The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_rman.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright 1998 Massachusetts Institute of Technology
    3  *
    4  * Permission to use, copy, modify, and distribute this software and
    5  * its documentation for any purpose and without fee is hereby
    6  * granted, provided that both the above copyright notice and this
    7  * permission notice appear in all copies, that both the above
    8  * copyright notice and this permission notice appear in all
    9  * supporting documentation, and that the name of M.I.T. not be used
   10  * in advertising or publicity pertaining to distribution of the
   11  * software without specific, written prior permission.  M.I.T. makes
   12  * no representations about the suitability of this software for any
   13  * purpose.  It is provided "as is" without express or implied
   14  * warranty.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
   17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
   18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
   20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
   23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
   26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 /*
   31  * The kernel resource manager.  This code is responsible for keeping track
   32  * of hardware resources which are apportioned out to various drivers.
   33  * It does not actually assign those resources, and it is not expected
   34  * that end-device drivers will call into this code directly.  Rather,
   35  * the code which implements the buses that those devices are attached to,
   36  * and the code which manages CPU resources, will call this code, and the
   37  * end-device drivers will make upcalls to that code to actually perform
   38  * the allocation.
   39  *
   40  * There are two sorts of resources managed by this code.  The first is
   41  * the more familiar array (RMAN_ARRAY) type; resources in this class
   42  * consist of a sequence of individually-allocatable objects which have
   43  * been numbered in some well-defined order.  Most of the resources
   44  * are of this type, as it is the most familiar.  The second type is
   45  * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
   46  * resources in which each instance is indistinguishable from every
   47  * other instance).  The principal anticipated application of gauges
   48  * is in the context of power consumption, where a bus may have a specific
   49  * power budget which all attached devices share.  RMAN_GAUGE is not
   50  * implemented yet.
   51  *
   52  * For array resources, we make one simplifying assumption: two clients
   53  * sharing the same resource must use the same range of indices.  That
   54  * is to say, sharing of overlapping-but-not-identical regions is not
   55  * permitted.
   56  */
   57 
   58 #include "opt_ddb.h"
   59 
   60 #include <sys/cdefs.h>
   61 __FBSDID("$FreeBSD$");
   62 
   63 #include <sys/param.h>
   64 #include <sys/systm.h>
   65 #include <sys/kernel.h>
   66 #include <sys/limits.h>
   67 #include <sys/lock.h>
   68 #include <sys/malloc.h>
   69 #include <sys/mutex.h>
   70 #include <sys/bus.h>            /* XXX debugging */
   71 #include <machine/bus.h>
   72 #include <sys/rman.h>
   73 #include <sys/sysctl.h>
   74 
   75 #ifdef DDB
   76 #include <ddb/ddb.h>
   77 #endif
   78 
   79 /*
   80  * We use a linked list rather than a bitmap because we need to be able to
   81  * represent potentially huge objects (like all of a processor's physical
   82  * address space).
   83  */
   84 struct resource_i {
   85         struct resource         r_r;
   86         TAILQ_ENTRY(resource_i) r_link;
   87         LIST_ENTRY(resource_i)  r_sharelink;
   88         LIST_HEAD(, resource_i) *r_sharehead;
   89         rman_res_t      r_start;        /* index of the first entry in this resource */
   90         rman_res_t      r_end;          /* index of the last entry (inclusive) */
   91         u_int   r_flags;
   92         void    *r_virtual;     /* virtual address of this resource */
   93         void    *r_irq_cookie;  /* interrupt cookie for this (interrupt) resource */
   94         device_t r_dev; /* device which has allocated this resource */
   95         struct rman *r_rm;      /* resource manager from whence this came */
   96         int     r_rid;          /* optional rid for this resource. */
   97 };
   98 
   99 static int rman_debug = 0;
  100 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RWTUN,
  101     &rman_debug, 0, "rman debug");
  102 
  103 #define DPRINTF(params) if (rman_debug) printf params
  104 
  105 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
  106 
  107 struct rman_head rman_head;
  108 static struct mtx rman_mtx; /* mutex to protect rman_head */
  109 static int int_rman_release_resource(struct rman *rm, struct resource_i *r);
  110 
  111 static __inline struct resource_i *
  112 int_alloc_resource(int malloc_flag)
  113 {
  114         struct resource_i *r;
  115 
  116         r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO);
  117         if (r != NULL) {
  118                 r->r_r.__r_i = r;
  119         }
  120         return (r);
  121 }
  122 
  123 int
  124 rman_init(struct rman *rm)
  125 {
  126         static int once = 0;
  127 
  128         if (once == 0) {
  129                 once = 1;
  130                 TAILQ_INIT(&rman_head);
  131                 mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
  132         }
  133 
  134         if (rm->rm_start == 0 && rm->rm_end == 0)
  135                 rm->rm_end = ~0;
  136         if (rm->rm_type == RMAN_UNINIT)
  137                 panic("rman_init");
  138         if (rm->rm_type == RMAN_GAUGE)
  139                 panic("implement RMAN_GAUGE");
  140 
  141         TAILQ_INIT(&rm->rm_list);
  142         rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
  143         if (rm->rm_mtx == NULL)
  144                 return ENOMEM;
  145         mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
  146 
  147         mtx_lock(&rman_mtx);
  148         TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
  149         mtx_unlock(&rman_mtx);
  150         return 0;
  151 }
  152 
  153 int
  154 rman_manage_region(struct rman *rm, rman_res_t start, rman_res_t end)
  155 {
  156         struct resource_i *r, *s, *t;
  157         int rv = 0;
  158 
  159         DPRINTF(("rman_manage_region: <%s> request: start %#jx, end %#jx\n",
  160             rm->rm_descr, start, end));
  161         if (start < rm->rm_start || end > rm->rm_end)
  162                 return EINVAL;
  163         r = int_alloc_resource(M_NOWAIT);
  164         if (r == NULL)
  165                 return ENOMEM;
  166         r->r_start = start;
  167         r->r_end = end;
  168         r->r_rm = rm;
  169 
  170         mtx_lock(rm->rm_mtx);
  171 
  172         /* Skip entries before us. */
  173         TAILQ_FOREACH(s, &rm->rm_list, r_link) {
  174                 if (s->r_end == ~0)
  175                         break;
  176                 if (s->r_end + 1 >= r->r_start)
  177                         break;
  178         }
  179 
  180         /* If we ran off the end of the list, insert at the tail. */
  181         if (s == NULL) {
  182                 TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
  183         } else {
  184                 /* Check for any overlap with the current region. */
  185                 if (r->r_start <= s->r_end && r->r_end >= s->r_start) {
  186                         rv = EBUSY;
  187                         goto out;
  188                 }
  189 
  190                 /* Check for any overlap with the next region. */
  191                 t = TAILQ_NEXT(s, r_link);
  192                 if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) {
  193                         rv = EBUSY;
  194                         goto out;
  195                 }
  196 
  197                 /*
  198                  * See if this region can be merged with the next region.  If
  199                  * not, clear the pointer.
  200                  */
  201                 if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0))
  202                         t = NULL;
  203 
  204                 /* See if we can merge with the current region. */
  205                 if (s->r_end + 1 == r->r_start && s->r_flags == 0) {
  206                         /* Can we merge all 3 regions? */
  207                         if (t != NULL) {
  208                                 s->r_end = t->r_end;
  209                                 TAILQ_REMOVE(&rm->rm_list, t, r_link);
  210                                 free(r, M_RMAN);
  211                                 free(t, M_RMAN);
  212                         } else {
  213                                 s->r_end = r->r_end;
  214                                 free(r, M_RMAN);
  215                         }
  216                 } else if (t != NULL) {
  217                         /* Can we merge with just the next region? */
  218                         t->r_start = r->r_start;
  219                         free(r, M_RMAN);
  220                 } else if (s->r_end < r->r_start) {
  221                         TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link);
  222                 } else {
  223                         TAILQ_INSERT_BEFORE(s, r, r_link);
  224                 }
  225         }
  226 out:
  227         mtx_unlock(rm->rm_mtx);
  228         return rv;
  229 }
  230 
  231 int
  232 rman_init_from_resource(struct rman *rm, struct resource *r)
  233 {
  234         int rv;
  235 
  236         if ((rv = rman_init(rm)) != 0)
  237                 return (rv);
  238         return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end));
  239 }
  240 
  241 int
  242 rman_fini(struct rman *rm)
  243 {
  244         struct resource_i *r;
  245 
  246         mtx_lock(rm->rm_mtx);
  247         TAILQ_FOREACH(r, &rm->rm_list, r_link) {
  248                 if (r->r_flags & RF_ALLOCATED) {
  249                         mtx_unlock(rm->rm_mtx);
  250                         return EBUSY;
  251                 }
  252         }
  253 
  254         /*
  255          * There really should only be one of these if we are in this
  256          * state and the code is working properly, but it can't hurt.
  257          */
  258         while (!TAILQ_EMPTY(&rm->rm_list)) {
  259                 r = TAILQ_FIRST(&rm->rm_list);
  260                 TAILQ_REMOVE(&rm->rm_list, r, r_link);
  261                 free(r, M_RMAN);
  262         }
  263         mtx_unlock(rm->rm_mtx);
  264         mtx_lock(&rman_mtx);
  265         TAILQ_REMOVE(&rman_head, rm, rm_link);
  266         mtx_unlock(&rman_mtx);
  267         mtx_destroy(rm->rm_mtx);
  268         free(rm->rm_mtx, M_RMAN);
  269 
  270         return 0;
  271 }
  272 
  273 int
  274 rman_first_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end)
  275 {
  276         struct resource_i *r;
  277 
  278         mtx_lock(rm->rm_mtx);
  279         TAILQ_FOREACH(r, &rm->rm_list, r_link) {
  280                 if (!(r->r_flags & RF_ALLOCATED)) {
  281                         *start = r->r_start;
  282                         *end = r->r_end;
  283                         mtx_unlock(rm->rm_mtx);
  284                         return (0);
  285                 }
  286         }
  287         mtx_unlock(rm->rm_mtx);
  288         return (ENOENT);
  289 }
  290 
  291 int
  292 rman_last_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end)
  293 {
  294         struct resource_i *r;
  295 
  296         mtx_lock(rm->rm_mtx);
  297         TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) {
  298                 if (!(r->r_flags & RF_ALLOCATED)) {
  299                         *start = r->r_start;
  300                         *end = r->r_end;
  301                         mtx_unlock(rm->rm_mtx);
  302                         return (0);
  303                 }
  304         }
  305         mtx_unlock(rm->rm_mtx);
  306         return (ENOENT);
  307 }
  308 
  309 /* Shrink or extend one or both ends of an allocated resource. */
  310 int
  311 rman_adjust_resource(struct resource *rr, rman_res_t start, rman_res_t end)
  312 {
  313         struct resource_i *r, *s, *t, *new;
  314         struct rman *rm;
  315 
  316         /* Not supported for shared resources. */
  317         r = rr->__r_i;
  318         if (r->r_flags & RF_SHAREABLE)
  319                 return (EINVAL);
  320 
  321         /*
  322          * This does not support wholesale moving of a resource.  At
  323          * least part of the desired new range must overlap with the
  324          * existing resource.
  325          */
  326         if (end < r->r_start || r->r_end < start)
  327                 return (EINVAL);
  328 
  329         /*
  330          * Find the two resource regions immediately adjacent to the
  331          * allocated resource.
  332          */
  333         rm = r->r_rm;
  334         mtx_lock(rm->rm_mtx);
  335 #ifdef INVARIANTS
  336         TAILQ_FOREACH(s, &rm->rm_list, r_link) {
  337                 if (s == r)
  338                         break;
  339         }
  340         if (s == NULL)
  341                 panic("resource not in list");
  342 #endif
  343         s = TAILQ_PREV(r, resource_head, r_link);
  344         t = TAILQ_NEXT(r, r_link);
  345         KASSERT(s == NULL || s->r_end + 1 == r->r_start,
  346             ("prev resource mismatch"));
  347         KASSERT(t == NULL || r->r_end + 1 == t->r_start,
  348             ("next resource mismatch"));
  349 
  350         /*
  351          * See if the changes are permitted.  Shrinking is always allowed,
  352          * but growing requires sufficient room in the adjacent region.
  353          */
  354         if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) ||
  355             s->r_start > start)) {
  356                 mtx_unlock(rm->rm_mtx);
  357                 return (EBUSY);
  358         }
  359         if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) ||
  360             t->r_end < end)) {
  361                 mtx_unlock(rm->rm_mtx);
  362                 return (EBUSY);
  363         }
  364 
  365         /*
  366          * While holding the lock, grow either end of the resource as
  367          * needed and shrink either end if the shrinking does not require
  368          * allocating a new resource.  We can safely drop the lock and then
  369          * insert a new range to handle the shrinking case afterwards.
  370          */
  371         if (start < r->r_start ||
  372             (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) {
  373                 KASSERT(s->r_flags == 0, ("prev is busy"));
  374                 r->r_start = start;
  375                 if (s->r_start == start) {
  376                         TAILQ_REMOVE(&rm->rm_list, s, r_link);
  377                         free(s, M_RMAN);
  378                 } else
  379                         s->r_end = start - 1;
  380         }
  381         if (end > r->r_end ||
  382             (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) {
  383                 KASSERT(t->r_flags == 0, ("next is busy"));
  384                 r->r_end = end;
  385                 if (t->r_end == end) {
  386                         TAILQ_REMOVE(&rm->rm_list, t, r_link);
  387                         free(t, M_RMAN);
  388                 } else
  389                         t->r_start = end + 1;
  390         }
  391         mtx_unlock(rm->rm_mtx);
  392 
  393         /*
  394          * Handle the shrinking cases that require allocating a new
  395          * resource to hold the newly-free region.  We have to recheck
  396          * if we still need this new region after acquiring the lock.
  397          */
  398         if (start > r->r_start) {
  399                 new = int_alloc_resource(M_WAITOK);
  400                 new->r_start = r->r_start;
  401                 new->r_end = start - 1;
  402                 new->r_rm = rm;
  403                 mtx_lock(rm->rm_mtx);
  404                 r->r_start = start;
  405                 s = TAILQ_PREV(r, resource_head, r_link);
  406                 if (s != NULL && !(s->r_flags & RF_ALLOCATED)) {
  407                         s->r_end = start - 1;
  408                         free(new, M_RMAN);
  409                 } else
  410                         TAILQ_INSERT_BEFORE(r, new, r_link);
  411                 mtx_unlock(rm->rm_mtx);
  412         }
  413         if (end < r->r_end) {
  414                 new = int_alloc_resource(M_WAITOK);
  415                 new->r_start = end + 1;
  416                 new->r_end = r->r_end;
  417                 new->r_rm = rm;
  418                 mtx_lock(rm->rm_mtx);
  419                 r->r_end = end;
  420                 t = TAILQ_NEXT(r, r_link);
  421                 if (t != NULL && !(t->r_flags & RF_ALLOCATED)) {
  422                         t->r_start = end + 1;
  423                         free(new, M_RMAN);
  424                 } else
  425                         TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link);
  426                 mtx_unlock(rm->rm_mtx);
  427         }
  428         return (0);
  429 }
  430 
  431 #define SHARE_TYPE(f)   (f & (RF_SHAREABLE | RF_PREFETCHABLE))
  432 
  433 struct resource *
  434 rman_reserve_resource_bound(struct rman *rm, rman_res_t start, rman_res_t end,
  435                             rman_res_t count, rman_res_t bound, u_int flags,
  436                             device_t dev)
  437 {
  438         u_int new_rflags;
  439         struct resource_i *r, *s, *rv;
  440         rman_res_t rstart, rend, amask, bmask;
  441 
  442         rv = NULL;
  443 
  444         DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#jx, %#jx], "
  445                "length %#jx, flags %x, device %s\n", rm->rm_descr, start, end,
  446                count, flags,
  447                dev == NULL ? "<null>" : device_get_nameunit(dev)));
  448         KASSERT(count != 0, ("%s: attempted to allocate an empty range",
  449             __func__));
  450         KASSERT((flags & RF_FIRSTSHARE) == 0,
  451             ("invalid flags %#x", flags));
  452         new_rflags = (flags & ~RF_FIRSTSHARE) | RF_ALLOCATED;
  453 
  454         mtx_lock(rm->rm_mtx);
  455 
  456         r = TAILQ_FIRST(&rm->rm_list);
  457         if (r == NULL) {
  458             DPRINTF(("NULL list head\n"));
  459         } else {
  460             DPRINTF(("rman_reserve_resource_bound: trying %#jx <%#jx,%#jx>\n",
  461                     r->r_end, start, count-1));
  462         }
  463         for (r = TAILQ_FIRST(&rm->rm_list);
  464              r && r->r_end < start + count - 1;
  465              r = TAILQ_NEXT(r, r_link)) {
  466                 ;
  467                 DPRINTF(("rman_reserve_resource_bound: tried %#jx <%#jx,%#jx>\n",
  468                         r->r_end, start, count-1));
  469         }
  470 
  471         if (r == NULL) {
  472                 DPRINTF(("could not find a region\n"));
  473                 goto out;
  474         }
  475 
  476         amask = (1ull << RF_ALIGNMENT(flags)) - 1;
  477         KASSERT(start <= RM_MAX_END - amask,
  478             ("start (%#jx) + amask (%#jx) would wrap around", start, amask));
  479 
  480         /* If bound is 0, bmask will also be 0 */
  481         bmask = ~(bound - 1);
  482         /*
  483          * First try to find an acceptable totally-unshared region.
  484          */
  485         for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
  486                 DPRINTF(("considering [%#jx, %#jx]\n", s->r_start, s->r_end));
  487                 /*
  488                  * The resource list is sorted, so there is no point in
  489                  * searching further once r_start is too large.
  490                  */
  491                 if (s->r_start > end - (count - 1)) {
  492                         DPRINTF(("s->r_start (%#jx) + count - 1> end (%#jx)\n",
  493                             s->r_start, end));
  494                         break;
  495                 }
  496                 if (s->r_start > RM_MAX_END - amask) {
  497                         DPRINTF(("s->r_start (%#jx) + amask (%#jx) too large\n",
  498                             s->r_start, amask));
  499                         break;
  500                 }
  501                 if (s->r_flags & RF_ALLOCATED) {
  502                         DPRINTF(("region is allocated\n"));
  503                         continue;
  504                 }
  505                 rstart = ummax(s->r_start, start);
  506                 /*
  507                  * Try to find a region by adjusting to boundary and alignment
  508                  * until both conditions are satisfied. This is not an optimal
  509                  * algorithm, but in most cases it isn't really bad, either.
  510                  */
  511                 do {
  512                         rstart = (rstart + amask) & ~amask;
  513                         if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
  514                                 rstart += bound - (rstart & ~bmask);
  515                 } while ((rstart & amask) != 0 && rstart < end &&
  516                     rstart < s->r_end);
  517                 rend = ummin(s->r_end, ummax(rstart + count - 1, end));
  518                 if (rstart > rend) {
  519                         DPRINTF(("adjusted start exceeds end\n"));
  520                         continue;
  521                 }
  522                 DPRINTF(("truncated region: [%#jx, %#jx]; size %#jx (requested %#jx)\n",
  523                        rstart, rend, (rend - rstart + 1), count));
  524 
  525                 if ((rend - rstart) >= (count - 1)) {
  526                         DPRINTF(("candidate region: [%#jx, %#jx], size %#jx\n",
  527                                rstart, rend, (rend - rstart + 1)));
  528                         if ((s->r_end - s->r_start + 1) == count) {
  529                                 DPRINTF(("candidate region is entire chunk\n"));
  530                                 rv = s;
  531                                 rv->r_flags = new_rflags;
  532                                 rv->r_dev = dev;
  533                                 goto out;
  534                         }
  535 
  536                         /*
  537                          * If s->r_start < rstart and
  538                          *    s->r_end > rstart + count - 1, then
  539                          * we need to split the region into three pieces
  540                          * (the middle one will get returned to the user).
  541                          * Otherwise, we are allocating at either the
  542                          * beginning or the end of s, so we only need to
  543                          * split it in two.  The first case requires
  544                          * two new allocations; the second requires but one.
  545                          */
  546                         rv = int_alloc_resource(M_NOWAIT);
  547                         if (rv == NULL)
  548                                 goto out;
  549                         rv->r_start = rstart;
  550                         rv->r_end = rstart + count - 1;
  551                         rv->r_flags = new_rflags;
  552                         rv->r_dev = dev;
  553                         rv->r_rm = rm;
  554 
  555                         if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
  556                                 DPRINTF(("splitting region in three parts: "
  557                                        "[%#jx, %#jx]; [%#jx, %#jx]; [%#jx, %#jx]\n",
  558                                        s->r_start, rv->r_start - 1,
  559                                        rv->r_start, rv->r_end,
  560                                        rv->r_end + 1, s->r_end));
  561                                 /*
  562                                  * We are allocating in the middle.
  563                                  */
  564                                 r = int_alloc_resource(M_NOWAIT);
  565                                 if (r == NULL) {
  566                                         free(rv, M_RMAN);
  567                                         rv = NULL;
  568                                         goto out;
  569                                 }
  570                                 r->r_start = rv->r_end + 1;
  571                                 r->r_end = s->r_end;
  572                                 r->r_flags = s->r_flags;
  573                                 r->r_rm = rm;
  574                                 s->r_end = rv->r_start - 1;
  575                                 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
  576                                                      r_link);
  577                                 TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
  578                                                      r_link);
  579                         } else if (s->r_start == rv->r_start) {
  580                                 DPRINTF(("allocating from the beginning\n"));
  581                                 /*
  582                                  * We are allocating at the beginning.
  583                                  */
  584                                 s->r_start = rv->r_end + 1;
  585                                 TAILQ_INSERT_BEFORE(s, rv, r_link);
  586                         } else {
  587                                 DPRINTF(("allocating at the end\n"));
  588                                 /*
  589                                  * We are allocating at the end.
  590                                  */
  591                                 s->r_end = rv->r_start - 1;
  592                                 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
  593                                                      r_link);
  594                         }
  595                         goto out;
  596                 }
  597         }
  598 
  599         /*
  600          * Now find an acceptable shared region, if the client's requirements
  601          * allow sharing.  By our implementation restriction, a candidate
  602          * region must match exactly by both size and sharing type in order
  603          * to be considered compatible with the client's request.  (The
  604          * former restriction could probably be lifted without too much
  605          * additional work, but this does not seem warranted.)
  606          */
  607         DPRINTF(("no unshared regions found\n"));
  608         if ((flags & RF_SHAREABLE) == 0)
  609                 goto out;
  610 
  611         for (s = r; s && s->r_end <= end; s = TAILQ_NEXT(s, r_link)) {
  612                 if (SHARE_TYPE(s->r_flags) == SHARE_TYPE(flags) &&
  613                     s->r_start >= start &&
  614                     (s->r_end - s->r_start + 1) == count &&
  615                     (s->r_start & amask) == 0 &&
  616                     ((s->r_start ^ s->r_end) & bmask) == 0) {
  617                         rv = int_alloc_resource(M_NOWAIT);
  618                         if (rv == NULL)
  619                                 goto out;
  620                         rv->r_start = s->r_start;
  621                         rv->r_end = s->r_end;
  622                         rv->r_flags = new_rflags;
  623                         rv->r_dev = dev;
  624                         rv->r_rm = rm;
  625                         if (s->r_sharehead == NULL) {
  626                                 s->r_sharehead = malloc(sizeof *s->r_sharehead,
  627                                                 M_RMAN, M_NOWAIT | M_ZERO);
  628                                 if (s->r_sharehead == NULL) {
  629                                         free(rv, M_RMAN);
  630                                         rv = NULL;
  631                                         goto out;
  632                                 }
  633                                 LIST_INIT(s->r_sharehead);
  634                                 LIST_INSERT_HEAD(s->r_sharehead, s,
  635                                                  r_sharelink);
  636                                 s->r_flags |= RF_FIRSTSHARE;
  637                         }
  638                         rv->r_sharehead = s->r_sharehead;
  639                         LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
  640                         goto out;
  641                 }
  642         }
  643         /*
  644          * We couldn't find anything.
  645          */
  646 
  647 out:
  648         mtx_unlock(rm->rm_mtx);
  649         return (rv == NULL ? NULL : &rv->r_r);
  650 }
  651 
  652 struct resource *
  653 rman_reserve_resource(struct rman *rm, rman_res_t start, rman_res_t end,
  654                       rman_res_t count, u_int flags, device_t dev)
  655 {
  656 
  657         return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
  658             dev));
  659 }
  660 
  661 int
  662 rman_activate_resource(struct resource *re)
  663 {
  664         struct resource_i *r;
  665         struct rman *rm;
  666 
  667         r = re->__r_i;
  668         rm = r->r_rm;
  669         mtx_lock(rm->rm_mtx);
  670         r->r_flags |= RF_ACTIVE;
  671         mtx_unlock(rm->rm_mtx);
  672         return 0;
  673 }
  674 
  675 int
  676 rman_deactivate_resource(struct resource *r)
  677 {
  678         struct rman *rm;
  679 
  680         rm = r->__r_i->r_rm;
  681         mtx_lock(rm->rm_mtx);
  682         r->__r_i->r_flags &= ~RF_ACTIVE;
  683         mtx_unlock(rm->rm_mtx);
  684         return 0;
  685 }
  686 
  687 static int
  688 int_rman_release_resource(struct rman *rm, struct resource_i *r)
  689 {
  690         struct resource_i *s, *t;
  691 
  692         if (r->r_flags & RF_ACTIVE)
  693                 r->r_flags &= ~RF_ACTIVE;
  694 
  695         /*
  696          * Check for a sharing list first.  If there is one, then we don't
  697          * have to think as hard.
  698          */
  699         if (r->r_sharehead) {
  700                 /*
  701                  * If a sharing list exists, then we know there are at
  702                  * least two sharers.
  703                  *
  704                  * If we are in the main circleq, appoint someone else.
  705                  */
  706                 LIST_REMOVE(r, r_sharelink);
  707                 s = LIST_FIRST(r->r_sharehead);
  708                 if (r->r_flags & RF_FIRSTSHARE) {
  709                         s->r_flags |= RF_FIRSTSHARE;
  710                         TAILQ_INSERT_BEFORE(r, s, r_link);
  711                         TAILQ_REMOVE(&rm->rm_list, r, r_link);
  712                 }
  713 
  714                 /*
  715                  * Make sure that the sharing list goes away completely
  716                  * if the resource is no longer being shared at all.
  717                  */
  718                 if (LIST_NEXT(s, r_sharelink) == NULL) {
  719                         free(s->r_sharehead, M_RMAN);
  720                         s->r_sharehead = NULL;
  721                         s->r_flags &= ~RF_FIRSTSHARE;
  722                 }
  723                 goto out;
  724         }
  725 
  726         /*
  727          * Look at the adjacent resources in the list and see if our
  728          * segment can be merged with any of them.  If either of the
  729          * resources is allocated or is not exactly adjacent then they
  730          * cannot be merged with our segment.
  731          */
  732         s = TAILQ_PREV(r, resource_head, r_link);
  733         if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
  734             s->r_end + 1 != r->r_start))
  735                 s = NULL;
  736         t = TAILQ_NEXT(r, r_link);
  737         if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
  738             r->r_end + 1 != t->r_start))
  739                 t = NULL;
  740 
  741         if (s != NULL && t != NULL) {
  742                 /*
  743                  * Merge all three segments.
  744                  */
  745                 s->r_end = t->r_end;
  746                 TAILQ_REMOVE(&rm->rm_list, r, r_link);
  747                 TAILQ_REMOVE(&rm->rm_list, t, r_link);
  748                 free(t, M_RMAN);
  749         } else if (s != NULL) {
  750                 /*
  751                  * Merge previous segment with ours.
  752                  */
  753                 s->r_end = r->r_end;
  754                 TAILQ_REMOVE(&rm->rm_list, r, r_link);
  755         } else if (t != NULL) {
  756                 /*
  757                  * Merge next segment with ours.
  758                  */
  759                 t->r_start = r->r_start;
  760                 TAILQ_REMOVE(&rm->rm_list, r, r_link);
  761         } else {
  762                 /*
  763                  * At this point, we know there is nothing we
  764                  * can potentially merge with, because on each
  765                  * side, there is either nothing there or what is
  766                  * there is still allocated.  In that case, we don't
  767                  * want to remove r from the list; we simply want to
  768                  * change it to an unallocated region and return
  769                  * without freeing anything.
  770                  */
  771                 r->r_flags &= ~RF_ALLOCATED;
  772                 r->r_dev = NULL;
  773                 return 0;
  774         }
  775 
  776 out:
  777         free(r, M_RMAN);
  778         return 0;
  779 }
  780 
  781 int
  782 rman_release_resource(struct resource *re)
  783 {
  784         int rv;
  785         struct resource_i *r;
  786         struct rman *rm;
  787 
  788         r = re->__r_i;
  789         rm = r->r_rm;
  790         mtx_lock(rm->rm_mtx);
  791         rv = int_rman_release_resource(rm, r);
  792         mtx_unlock(rm->rm_mtx);
  793         return (rv);
  794 }
  795 
  796 uint32_t
  797 rman_make_alignment_flags(uint32_t size)
  798 {
  799         int i;
  800 
  801         /*
  802          * Find the hightest bit set, and add one if more than one bit
  803          * set.  We're effectively computing the ceil(log2(size)) here.
  804          */
  805         for (i = 31; i > 0; i--)
  806                 if ((1 << i) & size)
  807                         break;
  808         if (~(1 << i) & size)
  809                 i++;
  810 
  811         return(RF_ALIGNMENT_LOG2(i));
  812 }
  813 
  814 void
  815 rman_set_start(struct resource *r, rman_res_t start)
  816 {
  817 
  818         r->__r_i->r_start = start;
  819 }
  820 
  821 rman_res_t
  822 rman_get_start(struct resource *r)
  823 {
  824 
  825         return (r->__r_i->r_start);
  826 }
  827 
  828 void
  829 rman_set_end(struct resource *r, rman_res_t end)
  830 {
  831 
  832         r->__r_i->r_end = end;
  833 }
  834 
  835 rman_res_t
  836 rman_get_end(struct resource *r)
  837 {
  838 
  839         return (r->__r_i->r_end);
  840 }
  841 
  842 rman_res_t
  843 rman_get_size(struct resource *r)
  844 {
  845 
  846         return (r->__r_i->r_end - r->__r_i->r_start + 1);
  847 }
  848 
  849 u_int
  850 rman_get_flags(struct resource *r)
  851 {
  852 
  853         return (r->__r_i->r_flags);
  854 }
  855 
  856 void
  857 rman_set_virtual(struct resource *r, void *v)
  858 {
  859 
  860         r->__r_i->r_virtual = v;
  861 }
  862 
  863 void *
  864 rman_get_virtual(struct resource *r)
  865 {
  866 
  867         return (r->__r_i->r_virtual);
  868 }
  869 
  870 void
  871 rman_set_irq_cookie(struct resource *r, void *c)
  872 {
  873 
  874         r->__r_i->r_irq_cookie = c;
  875 }
  876 
  877 void *
  878 rman_get_irq_cookie(struct resource *r)
  879 {
  880 
  881         return (r->__r_i->r_irq_cookie);
  882 }
  883 
  884 void
  885 rman_set_bustag(struct resource *r, bus_space_tag_t t)
  886 {
  887 
  888         r->r_bustag = t;
  889 }
  890 
  891 bus_space_tag_t
  892 rman_get_bustag(struct resource *r)
  893 {
  894 
  895         return (r->r_bustag);
  896 }
  897 
  898 void
  899 rman_set_bushandle(struct resource *r, bus_space_handle_t h)
  900 {
  901 
  902         r->r_bushandle = h;
  903 }
  904 
  905 bus_space_handle_t
  906 rman_get_bushandle(struct resource *r)
  907 {
  908 
  909         return (r->r_bushandle);
  910 }
  911 
  912 void
  913 rman_set_mapping(struct resource *r, struct resource_map *map)
  914 {
  915 
  916         KASSERT(rman_get_size(r) == map->r_size,
  917             ("rman_set_mapping: size mismatch"));
  918         rman_set_bustag(r, map->r_bustag);
  919         rman_set_bushandle(r, map->r_bushandle);
  920         rman_set_virtual(r, map->r_vaddr);
  921 }
  922 
  923 void
  924 rman_get_mapping(struct resource *r, struct resource_map *map)
  925 {
  926 
  927         map->r_bustag = rman_get_bustag(r);
  928         map->r_bushandle = rman_get_bushandle(r);
  929         map->r_size = rman_get_size(r);
  930         map->r_vaddr = rman_get_virtual(r);
  931 }
  932 
  933 void
  934 rman_set_rid(struct resource *r, int rid)
  935 {
  936 
  937         r->__r_i->r_rid = rid;
  938 }
  939 
  940 int
  941 rman_get_rid(struct resource *r)
  942 {
  943 
  944         return (r->__r_i->r_rid);
  945 }
  946 
  947 void
  948 rman_set_device(struct resource *r, device_t dev)
  949 {
  950 
  951         r->__r_i->r_dev = dev;
  952 }
  953 
  954 device_t
  955 rman_get_device(struct resource *r)
  956 {
  957 
  958         return (r->__r_i->r_dev);
  959 }
  960 
  961 int
  962 rman_is_region_manager(struct resource *r, struct rman *rm)
  963 {
  964 
  965         return (r->__r_i->r_rm == rm);
  966 }
  967 
  968 /*
  969  * Sysctl interface for scanning the resource lists.
  970  *
  971  * We take two input parameters; the index into the list of resource
  972  * managers, and the resource offset into the list.
  973  */
  974 static int
  975 sysctl_rman(SYSCTL_HANDLER_ARGS)
  976 {
  977         int                     *name = (int *)arg1;
  978         u_int                   namelen = arg2;
  979         int                     rman_idx, res_idx;
  980         struct rman             *rm;
  981         struct resource_i       *res;
  982         struct resource_i       *sres;
  983         struct u_rman           urm;
  984         struct u_resource       ures;
  985         int                     error;
  986 
  987         if (namelen != 3)
  988                 return (EINVAL);
  989 
  990         if (bus_data_generation_check(name[0]))
  991                 return (EINVAL);
  992         rman_idx = name[1];
  993         res_idx = name[2];
  994 
  995         /*
  996          * Find the indexed resource manager
  997          */
  998         mtx_lock(&rman_mtx);
  999         TAILQ_FOREACH(rm, &rman_head, rm_link) {
 1000                 if (rman_idx-- == 0)
 1001                         break;
 1002         }
 1003         mtx_unlock(&rman_mtx);
 1004         if (rm == NULL)
 1005                 return (ENOENT);
 1006 
 1007         /*
 1008          * If the resource index is -1, we want details on the
 1009          * resource manager.
 1010          */
 1011         if (res_idx == -1) {
 1012                 bzero(&urm, sizeof(urm));
 1013                 urm.rm_handle = (uintptr_t)rm;
 1014                 if (rm->rm_descr != NULL)
 1015                         strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
 1016                 urm.rm_start = rm->rm_start;
 1017                 urm.rm_size = rm->rm_end - rm->rm_start + 1;
 1018                 urm.rm_type = rm->rm_type;
 1019 
 1020                 error = SYSCTL_OUT(req, &urm, sizeof(urm));
 1021                 return (error);
 1022         }
 1023 
 1024         /*
 1025          * Find the indexed resource and return it.
 1026          */
 1027         mtx_lock(rm->rm_mtx);
 1028         TAILQ_FOREACH(res, &rm->rm_list, r_link) {
 1029                 if (res->r_sharehead != NULL) {
 1030                         LIST_FOREACH(sres, res->r_sharehead, r_sharelink)
 1031                                 if (res_idx-- == 0) {
 1032                                         res = sres;
 1033                                         goto found;
 1034                                 }
 1035                 }
 1036                 else if (res_idx-- == 0)
 1037                                 goto found;
 1038         }
 1039         mtx_unlock(rm->rm_mtx);
 1040         return (ENOENT);
 1041 
 1042 found:
 1043         bzero(&ures, sizeof(ures));
 1044         ures.r_handle = (uintptr_t)res;
 1045         ures.r_parent = (uintptr_t)res->r_rm;
 1046         ures.r_device = (uintptr_t)res->r_dev;
 1047         if (res->r_dev != NULL) {
 1048                 if (device_get_name(res->r_dev) != NULL) {
 1049                         snprintf(ures.r_devname, RM_TEXTLEN,
 1050                             "%s%d",
 1051                             device_get_name(res->r_dev),
 1052                             device_get_unit(res->r_dev));
 1053                 } else {
 1054                         strlcpy(ures.r_devname, "nomatch",
 1055                             RM_TEXTLEN);
 1056                 }
 1057         } else {
 1058                 ures.r_devname[0] = '\0';
 1059         }
 1060         ures.r_start = res->r_start;
 1061         ures.r_size = res->r_end - res->r_start + 1;
 1062         ures.r_flags = res->r_flags;
 1063 
 1064         mtx_unlock(rm->rm_mtx);
 1065         error = SYSCTL_OUT(req, &ures, sizeof(ures));
 1066         return (error);
 1067 }
 1068 
 1069 static SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD | CTLFLAG_MPSAFE,
 1070     sysctl_rman,
 1071     "kernel resource manager");
 1072 
 1073 #ifdef DDB
 1074 static void
 1075 dump_rman_header(struct rman *rm)
 1076 {
 1077 
 1078         if (db_pager_quit)
 1079                 return;
 1080         db_printf("rman %p: %s (0x%jx-0x%jx full range)\n",
 1081             rm, rm->rm_descr, (rman_res_t)rm->rm_start, (rman_res_t)rm->rm_end);
 1082 }
 1083 
 1084 static void
 1085 dump_rman(struct rman *rm)
 1086 {
 1087         struct resource_i *r;
 1088         const char *devname;
 1089 
 1090         if (db_pager_quit)
 1091                 return;
 1092         TAILQ_FOREACH(r, &rm->rm_list, r_link) {
 1093                 if (r->r_dev != NULL) {
 1094                         devname = device_get_nameunit(r->r_dev);
 1095                         if (devname == NULL)
 1096                                 devname = "nomatch";
 1097                 } else
 1098                         devname = NULL;
 1099                 db_printf("    0x%jx-0x%jx (RID=%d) ",
 1100                     r->r_start, r->r_end, r->r_rid);
 1101                 if (devname != NULL)
 1102                         db_printf("(%s)\n", devname);
 1103                 else
 1104                         db_printf("----\n");
 1105                 if (db_pager_quit)
 1106                         return;
 1107         }
 1108 }
 1109 
 1110 DB_SHOW_COMMAND(rman, db_show_rman)
 1111 {
 1112 
 1113         if (have_addr) {
 1114                 dump_rman_header((struct rman *)addr);
 1115                 dump_rman((struct rman *)addr);
 1116         }
 1117 }
 1118 
 1119 DB_SHOW_COMMAND_FLAGS(rmans, db_show_rmans, DB_CMD_MEMSAFE)
 1120 {
 1121         struct rman *rm;
 1122 
 1123         TAILQ_FOREACH(rm, &rman_head, rm_link) {
 1124                 dump_rman_header(rm);
 1125         }
 1126 }
 1127 
 1128 DB_SHOW_ALL_COMMAND(rman, db_show_all_rman)
 1129 {
 1130         struct rman *rm;
 1131 
 1132         TAILQ_FOREACH(rm, &rman_head, rm_link) {
 1133                 dump_rman_header(rm);
 1134                 dump_rman(rm);
 1135         }
 1136 }
 1137 DB_SHOW_ALIAS_FLAGS(allrman, db_show_all_rman, DB_CMD_MEMSAFE);
 1138 #endif

Cache object: bebb7cec13ca61e64d0dcaf970575d9c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.