The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_rman.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright 1998 Massachusetts Institute of Technology
    3  *
    4  * Permission to use, copy, modify, and distribute this software and
    5  * its documentation for any purpose and without fee is hereby
    6  * granted, provided that both the above copyright notice and this
    7  * permission notice appear in all copies, that both the above
    8  * copyright notice and this permission notice appear in all
    9  * supporting documentation, and that the name of M.I.T. not be used
   10  * in advertising or publicity pertaining to distribution of the
   11  * software without specific, written prior permission.  M.I.T. makes
   12  * no representations about the suitability of this software for any
   13  * purpose.  It is provided "as is" without express or implied
   14  * warranty.
   15  * 
   16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
   17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
   18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
   20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
   23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
   26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  * $FreeBSD$
   30  */
   31 
   32 /*
   33  * The kernel resource manager.  This code is responsible for keeping track
   34  * of hardware resources which are apportioned out to various drivers.
   35  * It does not actually assign those resources, and it is not expected
   36  * that end-device drivers will call into this code directly.  Rather,
   37  * the code which implements the buses that those devices are attached to,
   38  * and the code which manages CPU resources, will call this code, and the
   39  * end-device drivers will make upcalls to that code to actually perform
   40  * the allocation.
   41  *
   42  * There are two sorts of resources managed by this code.  The first is
   43  * the more familiar array (RMAN_ARRAY) type; resources in this class
   44  * consist of a sequence of individually-allocatable objects which have
   45  * been numbered in some well-defined order.  Most of the resources
   46  * are of this type, as it is the most familiar.  The second type is
   47  * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
   48  * resources in which each instance is indistinguishable from every
   49  * other instance).  The principal anticipated application of gauges
   50  * is in the context of power consumption, where a bus may have a specific
   51  * power budget which all attached devices share.  RMAN_GAUGE is not
   52  * implemented yet.
   53  *
   54  * For array resources, we make one simplifying assumption: two clients
   55  * sharing the same resource must use the same range of indices.  That
   56  * is to say, sharing of overlapping-but-not-identical regions is not
   57  * permitted.
   58  */
   59 
   60 #include <sys/param.h>
   61 #include <sys/systm.h>
   62 #include <sys/kernel.h>
   63 #include <sys/lock.h>
   64 #include <sys/malloc.h>
   65 #include <sys/rman.h>
   66 #include <sys/bus.h>            /* XXX debugging */
   67 
   68 MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
   69 
   70 struct  rman_head rman_head;
   71 #ifndef NULL_SIMPLELOCKS
   72 static  struct simplelock rman_lock; /* mutex to protect rman_head */
   73 #endif
   74 static  int int_rman_activate_resource(struct rman *rm, struct resource *r,
   75                                        struct resource **whohas);
   76 static  int int_rman_release_resource(struct rman *rm, struct resource *r);
   77 
   78 #define CIRCLEQ_TERMCOND(var, head)     (var == (void *)&(head))
   79 
   80 int
   81 rman_init(struct rman *rm)
   82 {
   83         static int once;
   84 
   85         if (once == 0) {
   86                 once = 1;
   87                 TAILQ_INIT(&rman_head);
   88                 simple_lock_init(&rman_lock);
   89         }
   90 
   91         if (rm->rm_type == RMAN_UNINIT)
   92                 panic("rman_init");
   93         if (rm->rm_type == RMAN_GAUGE)
   94                 panic("implement RMAN_GAUGE");
   95 
   96         CIRCLEQ_INIT(&rm->rm_list);
   97         rm->rm_slock = malloc(sizeof *rm->rm_slock, M_RMAN, M_NOWAIT);
   98         if (rm->rm_slock == 0)
   99                 return ENOMEM;
  100         simple_lock_init(rm->rm_slock);
  101 
  102         simple_lock(&rman_lock);
  103         TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
  104         simple_unlock(&rman_lock);
  105         return 0;
  106 }
  107 
  108 /*
  109  * NB: this interface is not robust against programming errors which
  110  * add multiple copies of the same region.
  111  */
  112 int
  113 rman_manage_region(struct rman *rm, u_long start, u_long end)
  114 {
  115         struct resource *r, *s;
  116 
  117         r = malloc(sizeof *r, M_RMAN, M_NOWAIT);
  118         if (r == 0)
  119                 return ENOMEM;
  120         r->r_sharehead = 0;
  121         r->r_start = start;
  122         r->r_end = end;
  123         r->r_flags = 0;
  124         r->r_dev = 0;
  125         r->r_rm = rm;
  126 
  127         simple_lock(rm->rm_slock);
  128         for (s = rm->rm_list.cqh_first; 
  129              !CIRCLEQ_TERMCOND(s, rm->rm_list) && s->r_end < r->r_start;
  130              s = s->r_link.cqe_next)
  131                 ;
  132 
  133         if (CIRCLEQ_TERMCOND(s, rm->rm_list)) {
  134                 CIRCLEQ_INSERT_TAIL(&rm->rm_list, r, r_link);
  135         } else {
  136                 CIRCLEQ_INSERT_BEFORE(&rm->rm_list, s, r, r_link);
  137         }
  138 
  139         simple_unlock(rm->rm_slock);
  140         return 0;
  141 }
  142 
  143 int
  144 rman_fini(struct rman *rm)
  145 {
  146         struct resource *r;
  147 
  148         simple_lock(rm->rm_slock);
  149         for (r = rm->rm_list.cqh_first; !CIRCLEQ_TERMCOND(r, rm->rm_list);
  150              r = r->r_link.cqe_next) {
  151                 if (r->r_flags & RF_ALLOCATED)
  152                         return EBUSY;
  153         }
  154 
  155         /*
  156          * There really should only be one of these if we are in this
  157          * state and the code is working properly, but it can't hurt.
  158          */
  159         for (r = rm->rm_list.cqh_first; !CIRCLEQ_TERMCOND(r, rm->rm_list);
  160              r = rm->rm_list.cqh_first) {
  161                 CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
  162                 free(r, M_RMAN);
  163         }
  164         simple_unlock(rm->rm_slock);
  165         simple_lock(&rman_lock);
  166         TAILQ_REMOVE(&rman_head, rm, rm_link);
  167         simple_unlock(&rman_lock);
  168         free(rm->rm_slock, M_RMAN);
  169 
  170         return 0;
  171 }
  172 
  173 struct resource *
  174 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
  175                       u_int flags, struct device *dev)
  176 {
  177         u_int   want_activate;
  178         struct  resource *r, *s, *rv;
  179         u_long  rstart, rend;
  180 
  181         rv = 0;
  182 
  183 #ifdef RMAN_DEBUG
  184         printf("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
  185                "%#lx, flags %u, device %s%d\n", rm->rm_descr, start, end,
  186                count, flags, device_get_name(dev), device_get_unit(dev));
  187 #endif /* RMAN_DEBUG */
  188         want_activate = (flags & RF_ACTIVE);
  189         flags &= ~RF_ACTIVE;
  190 
  191         simple_lock(rm->rm_slock);
  192 
  193         for (r = rm->rm_list.cqh_first; 
  194              !CIRCLEQ_TERMCOND(r, rm->rm_list) && r->r_end < start;
  195              r = r->r_link.cqe_next)
  196                 ;
  197 
  198         if (CIRCLEQ_TERMCOND(r, rm->rm_list)) {
  199 #ifdef RMAN_DEBUG
  200                 printf("could not find a region\n");
  201 #endif RMAN_DEBUG
  202                 goto out;
  203         }
  204 
  205         /*
  206          * First try to find an acceptable totally-unshared region.
  207          */
  208         for (s = r; !CIRCLEQ_TERMCOND(s, rm->rm_list);
  209              s = s->r_link.cqe_next) {
  210 #ifdef RMAN_DEBUG
  211                 printf("considering [%#lx, %#lx]\n", s->r_start, s->r_end);
  212 #endif /* RMAN_DEBUG */
  213                 if (s->r_start > end) {
  214 #ifdef RMAN_DEBUG
  215                         printf("s->r_start (%#lx) > end (%#lx)\n", s->r_start, end);
  216 #endif /* RMAN_DEBUG */
  217                         break;
  218                 }
  219                 if (s->r_flags & RF_ALLOCATED) {
  220 #ifdef RMAN_DEBUG
  221                         printf("region is allocated\n");
  222 #endif /* RMAN_DEBUG */
  223                         continue;
  224                 }
  225                 rstart = max(s->r_start, start);
  226                 rend = min(s->r_end, max(start + count, end));
  227 #ifdef RMAN_DEBUG
  228                 printf("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
  229                        rstart, rend, (rend - rstart + 1), count);
  230 #endif /* RMAN_DEBUG */
  231 
  232                 if ((rend - rstart + 1) >= count) {
  233 #ifdef RMAN_DEBUG
  234                         printf("candidate region: [%#lx, %#lx], size %#lx\n",
  235                                rend, rstart, (rend - rstart + 1));
  236 #endif /* RMAN_DEBUG */
  237                         if ((s->r_end - s->r_start + 1) == count) {
  238 #ifdef RMAN_DEBUG
  239                                 printf("candidate region is entire chunk\n");
  240 #endif /* RMAN_DEBUG */
  241                                 rv = s;
  242                                 rv->r_flags |= RF_ALLOCATED;
  243                                 rv->r_dev = dev;
  244                                 goto out;
  245                         }
  246 
  247                         /*
  248                          * If s->r_start < rstart and
  249                          *    s->r_end > rstart + count - 1, then
  250                          * we need to split the region into three pieces
  251                          * (the middle one will get returned to the user).
  252                          * Otherwise, we are allocating at either the
  253                          * beginning or the end of s, so we only need to
  254                          * split it in two.  The first case requires
  255                          * two new allocations; the second requires but one.
  256                          */
  257                         rv = malloc(sizeof *r, M_RMAN, M_NOWAIT);
  258                         if (rv == 0)
  259                                 goto out;
  260                         rv->r_start = rstart;
  261                         rv->r_end = rstart + count - 1;
  262                         rv->r_flags = flags | RF_ALLOCATED;
  263                         rv->r_dev = dev;
  264                         rv->r_sharehead = 0;
  265                         
  266                         if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
  267 #ifdef RMAN_DEBUG
  268                                 printf("splitting region in three parts: "
  269                                        "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
  270                                        s->r_start, rv->r_start - 1,
  271                                        rv->r_start, rv->r_end,
  272                                        rv->r_end + 1, s->r_end);
  273 #endif /* RMAN_DEBUG */
  274                                 /*
  275                                  * We are allocating in the middle.
  276                                  */
  277                                 r = malloc(sizeof *r, M_RMAN, M_NOWAIT);
  278                                 if (r == 0) {
  279                                         free(rv, M_RMAN);
  280                                         rv = 0;
  281                                         goto out;
  282                                 }
  283                                 r->r_start = rv->r_end + 1;
  284                                 r->r_end = s->r_end;
  285                                 r->r_flags = s->r_flags;
  286                                 r->r_dev = 0;
  287                                 r->r_sharehead = 0;
  288                                 s->r_end = rv->r_start - 1;
  289                                 CIRCLEQ_INSERT_AFTER(&rm->rm_list, s, rv,
  290                                                      r_link);
  291                                 CIRCLEQ_INSERT_AFTER(&rm->rm_list, rv, r,
  292                                                      r_link);
  293                         } else if (s->r_start == rv->r_start) {
  294 #ifdef RMAN_DEBUG
  295                                 printf("allocating from the beginning\n");
  296 #endif /* RMAN_DEBUG */
  297                                 /*
  298                                  * We are allocating at the beginning.
  299                                  */
  300                                 s->r_start = rv->r_end + 1;
  301                                 CIRCLEQ_INSERT_BEFORE(&rm->rm_list, s, rv,
  302                                                       r_link);
  303                         } else {
  304 #ifdef RMAN_DEBUG
  305                                 printf("allocating at the end\n");
  306 #endif /* RMAN_DEBUG */
  307                                 /*
  308                                  * We are allocating at the end.
  309                                  */
  310                                 s->r_end = rv->r_start - 1;
  311                                 CIRCLEQ_INSERT_AFTER(&rm->rm_list, s, rv,
  312                                                      r_link);
  313                         }
  314                         goto out;
  315                 }
  316         }
  317 
  318         /*
  319          * Now find an acceptable shared region, if the client's requirements
  320          * allow sharing.  By our implementation restriction, a candidate
  321          * region must match exactly by both size and sharing type in order
  322          * to be considered compatible with the client's request.  (The
  323          * former restriction could probably be lifted without too much
  324          * additional work, but this does not seem warranted.)
  325          */
  326 #ifdef RMAN_DEBUG
  327         printf("no unshared regions found\n");
  328 #endif /* RMAN_DEBUG */
  329         if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
  330                 goto out;
  331 
  332         for (s = r; !CIRCLEQ_TERMCOND(s, rm->rm_list);
  333              s = s->r_link.cqe_next) {
  334                 if (s->r_start > end)
  335                         break;
  336                 if ((s->r_flags & flags) != flags)
  337                         continue;
  338                 rstart = max(s->r_start, start);
  339                 rend = min(s->r_end, max(start + count, end));
  340                 if (s->r_start >= start && s->r_end <= end
  341                     && (s->r_end - s->r_start + 1) == count) {
  342                         rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT);
  343                         if (rv == 0)
  344                                 goto out;
  345                         rv->r_start = s->r_start;
  346                         rv->r_end = s->r_end;
  347                         rv->r_flags = s->r_flags & 
  348                                 (RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
  349                         rv->r_dev = dev;
  350                         rv->r_rm = rm;
  351                         if (s->r_sharehead == 0) {
  352                                 s->r_sharehead = malloc(sizeof *s->r_sharehead,
  353                                                         M_RMAN, M_NOWAIT);
  354                                 if (s->r_sharehead == 0) {
  355                                         free(rv, M_RMAN);
  356                                         rv = 0;
  357                                         goto out;
  358                                 }
  359                                 LIST_INIT(s->r_sharehead);
  360                                 LIST_INSERT_HEAD(s->r_sharehead, s, 
  361                                                  r_sharelink);
  362                                 s->r_flags = RF_FIRSTSHARE;
  363                         }
  364                         rv->r_sharehead = s->r_sharehead;
  365                         LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
  366                         goto out;
  367                 }
  368         }
  369 
  370         /*
  371          * We couldn't find anything.
  372          */
  373 out:
  374         /*
  375          * If the user specified RF_ACTIVE in the initial flags,
  376          * which is reflected in `want_activate', we attempt to atomically
  377          * activate the resource.  If this fails, we release the resource
  378          * and indicate overall failure.  (This behavior probably doesn't
  379          * make sense for RF_TIMESHARE-type resources.)
  380          */
  381         if (rv && want_activate) {
  382                 struct resource *whohas;
  383                 if (int_rman_activate_resource(rm, rv, &whohas)) {
  384                         int_rman_release_resource(rm, rv);
  385                         rv = 0;
  386                 }
  387         }
  388                         
  389         simple_unlock(rm->rm_slock);
  390         return (rv);
  391 }
  392 
  393 static int
  394 int_rman_activate_resource(struct rman *rm, struct resource *r,
  395                            struct resource **whohas)
  396 {
  397         struct resource *s;
  398         int ok;
  399 
  400         /*
  401          * If we are not timesharing, then there is nothing much to do.
  402          * If we already have the resource, then there is nothing at all to do.
  403          * If we are not on a sharing list with anybody else, then there is
  404          * little to do.
  405          */
  406         if ((r->r_flags & RF_TIMESHARE) == 0
  407             || (r->r_flags & RF_ACTIVE) != 0
  408             || r->r_sharehead == 0) {
  409                 r->r_flags |= RF_ACTIVE;
  410                 return 0;
  411         }
  412 
  413         ok = 1;
  414         for (s = r->r_sharehead->lh_first; s && ok;
  415              s = s->r_sharelink.le_next) {
  416                 if ((s->r_flags & RF_ACTIVE) != 0) {
  417                         ok = 0;
  418                         *whohas = s;
  419                 }
  420         }
  421         if (ok) {
  422                 r->r_flags |= RF_ACTIVE;
  423                 return 0;
  424         }
  425         return EBUSY;
  426 }
  427 
  428 int
  429 rman_activate_resource(struct resource *r)
  430 {
  431         int rv;
  432         struct resource *whohas;
  433         struct rman *rm;
  434 
  435         rm = r->r_rm;
  436         simple_lock(rm->rm_slock);
  437         rv = int_rman_activate_resource(rm, r, &whohas);
  438         simple_unlock(rm->rm_slock);
  439         return rv;
  440 }
  441 
  442 int
  443 rman_await_resource(struct resource *r, int pri, int timo)
  444 {
  445         int     rv, s;
  446         struct  resource *whohas;
  447         struct  rman *rm;
  448 
  449         rm = r->r_rm;
  450         for (;;) {
  451                 simple_lock(rm->rm_slock);
  452                 rv = int_rman_activate_resource(rm, r, &whohas);
  453                 if (rv != EBUSY)
  454                         return (rv);
  455 
  456                 if (r->r_sharehead == 0)
  457                         panic("rman_await_resource");
  458                 /*
  459                  * splhigh hopefully will prevent a race between
  460                  * simple_unlock and tsleep where a process
  461                  * could conceivably get in and release the resource
  462                  * before we have a chance to sleep on it.
  463                  */
  464                 s = splhigh();
  465                 whohas->r_flags |= RF_WANTED;
  466                 simple_unlock(rm->rm_slock);
  467                 rv = tsleep(r->r_sharehead, pri, "rmwait", timo);
  468                 if (rv) {
  469                         splx(s);
  470                         return rv;
  471                 }
  472                 simple_lock(rm->rm_slock);
  473                 splx(s);
  474         }
  475 }
  476 
  477 int
  478 rman_deactivate_resource(struct resource *r)
  479 {
  480         struct  rman *rm;
  481 
  482         rm = r->r_rm;
  483         simple_lock(rm->rm_slock);
  484         r->r_flags &= ~RF_ACTIVE;
  485         if (r->r_flags & RF_WANTED) {
  486                 r->r_flags &= ~RF_WANTED;
  487                 wakeup(r->r_sharehead);
  488         }
  489         simple_unlock(rm->rm_slock);
  490         return 0;
  491 }
  492 
  493 static int
  494 int_rman_release_resource(struct rman *rm, struct resource *r)
  495 {
  496         struct  resource *s, *t;
  497 
  498         if (r->r_flags & RF_ACTIVE)
  499                 return EBUSY;
  500 
  501         /*
  502          * Check for a sharing list first.  If there is one, then we don't
  503          * have to think as hard.
  504          */
  505         if (r->r_sharehead) {
  506                 /*
  507                  * If a sharing list exists, then we know there are at
  508                  * least two sharers.
  509                  *
  510                  * If we are in the main circleq, appoint someone else.
  511                  */
  512                 LIST_REMOVE(r, r_sharelink);
  513                 s = r->r_sharehead->lh_first;
  514                 if (r->r_flags & RF_FIRSTSHARE) {
  515                         s->r_flags |= RF_FIRSTSHARE;
  516                         CIRCLEQ_INSERT_BEFORE(&rm->rm_list, r, s, r_link);
  517                         CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
  518                 }
  519 
  520                 /*
  521                  * Make sure that the sharing list goes away completely
  522                  * if the resource is no longer being shared at all.
  523                  */
  524                 if (s->r_sharelink.le_next == 0) {
  525                         free(s->r_sharehead, M_RMAN);
  526                         s->r_sharehead = 0;
  527                         s->r_flags &= ~RF_FIRSTSHARE;
  528                 }
  529                 goto out;
  530         }
  531 
  532         /*
  533          * Look at the adjacent resources in the list and see if our
  534          * segment can be merged with any of them.
  535          */
  536         s = r->r_link.cqe_prev;
  537         t = r->r_link.cqe_next;
  538 
  539         if (s != (void *)&rm->rm_list && (s->r_flags & RF_ALLOCATED) == 0
  540             && t != (void *)&rm->rm_list && (t->r_flags & RF_ALLOCATED) == 0) {
  541                 /*
  542                  * Merge all three segments.
  543                  */
  544                 s->r_end = t->r_end;
  545                 CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
  546                 CIRCLEQ_REMOVE(&rm->rm_list, t, r_link);
  547                 free(t, M_RMAN);
  548         } else if (s != (void *)&rm->rm_list
  549                    && (s->r_flags & RF_ALLOCATED) == 0) {
  550                 /*
  551                  * Merge previous segment with ours.
  552                  */
  553                 s->r_end = r->r_end;
  554                 CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
  555         } else if (t != (void *)&rm->rm_list
  556                    && (t->r_flags & RF_ALLOCATED) == 0) {
  557                 /*
  558                  * Merge next segment with ours.
  559                  */
  560                 t->r_start = r->r_start;
  561                 CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
  562         } else {
  563                 /*
  564                  * At this point, we know there is nothing we
  565                  * can potentially merge with, because on each
  566                  * side, there is either nothing there or what is
  567                  * there is still allocated.  In that case, we don't
  568                  * want to remove r from the list; we simply want to
  569                  * change it to an unallocated region and return
  570                  * without freeing anything.
  571                  */
  572                 r->r_flags &= ~RF_ALLOCATED;
  573                 return 0;
  574         }
  575 
  576 out:
  577         free(r, M_RMAN);
  578         return 0;
  579 }
  580 
  581 int
  582 rman_release_resource(struct resource *r)
  583 {
  584         int     rv;
  585         struct  rman *rm = r->r_rm;
  586 
  587         simple_lock(rm->rm_slock);
  588         rv = int_rman_release_resource(rm, r);
  589         simple_unlock(rm->rm_slock);
  590         return (rv);
  591 }

Cache object: 9b4bd19324840117b020853fbdc363ed


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.