The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_fattime.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2006 Poul-Henning Kamp
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  *
   28  * $FreeBSD$
   29  *
   30  * Convert MS-DOS FAT format timestamps to and from unix timespecs
   31  *
   32  * FAT filestamps originally consisted of two 16 bit integers, encoded like
   33  * this:
   34  *
   35  *      yyyyyyymmmmddddd (year - 1980, month, day)
   36  *
   37  *      hhhhhmmmmmmsssss (hour, minutes, seconds divided by two)
   38  *
   39  * Subsequently even Microsoft realized that files could be accessed in less
   40  * than two seconds and a byte was added containing:
   41  *
   42  *      sfffffff         (second mod two, 100ths of second)
   43  *
   44  * FAT timestamps are in the local timezone, with no indication of which
   45  * timezone much less if daylight savings time applies.
   46  *
   47  * Later on again, in Windows NT, timestamps were defined relative to GMT.
   48  *
   49  * Purists will point out that UTC replaced GMT for such uses around
   50  * half a century ago, already then.  Ironically "NT" was an abbreviation of 
   51  * "New Technology".  Anyway...
   52  *
   53  * The 'utc' argument determines if the resulting FATTIME timestamp
   54  * should be on the UTC or local timezone calendar.
   55  *
   56  * The conversion functions below cut time into four-year leap-year
   57  * cycles rather than single years and uses table lookups inside those
   58  * cycles to get the months and years sorted out.
   59  *
   60  * Obviously we cannot calculate the correct table index going from
   61  * a posix seconds count to Y/M/D, but we can get pretty close by
   62  * dividing the daycount by 32 (giving a too low index), and then
   63  * adjusting upwards a couple of steps if necessary.
   64  *
   65  * FAT timestamps have 7 bits for the year and starts at 1980, so
   66  * they can represent up to 2107 which means that the non-leap-year
   67  * 2100 must be handled.
   68  *
   69  * XXX: As long as time_t is 32 bits this is not relevant or easily
   70  * XXX: testable.  Revisit when time_t grows bigger.
   71  * XXX: grepfodder: 64 bit time_t, y2100, y2.1k, 2100, leap year
   72  *
   73  */
   74 
   75 #include <sys/param.h>
   76 #include <sys/types.h>
   77 #include <sys/time.h>
   78 #include <sys/clock.h>
   79 
   80 #define DAY     (24 * 60 * 60)  /* Length of day in seconds */
   81 #define YEAR    365             /* Length of normal year */
   82 #define LYC     (4 * YEAR + 1)  /* Length of 4 year leap-year cycle */
   83 #define T1980   (10 * 365 + 2)  /* Days from 1970 to 1980 */
   84 
   85 /* End of month is N days from start of (normal) year */
   86 #define JAN     31
   87 #define FEB     (JAN + 28)
   88 #define MAR     (FEB + 31)
   89 #define APR     (MAR + 30)
   90 #define MAY     (APR + 31)
   91 #define JUN     (MAY + 30)
   92 #define JUL     (JUN + 31)
   93 #define AUG     (JUL + 31)
   94 #define SEP     (AUG + 30)
   95 #define OCT     (SEP + 31)
   96 #define NOV     (OCT + 30)
   97 #define DEC     (NOV + 31)
   98 
   99 /* Table of months in a 4 year leap-year cycle */
  100 
  101 #define ENC(y,m)        (((y) << 9) | ((m) << 5))
  102 
  103 static const struct {
  104         uint16_t        days;   /* month start in days relative to cycle */
  105         uint16_t        coded;  /* encoded year + month information */
  106 } mtab[48] = {
  107         {   0 + 0 * YEAR,     ENC(0, 1)  },
  108 
  109         { JAN + 0 * YEAR,     ENC(0, 2)  }, { FEB + 0 * YEAR + 1, ENC(0, 3)  },
  110         { MAR + 0 * YEAR + 1, ENC(0, 4)  }, { APR + 0 * YEAR + 1, ENC(0, 5)  },
  111         { MAY + 0 * YEAR + 1, ENC(0, 6)  }, { JUN + 0 * YEAR + 1, ENC(0, 7)  },
  112         { JUL + 0 * YEAR + 1, ENC(0, 8)  }, { AUG + 0 * YEAR + 1, ENC(0, 9)  },
  113         { SEP + 0 * YEAR + 1, ENC(0, 10) }, { OCT + 0 * YEAR + 1, ENC(0, 11) },
  114         { NOV + 0 * YEAR + 1, ENC(0, 12) }, { DEC + 0 * YEAR + 1, ENC(1, 1)  },
  115 
  116         { JAN + 1 * YEAR + 1, ENC(1, 2)  }, { FEB + 1 * YEAR + 1, ENC(1, 3)  },
  117         { MAR + 1 * YEAR + 1, ENC(1, 4)  }, { APR + 1 * YEAR + 1, ENC(1, 5)  },
  118         { MAY + 1 * YEAR + 1, ENC(1, 6)  }, { JUN + 1 * YEAR + 1, ENC(1, 7)  },
  119         { JUL + 1 * YEAR + 1, ENC(1, 8)  }, { AUG + 1 * YEAR + 1, ENC(1, 9)  },
  120         { SEP + 1 * YEAR + 1, ENC(1, 10) }, { OCT + 1 * YEAR + 1, ENC(1, 11) },
  121         { NOV + 1 * YEAR + 1, ENC(1, 12) }, { DEC + 1 * YEAR + 1, ENC(2, 1)  },
  122 
  123         { JAN + 2 * YEAR + 1, ENC(2, 2)  }, { FEB + 2 * YEAR + 1, ENC(2, 3)  },
  124         { MAR + 2 * YEAR + 1, ENC(2, 4)  }, { APR + 2 * YEAR + 1, ENC(2, 5)  },
  125         { MAY + 2 * YEAR + 1, ENC(2, 6)  }, { JUN + 2 * YEAR + 1, ENC(2, 7)  },
  126         { JUL + 2 * YEAR + 1, ENC(2, 8)  }, { AUG + 2 * YEAR + 1, ENC(2, 9)  },
  127         { SEP + 2 * YEAR + 1, ENC(2, 10) }, { OCT + 2 * YEAR + 1, ENC(2, 11) },
  128         { NOV + 2 * YEAR + 1, ENC(2, 12) }, { DEC + 2 * YEAR + 1, ENC(3, 1)  },
  129 
  130         { JAN + 3 * YEAR + 1, ENC(3, 2)  }, { FEB + 3 * YEAR + 1, ENC(3, 3)  },
  131         { MAR + 3 * YEAR + 1, ENC(3, 4)  }, { APR + 3 * YEAR + 1, ENC(3, 5)  },
  132         { MAY + 3 * YEAR + 1, ENC(3, 6)  }, { JUN + 3 * YEAR + 1, ENC(3, 7)  },
  133         { JUL + 3 * YEAR + 1, ENC(3, 8)  }, { AUG + 3 * YEAR + 1, ENC(3, 9)  },
  134         { SEP + 3 * YEAR + 1, ENC(3, 10) }, { OCT + 3 * YEAR + 1, ENC(3, 11) },
  135         { NOV + 3 * YEAR + 1, ENC(3, 12) }
  136 };
  137 
  138 void
  139 timespec2fattime(const struct timespec *tsp, int utc, uint16_t *ddp,
  140     uint16_t *dtp, uint8_t *dhp)
  141 {
  142         time_t t1;
  143         unsigned t2, l, m;
  144 
  145         t1 = tsp->tv_sec;
  146         if (!utc)
  147                 t1 -= utc_offset();
  148 
  149         if (dhp != NULL)
  150                 *dhp = (tsp->tv_sec & 1) * 100 + tsp->tv_nsec / 10000000;
  151         if (dtp != NULL) {
  152                 *dtp = (t1 / 2) % 30;
  153                 *dtp |= ((t1 / 60) % 60) << 5;
  154                 *dtp |= ((t1 / 3600) % 24) << 11;
  155         }
  156         if (ddp != NULL) {
  157                 t2 = t1 / DAY;
  158                 if (t2 < T1980) {
  159                         /* Impossible date, truncate to 1980-01-01 */
  160                         *ddp = 0x0021;
  161                 } else {
  162                         t2 -= T1980;
  163 
  164                         /*
  165                          * 2100 is not a leap year.
  166                          * XXX: a 32 bit time_t can not get us here.
  167                          */
  168                         if (t2 >= ((2100 - 1980) / 4 * LYC + FEB))
  169                                 t2++;
  170 
  171                         /* Account for full leapyear cycles */
  172                         l = t2 / LYC;
  173                         *ddp = (l * 4) << 9;
  174                         t2 -= l * LYC;
  175 
  176                         /* Find approximate table entry */
  177                         m = t2 / 32;
  178 
  179                         /* Find correct table entry */
  180                         while (m < 47 && mtab[m + 1].days <= t2)
  181                                 m++;
  182 
  183                         /* Get year + month from the table */
  184                         *ddp += mtab[m].coded;
  185 
  186                         /* And apply the day in the month */
  187                         t2 -= mtab[m].days - 1;
  188                         *ddp |= t2;
  189                 }
  190         }
  191 }
  192 
  193 /*
  194  * Table indexed by the bottom two bits of year + four bits of the month
  195  * from the FAT timestamp, returning number of days into 4 year long
  196  * leap-year cycle
  197  */
  198 
  199 #define DCOD(m, y, l)   ((m) + YEAR * (y) + (l))
  200 static const uint16_t daytab[64] = {
  201         0,               DCOD(  0, 0, 0), DCOD(JAN, 0, 0), DCOD(FEB, 0, 1),
  202         DCOD(MAR, 0, 1), DCOD(APR, 0, 1), DCOD(MAY, 0, 1), DCOD(JUN, 0, 1),
  203         DCOD(JUL, 0, 1), DCOD(AUG, 0, 1), DCOD(SEP, 0, 1), DCOD(OCT, 0, 1),
  204         DCOD(NOV, 0, 1), DCOD(DEC, 0, 1), 0,               0,
  205         0,               DCOD(  0, 1, 1), DCOD(JAN, 1, 1), DCOD(FEB, 1, 1),
  206         DCOD(MAR, 1, 1), DCOD(APR, 1, 1), DCOD(MAY, 1, 1), DCOD(JUN, 1, 1),
  207         DCOD(JUL, 1, 1), DCOD(AUG, 1, 1), DCOD(SEP, 1, 1), DCOD(OCT, 1, 1),
  208         DCOD(NOV, 1, 1), DCOD(DEC, 1, 1), 0,               0,
  209         0,               DCOD(  0, 2, 1), DCOD(JAN, 2, 1), DCOD(FEB, 2, 1),
  210         DCOD(MAR, 2, 1), DCOD(APR, 2, 1), DCOD(MAY, 2, 1), DCOD(JUN, 2, 1),
  211         DCOD(JUL, 2, 1), DCOD(AUG, 2, 1), DCOD(SEP, 2, 1), DCOD(OCT, 2, 1),
  212         DCOD(NOV, 2, 1), DCOD(DEC, 2, 1), 0,               0,
  213         0,               DCOD(  0, 3, 1), DCOD(JAN, 3, 1), DCOD(FEB, 3, 1),
  214         DCOD(MAR, 3, 1), DCOD(APR, 3, 1), DCOD(MAY, 3, 1), DCOD(JUN, 3, 1),
  215         DCOD(JUL, 3, 1), DCOD(AUG, 3, 1), DCOD(SEP, 3, 1), DCOD(OCT, 3, 1),
  216         DCOD(NOV, 3, 1), DCOD(DEC, 3, 1), 0,               0
  217 };
  218 
  219 void
  220 fattime2timespec(unsigned dd, unsigned dt, unsigned dh, int utc,
  221     struct timespec *tsp)
  222 {
  223         unsigned day;
  224 
  225         /* Unpack time fields */
  226         tsp->tv_sec = (dt & 0x1f) << 1;
  227         tsp->tv_sec += ((dt & 0x7e0) >> 5) * 60;
  228         tsp->tv_sec += ((dt & 0xf800) >> 11) * 3600;
  229         tsp->tv_sec += dh / 100;
  230         tsp->tv_nsec = (dh % 100) * 10000000;
  231 
  232         /* Day of month */
  233         day = (dd & 0x1f) - 1;
  234 
  235         /* Full leap-year cycles */
  236         day += LYC * ((dd >> 11) & 0x1f);
  237 
  238         /* Month offset from leap-year cycle */
  239         day += daytab[(dd >> 5) & 0x3f];
  240 
  241         /*
  242          * 2100 is not a leap year.
  243          * XXX: a 32 bit time_t can not get us here.
  244          */
  245         if (day >= ((2100 - 1980) / 4 * LYC + FEB))
  246                 day--;
  247 
  248         /* Align with time_t epoch */
  249         day += T1980;
  250 
  251         tsp->tv_sec += DAY * day;
  252         if (!utc)
  253                 tsp->tv_sec += utc_offset();
  254 }
  255 
  256 #ifdef TEST_DRIVER
  257 
  258 #include <stdio.h>
  259 #include <unistd.h>
  260 #include <stdlib.h>
  261 
  262 int
  263 main(int argc __unused, char **argv __unused)
  264 {
  265         int i;
  266         struct timespec ts;
  267         struct tm tm;
  268         double a;
  269         uint16_t d, t;
  270         uint8_t p;
  271         char buf[100];
  272 
  273         for (i = 0; i < 10000; i++) {
  274                 do {
  275                         ts.tv_sec = random();
  276                 } while (ts.tv_sec < T1980 * 86400);
  277                 ts.tv_nsec = random() % 1000000000;
  278 
  279                 printf("%10d.%03ld -- ", ts.tv_sec, ts.tv_nsec / 1000000);
  280 
  281                 gmtime_r(&ts.tv_sec, &tm);
  282                 strftime(buf, sizeof buf, "%Y %m %d %H %M %S", &tm);
  283                 printf("%s -- ", buf);
  284 
  285                 a = ts.tv_sec + ts.tv_nsec * 1e-9;
  286                 d = t = p = 0;
  287                 timet2fattime(&ts, &d, &t, &p);
  288                 printf("%04x %04x %02x -- ", d, t, p);
  289                 printf("%3d %02d %02d %02d %02d %02d -- ",
  290                     ((d >> 9)  & 0x7f) + 1980,
  291                     (d >> 5)  & 0x0f,
  292                     (d >> 0)  & 0x1f,
  293                     (t >> 11) & 0x1f,
  294                     (t >> 5)  & 0x3f,
  295                     ((t >> 0)  & 0x1f) * 2);
  296 
  297                 ts.tv_sec = ts.tv_nsec = 0;
  298                 fattime2timet(d, t, p, &ts);
  299                 printf("%10d.%03ld == ", ts.tv_sec, ts.tv_nsec / 1000000);
  300                 gmtime_r(&ts.tv_sec, &tm);
  301                 strftime(buf, sizeof buf, "%Y %m %d %H %M %S", &tm);
  302                 printf("%s -- ", buf);
  303                 a -= ts.tv_sec + ts.tv_nsec * 1e-9;
  304                 printf("%.3f", a);
  305                 printf("\n");
  306         }
  307         return (0);
  308 }
  309 
  310 #endif /* TEST_DRIVER */

Cache object: 5059811f22470536b992e678a8c886ee


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.