The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_prof.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)subr_prof.c 8.3 (Berkeley) 9/23/93
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD$");
   36 
   37 #include <sys/param.h>
   38 #include <sys/systm.h>
   39 #include <sys/sysproto.h>
   40 #include <sys/kernel.h>
   41 #include <sys/lock.h>
   42 #include <sys/mutex.h>
   43 #include <sys/proc.h>
   44 #include <sys/resourcevar.h>
   45 #include <sys/sysctl.h>
   46 
   47 #include <machine/cpu.h>
   48 
   49 #ifdef GPROF
   50 #include <sys/malloc.h>
   51 #include <sys/gmon.h>
   52 #undef MCOUNT
   53 
   54 static MALLOC_DEFINE(M_GPROF, "gprof", "kernel profiling buffer");
   55 
   56 static void kmstartup(void *);
   57 SYSINIT(kmem, SI_SUB_KPROF, SI_ORDER_FIRST, kmstartup, NULL);
   58 
   59 struct gmonparam _gmonparam = { GMON_PROF_OFF };
   60 
   61 #ifdef GUPROF
   62 void
   63 nullfunc_loop_profiled()
   64 {
   65         int i;
   66 
   67         for (i = 0; i < CALIB_SCALE; i++)
   68                 nullfunc_profiled();
   69 }
   70 
   71 #define nullfunc_loop_profiled_end      nullfunc_profiled       /* XXX */
   72 
   73 void
   74 nullfunc_profiled()
   75 {
   76 }
   77 #endif /* GUPROF */
   78 
   79 /*
   80  * Update the histograms to support extending the text region arbitrarily.
   81  * This is done slightly naively (no sparse regions), so will waste slight
   82  * amounts of memory, but will overall work nicely enough to allow profiling
   83  * of KLDs.
   84  */
   85 void
   86 kmupetext(uintfptr_t nhighpc)
   87 {
   88         struct gmonparam np;    /* slightly large */
   89         struct gmonparam *p = &_gmonparam;
   90         char *cp;
   91 
   92         GIANT_REQUIRED;
   93         bcopy(p, &np, sizeof(*p));
   94         np.highpc = ROUNDUP(nhighpc, HISTFRACTION * sizeof(HISTCOUNTER));
   95         if (np.highpc <= p->highpc)
   96                 return;
   97         np.textsize = np.highpc - p->lowpc;
   98         np.kcountsize = np.textsize / HISTFRACTION;
   99         np.hashfraction = HASHFRACTION;
  100         np.fromssize = np.textsize / HASHFRACTION;
  101         np.tolimit = np.textsize * ARCDENSITY / 100;
  102         if (np.tolimit < MINARCS)
  103                 np.tolimit = MINARCS;
  104         else if (np.tolimit > MAXARCS)
  105                 np.tolimit = MAXARCS;
  106         np.tossize = np.tolimit * sizeof(struct tostruct);
  107         cp = malloc(np.kcountsize + np.fromssize + np.tossize,
  108             M_GPROF, M_WAITOK);
  109         /*
  110          * Check for something else extending highpc while we slept.
  111          */
  112         if (np.highpc <= p->highpc) {
  113                 free(cp, M_GPROF);
  114                 return;
  115         }
  116         np.tos = (struct tostruct *)cp;
  117         cp += np.tossize;
  118         np.kcount = (HISTCOUNTER *)cp;
  119         cp += np.kcountsize;
  120         np.froms = (u_short *)cp;
  121 #ifdef GUPROF
  122         /* Reinitialize pointers to overhead counters. */
  123         np.cputime_count = &KCOUNT(&np, PC_TO_I(&np, cputime));
  124         np.mcount_count = &KCOUNT(&np, PC_TO_I(&np, mcount));
  125         np.mexitcount_count = &KCOUNT(&np, PC_TO_I(&np, mexitcount));
  126 #endif
  127         critical_enter();
  128         bcopy(p->tos, np.tos, p->tossize);
  129         bzero((char *)np.tos + p->tossize, np.tossize - p->tossize);
  130         bcopy(p->kcount, np.kcount, p->kcountsize);
  131         bzero((char *)np.kcount + p->kcountsize, np.kcountsize -
  132             p->kcountsize);
  133         bcopy(p->froms, np.froms, p->fromssize);
  134         bzero((char *)np.froms + p->fromssize, np.fromssize - p->fromssize);
  135         cp = (char *)p->tos;
  136         bcopy(&np, p, sizeof(*p));
  137         critical_exit();
  138         free(cp, M_GPROF);
  139 }
  140 
  141 static void
  142 kmstartup(void *dummy)
  143 {
  144         char *cp;
  145         struct gmonparam *p = &_gmonparam;
  146 #ifdef GUPROF
  147         int cputime_overhead;
  148         int empty_loop_time;
  149         int i;
  150         int mcount_overhead;
  151         int mexitcount_overhead;
  152         int nullfunc_loop_overhead;
  153         int nullfunc_loop_profiled_time;
  154         uintfptr_t tmp_addr;
  155 #endif
  156 
  157         /*
  158          * Round lowpc and highpc to multiples of the density we're using
  159          * so the rest of the scaling (here and in gprof) stays in ints.
  160          */
  161         p->lowpc = ROUNDDOWN((u_long)btext, HISTFRACTION * sizeof(HISTCOUNTER));
  162         p->highpc = ROUNDUP((u_long)etext, HISTFRACTION * sizeof(HISTCOUNTER));
  163         p->textsize = p->highpc - p->lowpc;
  164         printf("Profiling kernel, textsize=%lu [%jx..%jx]\n",
  165             p->textsize, (uintmax_t)p->lowpc, (uintmax_t)p->highpc);
  166         p->kcountsize = p->textsize / HISTFRACTION;
  167         p->hashfraction = HASHFRACTION;
  168         p->fromssize = p->textsize / HASHFRACTION;
  169         p->tolimit = p->textsize * ARCDENSITY / 100;
  170         if (p->tolimit < MINARCS)
  171                 p->tolimit = MINARCS;
  172         else if (p->tolimit > MAXARCS)
  173                 p->tolimit = MAXARCS;
  174         p->tossize = p->tolimit * sizeof(struct tostruct);
  175         cp = (char *)malloc(p->kcountsize + p->fromssize + p->tossize,
  176             M_GPROF, M_WAITOK | M_ZERO);
  177         p->tos = (struct tostruct *)cp;
  178         cp += p->tossize;
  179         p->kcount = (HISTCOUNTER *)cp;
  180         cp += p->kcountsize;
  181         p->froms = (u_short *)cp;
  182         p->histcounter_type = FUNCTION_ALIGNMENT / HISTFRACTION * NBBY;
  183 
  184 #ifdef GUPROF
  185         /* Signed counters. */
  186         p->histcounter_type = -p->histcounter_type;
  187 
  188         /* Initialize pointers to overhead counters. */
  189         p->cputime_count = &KCOUNT(p, PC_TO_I(p, cputime));
  190         p->mcount_count = &KCOUNT(p, PC_TO_I(p, mcount));
  191         p->mexitcount_count = &KCOUNT(p, PC_TO_I(p, mexitcount));
  192 
  193         /*
  194          * Disable interrupts to avoid interference while we calibrate
  195          * things.
  196          */
  197         critical_enter();
  198 
  199         /*
  200          * Determine overheads.
  201          * XXX this needs to be repeated for each useful timer/counter.
  202          */
  203         cputime_overhead = 0;
  204         startguprof(p);
  205         for (i = 0; i < CALIB_SCALE; i++)
  206                 cputime_overhead += cputime();
  207 
  208         empty_loop();
  209         startguprof(p);
  210         empty_loop();
  211         empty_loop_time = cputime();
  212 
  213         nullfunc_loop_profiled();
  214 
  215         /*
  216          * Start profiling.  There won't be any normal function calls since
  217          * interrupts are disabled, but we will call the profiling routines
  218          * directly to determine their overheads.
  219          */
  220         p->state = GMON_PROF_HIRES;
  221 
  222         startguprof(p);
  223         nullfunc_loop_profiled();
  224 
  225         startguprof(p);
  226         for (i = 0; i < CALIB_SCALE; i++)
  227                 MCOUNT_OVERHEAD(sys_profil);
  228         mcount_overhead = KCOUNT(p, PC_TO_I(p, sys_profil));
  229 
  230         startguprof(p);
  231         for (i = 0; i < CALIB_SCALE; i++)
  232                 MEXITCOUNT_OVERHEAD();
  233         MEXITCOUNT_OVERHEAD_GETLABEL(tmp_addr);
  234         mexitcount_overhead = KCOUNT(p, PC_TO_I(p, tmp_addr));
  235 
  236         p->state = GMON_PROF_OFF;
  237         stopguprof(p);
  238 
  239         critical_exit();
  240 
  241         nullfunc_loop_profiled_time = 0;
  242         for (tmp_addr = (uintfptr_t)nullfunc_loop_profiled;
  243              tmp_addr < (uintfptr_t)nullfunc_loop_profiled_end;
  244              tmp_addr += HISTFRACTION * sizeof(HISTCOUNTER))
  245                 nullfunc_loop_profiled_time += KCOUNT(p, PC_TO_I(p, tmp_addr));
  246 #define CALIB_DOSCALE(count)    (((count) + CALIB_SCALE / 3) / CALIB_SCALE)
  247 #define c2n(count, freq)        ((int)((count) * 1000000000LL / freq))
  248         printf("cputime %d, empty_loop %d, nullfunc_loop_profiled %d, mcount %d, mexitcount %d\n",
  249                CALIB_DOSCALE(c2n(cputime_overhead, p->profrate)),
  250                CALIB_DOSCALE(c2n(empty_loop_time, p->profrate)),
  251                CALIB_DOSCALE(c2n(nullfunc_loop_profiled_time, p->profrate)),
  252                CALIB_DOSCALE(c2n(mcount_overhead, p->profrate)),
  253                CALIB_DOSCALE(c2n(mexitcount_overhead, p->profrate)));
  254         cputime_overhead -= empty_loop_time;
  255         mcount_overhead -= empty_loop_time;
  256         mexitcount_overhead -= empty_loop_time;
  257 
  258         /*-
  259          * Profiling overheads are determined by the times between the
  260          * following events:
  261          *      MC1: mcount() is called
  262          *      MC2: cputime() (called from mcount()) latches the timer
  263          *      MC3: mcount() completes
  264          *      ME1: mexitcount() is called
  265          *      ME2: cputime() (called from mexitcount()) latches the timer
  266          *      ME3: mexitcount() completes.
  267          * The times between the events vary slightly depending on instruction
  268          * combination and cache misses, etc.  Attempt to determine the
  269          * minimum times.  These can be subtracted from the profiling times
  270          * without much risk of reducing the profiling times below what they
  271          * would be when profiling is not configured.  Abbreviate:
  272          *      ab = minimum time between MC1 and MC3
  273          *      a  = minimum time between MC1 and MC2
  274          *      b  = minimum time between MC2 and MC3
  275          *      cd = minimum time between ME1 and ME3
  276          *      c  = minimum time between ME1 and ME2
  277          *      d  = minimum time between ME2 and ME3.
  278          * These satisfy the relations:
  279          *      ab            <= mcount_overhead                (just measured)
  280          *      a + b         <= ab
  281          *              cd    <= mexitcount_overhead            (just measured)
  282          *              c + d <= cd
  283          *      a         + d <= nullfunc_loop_profiled_time    (just measured)
  284          *      a >= 0, b >= 0, c >= 0, d >= 0.
  285          * Assume that ab and cd are equal to the minimums.
  286          */
  287         p->cputime_overhead = CALIB_DOSCALE(cputime_overhead);
  288         p->mcount_overhead = CALIB_DOSCALE(mcount_overhead - cputime_overhead);
  289         p->mexitcount_overhead = CALIB_DOSCALE(mexitcount_overhead
  290                                                - cputime_overhead);
  291         nullfunc_loop_overhead = nullfunc_loop_profiled_time - empty_loop_time;
  292         p->mexitcount_post_overhead = CALIB_DOSCALE((mcount_overhead
  293                                                      - nullfunc_loop_overhead)
  294                                                     / 4);
  295         p->mexitcount_pre_overhead = p->mexitcount_overhead
  296                                      + p->cputime_overhead
  297                                      - p->mexitcount_post_overhead;
  298         p->mcount_pre_overhead = CALIB_DOSCALE(nullfunc_loop_overhead)
  299                                  - p->mexitcount_post_overhead;
  300         p->mcount_post_overhead = p->mcount_overhead
  301                                   + p->cputime_overhead
  302                                   - p->mcount_pre_overhead;
  303         printf(
  304 "Profiling overheads: mcount: %d+%d, %d+%d; mexitcount: %d+%d, %d+%d nsec\n",
  305                c2n(p->cputime_overhead, p->profrate),
  306                c2n(p->mcount_overhead, p->profrate),
  307                c2n(p->mcount_pre_overhead, p->profrate),
  308                c2n(p->mcount_post_overhead, p->profrate),
  309                c2n(p->cputime_overhead, p->profrate),
  310                c2n(p->mexitcount_overhead, p->profrate),
  311                c2n(p->mexitcount_pre_overhead, p->profrate),
  312                c2n(p->mexitcount_post_overhead, p->profrate));
  313         printf(
  314 "Profiling overheads: mcount: %d+%d, %d+%d; mexitcount: %d+%d, %d+%d cycles\n",
  315                p->cputime_overhead, p->mcount_overhead,
  316                p->mcount_pre_overhead, p->mcount_post_overhead,
  317                p->cputime_overhead, p->mexitcount_overhead,
  318                p->mexitcount_pre_overhead, p->mexitcount_post_overhead);
  319 #endif /* GUPROF */
  320 }
  321 
  322 /*
  323  * Return kernel profiling information.
  324  */
  325 static int
  326 sysctl_kern_prof(SYSCTL_HANDLER_ARGS)
  327 {
  328         int *name = (int *) arg1;
  329         u_int namelen = arg2;
  330         struct gmonparam *gp = &_gmonparam;
  331         int error;
  332         int state;
  333 
  334         /* all sysctl names at this level are terminal */
  335         if (namelen != 1)
  336                 return (ENOTDIR);               /* overloaded */
  337 
  338         switch (name[0]) {
  339         case GPROF_STATE:
  340                 state = gp->state;
  341                 error = sysctl_handle_int(oidp, &state, 0, req);
  342                 if (error)
  343                         return (error);
  344                 if (!req->newptr)
  345                         return (0);
  346                 if (state == GMON_PROF_OFF) {
  347                         gp->state = state;
  348                         PROC_LOCK(&proc0);
  349                         stopprofclock(&proc0);
  350                         PROC_UNLOCK(&proc0);
  351                         stopguprof(gp);
  352                 } else if (state == GMON_PROF_ON) {
  353                         gp->state = GMON_PROF_OFF;
  354                         stopguprof(gp);
  355                         gp->profrate = profhz;
  356                         PROC_LOCK(&proc0);
  357                         startprofclock(&proc0);
  358                         PROC_UNLOCK(&proc0);
  359                         gp->state = state;
  360 #ifdef GUPROF
  361                 } else if (state == GMON_PROF_HIRES) {
  362                         gp->state = GMON_PROF_OFF;
  363                         PROC_LOCK(&proc0);
  364                         stopprofclock(&proc0);
  365                         PROC_UNLOCK(&proc0);
  366                         startguprof(gp);
  367                         gp->state = state;
  368 #endif
  369                 } else if (state != gp->state)
  370                         return (EINVAL);
  371                 return (0);
  372         case GPROF_COUNT:
  373                 return (sysctl_handle_opaque(oidp, 
  374                         gp->kcount, gp->kcountsize, req));
  375         case GPROF_FROMS:
  376                 return (sysctl_handle_opaque(oidp, 
  377                         gp->froms, gp->fromssize, req));
  378         case GPROF_TOS:
  379                 return (sysctl_handle_opaque(oidp, 
  380                         gp->tos, gp->tossize, req));
  381         case GPROF_GMONPARAM:
  382                 return (sysctl_handle_opaque(oidp, gp, sizeof *gp, req));
  383         default:
  384                 return (EOPNOTSUPP);
  385         }
  386         /* NOTREACHED */
  387 }
  388 
  389 static SYSCTL_NODE(_kern, KERN_PROF, prof, CTLFLAG_RW, sysctl_kern_prof, "");
  390 #endif /* GPROF */
  391 
  392 /*
  393  * Profiling system call.
  394  *
  395  * The scale factor is a fixed point number with 16 bits of fraction, so that
  396  * 1.0 is represented as 0x10000.  A scale factor of 0 turns off profiling.
  397  */
  398 #ifndef _SYS_SYSPROTO_H_
  399 struct profil_args {
  400         caddr_t samples;
  401         size_t  size;
  402         size_t  offset;
  403         u_int   scale;
  404 };
  405 #endif
  406 /* ARGSUSED */
  407 int
  408 sys_profil(struct thread *td, struct profil_args *uap)
  409 {
  410         struct uprof *upp;
  411         struct proc *p;
  412 
  413         if (uap->scale > (1 << 16))
  414                 return (EINVAL);
  415 
  416         p = td->td_proc;
  417         if (uap->scale == 0) {
  418                 PROC_LOCK(p);
  419                 stopprofclock(p);
  420                 PROC_UNLOCK(p);
  421                 return (0);
  422         }
  423         PROC_LOCK(p);
  424         upp = &td->td_proc->p_stats->p_prof;
  425         PROC_PROFLOCK(p);
  426         upp->pr_off = uap->offset;
  427         upp->pr_scale = uap->scale;
  428         upp->pr_base = uap->samples;
  429         upp->pr_size = uap->size;
  430         PROC_PROFUNLOCK(p);
  431         startprofclock(p);
  432         PROC_UNLOCK(p);
  433 
  434         return (0);
  435 }
  436 
  437 /*
  438  * Scale is a fixed-point number with the binary point 16 bits
  439  * into the value, and is <= 1.0.  pc is at most 32 bits, so the
  440  * intermediate result is at most 48 bits.
  441  */
  442 #define PC_TO_INDEX(pc, prof) \
  443         ((int)(((u_quad_t)((pc) - (prof)->pr_off) * \
  444             (u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
  445 
  446 /*
  447  * Collect user-level profiling statistics; called on a profiling tick,
  448  * when a process is running in user-mode.  This routine may be called
  449  * from an interrupt context.  We perform the update with an AST
  450  * that will vector us to trap() with a context in which copyin and
  451  * copyout will work.  Trap will then call addupc_task().
  452  *
  453  * Note that we may (rarely) not get around to the AST soon enough, and
  454  * lose profile ticks when the next tick overwrites this one, but in this
  455  * case the system is overloaded and the profile is probably already
  456  * inaccurate.
  457  */
  458 void
  459 addupc_intr(struct thread *td, uintfptr_t pc, u_int ticks)
  460 {
  461         struct uprof *prof;
  462 
  463         if (ticks == 0)
  464                 return;
  465         prof = &td->td_proc->p_stats->p_prof;
  466         PROC_PROFLOCK(td->td_proc);
  467         if (pc < prof->pr_off || PC_TO_INDEX(pc, prof) >= prof->pr_size) {
  468                 PROC_PROFUNLOCK(td->td_proc);
  469                 return;                 /* out of range; ignore */
  470         }
  471 
  472         PROC_PROFUNLOCK(td->td_proc);
  473         td->td_profil_addr = pc;
  474         td->td_profil_ticks = ticks;
  475         td->td_pflags |= TDP_OWEUPC;
  476         thread_lock(td);
  477         td->td_flags |= TDF_ASTPENDING;
  478         thread_unlock(td);
  479 }
  480 
  481 /*
  482  * Actually update the profiling statistics.  If the update fails, we
  483  * simply turn off profiling.
  484  */
  485 void
  486 addupc_task(struct thread *td, uintfptr_t pc, u_int ticks)
  487 {
  488         struct proc *p = td->td_proc; 
  489         struct uprof *prof;
  490         caddr_t addr;
  491         u_int i;
  492         u_short v;
  493         int stop = 0;
  494 
  495         if (ticks == 0)
  496                 return;
  497 
  498         PROC_LOCK(p);
  499         if (!(p->p_flag & P_PROFIL)) {
  500                 PROC_UNLOCK(p);
  501                 return;
  502         }
  503         p->p_profthreads++;
  504         prof = &p->p_stats->p_prof;
  505         PROC_PROFLOCK(p);
  506         if (pc < prof->pr_off ||
  507             (i = PC_TO_INDEX(pc, prof)) >= prof->pr_size) {
  508                 PROC_PROFUNLOCK(p);
  509                 goto out;
  510         }
  511 
  512         addr = prof->pr_base + i;
  513         PROC_PROFUNLOCK(p);
  514         PROC_UNLOCK(p);
  515         if (copyin(addr, &v, sizeof(v)) == 0) {
  516                 v += ticks;
  517                 if (copyout(&v, addr, sizeof(v)) == 0) {
  518                         PROC_LOCK(p);
  519                         goto out;
  520                 }
  521         }
  522         stop = 1;
  523         PROC_LOCK(p);
  524 
  525 out:
  526         if (--p->p_profthreads == 0) {
  527                 if (p->p_flag & P_STOPPROF) {
  528                         wakeup(&p->p_profthreads);
  529                         p->p_flag &= ~P_STOPPROF;
  530                         stop = 0;
  531                 }
  532         }
  533         if (stop)
  534                 stopprofclock(p);
  535         PROC_UNLOCK(p);
  536 }

Cache object: e22c5c8bf592b1150a1560247afbeaec


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.