The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_rman.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright 1998 Massachusetts Institute of Technology
    3  *
    4  * Permission to use, copy, modify, and distribute this software and
    5  * its documentation for any purpose and without fee is hereby
    6  * granted, provided that both the above copyright notice and this
    7  * permission notice appear in all copies, that both the above
    8  * copyright notice and this permission notice appear in all
    9  * supporting documentation, and that the name of M.I.T. not be used
   10  * in advertising or publicity pertaining to distribution of the
   11  * software without specific, written prior permission.  M.I.T. makes
   12  * no representations about the suitability of this software for any
   13  * purpose.  It is provided "as is" without express or implied
   14  * warranty.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
   17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
   18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
   20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
   23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
   26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 /*
   31  * The kernel resource manager.  This code is responsible for keeping track
   32  * of hardware resources which are apportioned out to various drivers.
   33  * It does not actually assign those resources, and it is not expected
   34  * that end-device drivers will call into this code directly.  Rather,
   35  * the code which implements the buses that those devices are attached to,
   36  * and the code which manages CPU resources, will call this code, and the
   37  * end-device drivers will make upcalls to that code to actually perform
   38  * the allocation.
   39  *
   40  * There are two sorts of resources managed by this code.  The first is
   41  * the more familiar array (RMAN_ARRAY) type; resources in this class
   42  * consist of a sequence of individually-allocatable objects which have
   43  * been numbered in some well-defined order.  Most of the resources
   44  * are of this type, as it is the most familiar.  The second type is
   45  * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
   46  * resources in which each instance is indistinguishable from every
   47  * other instance).  The principal anticipated application of gauges
   48  * is in the context of power consumption, where a bus may have a specific
   49  * power budget which all attached devices share.  RMAN_GAUGE is not
   50  * implemented yet.
   51  *
   52  * For array resources, we make one simplifying assumption: two clients
   53  * sharing the same resource must use the same range of indices.  That
   54  * is to say, sharing of overlapping-but-not-identical regions is not
   55  * permitted.
   56  */
   57 
   58 #include "opt_ddb.h"
   59 
   60 #include <sys/cdefs.h>
   61 __FBSDID("$FreeBSD$");
   62 
   63 #include <sys/param.h>
   64 #include <sys/systm.h>
   65 #include <sys/kernel.h>
   66 #include <sys/limits.h>
   67 #include <sys/lock.h>
   68 #include <sys/malloc.h>
   69 #include <sys/mutex.h>
   70 #include <sys/bus.h>            /* XXX debugging */
   71 #include <machine/bus.h>
   72 #include <sys/rman.h>
   73 #include <sys/sysctl.h>
   74 
   75 #ifdef DDB
   76 #include <ddb/ddb.h>
   77 #endif
   78 
   79 /*
   80  * We use a linked list rather than a bitmap because we need to be able to
   81  * represent potentially huge objects (like all of a processor's physical
   82  * address space).  That is also why the indices are defined to have type
   83  * `unsigned long' -- that being the largest integral type in ISO C (1990).
   84  * The 1999 version of C allows `long long'; we may need to switch to that
   85  * at some point in the future, particularly if we want to support 36-bit
   86  * addresses on IA32 hardware.
   87  */
   88 struct resource_i {
   89         struct resource         r_r;
   90         TAILQ_ENTRY(resource_i) r_link;
   91         LIST_ENTRY(resource_i)  r_sharelink;
   92         LIST_HEAD(, resource_i) *r_sharehead;
   93         u_long  r_start;        /* index of the first entry in this resource */
   94         u_long  r_end;          /* index of the last entry (inclusive) */
   95         u_int   r_flags;
   96         void    *r_virtual;     /* virtual address of this resource */
   97         struct device *r_dev;   /* device which has allocated this resource */
   98         struct rman *r_rm;      /* resource manager from whence this came */
   99         int     r_rid;          /* optional rid for this resource. */
  100 };
  101 
  102 static int rman_debug = 0;
  103 TUNABLE_INT("debug.rman_debug", &rman_debug);
  104 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
  105     &rman_debug, 0, "rman debug");
  106 
  107 #define DPRINTF(params) if (rman_debug) printf params
  108 
  109 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
  110 
  111 struct rman_head rman_head;
  112 static struct mtx rman_mtx; /* mutex to protect rman_head */
  113 static int int_rman_activate_resource(struct rman *rm, struct resource_i *r,
  114                                        struct resource_i **whohas);
  115 static int int_rman_deactivate_resource(struct resource_i *r);
  116 static int int_rman_release_resource(struct rman *rm, struct resource_i *r);
  117 
  118 static __inline struct resource_i *
  119 int_alloc_resource(int malloc_flag)
  120 {
  121         struct resource_i *r;
  122 
  123         r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO);
  124         if (r != NULL) {
  125                 r->r_r.__r_i = r;
  126         }
  127         return (r);
  128 }
  129 
  130 int
  131 rman_init(struct rman *rm)
  132 {
  133         static int once = 0;
  134 
  135         if (once == 0) {
  136                 once = 1;
  137                 TAILQ_INIT(&rman_head);
  138                 mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
  139         }
  140 
  141         if (rm->rm_start == 0 && rm->rm_end == 0)
  142                 rm->rm_end = ~0ul;
  143         if (rm->rm_type == RMAN_UNINIT)
  144                 panic("rman_init");
  145         if (rm->rm_type == RMAN_GAUGE)
  146                 panic("implement RMAN_GAUGE");
  147 
  148         TAILQ_INIT(&rm->rm_list);
  149         rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
  150         if (rm->rm_mtx == NULL)
  151                 return ENOMEM;
  152         mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
  153 
  154         mtx_lock(&rman_mtx);
  155         TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
  156         mtx_unlock(&rman_mtx);
  157         return 0;
  158 }
  159 
  160 int
  161 rman_manage_region(struct rman *rm, u_long start, u_long end)
  162 {
  163         struct resource_i *r, *s, *t;
  164 
  165         DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
  166             rm->rm_descr, start, end));
  167         if (start < rm->rm_start || end > rm->rm_end)
  168                 return EINVAL;
  169         r = int_alloc_resource(M_NOWAIT);
  170         if (r == NULL)
  171                 return ENOMEM;
  172         r->r_start = start;
  173         r->r_end = end;
  174         r->r_rm = rm;
  175 
  176         mtx_lock(rm->rm_mtx);
  177 
  178         /* Skip entries before us. */
  179         TAILQ_FOREACH(s, &rm->rm_list, r_link) {
  180                 if (s->r_end == ULONG_MAX)
  181                         break;
  182                 if (s->r_end + 1 >= r->r_start)
  183                         break;
  184         }
  185 
  186         /* If we ran off the end of the list, insert at the tail. */
  187         if (s == NULL) {
  188                 TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
  189         } else {
  190                 /* Check for any overlap with the current region. */
  191                 if (r->r_start <= s->r_end && r->r_end >= s->r_start)
  192                         return EBUSY;
  193 
  194                 /* Check for any overlap with the next region. */
  195                 t = TAILQ_NEXT(s, r_link);
  196                 if (t && r->r_start <= t->r_end && r->r_end >= t->r_start)
  197                         return EBUSY;
  198 
  199                 /*
  200                  * See if this region can be merged with the next region.  If
  201                  * not, clear the pointer.
  202                  */
  203                 if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0))
  204                         t = NULL;
  205 
  206                 /* See if we can merge with the current region. */
  207                 if (s->r_end + 1 == r->r_start && s->r_flags == 0) {
  208                         /* Can we merge all 3 regions? */
  209                         if (t != NULL) {
  210                                 s->r_end = t->r_end;
  211                                 TAILQ_REMOVE(&rm->rm_list, t, r_link);
  212                                 free(r, M_RMAN);
  213                                 free(t, M_RMAN);
  214                         } else {
  215                                 s->r_end = r->r_end;
  216                                 free(r, M_RMAN);
  217                         }
  218                 } else if (t != NULL) {
  219                         /* Can we merge with just the next region? */
  220                         t->r_start = r->r_start;
  221                         free(r, M_RMAN);
  222                 } else if (s->r_end < r->r_start) {
  223                         TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link);
  224                 } else {
  225                         TAILQ_INSERT_BEFORE(s, r, r_link);
  226                 }
  227         }
  228 
  229         mtx_unlock(rm->rm_mtx);
  230         return 0;
  231 }
  232 
  233 int
  234 rman_init_from_resource(struct rman *rm, struct resource *r)
  235 {
  236         int rv;
  237 
  238         if ((rv = rman_init(rm)) != 0)
  239                 return (rv);
  240         return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end));
  241 }
  242 
  243 int
  244 rman_fini(struct rman *rm)
  245 {
  246         struct resource_i *r;
  247 
  248         mtx_lock(rm->rm_mtx);
  249         TAILQ_FOREACH(r, &rm->rm_list, r_link) {
  250                 if (r->r_flags & RF_ALLOCATED) {
  251                         mtx_unlock(rm->rm_mtx);
  252                         return EBUSY;
  253                 }
  254         }
  255 
  256         /*
  257          * There really should only be one of these if we are in this
  258          * state and the code is working properly, but it can't hurt.
  259          */
  260         while (!TAILQ_EMPTY(&rm->rm_list)) {
  261                 r = TAILQ_FIRST(&rm->rm_list);
  262                 TAILQ_REMOVE(&rm->rm_list, r, r_link);
  263                 free(r, M_RMAN);
  264         }
  265         mtx_unlock(rm->rm_mtx);
  266         mtx_lock(&rman_mtx);
  267         TAILQ_REMOVE(&rman_head, rm, rm_link);
  268         mtx_unlock(&rman_mtx);
  269         mtx_destroy(rm->rm_mtx);
  270         free(rm->rm_mtx, M_RMAN);
  271 
  272         return 0;
  273 }
  274 
  275 int
  276 rman_first_free_region(struct rman *rm, u_long *start, u_long *end)
  277 {
  278         struct resource_i *r;
  279 
  280         mtx_lock(rm->rm_mtx);
  281         TAILQ_FOREACH(r, &rm->rm_list, r_link) {
  282                 if (!(r->r_flags & RF_ALLOCATED)) {
  283                         *start = r->r_start;
  284                         *end = r->r_end;
  285                         mtx_unlock(rm->rm_mtx);
  286                         return (0);
  287                 }
  288         }
  289         mtx_unlock(rm->rm_mtx);
  290         return (ENOENT);
  291 }
  292 
  293 int
  294 rman_last_free_region(struct rman *rm, u_long *start, u_long *end)
  295 {
  296         struct resource_i *r;
  297 
  298         mtx_lock(rm->rm_mtx);
  299         TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) {
  300                 if (!(r->r_flags & RF_ALLOCATED)) {
  301                         *start = r->r_start;
  302                         *end = r->r_end;
  303                         mtx_unlock(rm->rm_mtx);
  304                         return (0);
  305                 }
  306         }
  307         mtx_unlock(rm->rm_mtx);
  308         return (ENOENT);
  309 }
  310 
  311 /* Shrink or extend one or both ends of an allocated resource. */
  312 int
  313 rman_adjust_resource(struct resource *rr, u_long start, u_long end)
  314 {
  315         struct resource_i *r, *s, *t, *new;
  316         struct rman *rm;
  317 
  318         /* Not supported for shared resources. */
  319         r = rr->__r_i;
  320         if (r->r_flags & (RF_TIMESHARE | RF_SHAREABLE))
  321                 return (EINVAL);
  322 
  323         /*
  324          * This does not support wholesale moving of a resource.  At
  325          * least part of the desired new range must overlap with the
  326          * existing resource.
  327          */
  328         if (end < r->r_start || r->r_end < start)
  329                 return (EINVAL);
  330 
  331         /*
  332          * Find the two resource regions immediately adjacent to the
  333          * allocated resource.
  334          */
  335         rm = r->r_rm;
  336         mtx_lock(rm->rm_mtx);
  337 #ifdef INVARIANTS
  338         TAILQ_FOREACH(s, &rm->rm_list, r_link) {
  339                 if (s == r)
  340                         break;
  341         }
  342         if (s == NULL)
  343                 panic("resource not in list");
  344 #endif
  345         s = TAILQ_PREV(r, resource_head, r_link);
  346         t = TAILQ_NEXT(r, r_link);
  347         KASSERT(s == NULL || s->r_end + 1 == r->r_start,
  348             ("prev resource mismatch"));
  349         KASSERT(t == NULL || r->r_end + 1 == t->r_start,
  350             ("next resource mismatch"));
  351 
  352         /*
  353          * See if the changes are permitted.  Shrinking is always allowed,
  354          * but growing requires sufficient room in the adjacent region.
  355          */
  356         if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) ||
  357             s->r_start > start)) {
  358                 mtx_unlock(rm->rm_mtx);
  359                 return (EBUSY);
  360         }
  361         if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) ||
  362             t->r_end < end)) {
  363                 mtx_unlock(rm->rm_mtx);
  364                 return (EBUSY);
  365         }
  366 
  367         /*
  368          * While holding the lock, grow either end of the resource as
  369          * needed and shrink either end if the shrinking does not require
  370          * allocating a new resource.  We can safely drop the lock and then
  371          * insert a new range to handle the shrinking case afterwards.
  372          */
  373         if (start < r->r_start ||
  374             (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) {
  375                 KASSERT(s->r_flags == 0, ("prev is busy"));
  376                 r->r_start = start;
  377                 if (s->r_start == start) {
  378                         TAILQ_REMOVE(&rm->rm_list, s, r_link);
  379                         free(s, M_RMAN);
  380                 } else
  381                         s->r_end = start - 1;
  382         }
  383         if (end > r->r_end ||
  384             (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) {
  385                 KASSERT(t->r_flags == 0, ("next is busy"));
  386                 r->r_end = end;
  387                 if (t->r_end == end) {
  388                         TAILQ_REMOVE(&rm->rm_list, t, r_link);
  389                         free(t, M_RMAN);
  390                 } else
  391                         t->r_start = end + 1;
  392         }
  393         mtx_unlock(rm->rm_mtx);
  394 
  395         /*
  396          * Handle the shrinking cases that require allocating a new
  397          * resource to hold the newly-free region.  We have to recheck
  398          * if we still need this new region after acquiring the lock.
  399          */
  400         if (start > r->r_start) {
  401                 new = int_alloc_resource(M_WAITOK);
  402                 new->r_start = r->r_start;
  403                 new->r_end = start - 1;
  404                 new->r_rm = rm;
  405                 mtx_lock(rm->rm_mtx);
  406                 r->r_start = start;
  407                 s = TAILQ_PREV(r, resource_head, r_link);
  408                 if (s != NULL && !(s->r_flags & RF_ALLOCATED)) {
  409                         s->r_end = start - 1;
  410                         free(new, M_RMAN);
  411                 } else
  412                         TAILQ_INSERT_BEFORE(r, new, r_link);
  413                 mtx_unlock(rm->rm_mtx);
  414         }
  415         if (end < r->r_end) {
  416                 new = int_alloc_resource(M_WAITOK);
  417                 new->r_start = end + 1;
  418                 new->r_end = r->r_end;
  419                 new->r_rm = rm;
  420                 mtx_lock(rm->rm_mtx);
  421                 r->r_end = end;
  422                 t = TAILQ_NEXT(r, r_link);
  423                 if (t != NULL && !(t->r_flags & RF_ALLOCATED)) {
  424                         t->r_start = end + 1;
  425                         free(new, M_RMAN);
  426                 } else
  427                         TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link);
  428                 mtx_unlock(rm->rm_mtx);
  429         }
  430         return (0);
  431 }
  432 
  433 #define SHARE_TYPE(f)   (f & (RF_SHAREABLE | RF_TIMESHARE | RF_PREFETCHABLE))
  434 
  435 struct resource *
  436 rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end,
  437                             u_long count, u_long bound, u_int flags,
  438                             struct device *dev)
  439 {
  440         u_int new_rflags;
  441         struct resource_i *r, *s, *rv;
  442         u_long rstart, rend, amask, bmask;
  443 
  444         rv = NULL;
  445 
  446         DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#lx, %#lx], "
  447                "length %#lx, flags %u, device %s\n", rm->rm_descr, start, end,
  448                count, flags,
  449                dev == NULL ? "<null>" : device_get_nameunit(dev)));
  450         KASSERT((flags & (RF_WANTED | RF_FIRSTSHARE)) == 0,
  451             ("invalid flags %#x", flags));
  452         new_rflags = (flags & ~(RF_ACTIVE | RF_WANTED | RF_FIRSTSHARE)) |
  453             RF_ALLOCATED;
  454 
  455         mtx_lock(rm->rm_mtx);
  456 
  457         for (r = TAILQ_FIRST(&rm->rm_list);
  458              r && r->r_end < start + count - 1;
  459              r = TAILQ_NEXT(r, r_link))
  460                 ;
  461 
  462         if (r == NULL) {
  463                 DPRINTF(("could not find a region\n"));
  464                 goto out;
  465         }
  466 
  467         amask = (1ul << RF_ALIGNMENT(flags)) - 1;
  468         KASSERT(start <= ULONG_MAX - amask,
  469             ("start (%#lx) + amask (%#lx) would wrap around", start, amask));
  470 
  471         /* If bound is 0, bmask will also be 0 */
  472         bmask = ~(bound - 1);
  473         /*
  474          * First try to find an acceptable totally-unshared region.
  475          */
  476         for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
  477                 DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
  478                 /*
  479                  * The resource list is sorted, so there is no point in
  480                  * searching further once r_start is too large.
  481                  */
  482                 if (s->r_start > end - (count - 1)) {
  483                         DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n",
  484                             s->r_start, end));
  485                         break;
  486                 }
  487                 if (s->r_start > ULONG_MAX - amask) {
  488                         DPRINTF(("s->r_start (%#lx) + amask (%#lx) too large\n",
  489                             s->r_start, amask));
  490                         break;
  491                 }
  492                 if (s->r_flags & RF_ALLOCATED) {
  493                         DPRINTF(("region is allocated\n"));
  494                         continue;
  495                 }
  496                 rstart = ulmax(s->r_start, start);
  497                 /*
  498                  * Try to find a region by adjusting to boundary and alignment
  499                  * until both conditions are satisfied. This is not an optimal
  500                  * algorithm, but in most cases it isn't really bad, either.
  501                  */
  502                 do {
  503                         rstart = (rstart + amask) & ~amask;
  504                         if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
  505                                 rstart += bound - (rstart & ~bmask);
  506                 } while ((rstart & amask) != 0 && rstart < end &&
  507                     rstart < s->r_end);
  508                 rend = ulmin(s->r_end, ulmax(rstart + count - 1, end));
  509                 if (rstart > rend) {
  510                         DPRINTF(("adjusted start exceeds end\n"));
  511                         continue;
  512                 }
  513                 DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
  514                        rstart, rend, (rend - rstart + 1), count));
  515 
  516                 if ((rend - rstart + 1) >= count) {
  517                         DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
  518                                rstart, rend, (rend - rstart + 1)));
  519                         if ((s->r_end - s->r_start + 1) == count) {
  520                                 DPRINTF(("candidate region is entire chunk\n"));
  521                                 rv = s;
  522                                 rv->r_flags = new_rflags;
  523                                 rv->r_dev = dev;
  524                                 goto out;
  525                         }
  526 
  527                         /*
  528                          * If s->r_start < rstart and
  529                          *    s->r_end > rstart + count - 1, then
  530                          * we need to split the region into three pieces
  531                          * (the middle one will get returned to the user).
  532                          * Otherwise, we are allocating at either the
  533                          * beginning or the end of s, so we only need to
  534                          * split it in two.  The first case requires
  535                          * two new allocations; the second requires but one.
  536                          */
  537                         rv = int_alloc_resource(M_NOWAIT);
  538                         if (rv == NULL)
  539                                 goto out;
  540                         rv->r_start = rstart;
  541                         rv->r_end = rstart + count - 1;
  542                         rv->r_flags = new_rflags;
  543                         rv->r_dev = dev;
  544                         rv->r_rm = rm;
  545 
  546                         if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
  547                                 DPRINTF(("splitting region in three parts: "
  548                                        "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
  549                                        s->r_start, rv->r_start - 1,
  550                                        rv->r_start, rv->r_end,
  551                                        rv->r_end + 1, s->r_end));
  552                                 /*
  553                                  * We are allocating in the middle.
  554                                  */
  555                                 r = int_alloc_resource(M_NOWAIT);
  556                                 if (r == NULL) {
  557                                         free(rv, M_RMAN);
  558                                         rv = NULL;
  559                                         goto out;
  560                                 }
  561                                 r->r_start = rv->r_end + 1;
  562                                 r->r_end = s->r_end;
  563                                 r->r_flags = s->r_flags;
  564                                 r->r_rm = rm;
  565                                 s->r_end = rv->r_start - 1;
  566                                 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
  567                                                      r_link);
  568                                 TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
  569                                                      r_link);
  570                         } else if (s->r_start == rv->r_start) {
  571                                 DPRINTF(("allocating from the beginning\n"));
  572                                 /*
  573                                  * We are allocating at the beginning.
  574                                  */
  575                                 s->r_start = rv->r_end + 1;
  576                                 TAILQ_INSERT_BEFORE(s, rv, r_link);
  577                         } else {
  578                                 DPRINTF(("allocating at the end\n"));
  579                                 /*
  580                                  * We are allocating at the end.
  581                                  */
  582                                 s->r_end = rv->r_start - 1;
  583                                 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
  584                                                      r_link);
  585                         }
  586                         goto out;
  587                 }
  588         }
  589 
  590         /*
  591          * Now find an acceptable shared region, if the client's requirements
  592          * allow sharing.  By our implementation restriction, a candidate
  593          * region must match exactly by both size and sharing type in order
  594          * to be considered compatible with the client's request.  (The
  595          * former restriction could probably be lifted without too much
  596          * additional work, but this does not seem warranted.)
  597          */
  598         DPRINTF(("no unshared regions found\n"));
  599         if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
  600                 goto out;
  601 
  602         for (s = r; s && s->r_end <= end; s = TAILQ_NEXT(s, r_link)) {
  603                 if (SHARE_TYPE(s->r_flags) == SHARE_TYPE(flags) &&
  604                     s->r_start >= start &&
  605                     (s->r_end - s->r_start + 1) == count &&
  606                     (s->r_start & amask) == 0 &&
  607                     ((s->r_start ^ s->r_end) & bmask) == 0) {
  608                         rv = int_alloc_resource(M_NOWAIT);
  609                         if (rv == NULL)
  610                                 goto out;
  611                         rv->r_start = s->r_start;
  612                         rv->r_end = s->r_end;
  613                         rv->r_flags = new_rflags;
  614                         rv->r_dev = dev;
  615                         rv->r_rm = rm;
  616                         if (s->r_sharehead == NULL) {
  617                                 s->r_sharehead = malloc(sizeof *s->r_sharehead,
  618                                                 M_RMAN, M_NOWAIT | M_ZERO);
  619                                 if (s->r_sharehead == NULL) {
  620                                         free(rv, M_RMAN);
  621                                         rv = NULL;
  622                                         goto out;
  623                                 }
  624                                 LIST_INIT(s->r_sharehead);
  625                                 LIST_INSERT_HEAD(s->r_sharehead, s,
  626                                                  r_sharelink);
  627                                 s->r_flags |= RF_FIRSTSHARE;
  628                         }
  629                         rv->r_sharehead = s->r_sharehead;
  630                         LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
  631                         goto out;
  632                 }
  633         }
  634 
  635         /*
  636          * We couldn't find anything.
  637          */
  638 out:
  639         /*
  640          * If the user specified RF_ACTIVE in flags, we attempt to atomically
  641          * activate the resource.  If this fails, we release the resource
  642          * and indicate overall failure.  (This behavior probably doesn't
  643          * make sense for RF_TIMESHARE-type resources.)
  644          */
  645         if (rv && (flags & RF_ACTIVE) != 0) {
  646                 struct resource_i *whohas;
  647                 if (int_rman_activate_resource(rm, rv, &whohas)) {
  648                         int_rman_release_resource(rm, rv);
  649                         rv = NULL;
  650                 }
  651         }
  652 
  653         mtx_unlock(rm->rm_mtx);
  654         return (rv == NULL ? NULL : &rv->r_r);
  655 }
  656 
  657 struct resource *
  658 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
  659                       u_int flags, struct device *dev)
  660 {
  661 
  662         return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
  663             dev));
  664 }
  665 
  666 static int
  667 int_rman_activate_resource(struct rman *rm, struct resource_i *r,
  668                            struct resource_i **whohas)
  669 {
  670         struct resource_i *s;
  671         int ok;
  672 
  673         /*
  674          * If we are not timesharing, then there is nothing much to do.
  675          * If we already have the resource, then there is nothing at all to do.
  676          * If we are not on a sharing list with anybody else, then there is
  677          * little to do.
  678          */
  679         if ((r->r_flags & RF_TIMESHARE) == 0
  680             || (r->r_flags & RF_ACTIVE) != 0
  681             || r->r_sharehead == NULL) {
  682                 r->r_flags |= RF_ACTIVE;
  683                 return 0;
  684         }
  685 
  686         ok = 1;
  687         for (s = LIST_FIRST(r->r_sharehead); s && ok;
  688              s = LIST_NEXT(s, r_sharelink)) {
  689                 if ((s->r_flags & RF_ACTIVE) != 0) {
  690                         ok = 0;
  691                         *whohas = s;
  692                 }
  693         }
  694         if (ok) {
  695                 r->r_flags |= RF_ACTIVE;
  696                 return 0;
  697         }
  698         return EBUSY;
  699 }
  700 
  701 int
  702 rman_activate_resource(struct resource *re)
  703 {
  704         int rv;
  705         struct resource_i *r, *whohas;
  706         struct rman *rm;
  707 
  708         r = re->__r_i;
  709         rm = r->r_rm;
  710         mtx_lock(rm->rm_mtx);
  711         rv = int_rman_activate_resource(rm, r, &whohas);
  712         mtx_unlock(rm->rm_mtx);
  713         return rv;
  714 }
  715 
  716 int
  717 rman_await_resource(struct resource *re, int pri, int timo)
  718 {
  719         int rv;
  720         struct resource_i *r, *whohas;
  721         struct rman *rm;
  722 
  723         r = re->__r_i;
  724         rm = r->r_rm;
  725         mtx_lock(rm->rm_mtx);
  726         for (;;) {
  727                 rv = int_rman_activate_resource(rm, r, &whohas);
  728                 if (rv != EBUSY)
  729                         return (rv);    /* returns with mutex held */
  730 
  731                 if (r->r_sharehead == NULL)
  732                         panic("rman_await_resource");
  733                 whohas->r_flags |= RF_WANTED;
  734                 rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo);
  735                 if (rv) {
  736                         mtx_unlock(rm->rm_mtx);
  737                         return (rv);
  738                 }
  739         }
  740 }
  741 
  742 static int
  743 int_rman_deactivate_resource(struct resource_i *r)
  744 {
  745 
  746         r->r_flags &= ~RF_ACTIVE;
  747         if (r->r_flags & RF_WANTED) {
  748                 r->r_flags &= ~RF_WANTED;
  749                 wakeup(r->r_sharehead);
  750         }
  751         return 0;
  752 }
  753 
  754 int
  755 rman_deactivate_resource(struct resource *r)
  756 {
  757         struct rman *rm;
  758 
  759         rm = r->__r_i->r_rm;
  760         mtx_lock(rm->rm_mtx);
  761         int_rman_deactivate_resource(r->__r_i);
  762         mtx_unlock(rm->rm_mtx);
  763         return 0;
  764 }
  765 
  766 static int
  767 int_rman_release_resource(struct rman *rm, struct resource_i *r)
  768 {
  769         struct resource_i *s, *t;
  770 
  771         if (r->r_flags & RF_ACTIVE)
  772                 int_rman_deactivate_resource(r);
  773 
  774         /*
  775          * Check for a sharing list first.  If there is one, then we don't
  776          * have to think as hard.
  777          */
  778         if (r->r_sharehead) {
  779                 /*
  780                  * If a sharing list exists, then we know there are at
  781                  * least two sharers.
  782                  *
  783                  * If we are in the main circleq, appoint someone else.
  784                  */
  785                 LIST_REMOVE(r, r_sharelink);
  786                 s = LIST_FIRST(r->r_sharehead);
  787                 if (r->r_flags & RF_FIRSTSHARE) {
  788                         s->r_flags |= RF_FIRSTSHARE;
  789                         TAILQ_INSERT_BEFORE(r, s, r_link);
  790                         TAILQ_REMOVE(&rm->rm_list, r, r_link);
  791                 }
  792 
  793                 /*
  794                  * Make sure that the sharing list goes away completely
  795                  * if the resource is no longer being shared at all.
  796                  */
  797                 if (LIST_NEXT(s, r_sharelink) == NULL) {
  798                         free(s->r_sharehead, M_RMAN);
  799                         s->r_sharehead = NULL;
  800                         s->r_flags &= ~RF_FIRSTSHARE;
  801                 }
  802                 goto out;
  803         }
  804 
  805         /*
  806          * Look at the adjacent resources in the list and see if our
  807          * segment can be merged with any of them.  If either of the
  808          * resources is allocated or is not exactly adjacent then they
  809          * cannot be merged with our segment.
  810          */
  811         s = TAILQ_PREV(r, resource_head, r_link);
  812         if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
  813             s->r_end + 1 != r->r_start))
  814                 s = NULL;
  815         t = TAILQ_NEXT(r, r_link);
  816         if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
  817             r->r_end + 1 != t->r_start))
  818                 t = NULL;
  819 
  820         if (s != NULL && t != NULL) {
  821                 /*
  822                  * Merge all three segments.
  823                  */
  824                 s->r_end = t->r_end;
  825                 TAILQ_REMOVE(&rm->rm_list, r, r_link);
  826                 TAILQ_REMOVE(&rm->rm_list, t, r_link);
  827                 free(t, M_RMAN);
  828         } else if (s != NULL) {
  829                 /*
  830                  * Merge previous segment with ours.
  831                  */
  832                 s->r_end = r->r_end;
  833                 TAILQ_REMOVE(&rm->rm_list, r, r_link);
  834         } else if (t != NULL) {
  835                 /*
  836                  * Merge next segment with ours.
  837                  */
  838                 t->r_start = r->r_start;
  839                 TAILQ_REMOVE(&rm->rm_list, r, r_link);
  840         } else {
  841                 /*
  842                  * At this point, we know there is nothing we
  843                  * can potentially merge with, because on each
  844                  * side, there is either nothing there or what is
  845                  * there is still allocated.  In that case, we don't
  846                  * want to remove r from the list; we simply want to
  847                  * change it to an unallocated region and return
  848                  * without freeing anything.
  849                  */
  850                 r->r_flags &= ~RF_ALLOCATED;
  851                 r->r_dev = NULL;
  852                 return 0;
  853         }
  854 
  855 out:
  856         free(r, M_RMAN);
  857         return 0;
  858 }
  859 
  860 int
  861 rman_release_resource(struct resource *re)
  862 {
  863         int rv;
  864         struct resource_i *r;
  865         struct rman *rm;
  866 
  867         r = re->__r_i;
  868         rm = r->r_rm;
  869         mtx_lock(rm->rm_mtx);
  870         rv = int_rman_release_resource(rm, r);
  871         mtx_unlock(rm->rm_mtx);
  872         return (rv);
  873 }
  874 
  875 uint32_t
  876 rman_make_alignment_flags(uint32_t size)
  877 {
  878         int i;
  879 
  880         /*
  881          * Find the hightest bit set, and add one if more than one bit
  882          * set.  We're effectively computing the ceil(log2(size)) here.
  883          */
  884         for (i = 31; i > 0; i--)
  885                 if ((1 << i) & size)
  886                         break;
  887         if (~(1 << i) & size)
  888                 i++;
  889 
  890         return(RF_ALIGNMENT_LOG2(i));
  891 }
  892 
  893 void
  894 rman_set_start(struct resource *r, u_long start)
  895 {
  896 
  897         r->__r_i->r_start = start;
  898 }
  899 
  900 u_long
  901 rman_get_start(struct resource *r)
  902 {
  903 
  904         return (r->__r_i->r_start);
  905 }
  906 
  907 void
  908 rman_set_end(struct resource *r, u_long end)
  909 {
  910 
  911         r->__r_i->r_end = end;
  912 }
  913 
  914 u_long
  915 rman_get_end(struct resource *r)
  916 {
  917 
  918         return (r->__r_i->r_end);
  919 }
  920 
  921 u_long
  922 rman_get_size(struct resource *r)
  923 {
  924 
  925         return (r->__r_i->r_end - r->__r_i->r_start + 1);
  926 }
  927 
  928 u_int
  929 rman_get_flags(struct resource *r)
  930 {
  931 
  932         return (r->__r_i->r_flags);
  933 }
  934 
  935 void
  936 rman_set_virtual(struct resource *r, void *v)
  937 {
  938 
  939         r->__r_i->r_virtual = v;
  940 }
  941 
  942 void *
  943 rman_get_virtual(struct resource *r)
  944 {
  945 
  946         return (r->__r_i->r_virtual);
  947 }
  948 
  949 void
  950 rman_set_bustag(struct resource *r, bus_space_tag_t t)
  951 {
  952 
  953         r->r_bustag = t;
  954 }
  955 
  956 bus_space_tag_t
  957 rman_get_bustag(struct resource *r)
  958 {
  959 
  960         return (r->r_bustag);
  961 }
  962 
  963 void
  964 rman_set_bushandle(struct resource *r, bus_space_handle_t h)
  965 {
  966 
  967         r->r_bushandle = h;
  968 }
  969 
  970 bus_space_handle_t
  971 rman_get_bushandle(struct resource *r)
  972 {
  973 
  974         return (r->r_bushandle);
  975 }
  976 
  977 void
  978 rman_set_rid(struct resource *r, int rid)
  979 {
  980 
  981         r->__r_i->r_rid = rid;
  982 }
  983 
  984 int
  985 rman_get_rid(struct resource *r)
  986 {
  987 
  988         return (r->__r_i->r_rid);
  989 }
  990 
  991 void
  992 rman_set_device(struct resource *r, struct device *dev)
  993 {
  994 
  995         r->__r_i->r_dev = dev;
  996 }
  997 
  998 struct device *
  999 rman_get_device(struct resource *r)
 1000 {
 1001 
 1002         return (r->__r_i->r_dev);
 1003 }
 1004 
 1005 int
 1006 rman_is_region_manager(struct resource *r, struct rman *rm)
 1007 {
 1008 
 1009         return (r->__r_i->r_rm == rm);
 1010 }
 1011 
 1012 /*
 1013  * Sysctl interface for scanning the resource lists.
 1014  *
 1015  * We take two input parameters; the index into the list of resource
 1016  * managers, and the resource offset into the list.
 1017  */
 1018 static int
 1019 sysctl_rman(SYSCTL_HANDLER_ARGS)
 1020 {
 1021         int                     *name = (int *)arg1;
 1022         u_int                   namelen = arg2;
 1023         int                     rman_idx, res_idx;
 1024         struct rman             *rm;
 1025         struct resource_i       *res;
 1026         struct resource_i       *sres;
 1027         struct u_rman           urm;
 1028         struct u_resource       ures;
 1029         int                     error;
 1030 
 1031         if (namelen != 3)
 1032                 return (EINVAL);
 1033 
 1034         if (bus_data_generation_check(name[0]))
 1035                 return (EINVAL);
 1036         rman_idx = name[1];
 1037         res_idx = name[2];
 1038 
 1039         /*
 1040          * Find the indexed resource manager
 1041          */
 1042         mtx_lock(&rman_mtx);
 1043         TAILQ_FOREACH(rm, &rman_head, rm_link) {
 1044                 if (rman_idx-- == 0)
 1045                         break;
 1046         }
 1047         mtx_unlock(&rman_mtx);
 1048         if (rm == NULL)
 1049                 return (ENOENT);
 1050 
 1051         /*
 1052          * If the resource index is -1, we want details on the
 1053          * resource manager.
 1054          */
 1055         if (res_idx == -1) {
 1056                 bzero(&urm, sizeof(urm));
 1057                 urm.rm_handle = (uintptr_t)rm;
 1058                 if (rm->rm_descr != NULL)
 1059                         strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
 1060                 urm.rm_start = rm->rm_start;
 1061                 urm.rm_size = rm->rm_end - rm->rm_start + 1;
 1062                 urm.rm_type = rm->rm_type;
 1063 
 1064                 error = SYSCTL_OUT(req, &urm, sizeof(urm));
 1065                 return (error);
 1066         }
 1067 
 1068         /*
 1069          * Find the indexed resource and return it.
 1070          */
 1071         mtx_lock(rm->rm_mtx);
 1072         TAILQ_FOREACH(res, &rm->rm_list, r_link) {
 1073                 if (res->r_sharehead != NULL) {
 1074                         LIST_FOREACH(sres, res->r_sharehead, r_sharelink)
 1075                                 if (res_idx-- == 0) {
 1076                                         res = sres;
 1077                                         goto found;
 1078                                 }
 1079                 }
 1080                 else if (res_idx-- == 0)
 1081                                 goto found;
 1082         }
 1083         mtx_unlock(rm->rm_mtx);
 1084         return (ENOENT);
 1085 
 1086 found:
 1087         bzero(&ures, sizeof(ures));
 1088         ures.r_handle = (uintptr_t)res;
 1089         ures.r_parent = (uintptr_t)res->r_rm;
 1090         ures.r_device = (uintptr_t)res->r_dev;
 1091         if (res->r_dev != NULL) {
 1092                 if (device_get_name(res->r_dev) != NULL) {
 1093                         snprintf(ures.r_devname, RM_TEXTLEN,
 1094                             "%s%d",
 1095                             device_get_name(res->r_dev),
 1096                             device_get_unit(res->r_dev));
 1097                 } else {
 1098                         strlcpy(ures.r_devname, "nomatch",
 1099                             RM_TEXTLEN);
 1100                 }
 1101         } else {
 1102                 ures.r_devname[0] = '\0';
 1103         }
 1104         ures.r_start = res->r_start;
 1105         ures.r_size = res->r_end - res->r_start + 1;
 1106         ures.r_flags = res->r_flags;
 1107 
 1108         mtx_unlock(rm->rm_mtx);
 1109         error = SYSCTL_OUT(req, &ures, sizeof(ures));
 1110         return (error);
 1111 }
 1112 
 1113 SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
 1114     "kernel resource manager");
 1115 
 1116 #ifdef DDB
 1117 static void
 1118 dump_rman(struct rman *rm)
 1119 {
 1120         struct resource_i *r;
 1121         const char *devname;
 1122 
 1123         if (db_pager_quit)
 1124                 return;
 1125         db_printf("rman: %s\n", rm->rm_descr);
 1126         db_printf("    0x%lx-0x%lx (full range)\n", rm->rm_start, rm->rm_end);
 1127         TAILQ_FOREACH(r, &rm->rm_list, r_link) {
 1128                 if (r->r_dev != NULL) {
 1129                         devname = device_get_nameunit(r->r_dev);
 1130                         if (devname == NULL)
 1131                                 devname = "nomatch";
 1132                 } else
 1133                         devname = NULL;
 1134                 db_printf("    0x%lx-0x%lx ", r->r_start, r->r_end);
 1135                 if (devname != NULL)
 1136                         db_printf("(%s)\n", devname);
 1137                 else
 1138                         db_printf("----\n");
 1139                 if (db_pager_quit)
 1140                         return;
 1141         }
 1142 }
 1143 
 1144 DB_SHOW_COMMAND(rman, db_show_rman)
 1145 {
 1146 
 1147         if (have_addr)
 1148                 dump_rman((struct rman *)addr);
 1149 }
 1150 
 1151 DB_SHOW_ALL_COMMAND(rman, db_show_all_rman)
 1152 {
 1153         struct rman *rm;
 1154 
 1155         TAILQ_FOREACH(rm, &rman_head, rm_link)
 1156                 dump_rman(rm);
 1157 }
 1158 DB_SHOW_ALIAS(allrman, db_show_all_rman);
 1159 #endif

Cache object: 5cdac0cd09d8d9d81aec26b0d3b8c01d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.