bool epoch_trace_stack_print = true;
  181 SYSCTL_BOOL(_kern_epoch, OID_AUTO, trace_stack_print, CTLFLAG_RWTUN,
  182     &epoch_trace_stack_print, 0, "Print stack traces on epoch reports");
  183 
  184 static void epoch_trace_report(const char *fmt, ...) __printflike(1, 2);
  185 static inline void
  186 epoch_trace_report(const char *fmt, ...)
  187 {
  188         va_list ap;
  189         struct stackentry se, *new;
  190 
  191         stack_zero(&se.se_stack);       /* XXX: is it really needed? */
  192         stack_save(&se.se_stack);
  193 
  194         /* Tree is never reduced - go lockless. */
  195         if (RB_FIND(stacktree, &epoch_stacks, &se) != NULL)
  196                 return;
  197 
  198         new = malloc(sizeof(*new), M_STACK, M_NOWAIT);
  199         if (new != NULL) {
  200                 bcopy(&se.se_stack, &new->se_stack, sizeof(struct stack));
  201 
  202                 mtx_lock(&epoch_stacks_lock);
  203                 new = RB_INSERT(stacktree, &epoch_stacks, new);
  204                 mtx_unlock(&epoch_stacks_lock);
  205                 if (new != NULL)
  206                         free(new, M_STACK);
  207         }
  208 
  209         va_start(ap, fmt);
  210         (void)vprintf(fmt, ap);
  211         va_end(ap);
  212         if (epoch_trace_stack_print)
  213                 stack_print_ddb(&se.se_stack);
  214 }
  215 
  216 static inline void
  217 epoch_trace_enter(struct thread *td, epoch_t epoch, epoch_tracker_t et,
  218     const char *file, int line)
  219 {
  220         epoch_tracker_t iet;
  221 
  222         SLIST_FOREACH(iet, &td->td_epochs, et_tlink) {
  223                 if (iet->et_epoch != epoch)
  224                         continue;
  225                 epoch_trace_report("Recursively entering epoch %s "
  226                     "at %s:%d, previously entered at %s:%d\n",
  227                     epoch->e_name, file, line,
  228                     iet->et_file, iet->et_line);
  229         }
  230         et->et_epoch = epoch;
  231         et->et_file = file;
  232         et->et_line = line;
  233         SLIST_INSERT_HEAD(&td->td_epochs, et, et_tlink);
  234 }
  235 
  236 static inline void
  237 epoch_trace_exit(struct thread *td, epoch_t epoch, epoch_tracker_t et,
  238     const char *file, int line)
  239 {
  240 
  241         if (SLIST_FIRST(&td->td_epochs) != et) {
  242                 epoch_trace_report("Exiting epoch %s in a not nested order "
  243                     "at %s:%d. Most recently entered %s at %s:%d\n",
  244                     epoch->e_name,
  245                     file, line,
  246                     SLIST_FIRST(&td->td_epochs)->et_epoch->e_name,
  247                     SLIST_FIRST(&td->td_epochs)->et_file,
  248                     SLIST_FIRST(&td->td_epochs)->et_line);
  249                 /* This will panic if et is not anywhere on td_epochs. */
  250                 SLIST_REMOVE(&td->td_epochs, et, epoch_tracker, et_tlink);
  251         } else
  252                 SLIST_REMOVE_HEAD(&td->td_epochs, et_tlink);
  253 }
  254 
  255 /* Used by assertions that check thread state before going to sleep. */
  256 void
  257 epoch_trace_list(struct thread *td)
  258 {
  259         epoch_tracker_t iet;
  260 
  261         SLIST_FOREACH(iet, &td->td_epochs, et_tlink)
  262                 printf("Epoch %s entered at %s:%d\n", iet->et_epoch->e_name,
  263                     iet->et_file, iet->et_line);
  264 }
  265 #endif /* EPOCH_TRACE */
  266 
  267 static void
  268 epoch_init(void *arg __unused)
  269 {
  270         int cpu;
  271 
  272         block_count = counter_u64_alloc(M_WAITOK);
  273         migrate_count = counter_u64_alloc(M_WAITOK);
  274         turnstile_count = counter_u64_alloc(M_WAITOK);
  275         switch_count = counter_u64_alloc(M_WAITOK);
  276         epoch_call_count = counter_u64_alloc(M_WAITOK);
  277         epoch_call_task_count = counter_u64_alloc(M_WAITOK);
  278 
  279         pcpu_zone_record = uma_zcreate("epoch_record pcpu",
  280             sizeof(struct epoch_record), NULL, NULL, NULL, NULL,
  281             UMA_ALIGN_PTR, UMA_ZONE_PCPU);
  282         CPU_FOREACH(cpu) {
  283                 GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0,
  284                     epoch_call_task, NULL);
  285                 taskqgroup_attach_cpu(qgroup_softirq,
  286                     DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, NULL, NULL,
  287                     "epoch call task");
  288         }
  289 #ifdef EPOCH_TRACE
  290         SLIST_INIT(&thread0.td_epochs);
  291 #endif
  292         sx_init(&epoch_sx, "epoch-sx");
  293         inited = 1;
  294         global_epoch = epoch_alloc("Global", 0);
  295         global_epoch_preempt = epoch_alloc("Global preemptible", EPOCH_PREEMPT);
  296 }
  297 SYSINIT(epoch, SI_SUB_EPOCH, SI_ORDER_FIRST, epoch_init, NULL);
  298 
  299 #if !defined(EARLY_AP_STARTUP)
  300 static void
  301 epoch_init_smp(void *dummy __unused)
  302 {
  303         inited = 2;
  304 }
  305 SYSINIT(epoch_smp, SI_SUB_SMP + 1, SI_ORDER_FIRST, epoch_init_smp, NULL);
  306 #endif
  307 
  308 static void
  309 epoch_ctor(epoch_t epoch)
  310 {
  311         epoch_record_t er;
  312         int cpu;
  313 
  314         epoch->e_pcpu_record = uma_zalloc_pcpu(pcpu_zone_record, M_WAITOK);
  315         CPU_FOREACH(cpu) {
  316                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
  317                 bzero(er, sizeof(*er));
  318                 ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
  319                 TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
  320                 er->er_cpuid = cpu;
  321                 er->er_parent = epoch;
  322         }
  323 }
  324 
  325 static void
  326 epoch_adjust_prio(struct thread *td, u_char prio)
  327 {
  328 
  329         thread_lock(td);
  330         sched_prio(td, prio);
  331         thread_unlock(td);
  332 }
  333 
  334 epoch_t
  335 epoch_alloc(const char *name, int flags)
  336 {
  337         epoch_t epoch;
  338         int i;
  339 
  340         MPASS(name != NULL);
  341 
  342         if (__predict_false(!inited))
  343                 panic("%s called too early in boot", __func__);
  344 
  345         EPOCH_LOCK();
  346 
  347         /*
  348          * Find a free index in the epoch array. If no free index is
  349          * found, try to use the index after the last one.
  350          */
  351         for (i = 0;; i++) {
  352                 /*
  353                  * If too many epochs are currently allocated,
  354                  * return NULL.
  355                  */
  356                 if (i == MAX_EPOCHS) {
  357                         epoch = NULL;
  358                         goto done;
  359                 }
  360                 if (epoch_array[i].e_in_use == 0)
  361                         break;
  362         }
  363 
  364         epoch = epoch_array + i;
  365         ck_epoch_init(&epoch->e_epoch);
  366         epoch_ctor(epoch);
  367         epoch->e_flags = flags;
  368         epoch->e_name = name;
  369         sx_init(&epoch->e_drain_sx, "epoch-drain-sx");
  370         mtx_init(&epoch->e_drain_mtx, "epoch-drain-mtx", NULL, MTX_DEF);
  371 
  372         /*
  373          * Set e_in_use last, because when this field is set the
  374          * epoch_call_task() function will start scanning this epoch
  375          * structure.
  376          */
  377         atomic_store_rel_int(&epoch->e_in_use, 1);
  378 done:
  379         EPOCH_UNLOCK();
  380         return (epoch);
  381 }
  382 
  383 void
  384 epoch_free(epoch_t epoch)
  385 {
  386 #ifdef INVARIANTS
  387         int cpu;
  388 #endif
  389 
  390         EPOCH_LOCK();
  391 
  392         MPASS(epoch->e_in_use != 0);
  393 
  394         epoch_drain_callbacks(epoch);
  395 
  396         atomic_store_rel_int(&epoch->e_in_use, 0);
  397         /*
  398          * Make sure the epoch_call_task() function see e_in_use equal
  399          * to zero, by calling epoch_wait() on the global_epoch:
  400          */
  401         epoch_wait(global_epoch);
  402 #ifdef INVARIANTS
  403         CPU_FOREACH(cpu) {
  404                 epoch_record_t er;
  405 
  406                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
  407 
  408                 /*
  409                  * Sanity check: none of the records should be in use anymore.
  410                  * We drained callbacks above and freeing the pcpu records is
  411                  * imminent.
  412                  */
  413                 MPASS(er->er_td == NULL);
  414                 MPASS(TAILQ_EMPTY(&er->er_tdlist));
  415         }
  416 #endif
  417         uma_zfree_pcpu(pcpu_zone_record, epoch->e_pcpu_record);
  418         mtx_destroy(&epoch->e_drain_mtx);
  419         sx_destroy(&epoch->e_drain_sx);
  420         memset(epoch, 0, sizeof(*epoch));
  421 
  422         EPOCH_UNLOCK();
  423 }
  424 
  425 static epoch_record_t
  426 epoch_currecord(epoch_t epoch)
  427 {
  428 
  429         return (zpcpu_get(epoch->e_pcpu_record));
  430 }
  431 
  432 #define INIT_CHECK(epoch)                                       \
  433         do {                                                    \
  434                 if (__predict_false((epoch) == NULL))           \
  435                         return;                                 \
  436         } while (0)
  437 
  438 void
  439 _epoch_enter_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE)
  440 {
  441         struct epoch_record *er;
  442         struct thread *td;
  443 
  444         MPASS(cold || epoch != NULL);
  445         td = curthread;
  446         MPASS(kstack_contains(td, (vm_offset_t)et, sizeof(*et)));
  447 
  448         INIT_CHECK(epoch);
  449         MPASS(epoch->e_flags & EPOCH_PREEMPT);
  450 
  451 #ifdef EPOCH_TRACE
  452         epoch_trace_enter(td, epoch, et, file, line);
  453 #endif
  454         et->et_td = td;
  455         THREAD_NO_SLEEPING();
  456         critical_enter();
  457         sched_pin();
  458         et->et_old_priority = td->td_priority;
  459         er = epoch_currecord(epoch);
  460         /* Record-level tracking is reserved for non-preemptible epochs. */
  461         MPASS(er->er_td == NULL);
  462         TAILQ_INSERT_TAIL(&er->er_tdlist, et, et_link);
  463         ck_epoch_begin(&er->er_record, &et->et_section);
  464         critical_exit();
  465 }
  466 
  467 void
  468 epoch_enter(epoch_t epoch)
  469 {
  470         epoch_record_t er;
  471 
  472         MPASS(cold || epoch != NULL);
  473         INIT_CHECK(epoch);
  474         critical_enter();
  475         er = epoch_currecord(epoch);
  476 #ifdef INVARIANTS
  477         if (er->er_record.active == 0) {
  478                 MPASS(er->er_td == NULL);
  479                 er->er_td = curthread;
  480         } else {
  481                 /* We've recursed, just make sure our accounting isn't wrong. */
  482                 MPASS(er->er_td == curthread);
  483         }
  484 #endif
  485         ck_epoch_begin(&er->er_record, NULL);
  486 }
  487 
  488 void
  489 _epoch_exit_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE)
  490 {
  491         struct epoch_record *er;
  492         struct thread *td;
  493 
  494         INIT_CHECK(epoch);
  495         td = curthread;
  496         critical_enter();
  497         sched_unpin();
  498         THREAD_SLEEPING_OK();
  499         er = epoch_currecord(epoch);
  500         MPASS(epoch->e_flags & EPOCH_PREEMPT);
  501         MPASS(et != NULL);
  502         MPASS(et->et_td == td);
  503 #ifdef INVARIANTS
  504         et->et_td = (void*)0xDEADBEEF;
  505         /* Record-level tracking is reserved for non-preemptible epochs. */
  506         MPASS(er->er_td == NULL);
  507 #endif
  508         ck_epoch_end(&er->er_record, &et->et_section);
  509         TAILQ_REMOVE(&er->er_tdlist, et, et_link);
  510         er->er_gen++;
  511         if (__predict_false(et->et_old_priority != td->td_priority))
  512                 epoch_adjust_prio(td, et->et_old_priority);
  513         critical_exit();
  514 #ifdef EPOCH_TRACE
  515         epoch_trace_exit(td, epoch, et, file, line);
  516 #endif
  517 }
  518 
  519 void
  520 epoch_exit(epoch_t epoch)
  521 {
  522         epoch_record_t er;
  523 
  524         INIT_CHECK(epoch);
  525         er = epoch_currecord(epoch);
  526         ck_epoch_end(&er->er_record, NULL);
  527 #ifdef INVARIANTS
  528         MPASS(er->er_td == curthread);
  529         if (er->er_record.active == 0)
  530                 er->er_td = NULL;
  531 #endif
  532         critical_exit();
  533 }
  534 
  535 /*
  536  * epoch_block_handler_preempt() is a callback from the CK code when another
  537  * thread is currently in an epoch section.
  538  */
  539 static void
  540 epoch_block_handler_preempt(struct ck_epoch *global __unused,
  541     ck_epoch_record_t *cr, void *arg __unused)
  542 {
  543         epoch_record_t record;
  544         struct thread *td, *owner, *curwaittd;
  545         struct epoch_tracker *tdwait;
  546         struct turnstile *ts;
  547         struct lock_object *lock;
  548         int spincount, gen;
  549         int locksheld __unused;
  550 
  551         record = __containerof(cr, struct epoch_record, er_record);
  552         td = curthread;
  553         locksheld = td->td_locks;
  554         spincount = 0;
  555         counter_u64_add(block_count, 1);
  556         /*
  557          * We lost a race and there's no longer any threads
  558          * on the CPU in an epoch section.
  559          */
  560         if (TAILQ_EMPTY(&record->er_tdlist))
  561                 return;
  562 
  563         if (record->er_cpuid != curcpu) {
  564                 /*
  565                  * If the head of the list is running, we can wait for it
  566                  * to remove itself from the list and thus save us the
  567                  * overhead of a migration
  568                  */
  569                 gen = record->er_gen;
  570                 thread_unlock(td);
  571                 /*
  572                  * We can't actually check if the waiting thread is running
  573                  * so we simply poll for it to exit before giving up and
  574                  * migrating.
  575                  */
  576                 do {
  577                         cpu_spinwait();
  578                 } while (!TAILQ_EMPTY(&record->er_tdlist) &&
  579                                  gen == record->er_gen &&
  580                                  spincount++ < MAX_ADAPTIVE_SPIN);
  581                 thread_lock(td);
  582                 /*
  583                  * If the generation has changed we can poll again
  584                  * otherwise we need to migrate.
  585                  */
  586                 if (gen != record->er_gen)
  587                         return;
  588                 /*
  589                  * Being on the same CPU as that of the record on which
  590                  * we need to wait allows us access to the thread
  591                  * list associated with that CPU. We can then examine the
  592                  * oldest thread in the queue and wait on its turnstile
  593                  * until it resumes and so on until a grace period
  594                  * elapses.
  595                  *
  596                  */
  597                 counter_u64_add(migrate_count, 1);
  598                 sched_bind(td, record->er_cpuid);
  599                 /*
  600                  * At this point we need to return to the ck code
  601                  * to scan to see if a grace period has elapsed.
  602                  * We can't move on to check the thread list, because
  603                  * in the meantime new threads may have arrived that
  604                  * in fact belong to a different epoch.
  605                  */
  606                 return;
  607         }
  608         /*
  609          * Try to find a thread in an epoch section on this CPU
  610          * waiting on a turnstile. Otherwise find the lowest
  611          * priority thread (highest prio value) and drop our priority
  612          * to match to allow it to run.
  613          */
  614         TAILQ_FOREACH(tdwait, &record->er_tdlist, et_link) {
  615                 /*
  616                  * Propagate our priority to any other waiters to prevent us
  617                  * from starving them. They will have their original priority
  618                  * restore on exit from epoch_wait().
  619                  */
  620                 curwaittd = tdwait->et_td;
  621                 if (!TD_IS_INHIBITED(curwaittd) && curwaittd->td_priority > td->td_priority) {
  622                         critical_enter();
  623                         thread_unlock(td);
  624                         thread_lock(curwaittd);
  625                         sched_prio(curwaittd, td->td_priority);
  626                         thread_unlock(curwaittd);
  627                         thread_lock(td);
  628                         critical_exit();
  629                 }
  630                 if (TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd) &&
  631                     ((ts = curwaittd->td_blocked) != NULL)) {
  632                         /*
  633                          * We unlock td to allow turnstile_wait to reacquire
  634                          * the thread lock. Before unlocking it we enter a
  635                          * critical section to prevent preemption after we
  636                          * reenable interrupts by dropping the thread lock in
  637                          * order to prevent curwaittd from getting to run.
  638                          */
  639                         critical_enter();
  640                         thread_unlock(td);
  641 
  642                         if (turnstile_lock(ts, &lock, &owner)) {
  643                                 if (ts == curwaittd->td_blocked) {
  644                                         MPASS(TD_IS_INHIBITED(curwaittd) &&
  645                                             TD_ON_LOCK(curwaittd));
  646                                         critical_exit();
  647                                         turnstile_wait(ts, owner,
  648                                             curwaittd->td_tsqueue);
  649                                         counter_u64_add(turnstile_count, 1);
  650                                         thread_lock(td);
  651                                         return;
  652                                 }
  653                                 turnstile_unlock(ts, lock);
  654                         }
  655                         thread_lock(td);
  656                         critical_exit();
  657                         KASSERT(td->td_locks == locksheld,
  658                             ("%d extra locks held", td->td_locks - locksheld));
  659                 }
  660         }
  661         /*
  662          * We didn't find any threads actually blocked on a lock
  663          * so we have nothing to do except context switch away.
  664          */
  665         counter_u64_add(switch_count, 1);
  666         mi_switch(SW_VOL | SWT_RELINQUISH);
  667         /*
  668          * It is important the thread lock is dropped while yielding
  669          * to allow other threads to acquire the lock pointed to by
  670          * TDQ_LOCKPTR(td). Currently mi_switch() will unlock the
  671          * thread lock before returning. Else a deadlock like
  672          * situation might happen.
  673          */
  674         thread_lock(td);
  675 }
  676 
  677 void
  678 epoch_wait_preempt(epoch_t epoch)
  679 {
  680         struct thread *td;
  681         int was_bound;
  682         int old_cpu;
  683         int old_pinned;
  684         u_char old_prio;
  685         int locks __unused;
  686 
  687         MPASS(cold || epoch != NULL);
  688         INIT_CHECK(epoch);
  689         td = curthread;
  690 #ifdef INVARIANTS
  691         locks = curthread->td_locks;
  692         MPASS(epoch->e_flags & EPOCH_PREEMPT);
  693         if ((epoch->e_flags & EPOCH_LOCKED) == 0)
  694                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
  695                     "epoch_wait() can be long running");
  696         KASSERT(!in_epoch(epoch), ("epoch_wait_preempt() called in the middle "
  697             "of an epoch section of the same epoch"));
  698 #endif
  699         DROP_GIANT();
  700         thread_lock(td);
  701 
  702         old_cpu = PCPU_GET(cpuid);
  703         old_pinned = td->td_pinned;
  704         old_prio = td->td_priority;
  705         was_bound = sched_is_bound(td);
  706         sched_unbind(td);
  707         td->td_pinned = 0;
  708         sched_bind(td, old_cpu);
  709 
  710         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_preempt,
  711             NULL);
  712 
  713         /* restore CPU binding, if any */
  714         if (was_bound != 0) {
  715                 sched_bind(td, old_cpu);
  716         } else {
  717                 /* get thread back to initial CPU, if any */
  718                 if (old_pinned != 0)
  719                         sched_bind(td, old_cpu);
  720                 sched_unbind(td);
  721         }
  722         /* restore pinned after bind */
  723         td->td_pinned = old_pinned;
  724 
  725         /* restore thread priority */
  726         sched_prio(td, old_prio);
  727         thread_unlock(td);
  728         PICKUP_GIANT();
  729         KASSERT(td->td_locks == locks,
  730             ("%d residual locks held", td->td_locks - locks));
  731 }
  732 
  733 static void
  734 epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused,
  735     void *arg __unused)
  736 {
  737         cpu_spinwait();
  738 }
  739 
  740 void
  741 epoch_wait(epoch_t epoch)
  742 {
  743 
  744         MPASS(cold || epoch != NULL);
  745         INIT_CHECK(epoch);
  746         MPASS(epoch->e_flags == 0);
  747         critical_enter();
  748         ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL);
  749         critical_exit();
  750 }
  751 
  752 void
  753 epoch_call(epoch_t epoch, epoch_callback_t callback, epoch_context_t ctx)
  754 {
  755         epoch_record_t er;
  756         ck_epoch_entry_t *cb;
  757 
  758         cb = (void *)ctx;
  759 
  760         MPASS(callback);
  761         /* too early in boot to have epoch set up */
  762         if (__predict_false(epoch == NULL))
  763                 goto boottime;
  764 #if !defined(EARLY_AP_STARTUP)
  765         if (__predict_false(inited < 2))
  766                 goto boottime;
  767 #endif
  768 
  769         critical_enter();
  770         *DPCPU_PTR(epoch_cb_count) += 1;
  771         er = epoch_currecord(epoch);
  772         ck_epoch_call(&er->er_record, cb, (ck_epoch_cb_t *)callback);
  773         critical_exit();
  774         return;
  775 boottime:
  776         callback(ctx);
  777 }
  778 
  779 static void
  780 epoch_call_task(void *arg __unused)
  781 {
  782         ck_stack_entry_t *cursor, *head, *next;
  783         ck_epoch_record_t *record;
  784         epoch_record_t er;
  785         epoch_t epoch;
  786         ck_stack_t cb_stack;
  787         int i, npending, total;
  788 
  789         ck_stack_init(&cb_stack);
  790         critical_enter();
  791         epoch_enter(global_epoch);
  792         for (total = i = 0; i != MAX_EPOCHS; i++) {
  793                 epoch = epoch_array + i;
  794                 if (__predict_false(
  795                     atomic_load_acq_int(&epoch->e_in_use) == 0))
  796                         continue;
  797                 er = epoch_currecord(epoch);
  798                 record = &er->er_record;
  799                 if ((npending = record->n_pending) == 0)
  800                         continue;
  801                 ck_epoch_poll_deferred(record, &cb_stack);
  802                 total += npending - record->n_pending;
  803         }
  804         epoch_exit(global_epoch);
  805         *DPCPU_PTR(epoch_cb_count) -= total;
  806         critical_exit();
  807 
  808         counter_u64_add(epoch_call_count, total);
  809         counter_u64_add(epoch_call_task_count, 1);
  810 
  811         head = ck_stack_batch_pop_npsc(&cb_stack);
  812         for (cursor = head; cursor != NULL; cursor = next) {
  813                 struct ck_epoch_entry *entry =
  814                     ck_epoch_entry_container(cursor);
  815 
  816                 next = CK_STACK_NEXT(cursor);
  817                 entry->function(entry);
  818         }
  819 }
  820 
  821 static int
  822 in_epoch_verbose_preempt(epoch_t epoch, int dump_onfail)
  823 {
  824         epoch_record_t er;
  825         struct epoch_tracker *tdwait;
  826         struct thread *td;
  827 
  828         MPASS(epoch != NULL);
  829         MPASS((epoch->e_flags & EPOCH_PREEMPT) != 0);
  830         td = curthread;
  831         if (THREAD_CAN_SLEEP())
  832                 return (0);
  833         critical_enter();
  834         er = epoch_currecord(epoch);
  835         TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
  836                 if (tdwait->et_td == td) {
  837                         critical_exit();
  838                         return (1);
  839                 }
  840 #ifdef INVARIANTS
  841         if (dump_onfail) {
  842                 MPASS(td->td_pinned);
  843                 printf("cpu: %d id: %d\n", curcpu, td->td_tid);
  844                 TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link)
  845                         printf("td_tid: %d ", tdwait->et_td->td_tid);
  846                 printf("\n");
  847         }
  848 #endif
  849         critical_exit();
  850         return (0);
  851 }
  852 
  853 #ifdef INVARIANTS
  854 static void
  855 epoch_assert_nocpu(epoch_t epoch, struct thread *td)
  856 {
  857         epoch_record_t er;
  858         int cpu;
  859         bool crit;
  860 
  861         crit = td->td_critnest > 0;
  862 
  863         /* Check for a critical section mishap. */
  864         CPU_FOREACH(cpu) {
  865                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
  866                 KASSERT(er->er_td != td,
  867                     ("%s critical section in epoch '%s', from cpu %d",
  868                     (crit ? "exited" : "re-entered"), epoch->e_name, cpu));
  869         }
  870 }
  871 #else
  872 #define epoch_assert_nocpu(e, td) do {} while (0)
  873 #endif
  874 
  875 int
  876 in_epoch_verbose(epoch_t epoch, int dump_onfail)
  877 {
  878         epoch_record_t er;
  879         struct thread *td;
  880 
  881         if (__predict_false((epoch) == NULL))
  882                 return (0);
  883         if ((epoch->e_flags & EPOCH_PREEMPT) != 0)
  884                 return (in_epoch_verbose_preempt(epoch, dump_onfail));
  885 
  886         /*
  887          * The thread being in a critical section is a necessary
  888          * condition to be correctly inside a non-preemptible epoch,
  889          * so it's definitely not in this epoch.
  890          */
  891         td = curthread;
  892         if (td->td_critnest == 0) {
  893                 epoch_assert_nocpu(epoch, td);
  894                 return (0);
  895         }
  896 
  897         /*
  898          * The current cpu is in a critical section, so the epoch record will be
  899          * stable for the rest of this function.  Knowing that the record is not
  900          * active is sufficient for knowing whether we're in this epoch or not,
  901          * since it's a pcpu record.
  902          */
  903         er = epoch_currecord(epoch);
  904         if (er->er_record.active == 0) {
  905                 epoch_assert_nocpu(epoch, td);
  906                 return (0);
  907         }
  908 
  909         MPASS(er->er_td == td);
  910         return (1);
  911 }
  912 
  913 int
  914 in_epoch(epoch_t epoch)
  915 {
  916         return (in_epoch_verbose(epoch, 0));
  917 }
  918 
  919 static void
  920 epoch_drain_cb(struct epoch_context *ctx)
  921 {
  922         struct epoch *epoch =
  923             __containerof(ctx, struct epoch_record, er_drain_ctx)->er_parent;
  924 
  925         if (atomic_fetchadd_int(&epoch->e_drain_count, -1) == 1) {
  926                 mtx_lock(&epoch->e_drain_mtx);
  927                 wakeup(epoch);
  928                 mtx_unlock(&epoch->e_drain_mtx);
  929         }
  930 }
  931 
  932 void
  933 epoch_drain_callbacks(epoch_t epoch)
  934 {
  935         epoch_record_t er;
  936         struct thread *td;
  937         int was_bound;
  938         int old_pinned;
  939         int old_cpu;
  940         int cpu;
  941 
  942         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
  943             "epoch_drain_callbacks() may sleep!");
  944 
  945         /* too early in boot to have epoch set up */
  946         if (__predict_false(epoch == NULL))
  947                 return;
  948 #if !defined(EARLY_AP_STARTUP)
  949         if (__predict_false(inited < 2))
  950                 return;
  951 #endif
  952         DROP_GIANT();
  953 
  954         sx_xlock(&epoch->e_drain_sx);
  955         mtx_lock(&epoch->e_drain_mtx);
  956 
  957         td = curthread;
  958         thread_lock(td);
  959         old_cpu = PCPU_GET(cpuid);
  960         old_pinned = td->td_pinned;
  961         was_bound = sched_is_bound(td);
  962         sched_unbind(td);
  963         td->td_pinned = 0;
  964 
  965         CPU_FOREACH(cpu)
  966                 epoch->e_drain_count++;
  967         CPU_FOREACH(cpu) {
  968                 er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu);
  969                 sched_bind(td, cpu);
  970                 epoch_call(epoch, &epoch_drain_cb, &er->er_drain_ctx);
  971         }
  972 
  973         /* restore CPU binding, if any */
  974         if (was_bound != 0) {
  975                 sched_bind(td, old_cpu);
  976         } else {
  977                 /* get thread back to initial CPU, if any */
  978                 if (old_pinned != 0)
  979                         sched_bind(td, old_cpu);
  980                 sched_unbind(td);
  981         }
  982         /* restore pinned after bind */
  983         td->td_pinned = old_pinned;
  984 
  985         thread_unlock(td);
  986 
  987         while (epoch->e_drain_count != 0)
  988                 msleep(epoch, &epoch->e_drain_mtx, PZERO, "EDRAIN", 0);
  989 
  990         mtx_unlock(&epoch->e_drain_mtx);
  991         sx_xunlock(&epoch->e_drain_sx);
  992 
  993         PICKUP_GIANT();
  994 }

Cache object: 4a70141eaf48552f20a9acaa9abd4a92


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.