The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_rman.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright 1998 Massachusetts Institute of Technology
    3  *
    4  * Permission to use, copy, modify, and distribute this software and
    5  * its documentation for any purpose and without fee is hereby
    6  * granted, provided that both the above copyright notice and this
    7  * permission notice appear in all copies, that both the above
    8  * copyright notice and this permission notice appear in all
    9  * supporting documentation, and that the name of M.I.T. not be used
   10  * in advertising or publicity pertaining to distribution of the
   11  * software without specific, written prior permission.  M.I.T. makes
   12  * no representations about the suitability of this software for any
   13  * purpose.  It is provided "as is" without express or implied
   14  * warranty.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
   17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
   18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
   20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
   23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
   26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 /*
   31  * The kernel resource manager.  This code is responsible for keeping track
   32  * of hardware resources which are apportioned out to various drivers.
   33  * It does not actually assign those resources, and it is not expected
   34  * that end-device drivers will call into this code directly.  Rather,
   35  * the code which implements the buses that those devices are attached to,
   36  * and the code which manages CPU resources, will call this code, and the
   37  * end-device drivers will make upcalls to that code to actually perform
   38  * the allocation.
   39  *
   40  * There are two sorts of resources managed by this code.  The first is
   41  * the more familiar array (RMAN_ARRAY) type; resources in this class
   42  * consist of a sequence of individually-allocatable objects which have
   43  * been numbered in some well-defined order.  Most of the resources
   44  * are of this type, as it is the most familiar.  The second type is
   45  * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
   46  * resources in which each instance is indistinguishable from every
   47  * other instance).  The principal anticipated application of gauges
   48  * is in the context of power consumption, where a bus may have a specific
   49  * power budget which all attached devices share.  RMAN_GAUGE is not
   50  * implemented yet.
   51  *
   52  * For array resources, we make one simplifying assumption: two clients
   53  * sharing the same resource must use the same range of indices.  That
   54  * is to say, sharing of overlapping-but-not-identical regions is not
   55  * permitted.
   56  */
   57 
   58 #include "opt_ddb.h"
   59 
   60 #include <sys/cdefs.h>
   61 __FBSDID("$FreeBSD: releng/10.0/sys/kern/subr_rman.c 236359 2012-05-31 17:27:05Z imp $");
   62 
   63 #include <sys/param.h>
   64 #include <sys/systm.h>
   65 #include <sys/kernel.h>
   66 #include <sys/limits.h>
   67 #include <sys/lock.h>
   68 #include <sys/malloc.h>
   69 #include <sys/mutex.h>
   70 #include <sys/bus.h>            /* XXX debugging */
   71 #include <machine/bus.h>
   72 #include <sys/rman.h>
   73 #include <sys/sysctl.h>
   74 
   75 #ifdef DDB
   76 #include <ddb/ddb.h>
   77 #endif
   78 
   79 /*
   80  * We use a linked list rather than a bitmap because we need to be able to
   81  * represent potentially huge objects (like all of a processor's physical
   82  * address space).  That is also why the indices are defined to have type
   83  * `unsigned long' -- that being the largest integral type in ISO C (1990).
   84  * The 1999 version of C allows `long long'; we may need to switch to that
   85  * at some point in the future, particularly if we want to support 36-bit
   86  * addresses on IA32 hardware.
   87  */
   88 struct resource_i {
   89         struct resource         r_r;
   90         TAILQ_ENTRY(resource_i) r_link;
   91         LIST_ENTRY(resource_i)  r_sharelink;
   92         LIST_HEAD(, resource_i) *r_sharehead;
   93         u_long  r_start;        /* index of the first entry in this resource */
   94         u_long  r_end;          /* index of the last entry (inclusive) */
   95         u_int   r_flags;
   96         void    *r_virtual;     /* virtual address of this resource */
   97         struct  device *r_dev;  /* device which has allocated this resource */
   98         struct  rman *r_rm;     /* resource manager from whence this came */
   99         int     r_rid;          /* optional rid for this resource. */
  100 };
  101 
  102 static int     rman_debug = 0;
  103 TUNABLE_INT("debug.rman_debug", &rman_debug);
  104 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
  105     &rman_debug, 0, "rman debug");
  106 
  107 #define DPRINTF(params) if (rman_debug) printf params
  108 
  109 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
  110 
  111 struct  rman_head rman_head;
  112 static  struct mtx rman_mtx; /* mutex to protect rman_head */
  113 static  int int_rman_activate_resource(struct rman *rm, struct resource_i *r,
  114                                        struct resource_i **whohas);
  115 static  int int_rman_deactivate_resource(struct resource_i *r);
  116 static  int int_rman_release_resource(struct rman *rm, struct resource_i *r);
  117 
  118 static __inline struct resource_i *
  119 int_alloc_resource(int malloc_flag)
  120 {
  121         struct resource_i *r;
  122 
  123         r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO);
  124         if (r != NULL) {
  125                 r->r_r.__r_i = r;
  126         }
  127         return (r);
  128 }
  129 
  130 int
  131 rman_init(struct rman *rm)
  132 {
  133         static int once = 0;
  134 
  135         if (once == 0) {
  136                 once = 1;
  137                 TAILQ_INIT(&rman_head);
  138                 mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
  139         }
  140 
  141         if (rm->rm_start == 0 && rm->rm_end == 0)
  142                 rm->rm_end = ~0ul;
  143         if (rm->rm_type == RMAN_UNINIT)
  144                 panic("rman_init");
  145         if (rm->rm_type == RMAN_GAUGE)
  146                 panic("implement RMAN_GAUGE");
  147 
  148         TAILQ_INIT(&rm->rm_list);
  149         rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
  150         if (rm->rm_mtx == NULL)
  151                 return ENOMEM;
  152         mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
  153 
  154         mtx_lock(&rman_mtx);
  155         TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
  156         mtx_unlock(&rman_mtx);
  157         return 0;
  158 }
  159 
  160 int
  161 rman_manage_region(struct rman *rm, u_long start, u_long end)
  162 {
  163         struct resource_i *r, *s, *t;
  164         int rv = 0;
  165 
  166         DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
  167             rm->rm_descr, start, end));
  168         if (start < rm->rm_start || end > rm->rm_end)
  169                 return EINVAL;
  170         r = int_alloc_resource(M_NOWAIT);
  171         if (r == NULL)
  172                 return ENOMEM;
  173         r->r_start = start;
  174         r->r_end = end;
  175         r->r_rm = rm;
  176 
  177         mtx_lock(rm->rm_mtx);
  178 
  179         /* Skip entries before us. */
  180         TAILQ_FOREACH(s, &rm->rm_list, r_link) {
  181                 if (s->r_end == ULONG_MAX)
  182                         break;
  183                 if (s->r_end + 1 >= r->r_start)
  184                         break;
  185         }
  186 
  187         /* If we ran off the end of the list, insert at the tail. */
  188         if (s == NULL) {
  189                 TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
  190         } else {
  191                 /* Check for any overlap with the current region. */
  192                 if (r->r_start <= s->r_end && r->r_end >= s->r_start) {
  193                         rv = EBUSY;
  194                         goto out;
  195                 }
  196 
  197                 /* Check for any overlap with the next region. */
  198                 t = TAILQ_NEXT(s, r_link);
  199                 if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) {
  200                         rv = EBUSY;
  201                         goto out;
  202                 }
  203 
  204                 /*
  205                  * See if this region can be merged with the next region.  If
  206                  * not, clear the pointer.
  207                  */
  208                 if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0))
  209                         t = NULL;
  210 
  211                 /* See if we can merge with the current region. */
  212                 if (s->r_end + 1 == r->r_start && s->r_flags == 0) {
  213                         /* Can we merge all 3 regions? */
  214                         if (t != NULL) {
  215                                 s->r_end = t->r_end;
  216                                 TAILQ_REMOVE(&rm->rm_list, t, r_link);
  217                                 free(r, M_RMAN);
  218                                 free(t, M_RMAN);
  219                         } else {
  220                                 s->r_end = r->r_end;
  221                                 free(r, M_RMAN);
  222                         }
  223                 } else if (t != NULL) {
  224                         /* Can we merge with just the next region? */
  225                         t->r_start = r->r_start;
  226                         free(r, M_RMAN);
  227                 } else if (s->r_end < r->r_start) {
  228                         TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link);
  229                 } else {
  230                         TAILQ_INSERT_BEFORE(s, r, r_link);
  231                 }
  232         }
  233 out:
  234         mtx_unlock(rm->rm_mtx);
  235         return rv;
  236 }
  237 
  238 int
  239 rman_init_from_resource(struct rman *rm, struct resource *r)
  240 {
  241         int rv;
  242 
  243         if ((rv = rman_init(rm)) != 0)
  244                 return (rv);
  245         return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end));
  246 }
  247 
  248 int
  249 rman_fini(struct rman *rm)
  250 {
  251         struct resource_i *r;
  252 
  253         mtx_lock(rm->rm_mtx);
  254         TAILQ_FOREACH(r, &rm->rm_list, r_link) {
  255                 if (r->r_flags & RF_ALLOCATED) {
  256                         mtx_unlock(rm->rm_mtx);
  257                         return EBUSY;
  258                 }
  259         }
  260 
  261         /*
  262          * There really should only be one of these if we are in this
  263          * state and the code is working properly, but it can't hurt.
  264          */
  265         while (!TAILQ_EMPTY(&rm->rm_list)) {
  266                 r = TAILQ_FIRST(&rm->rm_list);
  267                 TAILQ_REMOVE(&rm->rm_list, r, r_link);
  268                 free(r, M_RMAN);
  269         }
  270         mtx_unlock(rm->rm_mtx);
  271         mtx_lock(&rman_mtx);
  272         TAILQ_REMOVE(&rman_head, rm, rm_link);
  273         mtx_unlock(&rman_mtx);
  274         mtx_destroy(rm->rm_mtx);
  275         free(rm->rm_mtx, M_RMAN);
  276 
  277         return 0;
  278 }
  279 
  280 int
  281 rman_first_free_region(struct rman *rm, u_long *start, u_long *end)
  282 {
  283         struct resource_i *r;
  284 
  285         mtx_lock(rm->rm_mtx);
  286         TAILQ_FOREACH(r, &rm->rm_list, r_link) {
  287                 if (!(r->r_flags & RF_ALLOCATED)) {
  288                         *start = r->r_start;
  289                         *end = r->r_end;
  290                         mtx_unlock(rm->rm_mtx);
  291                         return (0);
  292                 }
  293         }
  294         mtx_unlock(rm->rm_mtx);
  295         return (ENOENT);
  296 }
  297 
  298 int
  299 rman_last_free_region(struct rman *rm, u_long *start, u_long *end)
  300 {
  301         struct resource_i *r;
  302 
  303         mtx_lock(rm->rm_mtx);
  304         TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) {
  305                 if (!(r->r_flags & RF_ALLOCATED)) {
  306                         *start = r->r_start;
  307                         *end = r->r_end;
  308                         mtx_unlock(rm->rm_mtx);
  309                         return (0);
  310                 }
  311         }
  312         mtx_unlock(rm->rm_mtx);
  313         return (ENOENT);
  314 }
  315 
  316 /* Shrink or extend one or both ends of an allocated resource. */
  317 int
  318 rman_adjust_resource(struct resource *rr, u_long start, u_long end)
  319 {
  320         struct  resource_i *r, *s, *t, *new;
  321         struct  rman *rm;
  322 
  323         /* Not supported for shared resources. */
  324         r = rr->__r_i;
  325         if (r->r_flags & (RF_TIMESHARE | RF_SHAREABLE))
  326                 return (EINVAL);
  327 
  328         /*
  329          * This does not support wholesale moving of a resource.  At
  330          * least part of the desired new range must overlap with the
  331          * existing resource.
  332          */
  333         if (end < r->r_start || r->r_end < start)
  334                 return (EINVAL);
  335 
  336         /*
  337          * Find the two resource regions immediately adjacent to the
  338          * allocated resource.
  339          */
  340         rm = r->r_rm;
  341         mtx_lock(rm->rm_mtx);
  342 #ifdef INVARIANTS
  343         TAILQ_FOREACH(s, &rm->rm_list, r_link) {
  344                 if (s == r)
  345                         break;
  346         }
  347         if (s == NULL)
  348                 panic("resource not in list");
  349 #endif
  350         s = TAILQ_PREV(r, resource_head, r_link);
  351         t = TAILQ_NEXT(r, r_link);
  352         KASSERT(s == NULL || s->r_end + 1 == r->r_start,
  353             ("prev resource mismatch"));
  354         KASSERT(t == NULL || r->r_end + 1 == t->r_start,
  355             ("next resource mismatch"));
  356 
  357         /*
  358          * See if the changes are permitted.  Shrinking is always allowed,
  359          * but growing requires sufficient room in the adjacent region.
  360          */
  361         if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) ||
  362             s->r_start > start)) {
  363                 mtx_unlock(rm->rm_mtx);
  364                 return (EBUSY);
  365         }
  366         if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) ||
  367             t->r_end < end)) {
  368                 mtx_unlock(rm->rm_mtx);
  369                 return (EBUSY);
  370         }
  371 
  372         /*
  373          * While holding the lock, grow either end of the resource as
  374          * needed and shrink either end if the shrinking does not require
  375          * allocating a new resource.  We can safely drop the lock and then
  376          * insert a new range to handle the shrinking case afterwards.
  377          */
  378         if (start < r->r_start ||
  379             (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) {
  380                 KASSERT(s->r_flags == 0, ("prev is busy"));
  381                 r->r_start = start;
  382                 if (s->r_start == start) {
  383                         TAILQ_REMOVE(&rm->rm_list, s, r_link);
  384                         free(s, M_RMAN);
  385                 } else
  386                         s->r_end = start - 1;
  387         }
  388         if (end > r->r_end ||
  389             (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) {
  390                 KASSERT(t->r_flags == 0, ("next is busy"));
  391                 r->r_end = end;
  392                 if (t->r_end == end) {
  393                         TAILQ_REMOVE(&rm->rm_list, t, r_link);
  394                         free(t, M_RMAN);
  395                 } else
  396                         t->r_start = end + 1;
  397         }
  398         mtx_unlock(rm->rm_mtx);
  399 
  400         /*
  401          * Handle the shrinking cases that require allocating a new
  402          * resource to hold the newly-free region.  We have to recheck
  403          * if we still need this new region after acquiring the lock.
  404          */
  405         if (start > r->r_start) {
  406                 new = int_alloc_resource(M_WAITOK);
  407                 new->r_start = r->r_start;
  408                 new->r_end = start - 1;
  409                 new->r_rm = rm;
  410                 mtx_lock(rm->rm_mtx);
  411                 r->r_start = start;
  412                 s = TAILQ_PREV(r, resource_head, r_link);
  413                 if (s != NULL && !(s->r_flags & RF_ALLOCATED)) {
  414                         s->r_end = start - 1;
  415                         free(new, M_RMAN);
  416                 } else
  417                         TAILQ_INSERT_BEFORE(r, new, r_link);
  418                 mtx_unlock(rm->rm_mtx);
  419         }
  420         if (end < r->r_end) {
  421                 new = int_alloc_resource(M_WAITOK);
  422                 new->r_start = end + 1;
  423                 new->r_end = r->r_end;
  424                 new->r_rm = rm;
  425                 mtx_lock(rm->rm_mtx);
  426                 r->r_end = end;
  427                 t = TAILQ_NEXT(r, r_link);
  428                 if (t != NULL && !(t->r_flags & RF_ALLOCATED)) {
  429                         t->r_start = end + 1;
  430                         free(new, M_RMAN);
  431                 } else
  432                         TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link);
  433                 mtx_unlock(rm->rm_mtx);
  434         }
  435         return (0);
  436 }
  437 
  438 struct resource *
  439 rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end,
  440                       u_long count, u_long bound,  u_int flags,
  441                       struct device *dev)
  442 {
  443         u_int   want_activate;
  444         struct  resource_i *r, *s, *rv;
  445         u_long  rstart, rend, amask, bmask;
  446 
  447         rv = NULL;
  448 
  449         DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#lx, %#lx], "
  450                "length %#lx, flags %u, device %s\n", rm->rm_descr, start, end,
  451                count, flags,
  452                dev == NULL ? "<null>" : device_get_nameunit(dev)));
  453         want_activate = (flags & RF_ACTIVE);
  454         flags &= ~RF_ACTIVE;
  455 
  456         mtx_lock(rm->rm_mtx);
  457 
  458         for (r = TAILQ_FIRST(&rm->rm_list);
  459              r && r->r_end < start;
  460              r = TAILQ_NEXT(r, r_link))
  461                 ;
  462 
  463         if (r == NULL) {
  464                 DPRINTF(("could not find a region\n"));
  465                 goto out;
  466         }
  467 
  468         amask = (1ul << RF_ALIGNMENT(flags)) - 1;
  469         /* If bound is 0, bmask will also be 0 */
  470         bmask = ~(bound - 1);
  471         /*
  472          * First try to find an acceptable totally-unshared region.
  473          */
  474         for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
  475                 DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
  476                 if (s->r_start + count - 1 > end) {
  477                         DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n",
  478                             s->r_start, end));
  479                         break;
  480                 }
  481                 if (s->r_flags & RF_ALLOCATED) {
  482                         DPRINTF(("region is allocated\n"));
  483                         continue;
  484                 }
  485                 rstart = ulmax(s->r_start, start);
  486                 /*
  487                  * Try to find a region by adjusting to boundary and alignment
  488                  * until both conditions are satisfied. This is not an optimal
  489                  * algorithm, but in most cases it isn't really bad, either.
  490                  */
  491                 do {
  492                         rstart = (rstart + amask) & ~amask;
  493                         if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
  494                                 rstart += bound - (rstart & ~bmask);
  495                 } while ((rstart & amask) != 0 && rstart < end &&
  496                     rstart < s->r_end);
  497                 rend = ulmin(s->r_end, ulmax(rstart + count - 1, end));
  498                 if (rstart > rend) {
  499                         DPRINTF(("adjusted start exceeds end\n"));
  500                         continue;
  501                 }
  502                 DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
  503                        rstart, rend, (rend - rstart + 1), count));
  504 
  505                 if ((rend - rstart + 1) >= count) {
  506                         DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
  507                                rstart, rend, (rend - rstart + 1)));
  508                         if ((s->r_end - s->r_start + 1) == count) {
  509                                 DPRINTF(("candidate region is entire chunk\n"));
  510                                 rv = s;
  511                                 rv->r_flags |= RF_ALLOCATED | flags;
  512                                 rv->r_dev = dev;
  513                                 goto out;
  514                         }
  515 
  516                         /*
  517                          * If s->r_start < rstart and
  518                          *    s->r_end > rstart + count - 1, then
  519                          * we need to split the region into three pieces
  520                          * (the middle one will get returned to the user).
  521                          * Otherwise, we are allocating at either the
  522                          * beginning or the end of s, so we only need to
  523                          * split it in two.  The first case requires
  524                          * two new allocations; the second requires but one.
  525                          */
  526                         rv = int_alloc_resource(M_NOWAIT);
  527                         if (rv == NULL)
  528                                 goto out;
  529                         rv->r_start = rstart;
  530                         rv->r_end = rstart + count - 1;
  531                         rv->r_flags = flags | RF_ALLOCATED;
  532                         rv->r_dev = dev;
  533                         rv->r_rm = rm;
  534 
  535                         if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
  536                                 DPRINTF(("splitting region in three parts: "
  537                                        "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
  538                                        s->r_start, rv->r_start - 1,
  539                                        rv->r_start, rv->r_end,
  540                                        rv->r_end + 1, s->r_end));
  541                                 /*
  542                                  * We are allocating in the middle.
  543                                  */
  544                                 r = int_alloc_resource(M_NOWAIT);
  545                                 if (r == NULL) {
  546                                         free(rv, M_RMAN);
  547                                         rv = NULL;
  548                                         goto out;
  549                                 }
  550                                 r->r_start = rv->r_end + 1;
  551                                 r->r_end = s->r_end;
  552                                 r->r_flags = s->r_flags;
  553                                 r->r_rm = rm;
  554                                 s->r_end = rv->r_start - 1;
  555                                 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
  556                                                      r_link);
  557                                 TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
  558                                                      r_link);
  559                         } else if (s->r_start == rv->r_start) {
  560                                 DPRINTF(("allocating from the beginning\n"));
  561                                 /*
  562                                  * We are allocating at the beginning.
  563                                  */
  564                                 s->r_start = rv->r_end + 1;
  565                                 TAILQ_INSERT_BEFORE(s, rv, r_link);
  566                         } else {
  567                                 DPRINTF(("allocating at the end\n"));
  568                                 /*
  569                                  * We are allocating at the end.
  570                                  */
  571                                 s->r_end = rv->r_start - 1;
  572                                 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
  573                                                      r_link);
  574                         }
  575                         goto out;
  576                 }
  577         }
  578 
  579         /*
  580          * Now find an acceptable shared region, if the client's requirements
  581          * allow sharing.  By our implementation restriction, a candidate
  582          * region must match exactly by both size and sharing type in order
  583          * to be considered compatible with the client's request.  (The
  584          * former restriction could probably be lifted without too much
  585          * additional work, but this does not seem warranted.)
  586          */
  587         DPRINTF(("no unshared regions found\n"));
  588         if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
  589                 goto out;
  590 
  591         for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
  592                 if (s->r_start > end)
  593                         break;
  594                 if ((s->r_flags & flags) != flags)
  595                         continue;
  596                 rstart = ulmax(s->r_start, start);
  597                 rend = ulmin(s->r_end, ulmax(start + count - 1, end));
  598                 if (s->r_start >= start && s->r_end <= end
  599                     && (s->r_end - s->r_start + 1) == count &&
  600                     (s->r_start & amask) == 0 &&
  601                     ((s->r_start ^ s->r_end) & bmask) == 0) {
  602                         rv = int_alloc_resource(M_NOWAIT);
  603                         if (rv == NULL)
  604                                 goto out;
  605                         rv->r_start = s->r_start;
  606                         rv->r_end = s->r_end;
  607                         rv->r_flags = s->r_flags &
  608                                 (RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
  609                         rv->r_dev = dev;
  610                         rv->r_rm = rm;
  611                         if (s->r_sharehead == NULL) {
  612                                 s->r_sharehead = malloc(sizeof *s->r_sharehead,
  613                                                 M_RMAN, M_NOWAIT | M_ZERO);
  614                                 if (s->r_sharehead == NULL) {
  615                                         free(rv, M_RMAN);
  616                                         rv = NULL;
  617                                         goto out;
  618                                 }
  619                                 LIST_INIT(s->r_sharehead);
  620                                 LIST_INSERT_HEAD(s->r_sharehead, s,
  621                                                  r_sharelink);
  622                                 s->r_flags |= RF_FIRSTSHARE;
  623                         }
  624                         rv->r_sharehead = s->r_sharehead;
  625                         LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
  626                         goto out;
  627                 }
  628         }
  629 
  630         /*
  631          * We couldn't find anything.
  632          */
  633 out:
  634         /*
  635          * If the user specified RF_ACTIVE in the initial flags,
  636          * which is reflected in `want_activate', we attempt to atomically
  637          * activate the resource.  If this fails, we release the resource
  638          * and indicate overall failure.  (This behavior probably doesn't
  639          * make sense for RF_TIMESHARE-type resources.)
  640          */
  641         if (rv && want_activate) {
  642                 struct resource_i *whohas;
  643                 if (int_rman_activate_resource(rm, rv, &whohas)) {
  644                         int_rman_release_resource(rm, rv);
  645                         rv = NULL;
  646                 }
  647         }
  648 
  649         mtx_unlock(rm->rm_mtx);
  650         return (rv == NULL ? NULL : &rv->r_r);
  651 }
  652 
  653 struct resource *
  654 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
  655                       u_int flags, struct device *dev)
  656 {
  657 
  658         return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
  659             dev));
  660 }
  661 
  662 static int
  663 int_rman_activate_resource(struct rman *rm, struct resource_i *r,
  664                            struct resource_i **whohas)
  665 {
  666         struct resource_i *s;
  667         int ok;
  668 
  669         /*
  670          * If we are not timesharing, then there is nothing much to do.
  671          * If we already have the resource, then there is nothing at all to do.
  672          * If we are not on a sharing list with anybody else, then there is
  673          * little to do.
  674          */
  675         if ((r->r_flags & RF_TIMESHARE) == 0
  676             || (r->r_flags & RF_ACTIVE) != 0
  677             || r->r_sharehead == NULL) {
  678                 r->r_flags |= RF_ACTIVE;
  679                 return 0;
  680         }
  681 
  682         ok = 1;
  683         for (s = LIST_FIRST(r->r_sharehead); s && ok;
  684              s = LIST_NEXT(s, r_sharelink)) {
  685                 if ((s->r_flags & RF_ACTIVE) != 0) {
  686                         ok = 0;
  687                         *whohas = s;
  688                 }
  689         }
  690         if (ok) {
  691                 r->r_flags |= RF_ACTIVE;
  692                 return 0;
  693         }
  694         return EBUSY;
  695 }
  696 
  697 int
  698 rman_activate_resource(struct resource *re)
  699 {
  700         int rv;
  701         struct resource_i *r, *whohas;
  702         struct rman *rm;
  703 
  704         r = re->__r_i;
  705         rm = r->r_rm;
  706         mtx_lock(rm->rm_mtx);
  707         rv = int_rman_activate_resource(rm, r, &whohas);
  708         mtx_unlock(rm->rm_mtx);
  709         return rv;
  710 }
  711 
  712 int
  713 rman_await_resource(struct resource *re, int pri, int timo)
  714 {
  715         int     rv;
  716         struct  resource_i *r, *whohas;
  717         struct  rman *rm;
  718 
  719         r = re->__r_i;
  720         rm = r->r_rm;
  721         mtx_lock(rm->rm_mtx);
  722         for (;;) {
  723                 rv = int_rman_activate_resource(rm, r, &whohas);
  724                 if (rv != EBUSY)
  725                         return (rv);    /* returns with mutex held */
  726 
  727                 if (r->r_sharehead == NULL)
  728                         panic("rman_await_resource");
  729                 whohas->r_flags |= RF_WANTED;
  730                 rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo);
  731                 if (rv) {
  732                         mtx_unlock(rm->rm_mtx);
  733                         return (rv);
  734                 }
  735         }
  736 }
  737 
  738 static int
  739 int_rman_deactivate_resource(struct resource_i *r)
  740 {
  741 
  742         r->r_flags &= ~RF_ACTIVE;
  743         if (r->r_flags & RF_WANTED) {
  744                 r->r_flags &= ~RF_WANTED;
  745                 wakeup(r->r_sharehead);
  746         }
  747         return 0;
  748 }
  749 
  750 int
  751 rman_deactivate_resource(struct resource *r)
  752 {
  753         struct  rman *rm;
  754 
  755         rm = r->__r_i->r_rm;
  756         mtx_lock(rm->rm_mtx);
  757         int_rman_deactivate_resource(r->__r_i);
  758         mtx_unlock(rm->rm_mtx);
  759         return 0;
  760 }
  761 
  762 static int
  763 int_rman_release_resource(struct rman *rm, struct resource_i *r)
  764 {
  765         struct  resource_i *s, *t;
  766 
  767         if (r->r_flags & RF_ACTIVE)
  768                 int_rman_deactivate_resource(r);
  769 
  770         /*
  771          * Check for a sharing list first.  If there is one, then we don't
  772          * have to think as hard.
  773          */
  774         if (r->r_sharehead) {
  775                 /*
  776                  * If a sharing list exists, then we know there are at
  777                  * least two sharers.
  778                  *
  779                  * If we are in the main circleq, appoint someone else.
  780                  */
  781                 LIST_REMOVE(r, r_sharelink);
  782                 s = LIST_FIRST(r->r_sharehead);
  783                 if (r->r_flags & RF_FIRSTSHARE) {
  784                         s->r_flags |= RF_FIRSTSHARE;
  785                         TAILQ_INSERT_BEFORE(r, s, r_link);
  786                         TAILQ_REMOVE(&rm->rm_list, r, r_link);
  787                 }
  788 
  789                 /*
  790                  * Make sure that the sharing list goes away completely
  791                  * if the resource is no longer being shared at all.
  792                  */
  793                 if (LIST_NEXT(s, r_sharelink) == NULL) {
  794                         free(s->r_sharehead, M_RMAN);
  795                         s->r_sharehead = NULL;
  796                         s->r_flags &= ~RF_FIRSTSHARE;
  797                 }
  798                 goto out;
  799         }
  800 
  801         /*
  802          * Look at the adjacent resources in the list and see if our
  803          * segment can be merged with any of them.  If either of the
  804          * resources is allocated or is not exactly adjacent then they
  805          * cannot be merged with our segment.
  806          */
  807         s = TAILQ_PREV(r, resource_head, r_link);
  808         if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
  809             s->r_end + 1 != r->r_start))
  810                 s = NULL;
  811         t = TAILQ_NEXT(r, r_link);
  812         if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
  813             r->r_end + 1 != t->r_start))
  814                 t = NULL;
  815 
  816         if (s != NULL && t != NULL) {
  817                 /*
  818                  * Merge all three segments.
  819                  */
  820                 s->r_end = t->r_end;
  821                 TAILQ_REMOVE(&rm->rm_list, r, r_link);
  822                 TAILQ_REMOVE(&rm->rm_list, t, r_link);
  823                 free(t, M_RMAN);
  824         } else if (s != NULL) {
  825                 /*
  826                  * Merge previous segment with ours.
  827                  */
  828                 s->r_end = r->r_end;
  829                 TAILQ_REMOVE(&rm->rm_list, r, r_link);
  830         } else if (t != NULL) {
  831                 /*
  832                  * Merge next segment with ours.
  833                  */
  834                 t->r_start = r->r_start;
  835                 TAILQ_REMOVE(&rm->rm_list, r, r_link);
  836         } else {
  837                 /*
  838                  * At this point, we know there is nothing we
  839                  * can potentially merge with, because on each
  840                  * side, there is either nothing there or what is
  841                  * there is still allocated.  In that case, we don't
  842                  * want to remove r from the list; we simply want to
  843                  * change it to an unallocated region and return
  844                  * without freeing anything.
  845                  */
  846                 r->r_flags &= ~RF_ALLOCATED;
  847                 r->r_dev = NULL;
  848                 return 0;
  849         }
  850 
  851 out:
  852         free(r, M_RMAN);
  853         return 0;
  854 }
  855 
  856 int
  857 rman_release_resource(struct resource *re)
  858 {
  859         int     rv;
  860         struct  resource_i *r;
  861         struct  rman *rm;
  862 
  863         r = re->__r_i;
  864         rm = r->r_rm;
  865         mtx_lock(rm->rm_mtx);
  866         rv = int_rman_release_resource(rm, r);
  867         mtx_unlock(rm->rm_mtx);
  868         return (rv);
  869 }
  870 
  871 uint32_t
  872 rman_make_alignment_flags(uint32_t size)
  873 {
  874         int     i;
  875 
  876         /*
  877          * Find the hightest bit set, and add one if more than one bit
  878          * set.  We're effectively computing the ceil(log2(size)) here.
  879          */
  880         for (i = 31; i > 0; i--)
  881                 if ((1 << i) & size)
  882                         break;
  883         if (~(1 << i) & size)
  884                 i++;
  885 
  886         return(RF_ALIGNMENT_LOG2(i));
  887 }
  888 
  889 void
  890 rman_set_start(struct resource *r, u_long start)
  891 {
  892         r->__r_i->r_start = start;
  893 }
  894 
  895 u_long
  896 rman_get_start(struct resource *r)
  897 {
  898         return (r->__r_i->r_start);
  899 }
  900 
  901 void
  902 rman_set_end(struct resource *r, u_long end)
  903 {
  904         r->__r_i->r_end = end;
  905 }
  906 
  907 u_long
  908 rman_get_end(struct resource *r)
  909 {
  910         return (r->__r_i->r_end);
  911 }
  912 
  913 u_long
  914 rman_get_size(struct resource *r)
  915 {
  916         return (r->__r_i->r_end - r->__r_i->r_start + 1);
  917 }
  918 
  919 u_int
  920 rman_get_flags(struct resource *r)
  921 {
  922         return (r->__r_i->r_flags);
  923 }
  924 
  925 void
  926 rman_set_virtual(struct resource *r, void *v)
  927 {
  928         r->__r_i->r_virtual = v;
  929 }
  930 
  931 void *
  932 rman_get_virtual(struct resource *r)
  933 {
  934         return (r->__r_i->r_virtual);
  935 }
  936 
  937 void
  938 rman_set_bustag(struct resource *r, bus_space_tag_t t)
  939 {
  940         r->r_bustag = t;
  941 }
  942 
  943 bus_space_tag_t
  944 rman_get_bustag(struct resource *r)
  945 {
  946         return (r->r_bustag);
  947 }
  948 
  949 void
  950 rman_set_bushandle(struct resource *r, bus_space_handle_t h)
  951 {
  952         r->r_bushandle = h;
  953 }
  954 
  955 bus_space_handle_t
  956 rman_get_bushandle(struct resource *r)
  957 {
  958         return (r->r_bushandle);
  959 }
  960 
  961 void
  962 rman_set_rid(struct resource *r, int rid)
  963 {
  964         r->__r_i->r_rid = rid;
  965 }
  966 
  967 int
  968 rman_get_rid(struct resource *r)
  969 {
  970         return (r->__r_i->r_rid);
  971 }
  972 
  973 void
  974 rman_set_device(struct resource *r, struct device *dev)
  975 {
  976         r->__r_i->r_dev = dev;
  977 }
  978 
  979 struct device *
  980 rman_get_device(struct resource *r)
  981 {
  982         return (r->__r_i->r_dev);
  983 }
  984 
  985 int
  986 rman_is_region_manager(struct resource *r, struct rman *rm)
  987 {
  988 
  989         return (r->__r_i->r_rm == rm);
  990 }
  991 
  992 /*
  993  * Sysctl interface for scanning the resource lists.
  994  *
  995  * We take two input parameters; the index into the list of resource
  996  * managers, and the resource offset into the list.
  997  */
  998 static int
  999 sysctl_rman(SYSCTL_HANDLER_ARGS)
 1000 {
 1001         int                     *name = (int *)arg1;
 1002         u_int                   namelen = arg2;
 1003         int                     rman_idx, res_idx;
 1004         struct rman             *rm;
 1005         struct resource_i       *res;
 1006         struct resource_i       *sres;
 1007         struct u_rman           urm;
 1008         struct u_resource       ures;
 1009         int                     error;
 1010 
 1011         if (namelen != 3)
 1012                 return (EINVAL);
 1013 
 1014         if (bus_data_generation_check(name[0]))
 1015                 return (EINVAL);
 1016         rman_idx = name[1];
 1017         res_idx = name[2];
 1018 
 1019         /*
 1020          * Find the indexed resource manager
 1021          */
 1022         mtx_lock(&rman_mtx);
 1023         TAILQ_FOREACH(rm, &rman_head, rm_link) {
 1024                 if (rman_idx-- == 0)
 1025                         break;
 1026         }
 1027         mtx_unlock(&rman_mtx);
 1028         if (rm == NULL)
 1029                 return (ENOENT);
 1030 
 1031         /*
 1032          * If the resource index is -1, we want details on the
 1033          * resource manager.
 1034          */
 1035         if (res_idx == -1) {
 1036                 bzero(&urm, sizeof(urm));
 1037                 urm.rm_handle = (uintptr_t)rm;
 1038                 if (rm->rm_descr != NULL)
 1039                         strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
 1040                 urm.rm_start = rm->rm_start;
 1041                 urm.rm_size = rm->rm_end - rm->rm_start + 1;
 1042                 urm.rm_type = rm->rm_type;
 1043 
 1044                 error = SYSCTL_OUT(req, &urm, sizeof(urm));
 1045                 return (error);
 1046         }
 1047 
 1048         /*
 1049          * Find the indexed resource and return it.
 1050          */
 1051         mtx_lock(rm->rm_mtx);
 1052         TAILQ_FOREACH(res, &rm->rm_list, r_link) {
 1053                 if (res->r_sharehead != NULL) {
 1054                         LIST_FOREACH(sres, res->r_sharehead, r_sharelink)
 1055                                 if (res_idx-- == 0) {
 1056                                         res = sres;
 1057                                         goto found;
 1058                                 }
 1059                 }
 1060                 else if (res_idx-- == 0)
 1061                                 goto found;
 1062         }
 1063         mtx_unlock(rm->rm_mtx);
 1064         return (ENOENT);
 1065 
 1066 found:
 1067         bzero(&ures, sizeof(ures));
 1068         ures.r_handle = (uintptr_t)res;
 1069         ures.r_parent = (uintptr_t)res->r_rm;
 1070         ures.r_device = (uintptr_t)res->r_dev;
 1071         if (res->r_dev != NULL) {
 1072                 if (device_get_name(res->r_dev) != NULL) {
 1073                         snprintf(ures.r_devname, RM_TEXTLEN,
 1074                             "%s%d",
 1075                             device_get_name(res->r_dev),
 1076                             device_get_unit(res->r_dev));
 1077                 } else {
 1078                         strlcpy(ures.r_devname, "nomatch",
 1079                             RM_TEXTLEN);
 1080                 }
 1081         } else {
 1082                 ures.r_devname[0] = '\0';
 1083         }
 1084         ures.r_start = res->r_start;
 1085         ures.r_size = res->r_end - res->r_start + 1;
 1086         ures.r_flags = res->r_flags;
 1087 
 1088         mtx_unlock(rm->rm_mtx);
 1089         error = SYSCTL_OUT(req, &ures, sizeof(ures));
 1090         return (error);
 1091 }
 1092 
 1093 static SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
 1094     "kernel resource manager");
 1095 
 1096 #ifdef DDB
 1097 static void
 1098 dump_rman_header(struct rman *rm)
 1099 {
 1100 
 1101         if (db_pager_quit)
 1102                 return;
 1103         db_printf("rman %p: %s (0x%lx-0x%lx full range)\n",
 1104             rm, rm->rm_descr, rm->rm_start, rm->rm_end);
 1105 }
 1106 
 1107 static void
 1108 dump_rman(struct rman *rm)
 1109 {
 1110         struct resource_i *r;
 1111         const char *devname;
 1112 
 1113         if (db_pager_quit)
 1114                 return;
 1115         TAILQ_FOREACH(r, &rm->rm_list, r_link) {
 1116                 if (r->r_dev != NULL) {
 1117                         devname = device_get_nameunit(r->r_dev);
 1118                         if (devname == NULL)
 1119                                 devname = "nomatch";
 1120                 } else
 1121                         devname = NULL;
 1122                 db_printf("    0x%lx-0x%lx ", r->r_start, r->r_end);
 1123                 if (devname != NULL)
 1124                         db_printf("(%s)\n", devname);
 1125                 else
 1126                         db_printf("----\n");
 1127                 if (db_pager_quit)
 1128                         return;
 1129         }
 1130 }
 1131 
 1132 DB_SHOW_COMMAND(rman, db_show_rman)
 1133 {
 1134 
 1135         if (have_addr) {
 1136                 dump_rman_header((struct rman *)addr);
 1137                 dump_rman((struct rman *)addr);
 1138         }
 1139 }
 1140 
 1141 DB_SHOW_COMMAND(rmans, db_show_rmans)
 1142 {
 1143         struct rman *rm;
 1144 
 1145         TAILQ_FOREACH(rm, &rman_head, rm_link) {
 1146                 dump_rman_header(rm);
 1147         }
 1148 }
 1149 
 1150 DB_SHOW_ALL_COMMAND(rman, db_show_all_rman)
 1151 {
 1152         struct rman *rm;
 1153 
 1154         TAILQ_FOREACH(rm, &rman_head, rm_link) {
 1155                 dump_rman_header(rm);
 1156                 dump_rman(rm);
 1157         }
 1158 }
 1159 DB_SHOW_ALIAS(allrman, db_show_all_rman);
 1160 #endif

Cache object: 43d646c50fac95d3ed406560c7c9bb42


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.