The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_fattime.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2006 Poul-Henning Kamp
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  *
   28  * $FreeBSD$
   29  *
   30  * Convert MS-DOS FAT format timestamps to and from unix timespecs
   31  *
   32  * FAT filestamps originally consisted of two 16 bit integers, encoded like
   33  * this:
   34  *
   35  *      yyyyyyymmmmddddd (year - 1980, month, day)
   36  *
   37  *      hhhhhmmmmmmsssss (hour, minutes, seconds divided by two)
   38  *
   39  * Subsequently even Microsoft realized that files could be accessed in less
   40  * than two seconds and a byte was added containing:
   41  *
   42  *      sfffffff         (second mod two, 100ths of second)
   43  *
   44  * FAT timestamps are in the local timezone, with no indication of which
   45  * timezone much less if daylight savings time applies.
   46  *
   47  * Later on again, in Windows NT, timestamps were defined relative to GMT.
   48  *
   49  * Purists will point out that UTC replaced GMT for such uses around
   50  * half a century ago, already then.  Ironically "NT" was an abbreviation of 
   51  * "New Technology".  Anyway...
   52  *
   53  * The 'utc' argument determines if the resulting FATTIME timestamp
   54  * should be on the UTC or local timezone calendar.
   55  *
   56  * The conversion functions below cut time into four-year leap-year
   57  * cycles rather than single years and uses table lookups inside those
   58  * cycles to get the months and years sorted out.
   59  *
   60  * Obviously we cannot calculate the correct table index going from
   61  * a posix seconds count to Y/M/D, but we can get pretty close by
   62  * dividing the daycount by 32 (giving a too low index), and then
   63  * adjusting upwards a couple of steps if necessary.
   64  *
   65  * FAT timestamps have 7 bits for the year and starts at 1980, so
   66  * they can represent up to 2107 which means that the non-leap-year
   67  * 2100 must be handled.
   68  *
   69  * XXX: As long as time_t is 32 bits this is not relevant or easily
   70  * XXX: testable.  Revisit when time_t grows bigger.
   71  * XXX: grepfodder: 64 bit time_t, y2100, y2.1k, 2100, leap year
   72  *
   73  */
   74 
   75 #include <sys/param.h>
   76 #include <sys/types.h>
   77 #include <sys/time.h>
   78 #include <sys/clock.h>
   79 
   80 #define DAY     (24 * 60 * 60)  /* Length of day in seconds */
   81 #define YEAR    365             /* Length of normal year */
   82 #define LYC     (4 * YEAR + 1)  /* Length of 4 year leap-year cycle */
   83 #define T1980   (10 * 365 + 2)  /* Days from 1970 to 1980 */
   84 
   85 /* End of month is N days from start of (normal) year */
   86 #define JAN     31
   87 #define FEB     (JAN + 28)
   88 #define MAR     (FEB + 31)
   89 #define APR     (MAR + 30)
   90 #define MAY     (APR + 31)
   91 #define JUN     (MAY + 30)
   92 #define JUL     (JUN + 31)
   93 #define AUG     (JUL + 31)
   94 #define SEP     (AUG + 30)
   95 #define OCT     (SEP + 31)
   96 #define NOV     (OCT + 30)
   97 #define DEC     (NOV + 31)
   98 
   99 /* Table of months in a 4 year leap-year cycle */
  100 
  101 #define ENC(y,m)        (((y) << 9) | ((m) << 5))
  102 
  103 static const struct {
  104         uint16_t        days;   /* month start in days relative to cycle */
  105         uint16_t        coded;  /* encoded year + month information */
  106 } mtab[48] = {
  107         {   0 + 0 * YEAR,     ENC(0, 1)  },
  108 
  109         { JAN + 0 * YEAR,     ENC(0, 2)  }, { FEB + 0 * YEAR + 1, ENC(0, 3)  },
  110         { MAR + 0 * YEAR + 1, ENC(0, 4)  }, { APR + 0 * YEAR + 1, ENC(0, 5)  },
  111         { MAY + 0 * YEAR + 1, ENC(0, 6)  }, { JUN + 0 * YEAR + 1, ENC(0, 7)  },
  112         { JUL + 0 * YEAR + 1, ENC(0, 8)  }, { AUG + 0 * YEAR + 1, ENC(0, 9)  },
  113         { SEP + 0 * YEAR + 1, ENC(0, 10) }, { OCT + 0 * YEAR + 1, ENC(0, 11) },
  114         { NOV + 0 * YEAR + 1, ENC(0, 12) }, { DEC + 0 * YEAR + 1, ENC(1, 1)  },
  115 
  116         { JAN + 1 * YEAR + 1, ENC(1, 2)  }, { FEB + 1 * YEAR + 1, ENC(1, 3)  },
  117         { MAR + 1 * YEAR + 1, ENC(1, 4)  }, { APR + 1 * YEAR + 1, ENC(1, 5)  },
  118         { MAY + 1 * YEAR + 1, ENC(1, 6)  }, { JUN + 1 * YEAR + 1, ENC(1, 7)  },
  119         { JUL + 1 * YEAR + 1, ENC(1, 8)  }, { AUG + 1 * YEAR + 1, ENC(1, 9)  },
  120         { SEP + 1 * YEAR + 1, ENC(1, 10) }, { OCT + 1 * YEAR + 1, ENC(1, 11) },
  121         { NOV + 1 * YEAR + 1, ENC(1, 12) }, { DEC + 1 * YEAR + 1, ENC(2, 1)  },
  122 
  123         { JAN + 2 * YEAR + 1, ENC(2, 2)  }, { FEB + 2 * YEAR + 1, ENC(2, 3)  },
  124         { MAR + 2 * YEAR + 1, ENC(2, 4)  }, { APR + 2 * YEAR + 1, ENC(2, 5)  },
  125         { MAY + 2 * YEAR + 1, ENC(2, 6)  }, { JUN + 2 * YEAR + 1, ENC(2, 7)  },
  126         { JUL + 2 * YEAR + 1, ENC(2, 8)  }, { AUG + 2 * YEAR + 1, ENC(2, 9)  },
  127         { SEP + 2 * YEAR + 1, ENC(2, 10) }, { OCT + 2 * YEAR + 1, ENC(2, 11) },
  128         { NOV + 2 * YEAR + 1, ENC(2, 12) }, { DEC + 2 * YEAR + 1, ENC(3, 1)  },
  129 
  130         { JAN + 3 * YEAR + 1, ENC(3, 2)  }, { FEB + 3 * YEAR + 1, ENC(3, 3)  },
  131         { MAR + 3 * YEAR + 1, ENC(3, 4)  }, { APR + 3 * YEAR + 1, ENC(3, 5)  },
  132         { MAY + 3 * YEAR + 1, ENC(3, 6)  }, { JUN + 3 * YEAR + 1, ENC(3, 7)  },
  133         { JUL + 3 * YEAR + 1, ENC(3, 8)  }, { AUG + 3 * YEAR + 1, ENC(3, 9)  },
  134         { SEP + 3 * YEAR + 1, ENC(3, 10) }, { OCT + 3 * YEAR + 1, ENC(3, 11) },
  135         { NOV + 3 * YEAR + 1, ENC(3, 12) }
  136 };
  137 
  138 
  139 void
  140 timespec2fattime(const struct timespec *tsp, int utc, uint16_t *ddp,
  141     uint16_t *dtp, uint8_t *dhp)
  142 {
  143         time_t t1;
  144         unsigned t2, l, m;
  145 
  146         t1 = tsp->tv_sec;
  147         if (!utc)
  148                 t1 -= utc_offset();
  149 
  150         if (dhp != NULL)
  151                 *dhp = (tsp->tv_sec & 1) * 100 + tsp->tv_nsec / 10000000;
  152         if (dtp != NULL) {
  153                 *dtp = (t1 / 2) % 30;
  154                 *dtp |= ((t1 / 60) % 60) << 5;
  155                 *dtp |= ((t1 / 3600) % 24) << 11;
  156         }
  157         if (ddp != NULL) {
  158                 t2 = t1 / DAY;
  159                 if (t2 < T1980) {
  160                         /* Impossible date, truncate to 1980-01-01 */
  161                         *ddp = 0x0021;
  162                 } else {
  163                         t2 -= T1980;
  164 
  165                         /*
  166                          * 2100 is not a leap year.
  167                          * XXX: a 32 bit time_t can not get us here.
  168                          */
  169                         if (t2 >= ((2100 - 1980) / 4 * LYC + FEB))
  170                                 t2++;
  171 
  172                         /* Account for full leapyear cycles */
  173                         l = t2 / LYC;
  174                         *ddp = (l * 4) << 9;
  175                         t2 -= l * LYC;
  176 
  177                         /* Find approximate table entry */
  178                         m = t2 / 32;
  179 
  180                         /* Find correct table entry */
  181                         while (m < 47 && mtab[m + 1].days <= t2)
  182                                 m++;
  183 
  184                         /* Get year + month from the table */
  185                         *ddp += mtab[m].coded;
  186 
  187                         /* And apply the day in the month */
  188                         t2 -= mtab[m].days - 1;
  189                         *ddp |= t2;
  190                 }
  191         }
  192 }
  193 
  194 /*
  195  * Table indexed by the bottom two bits of year + four bits of the month
  196  * from the FAT timestamp, returning number of days into 4 year long
  197  * leap-year cycle
  198  */
  199 
  200 #define DCOD(m, y, l)   ((m) + YEAR * (y) + (l))
  201 static const uint16_t daytab[64] = {
  202         0,               DCOD(  0, 0, 0), DCOD(JAN, 0, 0), DCOD(FEB, 0, 1),
  203         DCOD(MAR, 0, 1), DCOD(APR, 0, 1), DCOD(MAY, 0, 1), DCOD(JUN, 0, 1),
  204         DCOD(JUL, 0, 1), DCOD(AUG, 0, 1), DCOD(SEP, 0, 1), DCOD(OCT, 0, 1),
  205         DCOD(NOV, 0, 1), DCOD(DEC, 0, 1), 0,               0,
  206         0,               DCOD(  0, 1, 1), DCOD(JAN, 1, 1), DCOD(FEB, 1, 1),
  207         DCOD(MAR, 1, 1), DCOD(APR, 1, 1), DCOD(MAY, 1, 1), DCOD(JUN, 1, 1),
  208         DCOD(JUL, 1, 1), DCOD(AUG, 1, 1), DCOD(SEP, 1, 1), DCOD(OCT, 1, 1),
  209         DCOD(NOV, 1, 1), DCOD(DEC, 1, 1), 0,               0,
  210         0,               DCOD(  0, 2, 1), DCOD(JAN, 2, 1), DCOD(FEB, 2, 1),
  211         DCOD(MAR, 2, 1), DCOD(APR, 2, 1), DCOD(MAY, 2, 1), DCOD(JUN, 2, 1),
  212         DCOD(JUL, 2, 1), DCOD(AUG, 2, 1), DCOD(SEP, 2, 1), DCOD(OCT, 2, 1),
  213         DCOD(NOV, 2, 1), DCOD(DEC, 2, 1), 0,               0,
  214         0,               DCOD(  0, 3, 1), DCOD(JAN, 3, 1), DCOD(FEB, 3, 1),
  215         DCOD(MAR, 3, 1), DCOD(APR, 3, 1), DCOD(MAY, 3, 1), DCOD(JUN, 3, 1),
  216         DCOD(JUL, 3, 1), DCOD(AUG, 3, 1), DCOD(SEP, 3, 1), DCOD(OCT, 3, 1),
  217         DCOD(NOV, 3, 1), DCOD(DEC, 3, 1), 0,               0
  218 };
  219 
  220 void
  221 fattime2timespec(unsigned dd, unsigned dt, unsigned dh, int utc,
  222     struct timespec *tsp)
  223 {
  224         unsigned day;
  225 
  226         /* Unpack time fields */
  227         tsp->tv_sec = (dt & 0x1f) << 1;
  228         tsp->tv_sec += ((dt & 0x7e0) >> 5) * 60;
  229         tsp->tv_sec += ((dt & 0xf800) >> 11) * 3600;
  230         tsp->tv_sec += dh / 100;
  231         tsp->tv_nsec = (dh % 100) * 10000000;
  232 
  233         /* Day of month */
  234         day = (dd & 0x1f) - 1;
  235 
  236         /* Full leap-year cycles */
  237         day += LYC * ((dd >> 11) & 0x1f);
  238 
  239         /* Month offset from leap-year cycle */
  240         day += daytab[(dd >> 5) & 0x3f];
  241 
  242         /*
  243          * 2100 is not a leap year.
  244          * XXX: a 32 bit time_t can not get us here.
  245          */
  246         if (day >= ((2100 - 1980) / 4 * LYC + FEB))
  247                 day--;
  248 
  249         /* Align with time_t epoch */
  250         day += T1980;
  251 
  252         tsp->tv_sec += DAY * day;
  253         if (!utc)
  254                 tsp->tv_sec += utc_offset();
  255 }
  256 
  257 #ifdef TEST_DRIVER
  258 
  259 #include <stdio.h>
  260 #include <unistd.h>
  261 #include <stdlib.h>
  262 
  263 int
  264 main(int argc __unused, char **argv __unused)
  265 {
  266         int i;
  267         struct timespec ts;
  268         struct tm tm;
  269         double a;
  270         uint16_t d, t;
  271         uint8_t p;
  272         char buf[100];
  273 
  274         for (i = 0; i < 10000; i++) {
  275                 do {
  276                         ts.tv_sec = random();
  277                 } while (ts.tv_sec < T1980 * 86400);
  278                 ts.tv_nsec = random() % 1000000000;
  279 
  280                 printf("%10d.%03ld -- ", ts.tv_sec, ts.tv_nsec / 1000000);
  281 
  282                 gmtime_r(&ts.tv_sec, &tm);
  283                 strftime(buf, sizeof buf, "%Y %m %d %H %M %S", &tm);
  284                 printf("%s -- ", buf);
  285 
  286                 a = ts.tv_sec + ts.tv_nsec * 1e-9;
  287                 d = t = p = 0;
  288                 timet2fattime(&ts, &d, &t, &p);
  289                 printf("%04x %04x %02x -- ", d, t, p);
  290                 printf("%3d %02d %02d %02d %02d %02d -- ",
  291                     ((d >> 9)  & 0x7f) + 1980,
  292                     (d >> 5)  & 0x0f,
  293                     (d >> 0)  & 0x1f,
  294                     (t >> 11) & 0x1f,
  295                     (t >> 5)  & 0x3f,
  296                     ((t >> 0)  & 0x1f) * 2);
  297 
  298                 ts.tv_sec = ts.tv_nsec = 0;
  299                 fattime2timet(d, t, p, &ts);
  300                 printf("%10d.%03ld == ", ts.tv_sec, ts.tv_nsec / 1000000);
  301                 gmtime_r(&ts.tv_sec, &tm);
  302                 strftime(buf, sizeof buf, "%Y %m %d %H %M %S", &tm);
  303                 printf("%s -- ", buf);
  304                 a -= ts.tv_sec + ts.tv_nsec * 1e-9;
  305                 printf("%.3f", a);
  306                 printf("\n");
  307         }
  308         return (0);
  309 }
  310 
  311 #endif /* TEST_DRIVER */

Cache object: 51cd4b3e052271684435a7c06f52314e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.