The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_gtaskqueue.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2000 Doug Rabson
    3  * Copyright (c) 2014 Jeff Roberson
    4  * Copyright (c) 2016 Matthew Macy
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD: releng/12.0/sys/kern/subr_gtaskqueue.c 340202 2018-11-06 20:46:00Z shurd $");
   31 
   32 #include <sys/param.h>
   33 #include <sys/systm.h>
   34 #include <sys/bus.h>
   35 #include <sys/cpuset.h>
   36 #include <sys/interrupt.h>
   37 #include <sys/kernel.h>
   38 #include <sys/kthread.h>
   39 #include <sys/libkern.h>
   40 #include <sys/limits.h>
   41 #include <sys/lock.h>
   42 #include <sys/malloc.h>
   43 #include <sys/mutex.h>
   44 #include <sys/proc.h>
   45 #include <sys/sched.h>
   46 #include <sys/smp.h>
   47 #include <sys/gtaskqueue.h>
   48 #include <sys/unistd.h>
   49 #include <machine/stdarg.h>
   50 
   51 static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues");
   52 static void     gtaskqueue_thread_enqueue(void *);
   53 static void     gtaskqueue_thread_loop(void *arg);
   54 static int      task_is_running(struct gtaskqueue *queue, struct gtask *gtask);
   55 static void     gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask);
   56 
   57 TASKQGROUP_DEFINE(softirq, mp_ncpus, 1);
   58 TASKQGROUP_DEFINE(config, 1, 1);
   59 
   60 struct gtaskqueue_busy {
   61         struct gtask    *tb_running;
   62         TAILQ_ENTRY(gtaskqueue_busy) tb_link;
   63 };
   64 
   65 static struct gtask * const TB_DRAIN_WAITER = (struct gtask *)0x1;
   66 
   67 struct gtaskqueue {
   68         STAILQ_HEAD(, gtask)    tq_queue;
   69         gtaskqueue_enqueue_fn   tq_enqueue;
   70         void                    *tq_context;
   71         char                    *tq_name;
   72         TAILQ_HEAD(, gtaskqueue_busy) tq_active;
   73         struct mtx              tq_mutex;
   74         struct thread           **tq_threads;
   75         int                     tq_tcount;
   76         int                     tq_spin;
   77         int                     tq_flags;
   78         int                     tq_callouts;
   79         taskqueue_callback_fn   tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
   80         void                    *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
   81 };
   82 
   83 #define TQ_FLAGS_ACTIVE         (1 << 0)
   84 #define TQ_FLAGS_BLOCKED        (1 << 1)
   85 #define TQ_FLAGS_UNLOCKED_ENQUEUE       (1 << 2)
   86 
   87 #define DT_CALLOUT_ARMED        (1 << 0)
   88 
   89 #define TQ_LOCK(tq)                                                     \
   90         do {                                                            \
   91                 if ((tq)->tq_spin)                                      \
   92                         mtx_lock_spin(&(tq)->tq_mutex);                 \
   93                 else                                                    \
   94                         mtx_lock(&(tq)->tq_mutex);                      \
   95         } while (0)
   96 #define TQ_ASSERT_LOCKED(tq)    mtx_assert(&(tq)->tq_mutex, MA_OWNED)
   97 
   98 #define TQ_UNLOCK(tq)                                                   \
   99         do {                                                            \
  100                 if ((tq)->tq_spin)                                      \
  101                         mtx_unlock_spin(&(tq)->tq_mutex);               \
  102                 else                                                    \
  103                         mtx_unlock(&(tq)->tq_mutex);                    \
  104         } while (0)
  105 #define TQ_ASSERT_UNLOCKED(tq)  mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
  106 
  107 #ifdef INVARIANTS
  108 static void
  109 gtask_dump(struct gtask *gtask)
  110 {
  111         printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n",
  112                gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context);
  113 }
  114 #endif
  115 
  116 static __inline int
  117 TQ_SLEEP(struct gtaskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
  118     int t)
  119 {
  120         if (tq->tq_spin)
  121                 return (msleep_spin(p, m, wm, t));
  122         return (msleep(p, m, pri, wm, t));
  123 }
  124 
  125 static struct gtaskqueue *
  126 _gtaskqueue_create(const char *name, int mflags,
  127                  taskqueue_enqueue_fn enqueue, void *context,
  128                  int mtxflags, const char *mtxname __unused)
  129 {
  130         struct gtaskqueue *queue;
  131         char *tq_name;
  132 
  133         tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO);
  134         if (!tq_name)
  135                 return (NULL);
  136 
  137         snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
  138 
  139         queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO);
  140         if (!queue) {
  141                 free(tq_name, M_GTASKQUEUE);
  142                 return (NULL);
  143         }
  144 
  145         STAILQ_INIT(&queue->tq_queue);
  146         TAILQ_INIT(&queue->tq_active);
  147         queue->tq_enqueue = enqueue;
  148         queue->tq_context = context;
  149         queue->tq_name = tq_name;
  150         queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
  151         queue->tq_flags |= TQ_FLAGS_ACTIVE;
  152         if (enqueue == gtaskqueue_thread_enqueue)
  153                 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
  154         mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
  155 
  156         return (queue);
  157 }
  158 
  159 
  160 /*
  161  * Signal a taskqueue thread to terminate.
  162  */
  163 static void
  164 gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq)
  165 {
  166 
  167         while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
  168                 wakeup(tq);
  169                 TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
  170         }
  171 }
  172 
  173 static void
  174 gtaskqueue_free(struct gtaskqueue *queue)
  175 {
  176 
  177         TQ_LOCK(queue);
  178         queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
  179         gtaskqueue_terminate(queue->tq_threads, queue);
  180         KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
  181         KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
  182         mtx_destroy(&queue->tq_mutex);
  183         free(queue->tq_threads, M_GTASKQUEUE);
  184         free(queue->tq_name, M_GTASKQUEUE);
  185         free(queue, M_GTASKQUEUE);
  186 }
  187 
  188 /*
  189  * Wait for all to complete, then prevent it from being enqueued
  190  */
  191 void
  192 grouptask_block(struct grouptask *grouptask)
  193 {
  194         struct gtaskqueue *queue = grouptask->gt_taskqueue;
  195         struct gtask *gtask = &grouptask->gt_task;
  196 
  197 #ifdef INVARIANTS
  198         if (queue == NULL) {
  199                 gtask_dump(gtask);
  200                 panic("queue == NULL");
  201         }
  202 #endif
  203         TQ_LOCK(queue);
  204         gtask->ta_flags |= TASK_NOENQUEUE;
  205         gtaskqueue_drain_locked(queue, gtask);
  206         TQ_UNLOCK(queue);
  207 }
  208 
  209 void
  210 grouptask_unblock(struct grouptask *grouptask)
  211 {
  212         struct gtaskqueue *queue = grouptask->gt_taskqueue;
  213         struct gtask *gtask = &grouptask->gt_task;
  214 
  215 #ifdef INVARIANTS
  216         if (queue == NULL) {
  217                 gtask_dump(gtask);
  218                 panic("queue == NULL");
  219         }
  220 #endif
  221         TQ_LOCK(queue);
  222         gtask->ta_flags &= ~TASK_NOENQUEUE;
  223         TQ_UNLOCK(queue);
  224 }
  225 
  226 int
  227 grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask)
  228 {
  229 #ifdef INVARIANTS
  230         if (queue == NULL) {
  231                 gtask_dump(gtask);
  232                 panic("queue == NULL");
  233         }
  234 #endif
  235         TQ_LOCK(queue);
  236         if (gtask->ta_flags & TASK_ENQUEUED) {
  237                 TQ_UNLOCK(queue);
  238                 return (0);
  239         }
  240         if (gtask->ta_flags & TASK_NOENQUEUE) {
  241                 TQ_UNLOCK(queue);
  242                 return (EAGAIN);
  243         }
  244         STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link);
  245         gtask->ta_flags |= TASK_ENQUEUED;
  246         TQ_UNLOCK(queue);
  247         if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
  248                 queue->tq_enqueue(queue->tq_context);
  249         return (0);
  250 }
  251 
  252 static void
  253 gtaskqueue_task_nop_fn(void *context)
  254 {
  255 }
  256 
  257 /*
  258  * Block until all currently queued tasks in this taskqueue
  259  * have begun execution.  Tasks queued during execution of
  260  * this function are ignored.
  261  */
  262 static void
  263 gtaskqueue_drain_tq_queue(struct gtaskqueue *queue)
  264 {
  265         struct gtask t_barrier;
  266 
  267         if (STAILQ_EMPTY(&queue->tq_queue))
  268                 return;
  269 
  270         /*
  271          * Enqueue our barrier after all current tasks, but with
  272          * the highest priority so that newly queued tasks cannot
  273          * pass it.  Because of the high priority, we can not use
  274          * taskqueue_enqueue_locked directly (which drops the lock
  275          * anyway) so just insert it at tail while we have the
  276          * queue lock.
  277          */
  278         GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier);
  279         STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
  280         t_barrier.ta_flags |= TASK_ENQUEUED;
  281 
  282         /*
  283          * Once the barrier has executed, all previously queued tasks
  284          * have completed or are currently executing.
  285          */
  286         while (t_barrier.ta_flags & TASK_ENQUEUED)
  287                 TQ_SLEEP(queue, &t_barrier, &queue->tq_mutex, PWAIT, "-", 0);
  288 }
  289 
  290 /*
  291  * Block until all currently executing tasks for this taskqueue
  292  * complete.  Tasks that begin execution during the execution
  293  * of this function are ignored.
  294  */
  295 static void
  296 gtaskqueue_drain_tq_active(struct gtaskqueue *queue)
  297 {
  298         struct gtaskqueue_busy tb_marker, *tb_first;
  299 
  300         if (TAILQ_EMPTY(&queue->tq_active))
  301                 return;
  302 
  303         /* Block taskq_terminate().*/
  304         queue->tq_callouts++;
  305 
  306         /*
  307          * Wait for all currently executing taskqueue threads
  308          * to go idle.
  309          */
  310         tb_marker.tb_running = TB_DRAIN_WAITER;
  311         TAILQ_INSERT_TAIL(&queue->tq_active, &tb_marker, tb_link);
  312         while (TAILQ_FIRST(&queue->tq_active) != &tb_marker)
  313                 TQ_SLEEP(queue, &tb_marker, &queue->tq_mutex, PWAIT, "-", 0);
  314         TAILQ_REMOVE(&queue->tq_active, &tb_marker, tb_link);
  315 
  316         /*
  317          * Wakeup any other drain waiter that happened to queue up
  318          * without any intervening active thread.
  319          */
  320         tb_first = TAILQ_FIRST(&queue->tq_active);
  321         if (tb_first != NULL && tb_first->tb_running == TB_DRAIN_WAITER)
  322                 wakeup(tb_first);
  323 
  324         /* Release taskqueue_terminate(). */
  325         queue->tq_callouts--;
  326         if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
  327                 wakeup_one(queue->tq_threads);
  328 }
  329 
  330 void
  331 gtaskqueue_block(struct gtaskqueue *queue)
  332 {
  333 
  334         TQ_LOCK(queue);
  335         queue->tq_flags |= TQ_FLAGS_BLOCKED;
  336         TQ_UNLOCK(queue);
  337 }
  338 
  339 void
  340 gtaskqueue_unblock(struct gtaskqueue *queue)
  341 {
  342 
  343         TQ_LOCK(queue);
  344         queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
  345         if (!STAILQ_EMPTY(&queue->tq_queue))
  346                 queue->tq_enqueue(queue->tq_context);
  347         TQ_UNLOCK(queue);
  348 }
  349 
  350 static void
  351 gtaskqueue_run_locked(struct gtaskqueue *queue)
  352 {
  353         struct gtaskqueue_busy tb;
  354         struct gtaskqueue_busy *tb_first;
  355         struct gtask *gtask;
  356 
  357         KASSERT(queue != NULL, ("tq is NULL"));
  358         TQ_ASSERT_LOCKED(queue);
  359         tb.tb_running = NULL;
  360 
  361         while (STAILQ_FIRST(&queue->tq_queue)) {
  362                 TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
  363 
  364                 /*
  365                  * Carefully remove the first task from the queue and
  366                  * clear its TASK_ENQUEUED flag
  367                  */
  368                 gtask = STAILQ_FIRST(&queue->tq_queue);
  369                 KASSERT(gtask != NULL, ("task is NULL"));
  370                 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
  371                 gtask->ta_flags &= ~TASK_ENQUEUED;
  372                 tb.tb_running = gtask;
  373                 TQ_UNLOCK(queue);
  374 
  375                 KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL"));
  376                 gtask->ta_func(gtask->ta_context);
  377 
  378                 TQ_LOCK(queue);
  379                 tb.tb_running = NULL;
  380                 wakeup(gtask);
  381 
  382                 TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
  383                 tb_first = TAILQ_FIRST(&queue->tq_active);
  384                 if (tb_first != NULL &&
  385                     tb_first->tb_running == TB_DRAIN_WAITER)
  386                         wakeup(tb_first);
  387         }
  388 }
  389 
  390 static int
  391 task_is_running(struct gtaskqueue *queue, struct gtask *gtask)
  392 {
  393         struct gtaskqueue_busy *tb;
  394 
  395         TQ_ASSERT_LOCKED(queue);
  396         TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
  397                 if (tb->tb_running == gtask)
  398                         return (1);
  399         }
  400         return (0);
  401 }
  402 
  403 static int
  404 gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask)
  405 {
  406 
  407         if (gtask->ta_flags & TASK_ENQUEUED)
  408                 STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link);
  409         gtask->ta_flags &= ~TASK_ENQUEUED;
  410         return (task_is_running(queue, gtask) ? EBUSY : 0);
  411 }
  412 
  413 int
  414 gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask)
  415 {
  416         int error;
  417 
  418         TQ_LOCK(queue);
  419         error = gtaskqueue_cancel_locked(queue, gtask);
  420         TQ_UNLOCK(queue);
  421 
  422         return (error);
  423 }
  424 
  425 static void
  426 gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask)
  427 {
  428         while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask))
  429                 TQ_SLEEP(queue, gtask, &queue->tq_mutex, PWAIT, "-", 0);
  430 }
  431 
  432 void
  433 gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask)
  434 {
  435 
  436         if (!queue->tq_spin)
  437                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
  438 
  439         TQ_LOCK(queue);
  440         gtaskqueue_drain_locked(queue, gtask);
  441         TQ_UNLOCK(queue);
  442 }
  443 
  444 void
  445 gtaskqueue_drain_all(struct gtaskqueue *queue)
  446 {
  447 
  448         if (!queue->tq_spin)
  449                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
  450 
  451         TQ_LOCK(queue);
  452         gtaskqueue_drain_tq_queue(queue);
  453         gtaskqueue_drain_tq_active(queue);
  454         TQ_UNLOCK(queue);
  455 }
  456 
  457 static int
  458 _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
  459     cpuset_t *mask, const char *name, va_list ap)
  460 {
  461         char ktname[MAXCOMLEN + 1];
  462         struct thread *td;
  463         struct gtaskqueue *tq;
  464         int i, error;
  465 
  466         if (count <= 0)
  467                 return (EINVAL);
  468 
  469         vsnprintf(ktname, sizeof(ktname), name, ap);
  470         tq = *tqp;
  471 
  472         tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE,
  473             M_NOWAIT | M_ZERO);
  474         if (tq->tq_threads == NULL) {
  475                 printf("%s: no memory for %s threads\n", __func__, ktname);
  476                 return (ENOMEM);
  477         }
  478 
  479         for (i = 0; i < count; i++) {
  480                 if (count == 1)
  481                         error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
  482                             &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
  483                 else
  484                         error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
  485                             &tq->tq_threads[i], RFSTOPPED, 0,
  486                             "%s_%d", ktname, i);
  487                 if (error) {
  488                         /* should be ok to continue, taskqueue_free will dtrt */
  489                         printf("%s: kthread_add(%s): error %d", __func__,
  490                             ktname, error);
  491                         tq->tq_threads[i] = NULL;               /* paranoid */
  492                 } else
  493                         tq->tq_tcount++;
  494         }
  495         for (i = 0; i < count; i++) {
  496                 if (tq->tq_threads[i] == NULL)
  497                         continue;
  498                 td = tq->tq_threads[i];
  499                 if (mask) {
  500                         error = cpuset_setthread(td->td_tid, mask);
  501                         /*
  502                          * Failing to pin is rarely an actual fatal error;
  503                          * it'll just affect performance.
  504                          */
  505                         if (error)
  506                                 printf("%s: curthread=%llu: can't pin; "
  507                                     "error=%d\n",
  508                                     __func__,
  509                                     (unsigned long long) td->td_tid,
  510                                     error);
  511                 }
  512                 thread_lock(td);
  513                 sched_prio(td, pri);
  514                 sched_add(td, SRQ_BORING);
  515                 thread_unlock(td);
  516         }
  517 
  518         return (0);
  519 }
  520 
  521 static int
  522 gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
  523     const char *name, ...)
  524 {
  525         va_list ap;
  526         int error;
  527 
  528         va_start(ap, name);
  529         error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap);
  530         va_end(ap);
  531         return (error);
  532 }
  533 
  534 static inline void
  535 gtaskqueue_run_callback(struct gtaskqueue *tq,
  536     enum taskqueue_callback_type cb_type)
  537 {
  538         taskqueue_callback_fn tq_callback;
  539 
  540         TQ_ASSERT_UNLOCKED(tq);
  541         tq_callback = tq->tq_callbacks[cb_type];
  542         if (tq_callback != NULL)
  543                 tq_callback(tq->tq_cb_contexts[cb_type]);
  544 }
  545 
  546 static void
  547 gtaskqueue_thread_loop(void *arg)
  548 {
  549         struct gtaskqueue **tqp, *tq;
  550 
  551         tqp = arg;
  552         tq = *tqp;
  553         gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
  554         TQ_LOCK(tq);
  555         while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
  556                 /* XXX ? */
  557                 gtaskqueue_run_locked(tq);
  558                 /*
  559                  * Because taskqueue_run() can drop tq_mutex, we need to
  560                  * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
  561                  * meantime, which means we missed a wakeup.
  562                  */
  563                 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
  564                         break;
  565                 TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
  566         }
  567         gtaskqueue_run_locked(tq);
  568         /*
  569          * This thread is on its way out, so just drop the lock temporarily
  570          * in order to call the shutdown callback.  This allows the callback
  571          * to look at the taskqueue, even just before it dies.
  572          */
  573         TQ_UNLOCK(tq);
  574         gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
  575         TQ_LOCK(tq);
  576 
  577         /* rendezvous with thread that asked us to terminate */
  578         tq->tq_tcount--;
  579         wakeup_one(tq->tq_threads);
  580         TQ_UNLOCK(tq);
  581         kthread_exit();
  582 }
  583 
  584 static void
  585 gtaskqueue_thread_enqueue(void *context)
  586 {
  587         struct gtaskqueue **tqp, *tq;
  588 
  589         tqp = context;
  590         tq = *tqp;
  591         wakeup_one(tq);
  592 }
  593 
  594 
  595 static struct gtaskqueue *
  596 gtaskqueue_create_fast(const char *name, int mflags,
  597                  taskqueue_enqueue_fn enqueue, void *context)
  598 {
  599         return _gtaskqueue_create(name, mflags, enqueue, context,
  600                         MTX_SPIN, "fast_taskqueue");
  601 }
  602 
  603 
  604 struct taskqgroup_cpu {
  605         LIST_HEAD(, grouptask)  tgc_tasks;
  606         struct gtaskqueue       *tgc_taskq;
  607         int     tgc_cnt;
  608         int     tgc_cpu;
  609 };
  610 
  611 struct taskqgroup {
  612         struct taskqgroup_cpu tqg_queue[MAXCPU];
  613         struct mtx      tqg_lock;
  614         const char *    tqg_name;
  615         int             tqg_adjusting;
  616         int             tqg_stride;
  617         int             tqg_cnt;
  618 };
  619 
  620 struct taskq_bind_task {
  621         struct gtask bt_task;
  622         int     bt_cpuid;
  623 };
  624 
  625 static void
  626 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu)
  627 {
  628         struct taskqgroup_cpu *qcpu;
  629 
  630         qcpu = &qgroup->tqg_queue[idx];
  631         LIST_INIT(&qcpu->tgc_tasks);
  632         qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK,
  633             taskqueue_thread_enqueue, &qcpu->tgc_taskq);
  634         gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT,
  635             "%s_%d", qgroup->tqg_name, idx);
  636         qcpu->tgc_cpu = cpu;
  637 }
  638 
  639 static void
  640 taskqgroup_cpu_remove(struct taskqgroup *qgroup, int idx)
  641 {
  642 
  643         gtaskqueue_free(qgroup->tqg_queue[idx].tgc_taskq);
  644 }
  645 
  646 /*
  647  * Find the taskq with least # of tasks that doesn't currently have any
  648  * other queues from the uniq identifier.
  649  */
  650 static int
  651 taskqgroup_find(struct taskqgroup *qgroup, void *uniq)
  652 {
  653         struct grouptask *n;
  654         int i, idx, mincnt;
  655         int strict;
  656 
  657         mtx_assert(&qgroup->tqg_lock, MA_OWNED);
  658         if (qgroup->tqg_cnt == 0)
  659                 return (0);
  660         idx = -1;
  661         mincnt = INT_MAX;
  662         /*
  663          * Two passes;  First scan for a queue with the least tasks that
  664          * does not already service this uniq id.  If that fails simply find
  665          * the queue with the least total tasks;
  666          */
  667         for (strict = 1; mincnt == INT_MAX; strict = 0) {
  668                 for (i = 0; i < qgroup->tqg_cnt; i++) {
  669                         if (qgroup->tqg_queue[i].tgc_cnt > mincnt)
  670                                 continue;
  671                         if (strict) {
  672                                 LIST_FOREACH(n,
  673                                     &qgroup->tqg_queue[i].tgc_tasks, gt_list)
  674                                         if (n->gt_uniq == uniq)
  675                                                 break;
  676                                 if (n != NULL)
  677                                         continue;
  678                         }
  679                         mincnt = qgroup->tqg_queue[i].tgc_cnt;
  680                         idx = i;
  681                 }
  682         }
  683         if (idx == -1)
  684                 panic("taskqgroup_find: Failed to pick a qid.");
  685 
  686         return (idx);
  687 }
  688 
  689 /*
  690  * smp_started is unusable since it is not set for UP kernels or even for
  691  * SMP kernels when there is 1 CPU.  This is usually handled by adding a
  692  * (mp_ncpus == 1) test, but that would be broken here since we need to
  693  * to synchronize with the SI_SUB_SMP ordering.  Even in the pure SMP case
  694  * smp_started only gives a fuzzy ordering relative to SI_SUB_SMP.
  695  *
  696  * So maintain our own flag.  It must be set after all CPUs are started
  697  * and before SI_SUB_SMP:SI_ORDER_ANY so that the SYSINIT for delayed
  698  * adjustment is properly delayed.  SI_ORDER_FOURTH is clearly before
  699  * SI_ORDER_ANY and unclearly after the CPUs are started.  It would be
  700  * simpler for adjustment to pass a flag indicating if it is delayed.
  701  */ 
  702 
  703 static int tqg_smp_started;
  704 
  705 static void
  706 tqg_record_smp_started(void *arg)
  707 {
  708         tqg_smp_started = 1;
  709 }
  710 
  711 SYSINIT(tqg_record_smp_started, SI_SUB_SMP, SI_ORDER_FOURTH,
  712         tqg_record_smp_started, NULL);
  713 
  714 void
  715 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask,
  716     void *uniq, int irq, const char *name)
  717 {
  718         cpuset_t mask;
  719         int qid, error;
  720 
  721         gtask->gt_uniq = uniq;
  722         snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
  723         gtask->gt_irq = irq;
  724         gtask->gt_cpu = -1;
  725         mtx_lock(&qgroup->tqg_lock);
  726         qid = taskqgroup_find(qgroup, uniq);
  727         qgroup->tqg_queue[qid].tgc_cnt++;
  728         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
  729         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
  730         if (irq != -1 && tqg_smp_started) {
  731                 gtask->gt_cpu = qgroup->tqg_queue[qid].tgc_cpu;
  732                 CPU_ZERO(&mask);
  733                 CPU_SET(qgroup->tqg_queue[qid].tgc_cpu, &mask);
  734                 mtx_unlock(&qgroup->tqg_lock);
  735                 error = intr_setaffinity(irq, CPU_WHICH_IRQ, &mask);
  736                 if (error)
  737                         printf("%s: setaffinity failed for %s: %d\n", __func__, gtask->gt_name, error);
  738         } else
  739                 mtx_unlock(&qgroup->tqg_lock);
  740 }
  741 
  742 static void
  743 taskqgroup_attach_deferred(struct taskqgroup *qgroup, struct grouptask *gtask)
  744 {
  745         cpuset_t mask;
  746         int qid, cpu, error;
  747 
  748         mtx_lock(&qgroup->tqg_lock);
  749         qid = taskqgroup_find(qgroup, gtask->gt_uniq);
  750         cpu = qgroup->tqg_queue[qid].tgc_cpu;
  751         if (gtask->gt_irq != -1) {
  752                 mtx_unlock(&qgroup->tqg_lock);
  753 
  754                 CPU_ZERO(&mask);
  755                 CPU_SET(cpu, &mask);
  756                 error = intr_setaffinity(gtask->gt_irq, CPU_WHICH_IRQ, &mask);
  757                 mtx_lock(&qgroup->tqg_lock);
  758                 if (error)
  759                         printf("%s: %s setaffinity failed: %d\n", __func__, gtask->gt_name, error);
  760 
  761         }
  762         qgroup->tqg_queue[qid].tgc_cnt++;
  763 
  764         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask,
  765                          gt_list);
  766         MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL);
  767         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
  768         mtx_unlock(&qgroup->tqg_lock);
  769 }
  770 
  771 int
  772 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask,
  773         void *uniq, int cpu, int irq, const char *name)
  774 {
  775         cpuset_t mask;
  776         int i, qid, error;
  777 
  778         qid = -1;
  779         gtask->gt_uniq = uniq;
  780         snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
  781         gtask->gt_irq = irq;
  782         gtask->gt_cpu = cpu;
  783         mtx_lock(&qgroup->tqg_lock);
  784         if (tqg_smp_started) {
  785                 for (i = 0; i < qgroup->tqg_cnt; i++)
  786                         if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
  787                                 qid = i;
  788                                 break;
  789                         }
  790                 if (qid == -1) {
  791                         mtx_unlock(&qgroup->tqg_lock);
  792                         printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
  793                         return (EINVAL);
  794                 }
  795         } else
  796                 qid = 0;
  797         qgroup->tqg_queue[qid].tgc_cnt++;
  798         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
  799         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
  800         cpu = qgroup->tqg_queue[qid].tgc_cpu;
  801         mtx_unlock(&qgroup->tqg_lock);
  802 
  803         CPU_ZERO(&mask);
  804         CPU_SET(cpu, &mask);
  805         if (irq != -1 && tqg_smp_started) {
  806                 error = intr_setaffinity(irq, CPU_WHICH_IRQ, &mask);
  807                 if (error)
  808                         printf("%s: setaffinity failed: %d\n", __func__, error);
  809         }
  810         return (0);
  811 }
  812 
  813 static int
  814 taskqgroup_attach_cpu_deferred(struct taskqgroup *qgroup, struct grouptask *gtask)
  815 {
  816         cpuset_t mask;
  817         int i, qid, irq, cpu, error;
  818 
  819         qid = -1;
  820         irq = gtask->gt_irq;
  821         cpu = gtask->gt_cpu;
  822         MPASS(tqg_smp_started);
  823         mtx_lock(&qgroup->tqg_lock);
  824         for (i = 0; i < qgroup->tqg_cnt; i++)
  825                 if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
  826                         qid = i;
  827                         break;
  828                 }
  829         if (qid == -1) {
  830                 mtx_unlock(&qgroup->tqg_lock);
  831                 printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
  832                 return (EINVAL);
  833         }
  834         qgroup->tqg_queue[qid].tgc_cnt++;
  835         LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
  836         MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL);
  837         gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
  838         mtx_unlock(&qgroup->tqg_lock);
  839 
  840         CPU_ZERO(&mask);
  841         CPU_SET(cpu, &mask);
  842 
  843         if (irq != -1) {
  844                 error = intr_setaffinity(irq, CPU_WHICH_IRQ, &mask);
  845                 if (error)
  846                         printf("%s: setaffinity failed: %d\n", __func__, error);
  847         }
  848         return (0);
  849 }
  850 
  851 void
  852 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask)
  853 {
  854         int i;
  855 
  856         grouptask_block(gtask);
  857         mtx_lock(&qgroup->tqg_lock);
  858         for (i = 0; i < qgroup->tqg_cnt; i++)
  859                 if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue)
  860                         break;
  861         if (i == qgroup->tqg_cnt)
  862                 panic("taskqgroup_detach: task %s not in group\n", gtask->gt_name);
  863         qgroup->tqg_queue[i].tgc_cnt--;
  864         LIST_REMOVE(gtask, gt_list);
  865         mtx_unlock(&qgroup->tqg_lock);
  866         gtask->gt_taskqueue = NULL;
  867         gtask->gt_task.ta_flags &= ~TASK_NOENQUEUE;
  868 }
  869 
  870 static void
  871 taskqgroup_binder(void *ctx)
  872 {
  873         struct taskq_bind_task *gtask = (struct taskq_bind_task *)ctx;
  874         cpuset_t mask;
  875         int error;
  876 
  877         CPU_ZERO(&mask);
  878         CPU_SET(gtask->bt_cpuid, &mask);
  879         error = cpuset_setthread(curthread->td_tid, &mask);
  880         thread_lock(curthread);
  881         sched_bind(curthread, gtask->bt_cpuid);
  882         thread_unlock(curthread);
  883 
  884         if (error)
  885                 printf("%s: setaffinity failed: %d\n", __func__,
  886                     error);
  887         free(gtask, M_DEVBUF);
  888 }
  889 
  890 static void
  891 taskqgroup_bind(struct taskqgroup *qgroup)
  892 {
  893         struct taskq_bind_task *gtask;
  894         int i;
  895 
  896         /*
  897          * Bind taskqueue threads to specific CPUs, if they have been assigned
  898          * one.
  899          */
  900         if (qgroup->tqg_cnt == 1)
  901                 return;
  902 
  903         for (i = 0; i < qgroup->tqg_cnt; i++) {
  904                 gtask = malloc(sizeof (*gtask), M_DEVBUF, M_WAITOK);
  905                 GTASK_INIT(&gtask->bt_task, 0, 0, taskqgroup_binder, gtask);
  906                 gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu;
  907                 grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq,
  908                     &gtask->bt_task);
  909         }
  910 }
  911 
  912 static void
  913 taskqgroup_config_init(void *arg)
  914 {
  915         struct taskqgroup *qgroup = qgroup_config;
  916         LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL);
  917 
  918         LIST_SWAP(&gtask_head, &qgroup->tqg_queue[0].tgc_tasks,
  919             grouptask, gt_list);
  920         qgroup->tqg_queue[0].tgc_cnt = 0;
  921         taskqgroup_cpu_create(qgroup, 0, 0);
  922 
  923         qgroup->tqg_cnt = 1;
  924         qgroup->tqg_stride = 1;
  925 }
  926 
  927 SYSINIT(taskqgroup_config_init, SI_SUB_TASKQ, SI_ORDER_SECOND,
  928         taskqgroup_config_init, NULL);
  929 
  930 static int
  931 _taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride)
  932 {
  933         LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL);
  934         struct grouptask *gtask;
  935         int i, k, old_cnt, old_cpu, cpu;
  936 
  937         mtx_assert(&qgroup->tqg_lock, MA_OWNED);
  938 
  939         if (cnt < 1 || cnt * stride > mp_ncpus || !tqg_smp_started) {
  940                 printf("%s: failed cnt: %d stride: %d "
  941                     "mp_ncpus: %d tqg_smp_started: %d\n",
  942                     __func__, cnt, stride, mp_ncpus, tqg_smp_started);
  943                 return (EINVAL);
  944         }
  945         if (qgroup->tqg_adjusting) {
  946                 printf("%s failed: adjusting\n", __func__);
  947                 return (EBUSY);
  948         }
  949         qgroup->tqg_adjusting = 1;
  950         old_cnt = qgroup->tqg_cnt;
  951         old_cpu = 0;
  952         if (old_cnt < cnt)
  953                 old_cpu = qgroup->tqg_queue[old_cnt].tgc_cpu;
  954         mtx_unlock(&qgroup->tqg_lock);
  955         /*
  956          * Set up queue for tasks added before boot.
  957          */
  958         if (old_cnt == 0) {
  959                 LIST_SWAP(&gtask_head, &qgroup->tqg_queue[0].tgc_tasks,
  960                     grouptask, gt_list);
  961                 qgroup->tqg_queue[0].tgc_cnt = 0;
  962         }
  963 
  964         /*
  965          * If new taskq threads have been added.
  966          */
  967         cpu = old_cpu;
  968         for (i = old_cnt; i < cnt; i++) {
  969                 taskqgroup_cpu_create(qgroup, i, cpu);
  970 
  971                 for (k = 0; k < stride; k++)
  972                         cpu = CPU_NEXT(cpu);
  973         }
  974         mtx_lock(&qgroup->tqg_lock);
  975         qgroup->tqg_cnt = cnt;
  976         qgroup->tqg_stride = stride;
  977 
  978         /*
  979          * Adjust drivers to use new taskqs.
  980          */
  981         for (i = 0; i < old_cnt; i++) {
  982                 while ((gtask = LIST_FIRST(&qgroup->tqg_queue[i].tgc_tasks))) {
  983                         LIST_REMOVE(gtask, gt_list);
  984                         qgroup->tqg_queue[i].tgc_cnt--;
  985                         LIST_INSERT_HEAD(&gtask_head, gtask, gt_list);
  986                 }
  987         }
  988         mtx_unlock(&qgroup->tqg_lock);
  989 
  990         while ((gtask = LIST_FIRST(&gtask_head))) {
  991                 LIST_REMOVE(gtask, gt_list);
  992                 if (gtask->gt_cpu == -1)
  993                         taskqgroup_attach_deferred(qgroup, gtask);
  994                 else if (taskqgroup_attach_cpu_deferred(qgroup, gtask))
  995                         taskqgroup_attach_deferred(qgroup, gtask);
  996         }
  997 
  998 #ifdef INVARIANTS
  999         mtx_lock(&qgroup->tqg_lock);
 1000         for (i = 0; i < qgroup->tqg_cnt; i++) {
 1001                 MPASS(qgroup->tqg_queue[i].tgc_taskq != NULL);
 1002                 LIST_FOREACH(gtask, &qgroup->tqg_queue[i].tgc_tasks, gt_list)
 1003                         MPASS(gtask->gt_taskqueue != NULL);
 1004         }
 1005         mtx_unlock(&qgroup->tqg_lock);
 1006 #endif
 1007         /*
 1008          * If taskq thread count has been reduced.
 1009          */
 1010         for (i = cnt; i < old_cnt; i++)
 1011                 taskqgroup_cpu_remove(qgroup, i);
 1012 
 1013         taskqgroup_bind(qgroup);
 1014 
 1015         mtx_lock(&qgroup->tqg_lock);
 1016         qgroup->tqg_adjusting = 0;
 1017 
 1018         return (0);
 1019 }
 1020 
 1021 int
 1022 taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride)
 1023 {
 1024         int error;
 1025 
 1026         mtx_lock(&qgroup->tqg_lock);
 1027         error = _taskqgroup_adjust(qgroup, cnt, stride);
 1028         mtx_unlock(&qgroup->tqg_lock);
 1029 
 1030         return (error);
 1031 }
 1032 
 1033 struct taskqgroup *
 1034 taskqgroup_create(const char *name)
 1035 {
 1036         struct taskqgroup *qgroup;
 1037 
 1038         qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO);
 1039         mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF);
 1040         qgroup->tqg_name = name;
 1041         LIST_INIT(&qgroup->tqg_queue[0].tgc_tasks);
 1042 
 1043         return (qgroup);
 1044 }
 1045 
 1046 void
 1047 taskqgroup_destroy(struct taskqgroup *qgroup)
 1048 {
 1049 
 1050 }
 1051 
 1052 void
 1053 taskqgroup_config_gtask_init(void *ctx, struct grouptask *gtask, gtask_fn_t *fn,
 1054         const char *name)
 1055 {
 1056 
 1057         GROUPTASK_INIT(gtask, 0, fn, ctx);
 1058         taskqgroup_attach(qgroup_config, gtask, gtask, -1, name);
 1059 }
 1060 
 1061 void
 1062 taskqgroup_config_gtask_deinit(struct grouptask *gtask)
 1063 {
 1064         taskqgroup_detach(qgroup_config, gtask);
 1065 }

Cache object: 8381b48081b1dcb15a47e4a01991916f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.