The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_rman.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright 1998 Massachusetts Institute of Technology
    3  *
    4  * Permission to use, copy, modify, and distribute this software and
    5  * its documentation for any purpose and without fee is hereby
    6  * granted, provided that both the above copyright notice and this
    7  * permission notice appear in all copies, that both the above
    8  * copyright notice and this permission notice appear in all
    9  * supporting documentation, and that the name of M.I.T. not be used
   10  * in advertising or publicity pertaining to distribution of the
   11  * software without specific, written prior permission.  M.I.T. makes
   12  * no representations about the suitability of this software for any
   13  * purpose.  It is provided "as is" without express or implied
   14  * warranty.
   15  * 
   16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
   17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
   18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
   20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
   23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
   26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 /*
   31  * The kernel resource manager.  This code is responsible for keeping track
   32  * of hardware resources which are apportioned out to various drivers.
   33  * It does not actually assign those resources, and it is not expected
   34  * that end-device drivers will call into this code directly.  Rather,
   35  * the code which implements the buses that those devices are attached to,
   36  * and the code which manages CPU resources, will call this code, and the
   37  * end-device drivers will make upcalls to that code to actually perform
   38  * the allocation.
   39  *
   40  * There are two sorts of resources managed by this code.  The first is
   41  * the more familiar array (RMAN_ARRAY) type; resources in this class
   42  * consist of a sequence of individually-allocatable objects which have
   43  * been numbered in some well-defined order.  Most of the resources
   44  * are of this type, as it is the most familiar.  The second type is
   45  * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
   46  * resources in which each instance is indistinguishable from every
   47  * other instance).  The principal anticipated application of gauges
   48  * is in the context of power consumption, where a bus may have a specific
   49  * power budget which all attached devices share.  RMAN_GAUGE is not
   50  * implemented yet.
   51  *
   52  * For array resources, we make one simplifying assumption: two clients
   53  * sharing the same resource must use the same range of indices.  That
   54  * is to say, sharing of overlapping-but-not-identical regions is not
   55  * permitted.
   56  */
   57 
   58 #include <sys/cdefs.h>
   59 __FBSDID("$FreeBSD: releng/5.2/sys/kern/subr_rman.c 116182 2003-06-11 00:56:59Z obrien $");
   60 
   61 #include <sys/param.h>
   62 #include <sys/systm.h>
   63 #include <sys/kernel.h>
   64 #include <sys/lock.h>
   65 #include <sys/malloc.h>
   66 #include <sys/mutex.h>
   67 #include <sys/bus.h>            /* XXX debugging */
   68 #include <machine/bus.h>
   69 #include <sys/rman.h>
   70 #include <sys/sysctl.h>
   71 
   72 int     rman_debug = 0;
   73 TUNABLE_INT("debug.rman_debug", &rman_debug);
   74 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
   75     &rman_debug, 0, "rman debug");
   76 
   77 #define DPRINTF(params) if (rman_debug) printf params
   78 
   79 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
   80 
   81 struct  rman_head rman_head;
   82 static  struct mtx rman_mtx; /* mutex to protect rman_head */
   83 static  int int_rman_activate_resource(struct rman *rm, struct resource *r,
   84                                        struct resource **whohas);
   85 static  int int_rman_deactivate_resource(struct resource *r);
   86 static  int int_rman_release_resource(struct rman *rm, struct resource *r);
   87 
   88 int
   89 rman_init(struct rman *rm)
   90 {
   91         static int once;
   92 
   93         if (once == 0) {
   94                 once = 1;
   95                 TAILQ_INIT(&rman_head);
   96                 mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
   97         }
   98 
   99         if (rm->rm_type == RMAN_UNINIT)
  100                 panic("rman_init");
  101         if (rm->rm_type == RMAN_GAUGE)
  102                 panic("implement RMAN_GAUGE");
  103 
  104         TAILQ_INIT(&rm->rm_list);
  105         rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
  106         if (rm->rm_mtx == 0)
  107                 return ENOMEM;
  108         mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
  109 
  110         mtx_lock(&rman_mtx);
  111         TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
  112         mtx_unlock(&rman_mtx);
  113         return 0;
  114 }
  115 
  116 /*
  117  * NB: this interface is not robust against programming errors which
  118  * add multiple copies of the same region.
  119  */
  120 int
  121 rman_manage_region(struct rman *rm, u_long start, u_long end)
  122 {
  123         struct resource *r, *s;
  124 
  125         r = malloc(sizeof *r, M_RMAN, M_NOWAIT | M_ZERO);
  126         if (r == 0)
  127                 return ENOMEM;
  128         r->r_start = start;
  129         r->r_end = end;
  130         r->r_rm = rm;
  131 
  132         mtx_lock(rm->rm_mtx);
  133         for (s = TAILQ_FIRST(&rm->rm_list);     
  134              s && s->r_end < r->r_start;
  135              s = TAILQ_NEXT(s, r_link))
  136                 ;
  137 
  138         if (s == NULL) {
  139                 TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
  140         } else {
  141                 TAILQ_INSERT_BEFORE(s, r, r_link);
  142         }
  143 
  144         mtx_unlock(rm->rm_mtx);
  145         return 0;
  146 }
  147 
  148 int
  149 rman_fini(struct rman *rm)
  150 {
  151         struct resource *r;
  152 
  153         mtx_lock(rm->rm_mtx);
  154         TAILQ_FOREACH(r, &rm->rm_list, r_link) {
  155                 if (r->r_flags & RF_ALLOCATED) {
  156                         mtx_unlock(rm->rm_mtx);
  157                         return EBUSY;
  158                 }
  159         }
  160 
  161         /*
  162          * There really should only be one of these if we are in this
  163          * state and the code is working properly, but it can't hurt.
  164          */
  165         while (!TAILQ_EMPTY(&rm->rm_list)) {
  166                 r = TAILQ_FIRST(&rm->rm_list);
  167                 TAILQ_REMOVE(&rm->rm_list, r, r_link);
  168                 free(r, M_RMAN);
  169         }
  170         mtx_unlock(rm->rm_mtx);
  171         mtx_lock(&rman_mtx);
  172         TAILQ_REMOVE(&rman_head, rm, rm_link);
  173         mtx_unlock(&rman_mtx);
  174         mtx_destroy(rm->rm_mtx);
  175         free(rm->rm_mtx, M_RMAN);
  176 
  177         return 0;
  178 }
  179 
  180 struct resource *
  181 rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end,
  182                       u_long count, u_long bound,  u_int flags,
  183                       struct device *dev)
  184 {
  185         u_int   want_activate;
  186         struct  resource *r, *s, *rv;
  187         u_long  rstart, rend, amask, bmask;
  188 
  189         rv = 0;
  190 
  191         DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
  192                "%#lx, flags %u, device %s\n", rm->rm_descr, start, end, count,
  193                flags, dev == NULL ? "<null>" : device_get_nameunit(dev)));
  194         want_activate = (flags & RF_ACTIVE);
  195         flags &= ~RF_ACTIVE;
  196 
  197         mtx_lock(rm->rm_mtx);
  198 
  199         for (r = TAILQ_FIRST(&rm->rm_list); 
  200              r && r->r_end < start;
  201              r = TAILQ_NEXT(r, r_link))
  202                 ;
  203 
  204         if (r == NULL) {
  205                 DPRINTF(("could not find a region\n"));
  206                 goto out;
  207         }
  208 
  209         amask = (1ul << RF_ALIGNMENT(flags)) - 1;
  210         /* If bound is 0, bmask will also be 0 */
  211         bmask = ~(bound - 1);
  212         /*
  213          * First try to find an acceptable totally-unshared region.
  214          */
  215         for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
  216                 DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
  217                 if (s->r_start > end) {
  218                         DPRINTF(("s->r_start (%#lx) > end (%#lx)\n", s->r_start, end));
  219                         break;
  220                 }
  221                 if (s->r_flags & RF_ALLOCATED) {
  222                         DPRINTF(("region is allocated\n"));
  223                         continue;
  224                 }
  225                 rstart = ulmax(s->r_start, start);
  226                 /*
  227                  * Try to find a region by adjusting to boundary and alignment
  228                  * until both conditions are satisfied. This is not an optimal
  229                  * algorithm, but in most cases it isn't really bad, either.
  230                  */
  231                 do {
  232                         rstart = (rstart + amask) & ~amask;
  233                         if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
  234                                 rstart += bound - (rstart & ~bmask);
  235                 } while ((rstart & amask) != 0 && rstart < end &&
  236                     rstart < s->r_end);
  237                 rend = ulmin(s->r_end, ulmax(rstart + count, end));
  238                 if (rstart > rend) {
  239                         DPRINTF(("adjusted start exceeds end\n"));
  240                         continue;
  241                 }
  242                 DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
  243                        rstart, rend, (rend - rstart + 1), count));
  244 
  245                 if ((rend - rstart + 1) >= count) {
  246                         DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
  247                                rend, rstart, (rend - rstart + 1)));
  248                         if ((s->r_end - s->r_start + 1) == count) {
  249                                 DPRINTF(("candidate region is entire chunk\n"));
  250                                 rv = s;
  251                                 rv->r_flags |= RF_ALLOCATED | flags;
  252                                 rv->r_dev = dev;
  253                                 goto out;
  254                         }
  255 
  256                         /*
  257                          * If s->r_start < rstart and
  258                          *    s->r_end > rstart + count - 1, then
  259                          * we need to split the region into three pieces
  260                          * (the middle one will get returned to the user).
  261                          * Otherwise, we are allocating at either the
  262                          * beginning or the end of s, so we only need to
  263                          * split it in two.  The first case requires
  264                          * two new allocations; the second requires but one.
  265                          */
  266                         rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
  267                         if (rv == 0)
  268                                 goto out;
  269                         rv->r_start = rstart;
  270                         rv->r_end = rstart + count - 1;
  271                         rv->r_flags = flags | RF_ALLOCATED;
  272                         rv->r_dev = dev;
  273                         rv->r_rm = rm;
  274                         
  275                         if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
  276                                 DPRINTF(("splitting region in three parts: "
  277                                        "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
  278                                        s->r_start, rv->r_start - 1,
  279                                        rv->r_start, rv->r_end,
  280                                        rv->r_end + 1, s->r_end));
  281                                 /*
  282                                  * We are allocating in the middle.
  283                                  */
  284                                 r = malloc(sizeof *r, M_RMAN, M_NOWAIT|M_ZERO);
  285                                 if (r == 0) {
  286                                         free(rv, M_RMAN);
  287                                         rv = 0;
  288                                         goto out;
  289                                 }
  290                                 r->r_start = rv->r_end + 1;
  291                                 r->r_end = s->r_end;
  292                                 r->r_flags = s->r_flags;
  293                                 r->r_rm = rm;
  294                                 s->r_end = rv->r_start - 1;
  295                                 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
  296                                                      r_link);
  297                                 TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
  298                                                      r_link);
  299                         } else if (s->r_start == rv->r_start) {
  300                                 DPRINTF(("allocating from the beginning\n"));
  301                                 /*
  302                                  * We are allocating at the beginning.
  303                                  */
  304                                 s->r_start = rv->r_end + 1;
  305                                 TAILQ_INSERT_BEFORE(s, rv, r_link);
  306                         } else {
  307                                 DPRINTF(("allocating at the end\n"));
  308                                 /*
  309                                  * We are allocating at the end.
  310                                  */
  311                                 s->r_end = rv->r_start - 1;
  312                                 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
  313                                                      r_link);
  314                         }
  315                         goto out;
  316                 }
  317         }
  318 
  319         /*
  320          * Now find an acceptable shared region, if the client's requirements
  321          * allow sharing.  By our implementation restriction, a candidate
  322          * region must match exactly by both size and sharing type in order
  323          * to be considered compatible with the client's request.  (The
  324          * former restriction could probably be lifted without too much
  325          * additional work, but this does not seem warranted.)
  326          */
  327         DPRINTF(("no unshared regions found\n"));
  328         if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
  329                 goto out;
  330 
  331         for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
  332                 if (s->r_start > end)
  333                         break;
  334                 if ((s->r_flags & flags) != flags)
  335                         continue;
  336                 rstart = ulmax(s->r_start, start);
  337                 rend = ulmin(s->r_end, ulmax(start + count, end));
  338                 if (s->r_start >= start && s->r_end <= end
  339                     && (s->r_end - s->r_start + 1) == count &&
  340                     (s->r_start & amask) == 0 &&
  341                     ((s->r_start ^ s->r_end) & bmask) == 0) {
  342                         rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
  343                         if (rv == 0)
  344                                 goto out;
  345                         rv->r_start = s->r_start;
  346                         rv->r_end = s->r_end;
  347                         rv->r_flags = s->r_flags & 
  348                                 (RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
  349                         rv->r_dev = dev;
  350                         rv->r_rm = rm;
  351                         if (s->r_sharehead == 0) {
  352                                 s->r_sharehead = malloc(sizeof *s->r_sharehead,
  353                                                 M_RMAN, M_NOWAIT | M_ZERO);
  354                                 if (s->r_sharehead == 0) {
  355                                         free(rv, M_RMAN);
  356                                         rv = 0;
  357                                         goto out;
  358                                 }
  359                                 LIST_INIT(s->r_sharehead);
  360                                 LIST_INSERT_HEAD(s->r_sharehead, s, 
  361                                                  r_sharelink);
  362                                 s->r_flags |= RF_FIRSTSHARE;
  363                         }
  364                         rv->r_sharehead = s->r_sharehead;
  365                         LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
  366                         goto out;
  367                 }
  368         }
  369 
  370         /*
  371          * We couldn't find anything.
  372          */
  373 out:
  374         /*
  375          * If the user specified RF_ACTIVE in the initial flags,
  376          * which is reflected in `want_activate', we attempt to atomically
  377          * activate the resource.  If this fails, we release the resource
  378          * and indicate overall failure.  (This behavior probably doesn't
  379          * make sense for RF_TIMESHARE-type resources.)
  380          */
  381         if (rv && want_activate) {
  382                 struct resource *whohas;
  383                 if (int_rman_activate_resource(rm, rv, &whohas)) {
  384                         int_rman_release_resource(rm, rv);
  385                         rv = 0;
  386                 }
  387         }
  388                         
  389         mtx_unlock(rm->rm_mtx);
  390         return (rv);
  391 }
  392 
  393 struct resource *
  394 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
  395                       u_int flags, struct device *dev)
  396 {
  397 
  398         return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
  399             dev));
  400 }
  401 
  402 static int
  403 int_rman_activate_resource(struct rman *rm, struct resource *r,
  404                            struct resource **whohas)
  405 {
  406         struct resource *s;
  407         int ok;
  408 
  409         /*
  410          * If we are not timesharing, then there is nothing much to do.
  411          * If we already have the resource, then there is nothing at all to do.
  412          * If we are not on a sharing list with anybody else, then there is
  413          * little to do.
  414          */
  415         if ((r->r_flags & RF_TIMESHARE) == 0
  416             || (r->r_flags & RF_ACTIVE) != 0
  417             || r->r_sharehead == 0) {
  418                 r->r_flags |= RF_ACTIVE;
  419                 return 0;
  420         }
  421 
  422         ok = 1;
  423         for (s = LIST_FIRST(r->r_sharehead); s && ok;
  424              s = LIST_NEXT(s, r_sharelink)) {
  425                 if ((s->r_flags & RF_ACTIVE) != 0) {
  426                         ok = 0;
  427                         *whohas = s;
  428                 }
  429         }
  430         if (ok) {
  431                 r->r_flags |= RF_ACTIVE;
  432                 return 0;
  433         }
  434         return EBUSY;
  435 }
  436 
  437 int
  438 rman_activate_resource(struct resource *r)
  439 {
  440         int rv;
  441         struct resource *whohas;
  442         struct rman *rm;
  443 
  444         rm = r->r_rm;
  445         mtx_lock(rm->rm_mtx);
  446         rv = int_rman_activate_resource(rm, r, &whohas);
  447         mtx_unlock(rm->rm_mtx);
  448         return rv;
  449 }
  450 
  451 int
  452 rman_await_resource(struct resource *r, int pri, int timo)
  453 {
  454         int     rv;
  455         struct  resource *whohas;
  456         struct  rman *rm;
  457 
  458         rm = r->r_rm;
  459         mtx_lock(rm->rm_mtx);
  460         for (;;) {
  461                 rv = int_rman_activate_resource(rm, r, &whohas);
  462                 if (rv != EBUSY)
  463                         return (rv);    /* returns with mutex held */
  464 
  465                 if (r->r_sharehead == 0)
  466                         panic("rman_await_resource");
  467                 whohas->r_flags |= RF_WANTED;
  468                 rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo);
  469                 if (rv) {
  470                         mtx_unlock(rm->rm_mtx);
  471                         return (rv);
  472                 }
  473         }
  474 }
  475 
  476 static int
  477 int_rman_deactivate_resource(struct resource *r)
  478 {
  479 
  480         r->r_flags &= ~RF_ACTIVE;
  481         if (r->r_flags & RF_WANTED) {
  482                 r->r_flags &= ~RF_WANTED;
  483                 wakeup(r->r_sharehead);
  484         }
  485         return 0;
  486 }
  487 
  488 int
  489 rman_deactivate_resource(struct resource *r)
  490 {
  491         struct  rman *rm;
  492 
  493         rm = r->r_rm;
  494         mtx_lock(rm->rm_mtx);
  495         int_rman_deactivate_resource(r);
  496         mtx_unlock(rm->rm_mtx);
  497         return 0;
  498 }
  499 
  500 static int
  501 int_rman_release_resource(struct rman *rm, struct resource *r)
  502 {
  503         struct  resource *s, *t;
  504 
  505         if (r->r_flags & RF_ACTIVE)
  506                 int_rman_deactivate_resource(r);
  507 
  508         /*
  509          * Check for a sharing list first.  If there is one, then we don't
  510          * have to think as hard.
  511          */
  512         if (r->r_sharehead) {
  513                 /*
  514                  * If a sharing list exists, then we know there are at
  515                  * least two sharers.
  516                  *
  517                  * If we are in the main circleq, appoint someone else.
  518                  */
  519                 LIST_REMOVE(r, r_sharelink);
  520                 s = LIST_FIRST(r->r_sharehead);
  521                 if (r->r_flags & RF_FIRSTSHARE) {
  522                         s->r_flags |= RF_FIRSTSHARE;
  523                         TAILQ_INSERT_BEFORE(r, s, r_link);
  524                         TAILQ_REMOVE(&rm->rm_list, r, r_link);
  525                 }
  526 
  527                 /*
  528                  * Make sure that the sharing list goes away completely
  529                  * if the resource is no longer being shared at all.
  530                  */
  531                 if (LIST_NEXT(s, r_sharelink) == 0) {
  532                         free(s->r_sharehead, M_RMAN);
  533                         s->r_sharehead = 0;
  534                         s->r_flags &= ~RF_FIRSTSHARE;
  535                 }
  536                 goto out;
  537         }
  538 
  539         /*
  540          * Look at the adjacent resources in the list and see if our
  541          * segment can be merged with any of them.
  542          */
  543         s = TAILQ_PREV(r, resource_head, r_link);
  544         t = TAILQ_NEXT(r, r_link);
  545 
  546         if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0
  547             && t != NULL && (t->r_flags & RF_ALLOCATED) == 0) {
  548                 /*
  549                  * Merge all three segments.
  550                  */
  551                 s->r_end = t->r_end;
  552                 TAILQ_REMOVE(&rm->rm_list, r, r_link);
  553                 TAILQ_REMOVE(&rm->rm_list, t, r_link);
  554                 free(t, M_RMAN);
  555         } else if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0) {
  556                 /*
  557                  * Merge previous segment with ours.
  558                  */
  559                 s->r_end = r->r_end;
  560                 TAILQ_REMOVE(&rm->rm_list, r, r_link);
  561         } else if (t != NULL && (t->r_flags & RF_ALLOCATED) == 0) {
  562                 /*
  563                  * Merge next segment with ours.
  564                  */
  565                 t->r_start = r->r_start;
  566                 TAILQ_REMOVE(&rm->rm_list, r, r_link);
  567         } else {
  568                 /*
  569                  * At this point, we know there is nothing we
  570                  * can potentially merge with, because on each
  571                  * side, there is either nothing there or what is
  572                  * there is still allocated.  In that case, we don't
  573                  * want to remove r from the list; we simply want to
  574                  * change it to an unallocated region and return
  575                  * without freeing anything.
  576                  */
  577                 r->r_flags &= ~RF_ALLOCATED;
  578                 return 0;
  579         }
  580 
  581 out:
  582         free(r, M_RMAN);
  583         return 0;
  584 }
  585 
  586 int
  587 rman_release_resource(struct resource *r)
  588 {
  589         int     rv;
  590         struct  rman *rm = r->r_rm;
  591 
  592         mtx_lock(rm->rm_mtx);
  593         rv = int_rman_release_resource(rm, r);
  594         mtx_unlock(rm->rm_mtx);
  595         return (rv);
  596 }
  597 
  598 uint32_t
  599 rman_make_alignment_flags(uint32_t size)
  600 {
  601         int     i;
  602 
  603         /*
  604          * Find the hightest bit set, and add one if more than one bit
  605          * set.  We're effectively computing the ceil(log2(size)) here.
  606          */
  607         for (i = 31; i > 0; i--)
  608                 if ((1 << i) & size)
  609                         break;
  610         if (~(1 << i) & size)
  611                 i++;
  612 
  613         return(RF_ALIGNMENT_LOG2(i));
  614 }
  615 
  616 u_long
  617 rman_get_start(struct resource *r)
  618 {
  619         return (r->r_start);
  620 }
  621 
  622 u_long
  623 rman_get_end(struct resource *r)
  624 {
  625         return (r->r_end);
  626 }
  627 
  628 u_long
  629 rman_get_size(struct resource *r)
  630 {
  631         return (r->r_end - r->r_start + 1);
  632 }
  633 
  634 u_int
  635 rman_get_flags(struct resource *r)
  636 {
  637         return (r->r_flags);
  638 }
  639 
  640 void
  641 rman_set_virtual(struct resource *r, void *v)
  642 {
  643         r->r_virtual = v;
  644 }
  645 
  646 void *
  647 rman_get_virtual(struct resource *r)
  648 {
  649         return (r->r_virtual);
  650 }
  651 
  652 void
  653 rman_set_bustag(struct resource *r, bus_space_tag_t t)
  654 {
  655         r->r_bustag = t;
  656 }
  657 
  658 bus_space_tag_t
  659 rman_get_bustag(struct resource *r)
  660 {
  661         return (r->r_bustag);
  662 }
  663 
  664 void
  665 rman_set_bushandle(struct resource *r, bus_space_handle_t h)
  666 {
  667         r->r_bushandle = h;
  668 }
  669 
  670 bus_space_handle_t
  671 rman_get_bushandle(struct resource *r)
  672 {
  673         return (r->r_bushandle);
  674 }
  675 
  676 void
  677 rman_set_rid(struct resource *r, int rid)
  678 {
  679         r->r_rid = rid;
  680 }
  681 
  682 int
  683 rman_get_rid(struct resource *r)
  684 {
  685         return (r->r_rid);
  686 }
  687 
  688 struct device *
  689 rman_get_device(struct resource *r)
  690 {
  691         return (r->r_dev);
  692 }

Cache object: b0c4e40101b83b887947831af074aed9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.