The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_fattime.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2006 Poul-Henning Kamp
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  *
   26  * $FreeBSD$
   27  *
   28  * Convert MS-DOS FAT format timestamps to and from unix timespecs
   29  *
   30  * FAT filestamps originally consisted of two 16 bit integers, encoded like
   31  * this:
   32  *
   33  *      yyyyyyymmmmddddd (year - 1980, month, day)
   34  *
   35  *      hhhhhmmmmmmsssss (hour, minutes, seconds divided by two)
   36  *
   37  * Subsequently even Microsoft realized that files could be accessed in less
   38  * than two seconds and a byte was added containing:
   39  *
   40  *      sfffffff         (second mod two, 100ths of second)
   41  *
   42  * FAT timestamps are in the local timezone, with no indication of which
   43  * timezone much less if daylight savings time applies.
   44  *
   45  * Later on again, in Windows NT, timestamps were defined relative to GMT.
   46  *
   47  * Purists will point out that UTC replaced GMT for such uses around
   48  * half a century ago, already then.  Ironically "NT" was an abbreviation of 
   49  * "New Technology".  Anyway...
   50  *
   51  * The 'utc' argument determines if the resulting FATTIME timestamp
   52  * should be on the UTC or local timezone calendar.
   53  *
   54  * The conversion functions below cut time into four-year leap-year
   55  * cycles rather than single years and uses table lookups inside those
   56  * cycles to get the months and years sorted out.
   57  *
   58  * Obviously we cannot calculate the correct table index going from
   59  * a posix seconds count to Y/M/D, but we can get pretty close by
   60  * dividing the daycount by 32 (giving a too low index), and then
   61  * adjusting upwards a couple of steps if necessary.
   62  *
   63  * FAT timestamps have 7 bits for the year and starts at 1980, so
   64  * they can represent up to 2107 which means that the non-leap-year
   65  * 2100 must be handled.
   66  *
   67  * XXX: As long as time_t is 32 bits this is not relevant or easily
   68  * XXX: testable.  Revisit when time_t grows bigger.
   69  * XXX: grepfodder: 64 bit time_t, y2100, y2.1k, 2100, leap year
   70  *
   71  */
   72 
   73 #include <sys/param.h>
   74 #include <sys/types.h>
   75 #include <sys/time.h>
   76 #include <sys/clock.h>
   77 
   78 #define DAY     (24 * 60 * 60)  /* Length of day in seconds */
   79 #define YEAR    365             /* Length of normal year */
   80 #define LYC     (4 * YEAR + 1)  /* Length of 4 year leap-year cycle */
   81 #define T1980   (10 * 365 + 2)  /* Days from 1970 to 1980 */
   82 
   83 /* End of month is N days from start of (normal) year */
   84 #define JAN     31
   85 #define FEB     (JAN + 28)
   86 #define MAR     (FEB + 31)
   87 #define APR     (MAR + 30)
   88 #define MAY     (APR + 31)
   89 #define JUN     (MAY + 30)
   90 #define JUL     (JUN + 31)
   91 #define AUG     (JUL + 31)
   92 #define SEP     (AUG + 30)
   93 #define OCT     (SEP + 31)
   94 #define NOV     (OCT + 30)
   95 #define DEC     (NOV + 31)
   96 
   97 /* Table of months in a 4 year leap-year cycle */
   98 
   99 #define ENC(y,m)        (((y) << 9) | ((m) << 5))
  100 
  101 static const struct {
  102         uint16_t        days;   /* month start in days relative to cycle */
  103         uint16_t        coded;  /* encoded year + month information */
  104 } mtab[48] = {
  105         {   0 + 0 * YEAR,     ENC(0, 1)  },
  106 
  107         { JAN + 0 * YEAR,     ENC(0, 2)  }, { FEB + 0 * YEAR + 1, ENC(0, 3)  },
  108         { MAR + 0 * YEAR + 1, ENC(0, 4)  }, { APR + 0 * YEAR + 1, ENC(0, 5)  },
  109         { MAY + 0 * YEAR + 1, ENC(0, 6)  }, { JUN + 0 * YEAR + 1, ENC(0, 7)  },
  110         { JUL + 0 * YEAR + 1, ENC(0, 8)  }, { AUG + 0 * YEAR + 1, ENC(0, 9)  },
  111         { SEP + 0 * YEAR + 1, ENC(0, 10) }, { OCT + 0 * YEAR + 1, ENC(0, 11) },
  112         { NOV + 0 * YEAR + 1, ENC(0, 12) }, { DEC + 0 * YEAR + 1, ENC(1, 1)  },
  113 
  114         { JAN + 1 * YEAR + 1, ENC(1, 2)  }, { FEB + 1 * YEAR + 1, ENC(1, 3)  },
  115         { MAR + 1 * YEAR + 1, ENC(1, 4)  }, { APR + 1 * YEAR + 1, ENC(1, 5)  },
  116         { MAY + 1 * YEAR + 1, ENC(1, 6)  }, { JUN + 1 * YEAR + 1, ENC(1, 7)  },
  117         { JUL + 1 * YEAR + 1, ENC(1, 8)  }, { AUG + 1 * YEAR + 1, ENC(1, 9)  },
  118         { SEP + 1 * YEAR + 1, ENC(1, 10) }, { OCT + 1 * YEAR + 1, ENC(1, 11) },
  119         { NOV + 1 * YEAR + 1, ENC(1, 12) }, { DEC + 1 * YEAR + 1, ENC(2, 1)  },
  120 
  121         { JAN + 2 * YEAR + 1, ENC(2, 2)  }, { FEB + 2 * YEAR + 1, ENC(2, 3)  },
  122         { MAR + 2 * YEAR + 1, ENC(2, 4)  }, { APR + 2 * YEAR + 1, ENC(2, 5)  },
  123         { MAY + 2 * YEAR + 1, ENC(2, 6)  }, { JUN + 2 * YEAR + 1, ENC(2, 7)  },
  124         { JUL + 2 * YEAR + 1, ENC(2, 8)  }, { AUG + 2 * YEAR + 1, ENC(2, 9)  },
  125         { SEP + 2 * YEAR + 1, ENC(2, 10) }, { OCT + 2 * YEAR + 1, ENC(2, 11) },
  126         { NOV + 2 * YEAR + 1, ENC(2, 12) }, { DEC + 2 * YEAR + 1, ENC(3, 1)  },
  127 
  128         { JAN + 3 * YEAR + 1, ENC(3, 2)  }, { FEB + 3 * YEAR + 1, ENC(3, 3)  },
  129         { MAR + 3 * YEAR + 1, ENC(3, 4)  }, { APR + 3 * YEAR + 1, ENC(3, 5)  },
  130         { MAY + 3 * YEAR + 1, ENC(3, 6)  }, { JUN + 3 * YEAR + 1, ENC(3, 7)  },
  131         { JUL + 3 * YEAR + 1, ENC(3, 8)  }, { AUG + 3 * YEAR + 1, ENC(3, 9)  },
  132         { SEP + 3 * YEAR + 1, ENC(3, 10) }, { OCT + 3 * YEAR + 1, ENC(3, 11) },
  133         { NOV + 3 * YEAR + 1, ENC(3, 12) }
  134 };
  135 
  136 
  137 void
  138 timespec2fattime(const struct timespec *tsp, int utc, uint16_t *ddp,
  139     uint16_t *dtp, uint8_t *dhp)
  140 {
  141         time_t t1;
  142         unsigned t2, l, m;
  143 
  144         t1 = tsp->tv_sec;
  145         if (!utc)
  146                 t1 -= utc_offset();
  147 
  148         if (dhp != NULL)
  149                 *dhp = (tsp->tv_sec & 1) * 100 + tsp->tv_nsec / 10000000;
  150         if (dtp != NULL) {
  151                 *dtp = (t1 / 2) % 30;
  152                 *dtp |= ((t1 / 60) % 60) << 5;
  153                 *dtp |= ((t1 / 3600) % 24) << 11;
  154         }
  155         if (ddp != NULL) {
  156                 t2 = t1 / DAY;
  157                 if (t2 < T1980) {
  158                         /* Impossible date, truncate to 1980-01-01 */
  159                         *ddp = 0x0021;
  160                 } else {
  161                         t2 -= T1980;
  162 
  163                         /*
  164                          * 2100 is not a leap year.
  165                          * XXX: a 32 bit time_t can not get us here.
  166                          */
  167                         if (t2 >= ((2100 - 1980) / 4 * LYC + FEB))
  168                                 t2++;
  169 
  170                         /* Account for full leapyear cycles */
  171                         l = t2 / LYC;
  172                         *ddp = (l * 4) << 9;
  173                         t2 -= l * LYC;
  174 
  175                         /* Find approximate table entry */
  176                         m = t2 / 32;
  177 
  178                         /* Find correct table entry */
  179                         while (m < 47 && mtab[m + 1].days <= t2)
  180                                 m++;
  181 
  182                         /* Get year + month from the table */
  183                         *ddp += mtab[m].coded;
  184 
  185                         /* And apply the day in the month */
  186                         t2 -= mtab[m].days - 1;
  187                         *ddp |= t2;
  188                 }
  189         }
  190 }
  191 
  192 /*
  193  * Table indexed by the bottom two bits of year + four bits of the month
  194  * from the FAT timestamp, returning number of days into 4 year long
  195  * leap-year cycle
  196  */
  197 
  198 #define DCOD(m, y, l)   ((m) + YEAR * (y) + (l))
  199 static const uint16_t daytab[64] = {
  200         0,               DCOD(  0, 0, 0), DCOD(JAN, 0, 0), DCOD(FEB, 0, 1),
  201         DCOD(MAR, 0, 1), DCOD(APR, 0, 1), DCOD(MAY, 0, 1), DCOD(JUN, 0, 1),
  202         DCOD(JUL, 0, 1), DCOD(AUG, 0, 1), DCOD(SEP, 0, 1), DCOD(OCT, 0, 1),
  203         DCOD(NOV, 0, 1), DCOD(DEC, 0, 1), 0,               0,
  204         0,               DCOD(  0, 1, 1), DCOD(JAN, 1, 1), DCOD(FEB, 1, 1),
  205         DCOD(MAR, 1, 1), DCOD(APR, 1, 1), DCOD(MAY, 1, 1), DCOD(JUN, 1, 1),
  206         DCOD(JUL, 1, 1), DCOD(AUG, 1, 1), DCOD(SEP, 1, 1), DCOD(OCT, 1, 1),
  207         DCOD(NOV, 1, 1), DCOD(DEC, 1, 1), 0,               0,
  208         0,               DCOD(  0, 2, 1), DCOD(JAN, 2, 1), DCOD(FEB, 2, 1),
  209         DCOD(MAR, 2, 1), DCOD(APR, 2, 1), DCOD(MAY, 2, 1), DCOD(JUN, 2, 1),
  210         DCOD(JUL, 2, 1), DCOD(AUG, 2, 1), DCOD(SEP, 2, 1), DCOD(OCT, 2, 1),
  211         DCOD(NOV, 2, 1), DCOD(DEC, 2, 1), 0,               0,
  212         0,               DCOD(  0, 3, 1), DCOD(JAN, 3, 1), DCOD(FEB, 3, 1),
  213         DCOD(MAR, 3, 1), DCOD(APR, 3, 1), DCOD(MAY, 3, 1), DCOD(JUN, 3, 1),
  214         DCOD(JUL, 3, 1), DCOD(AUG, 3, 1), DCOD(SEP, 3, 1), DCOD(OCT, 3, 1),
  215         DCOD(NOV, 3, 1), DCOD(DEC, 3, 1), 0,               0
  216 };
  217 
  218 void
  219 fattime2timespec(unsigned dd, unsigned dt, unsigned dh, int utc,
  220     struct timespec *tsp)
  221 {
  222         unsigned day;
  223 
  224         /* Unpack time fields */
  225         tsp->tv_sec = (dt & 0x1f) << 1;
  226         tsp->tv_sec += ((dt & 0x7e0) >> 5) * 60;
  227         tsp->tv_sec += ((dt & 0xf800) >> 11) * 3600;
  228         tsp->tv_sec += dh / 100;
  229         tsp->tv_nsec = (dh % 100) * 10000000;
  230 
  231         /* Day of month */
  232         day = (dd & 0x1f) - 1;
  233 
  234         /* Full leap-year cycles */
  235         day += LYC * ((dd >> 11) & 0x1f);
  236 
  237         /* Month offset from leap-year cycle */
  238         day += daytab[(dd >> 5) & 0x3f];
  239 
  240         /*
  241          * 2100 is not a leap year.
  242          * XXX: a 32 bit time_t can not get us here.
  243          */
  244         if (day >= ((2100 - 1980) / 4 * LYC + FEB))
  245                 day--;
  246 
  247         /* Align with time_t epoch */
  248         day += T1980;
  249 
  250         tsp->tv_sec += DAY * day;
  251         if (!utc)
  252                 tsp->tv_sec += utc_offset();
  253 }
  254 
  255 #ifdef TEST_DRIVER
  256 
  257 #include <stdio.h>
  258 #include <unistd.h>
  259 #include <stdlib.h>
  260 
  261 int
  262 main(int argc __unused, char **argv __unused)
  263 {
  264         int i;
  265         struct timespec ts;
  266         struct tm tm;
  267         double a;
  268         uint16_t d, t;
  269         uint8_t p;
  270         char buf[100];
  271 
  272         for (i = 0; i < 10000; i++) {
  273                 do {
  274                         ts.tv_sec = random();
  275                 } while (ts.tv_sec < T1980 * 86400);
  276                 ts.tv_nsec = random() % 1000000000;
  277 
  278                 printf("%10d.%03ld -- ", ts.tv_sec, ts.tv_nsec / 1000000);
  279 
  280                 gmtime_r(&ts.tv_sec, &tm);
  281                 strftime(buf, sizeof buf, "%Y %m %d %H %M %S", &tm);
  282                 printf("%s -- ", buf);
  283 
  284                 a = ts.tv_sec + ts.tv_nsec * 1e-9;
  285                 d = t = p = 0;
  286                 timet2fattime(&ts, &d, &t, &p);
  287                 printf("%04x %04x %02x -- ", d, t, p);
  288                 printf("%3d %02d %02d %02d %02d %02d -- ",
  289                     ((d >> 9)  & 0x7f) + 1980,
  290                     (d >> 5)  & 0x0f,
  291                     (d >> 0)  & 0x1f,
  292                     (t >> 11) & 0x1f,
  293                     (t >> 5)  & 0x3f,
  294                     ((t >> 0)  & 0x1f) * 2);
  295 
  296                 ts.tv_sec = ts.tv_nsec = 0;
  297                 fattime2timet(d, t, p, &ts);
  298                 printf("%10d.%03ld == ", ts.tv_sec, ts.tv_nsec / 1000000);
  299                 gmtime_r(&ts.tv_sec, &tm);
  300                 strftime(buf, sizeof buf, "%Y %m %d %H %M %S", &tm);
  301                 printf("%s -- ", buf);
  302                 a -= ts.tv_sec + ts.tv_nsec * 1e-9;
  303                 printf("%.3f", a);
  304                 printf("\n");
  305         }
  306         return (0);
  307 }
  308 
  309 #endif /* TEST_DRIVER */

Cache object: 8bbbae1b06dbd5b8f98d68738cbea688


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.