The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_sglist.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 2008 Yahoo!, Inc.
    5  * All rights reserved.
    6  * Written by: John Baldwin <jhb@FreeBSD.org>
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. Neither the name of the author nor the names of any co-contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD$");
   35 
   36 #include <sys/param.h>
   37 #include <sys/kernel.h>
   38 #include <sys/bio.h>
   39 #include <sys/malloc.h>
   40 #include <sys/mbuf.h>
   41 #include <sys/proc.h>
   42 #include <sys/sglist.h>
   43 #include <sys/uio.h>
   44 
   45 #include <vm/vm.h>
   46 #include <vm/vm_page.h>
   47 #include <vm/pmap.h>
   48 #include <vm/vm_map.h>
   49 
   50 #include <sys/ktr.h>
   51 
   52 static MALLOC_DEFINE(M_SGLIST, "sglist", "scatter/gather lists");
   53 
   54 /*
   55  * Convenience macros to save the state of an sglist so it can be restored
   56  * if an append attempt fails.  Since sglist's only grow we only need to
   57  * save the current count of segments and the length of the ending segment.
   58  * Earlier segments will not be changed by an append, and the only change
   59  * that can occur to the ending segment is that it can be extended.
   60  */
   61 struct sgsave {
   62         u_short sg_nseg;
   63         size_t ss_len;
   64 };
   65 
   66 #define SGLIST_SAVE(sg, sgsave) do {                                    \
   67         (sgsave).sg_nseg = (sg)->sg_nseg;                               \
   68         if ((sgsave).sg_nseg > 0)                                       \
   69                 (sgsave).ss_len = (sg)->sg_segs[(sgsave).sg_nseg - 1].ss_len; \
   70         else                                                            \
   71                 (sgsave).ss_len = 0;                                    \
   72 } while (0)
   73 
   74 #define SGLIST_RESTORE(sg, sgsave) do {                                 \
   75         (sg)->sg_nseg = (sgsave).sg_nseg;                               \
   76         if ((sgsave).sg_nseg > 0)                                       \
   77                 (sg)->sg_segs[(sgsave).sg_nseg - 1].ss_len = (sgsave).ss_len; \
   78 } while (0)
   79 
   80 /*
   81  * Append a single (paddr, len) to a sglist.  sg is the list and ss is
   82  * the current segment in the list.  If we run out of segments then
   83  * EFBIG will be returned.
   84  */
   85 static __inline int
   86 _sglist_append_range(struct sglist *sg, struct sglist_seg **ssp,
   87     vm_paddr_t paddr, size_t len)
   88 {
   89         struct sglist_seg *ss;
   90 
   91         ss = *ssp;
   92         if (ss->ss_paddr + ss->ss_len == paddr)
   93                 ss->ss_len += len;
   94         else {
   95                 if (sg->sg_nseg == sg->sg_maxseg)
   96                         return (EFBIG);
   97                 ss++;
   98                 ss->ss_paddr = paddr;
   99                 ss->ss_len = len;
  100                 sg->sg_nseg++;
  101                 *ssp = ss;
  102         }
  103         return (0);
  104 }
  105 
  106 /*
  107  * Worker routine to append a virtual address range (either kernel or
  108  * user) to a scatter/gather list.
  109  */
  110 static __inline int
  111 _sglist_append_buf(struct sglist *sg, void *buf, size_t len, pmap_t pmap,
  112     size_t *donep)
  113 {
  114         struct sglist_seg *ss;
  115         vm_offset_t vaddr, offset;
  116         vm_paddr_t paddr;
  117         size_t seglen;
  118         int error;
  119 
  120         if (donep)
  121                 *donep = 0;
  122         if (len == 0)
  123                 return (0);
  124 
  125         /* Do the first page.  It may have an offset. */
  126         vaddr = (vm_offset_t)buf;
  127         offset = vaddr & PAGE_MASK;
  128         if (pmap != NULL)
  129                 paddr = pmap_extract(pmap, vaddr);
  130         else
  131                 paddr = pmap_kextract(vaddr);
  132         seglen = MIN(len, PAGE_SIZE - offset);
  133         if (sg->sg_nseg == 0) {
  134                 ss = sg->sg_segs;
  135                 ss->ss_paddr = paddr;
  136                 ss->ss_len = seglen;
  137                 sg->sg_nseg = 1;
  138         } else {
  139                 ss = &sg->sg_segs[sg->sg_nseg - 1];
  140                 error = _sglist_append_range(sg, &ss, paddr, seglen);
  141                 if (error)
  142                         return (error);
  143         }
  144         vaddr += seglen;
  145         len -= seglen;
  146         if (donep)
  147                 *donep += seglen;
  148 
  149         while (len > 0) {
  150                 seglen = MIN(len, PAGE_SIZE);
  151                 if (pmap != NULL)
  152                         paddr = pmap_extract(pmap, vaddr);
  153                 else
  154                         paddr = pmap_kextract(vaddr);
  155                 error = _sglist_append_range(sg, &ss, paddr, seglen);
  156                 if (error)
  157                         return (error);
  158                 vaddr += seglen;
  159                 len -= seglen;
  160                 if (donep)
  161                         *donep += seglen;
  162         }
  163 
  164         return (0);
  165 }
  166 
  167 /*
  168  * Determine the number of scatter/gather list elements needed to
  169  * describe a kernel virtual address range.
  170  */
  171 int
  172 sglist_count(void *buf, size_t len)
  173 {
  174         vm_offset_t vaddr, vendaddr;
  175         vm_paddr_t lastaddr, paddr;
  176         int nsegs;
  177 
  178         if (len == 0)
  179                 return (0);
  180 
  181         vaddr = trunc_page((vm_offset_t)buf);
  182         vendaddr = (vm_offset_t)buf + len;
  183         nsegs = 1;
  184         lastaddr = pmap_kextract(vaddr);
  185         vaddr += PAGE_SIZE;
  186         while (vaddr < vendaddr) {
  187                 paddr = pmap_kextract(vaddr);
  188                 if (lastaddr + PAGE_SIZE != paddr)
  189                         nsegs++;
  190                 lastaddr = paddr;
  191                 vaddr += PAGE_SIZE;
  192         }
  193         return (nsegs);
  194 }
  195 
  196 /*
  197  * Determine the number of scatter/gather list elements needed to
  198  * describe a buffer backed by an array of VM pages.
  199  */
  200 int
  201 sglist_count_vmpages(vm_page_t *m, size_t pgoff, size_t len)
  202 {
  203         vm_paddr_t lastaddr, paddr;
  204         int i, nsegs;
  205 
  206         if (len == 0)
  207                 return (0);
  208 
  209         len += pgoff;
  210         nsegs = 1;
  211         lastaddr = VM_PAGE_TO_PHYS(m[0]);
  212         for (i = 1; len > PAGE_SIZE; len -= PAGE_SIZE, i++) {
  213                 paddr = VM_PAGE_TO_PHYS(m[i]);
  214                 if (lastaddr + PAGE_SIZE != paddr)
  215                         nsegs++;
  216                 lastaddr = paddr;
  217         }
  218         return (nsegs);
  219 }
  220 
  221 /*
  222  * Determine the number of scatter/gather list elements needed to
  223  * describe an M_EXTPG mbuf.
  224  */
  225 int
  226 sglist_count_mbuf_epg(struct mbuf *m, size_t off, size_t len)
  227 {
  228         vm_paddr_t nextaddr, paddr;
  229         size_t seglen, segoff;
  230         int i, nsegs, pglen, pgoff;
  231 
  232         if (len == 0)
  233                 return (0);
  234 
  235         nsegs = 0;
  236         if (m->m_epg_hdrlen != 0) {
  237                 if (off >= m->m_epg_hdrlen) {
  238                         off -= m->m_epg_hdrlen;
  239                 } else {
  240                         seglen = m->m_epg_hdrlen - off;
  241                         segoff = off;
  242                         seglen = MIN(seglen, len);
  243                         off = 0;
  244                         len -= seglen;
  245                         nsegs += sglist_count(&m->m_epg_hdr[segoff],
  246                             seglen);
  247                 }
  248         }
  249         nextaddr = 0;
  250         pgoff = m->m_epg_1st_off;
  251         for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
  252                 pglen = m_epg_pagelen(m, i, pgoff);
  253                 if (off >= pglen) {
  254                         off -= pglen;
  255                         pgoff = 0;
  256                         continue;
  257                 }
  258                 seglen = pglen - off;
  259                 segoff = pgoff + off;
  260                 off = 0;
  261                 seglen = MIN(seglen, len);
  262                 len -= seglen;
  263                 paddr = m->m_epg_pa[i] + segoff;
  264                 if (paddr != nextaddr)
  265                         nsegs++;
  266                 nextaddr = paddr + seglen;
  267                 pgoff = 0;
  268         };
  269         if (len != 0) {
  270                 seglen = MIN(len, m->m_epg_trllen - off);
  271                 len -= seglen;
  272                 nsegs += sglist_count(&m->m_epg_trail[off], seglen);
  273         }
  274         KASSERT(len == 0, ("len != 0"));
  275         return (nsegs);
  276 }
  277 
  278 /*
  279  * Allocate a scatter/gather list along with 'nsegs' segments.  The
  280  * 'mflags' parameters are the same as passed to malloc(9).  The caller
  281  * should use sglist_free() to free this list.
  282  */
  283 struct sglist *
  284 sglist_alloc(int nsegs, int mflags)
  285 {
  286         struct sglist *sg;
  287 
  288         sg = malloc(sizeof(struct sglist) + nsegs * sizeof(struct sglist_seg),
  289             M_SGLIST, mflags);
  290         if (sg == NULL)
  291                 return (NULL);
  292         sglist_init(sg, nsegs, (struct sglist_seg *)(sg + 1));
  293         return (sg);
  294 }
  295 
  296 /*
  297  * Free a scatter/gather list allocated via sglist_allc().
  298  */
  299 void
  300 sglist_free(struct sglist *sg)
  301 {
  302 
  303         if (sg == NULL)
  304                 return;
  305 
  306         if (refcount_release(&sg->sg_refs))
  307                 free(sg, M_SGLIST);
  308 }
  309 
  310 /*
  311  * Append the segments to describe a single kernel virtual address
  312  * range to a scatter/gather list.  If there are insufficient
  313  * segments, then this fails with EFBIG.
  314  */
  315 int
  316 sglist_append(struct sglist *sg, void *buf, size_t len)
  317 {
  318         struct sgsave save;
  319         int error;
  320 
  321         if (sg->sg_maxseg == 0)
  322                 return (EINVAL);
  323         SGLIST_SAVE(sg, save);
  324         error = _sglist_append_buf(sg, buf, len, NULL, NULL);
  325         if (error)
  326                 SGLIST_RESTORE(sg, save);
  327         return (error);
  328 }
  329 
  330 /*
  331  * Append the segments to describe a bio's data to a scatter/gather list.
  332  * If there are insufficient segments, then this fails with EFBIG.
  333  *
  334  * NOTE: This function expects bio_bcount to be initialized.
  335  */
  336 int
  337 sglist_append_bio(struct sglist *sg, struct bio *bp)
  338 {
  339         int error;
  340 
  341         if ((bp->bio_flags & BIO_UNMAPPED) == 0)
  342                 error = sglist_append(sg, bp->bio_data, bp->bio_bcount);
  343         else
  344                 error = sglist_append_vmpages(sg, bp->bio_ma,
  345                     bp->bio_ma_offset, bp->bio_bcount);
  346         return (error);
  347 }
  348 
  349 /*
  350  * Append a single physical address range to a scatter/gather list.
  351  * If there are insufficient segments, then this fails with EFBIG.
  352  */
  353 int
  354 sglist_append_phys(struct sglist *sg, vm_paddr_t paddr, size_t len)
  355 {
  356         struct sglist_seg *ss;
  357         struct sgsave save;
  358         int error;
  359 
  360         if (sg->sg_maxseg == 0)
  361                 return (EINVAL);
  362         if (len == 0)
  363                 return (0);
  364 
  365         if (sg->sg_nseg == 0) {
  366                 sg->sg_segs[0].ss_paddr = paddr;
  367                 sg->sg_segs[0].ss_len = len;
  368                 sg->sg_nseg = 1;
  369                 return (0);
  370         }
  371         ss = &sg->sg_segs[sg->sg_nseg - 1];
  372         SGLIST_SAVE(sg, save);
  373         error = _sglist_append_range(sg, &ss, paddr, len);
  374         if (error)
  375                 SGLIST_RESTORE(sg, save);
  376         return (error);
  377 }
  378 
  379 /*
  380  * Append the segments of single multi-page mbuf.
  381  * If there are insufficient segments, then this fails with EFBIG.
  382  */
  383 int
  384 sglist_append_mbuf_epg(struct sglist *sg, struct mbuf *m, size_t off,
  385     size_t len)
  386 {
  387         size_t seglen, segoff;
  388         vm_paddr_t paddr;
  389         int error, i, pglen, pgoff;
  390 
  391         M_ASSERTEXTPG(m);
  392 
  393         error = 0;
  394         if (m->m_epg_hdrlen != 0) {
  395                 if (off >= m->m_epg_hdrlen) {
  396                         off -= m->m_epg_hdrlen;
  397                 } else {
  398                         seglen = m->m_epg_hdrlen - off;
  399                         segoff = off;
  400                         seglen = MIN(seglen, len);
  401                         off = 0;
  402                         len -= seglen;
  403                         error = sglist_append(sg,
  404                             &m->m_epg_hdr[segoff], seglen);
  405                 }
  406         }
  407         pgoff = m->m_epg_1st_off;
  408         for (i = 0; i < m->m_epg_npgs && error == 0 && len > 0; i++) {
  409                 pglen = m_epg_pagelen(m, i, pgoff);
  410                 if (off >= pglen) {
  411                         off -= pglen;
  412                         pgoff = 0;
  413                         continue;
  414                 }
  415                 seglen = pglen - off;
  416                 segoff = pgoff + off;
  417                 off = 0;
  418                 seglen = MIN(seglen, len);
  419                 len -= seglen;
  420                 paddr = m->m_epg_pa[i] + segoff;
  421                 error = sglist_append_phys(sg, paddr, seglen);
  422                 pgoff = 0;
  423         };
  424         if (error == 0 && len > 0) {
  425                 seglen = MIN(len, m->m_epg_trllen - off);
  426                 len -= seglen;
  427                 error = sglist_append(sg,
  428                     &m->m_epg_trail[off], seglen);
  429         }
  430         if (error == 0)
  431                 KASSERT(len == 0, ("len != 0"));
  432         return (error);
  433 }
  434 
  435 /*
  436  * Append the segments that describe a single mbuf chain to a
  437  * scatter/gather list.  If there are insufficient segments, then this
  438  * fails with EFBIG.
  439  */
  440 int
  441 sglist_append_mbuf(struct sglist *sg, struct mbuf *m0)
  442 {
  443         struct sgsave save;
  444         struct mbuf *m;
  445         int error;
  446 
  447         if (sg->sg_maxseg == 0)
  448                 return (EINVAL);
  449 
  450         error = 0;
  451         SGLIST_SAVE(sg, save);
  452         for (m = m0; m != NULL; m = m->m_next) {
  453                 if (m->m_len > 0) {
  454                         if ((m->m_flags & M_EXTPG) != 0)
  455                                 error = sglist_append_mbuf_epg(sg, m,
  456                                     mtod(m, vm_offset_t), m->m_len);
  457                         else
  458                                 error = sglist_append(sg, m->m_data,
  459                                     m->m_len);
  460                         if (error) {
  461                                 SGLIST_RESTORE(sg, save);
  462                                 return (error);
  463                         }
  464                 }
  465         }
  466         return (0);
  467 }
  468 
  469 /*
  470  * Append the segments that describe a buffer spanning an array of VM
  471  * pages.  The buffer begins at an offset of 'pgoff' in the first
  472  * page.
  473  */
  474 int
  475 sglist_append_vmpages(struct sglist *sg, vm_page_t *m, size_t pgoff,
  476     size_t len)
  477 {
  478         struct sgsave save;
  479         struct sglist_seg *ss;
  480         vm_paddr_t paddr;
  481         size_t seglen;
  482         int error, i;
  483 
  484         if (sg->sg_maxseg == 0)
  485                 return (EINVAL);
  486         if (len == 0)
  487                 return (0);
  488 
  489         SGLIST_SAVE(sg, save);
  490         i = 0;
  491         if (sg->sg_nseg == 0) {
  492                 seglen = min(PAGE_SIZE - pgoff, len);
  493                 sg->sg_segs[0].ss_paddr = VM_PAGE_TO_PHYS(m[0]) + pgoff;
  494                 sg->sg_segs[0].ss_len = seglen;
  495                 sg->sg_nseg = 1;
  496                 pgoff = 0;
  497                 len -= seglen;
  498                 i++;
  499         }
  500         ss = &sg->sg_segs[sg->sg_nseg - 1];
  501         for (; len > 0; i++, len -= seglen) {
  502                 seglen = min(PAGE_SIZE - pgoff, len);
  503                 paddr = VM_PAGE_TO_PHYS(m[i]) + pgoff;
  504                 error = _sglist_append_range(sg, &ss, paddr, seglen);
  505                 if (error) {
  506                         SGLIST_RESTORE(sg, save);
  507                         return (error);
  508                 }
  509                 pgoff = 0;
  510         }
  511         return (0);
  512 }
  513 
  514 /*
  515  * Append the segments that describe a single user address range to a
  516  * scatter/gather list.  If there are insufficient segments, then this
  517  * fails with EFBIG.
  518  */
  519 int
  520 sglist_append_user(struct sglist *sg, void *buf, size_t len, struct thread *td)
  521 {
  522         struct sgsave save;
  523         int error;
  524 
  525         if (sg->sg_maxseg == 0)
  526                 return (EINVAL);
  527         SGLIST_SAVE(sg, save);
  528         error = _sglist_append_buf(sg, buf, len,
  529             vmspace_pmap(td->td_proc->p_vmspace), NULL);
  530         if (error)
  531                 SGLIST_RESTORE(sg, save);
  532         return (error);
  533 }
  534 
  535 /*
  536  * Append a subset of an existing scatter/gather list 'source' to a
  537  * the scatter/gather list 'sg'.  If there are insufficient segments,
  538  * then this fails with EFBIG.
  539  */
  540 int
  541 sglist_append_sglist(struct sglist *sg, struct sglist *source, size_t offset,
  542     size_t length)
  543 {
  544         struct sgsave save;
  545         struct sglist_seg *ss;
  546         size_t seglen;
  547         int error, i;
  548 
  549         if (sg->sg_maxseg == 0 || length == 0)
  550                 return (EINVAL);
  551         SGLIST_SAVE(sg, save);
  552         error = EINVAL;
  553         ss = &sg->sg_segs[sg->sg_nseg - 1];
  554         for (i = 0; i < source->sg_nseg; i++) {
  555                 if (offset >= source->sg_segs[i].ss_len) {
  556                         offset -= source->sg_segs[i].ss_len;
  557                         continue;
  558                 }
  559                 seglen = source->sg_segs[i].ss_len - offset;
  560                 if (seglen > length)
  561                         seglen = length;
  562                 error = _sglist_append_range(sg, &ss,
  563                     source->sg_segs[i].ss_paddr + offset, seglen);
  564                 if (error)
  565                         break;
  566                 offset = 0;
  567                 length -= seglen;
  568                 if (length == 0)
  569                         break;
  570         }
  571         if (length != 0)
  572                 error = EINVAL;
  573         if (error)
  574                 SGLIST_RESTORE(sg, save);
  575         return (error);
  576 }
  577 
  578 /*
  579  * Append the segments that describe a single uio to a scatter/gather
  580  * list.  If there are insufficient segments, then this fails with
  581  * EFBIG.
  582  */
  583 int
  584 sglist_append_uio(struct sglist *sg, struct uio *uio)
  585 {
  586         struct iovec *iov;
  587         struct sgsave save;
  588         size_t resid, minlen;
  589         pmap_t pmap;
  590         int error, i;
  591 
  592         if (sg->sg_maxseg == 0)
  593                 return (EINVAL);
  594 
  595         resid = uio->uio_resid;
  596         iov = uio->uio_iov;
  597 
  598         if (uio->uio_segflg == UIO_USERSPACE) {
  599                 KASSERT(uio->uio_td != NULL,
  600                     ("sglist_append_uio: USERSPACE but no thread"));
  601                 pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace);
  602         } else
  603                 pmap = NULL;
  604 
  605         error = 0;
  606         SGLIST_SAVE(sg, save);
  607         for (i = 0; i < uio->uio_iovcnt && resid != 0; i++) {
  608                 /*
  609                  * Now at the first iovec to load.  Load each iovec
  610                  * until we have exhausted the residual count.
  611                  */
  612                 minlen = MIN(resid, iov[i].iov_len);
  613                 if (minlen > 0) {
  614                         error = _sglist_append_buf(sg, iov[i].iov_base, minlen,
  615                             pmap, NULL);
  616                         if (error) {
  617                                 SGLIST_RESTORE(sg, save);
  618                                 return (error);
  619                         }
  620                         resid -= minlen;
  621                 }
  622         }
  623         return (0);
  624 }
  625 
  626 /*
  627  * Append the segments that describe at most 'resid' bytes from a
  628  * single uio to a scatter/gather list.  If there are insufficient
  629  * segments, then only the amount that fits is appended.
  630  */
  631 int
  632 sglist_consume_uio(struct sglist *sg, struct uio *uio, size_t resid)
  633 {
  634         struct iovec *iov;
  635         size_t done;
  636         pmap_t pmap;
  637         int error, len;
  638 
  639         if (sg->sg_maxseg == 0)
  640                 return (EINVAL);
  641 
  642         if (uio->uio_segflg == UIO_USERSPACE) {
  643                 KASSERT(uio->uio_td != NULL,
  644                     ("sglist_consume_uio: USERSPACE but no thread"));
  645                 pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace);
  646         } else
  647                 pmap = NULL;
  648 
  649         error = 0;
  650         while (resid > 0 && uio->uio_resid) {
  651                 iov = uio->uio_iov;
  652                 len = iov->iov_len;
  653                 if (len == 0) {
  654                         uio->uio_iov++;
  655                         uio->uio_iovcnt--;
  656                         continue;
  657                 }
  658                 if (len > resid)
  659                         len = resid;
  660 
  661                 /*
  662                  * Try to append this iovec.  If we run out of room,
  663                  * then break out of the loop.
  664                  */
  665                 error = _sglist_append_buf(sg, iov->iov_base, len, pmap, &done);
  666                 iov->iov_base = (char *)iov->iov_base + done;
  667                 iov->iov_len -= done;
  668                 uio->uio_resid -= done;
  669                 uio->uio_offset += done;
  670                 resid -= done;
  671                 if (error)
  672                         break;
  673         }
  674         return (0);
  675 }
  676 
  677 /*
  678  * Allocate and populate a scatter/gather list to describe a single
  679  * kernel virtual address range.
  680  */
  681 struct sglist *
  682 sglist_build(void *buf, size_t len, int mflags)
  683 {
  684         struct sglist *sg;
  685         int nsegs;
  686 
  687         if (len == 0)
  688                 return (NULL);
  689 
  690         nsegs = sglist_count(buf, len);
  691         sg = sglist_alloc(nsegs, mflags);
  692         if (sg == NULL)
  693                 return (NULL);
  694         if (sglist_append(sg, buf, len) != 0) {
  695                 sglist_free(sg);
  696                 return (NULL);
  697         }
  698         return (sg);
  699 }
  700 
  701 /*
  702  * Clone a new copy of a scatter/gather list.
  703  */
  704 struct sglist *
  705 sglist_clone(struct sglist *sg, int mflags)
  706 {
  707         struct sglist *new;
  708 
  709         if (sg == NULL)
  710                 return (NULL);
  711         new = sglist_alloc(sg->sg_maxseg, mflags);
  712         if (new == NULL)
  713                 return (NULL);
  714         new->sg_nseg = sg->sg_nseg;
  715         bcopy(sg->sg_segs, new->sg_segs, sizeof(struct sglist_seg) *
  716             sg->sg_nseg);
  717         return (new);
  718 }
  719 
  720 /*
  721  * Calculate the total length of the segments described in a
  722  * scatter/gather list.
  723  */
  724 size_t
  725 sglist_length(struct sglist *sg)
  726 {
  727         size_t space;
  728         int i;
  729 
  730         space = 0;
  731         for (i = 0; i < sg->sg_nseg; i++)
  732                 space += sg->sg_segs[i].ss_len;
  733         return (space);
  734 }
  735 
  736 /*
  737  * Split a scatter/gather list into two lists.  The scatter/gather
  738  * entries for the first 'length' bytes of the 'original' list are
  739  * stored in the '*head' list and are removed from 'original'.
  740  *
  741  * If '*head' is NULL, then a new list will be allocated using
  742  * 'mflags'.  If M_NOWAIT is specified and the allocation fails,
  743  * ENOMEM will be returned.
  744  *
  745  * If '*head' is not NULL, it should point to an empty sglist.  If it
  746  * does not have enough room for the remaining space, then EFBIG will
  747  * be returned.  If '*head' is not empty, then EINVAL will be
  748  * returned.
  749  *
  750  * If 'original' is shared (refcount > 1), then EDOOFUS will be
  751  * returned.
  752  */
  753 int
  754 sglist_split(struct sglist *original, struct sglist **head, size_t length,
  755     int mflags)
  756 {
  757         struct sglist *sg;
  758         size_t space, split;
  759         int count, i;
  760 
  761         if (original->sg_refs > 1)
  762                 return (EDOOFUS);
  763 
  764         /* Figure out how big of a sglist '*head' has to hold. */
  765         count = 0;
  766         space = 0;
  767         split = 0;
  768         for (i = 0; i < original->sg_nseg; i++) {
  769                 space += original->sg_segs[i].ss_len;
  770                 count++;
  771                 if (space >= length) {
  772                         /*
  773                          * If 'length' falls in the middle of a
  774                          * scatter/gather list entry, then 'split'
  775                          * holds how much of that entry will remain in
  776                          * 'original'.
  777                          */
  778                         split = space - length;
  779                         break;
  780                 }
  781         }
  782 
  783         /* Nothing to do, so leave head empty. */
  784         if (count == 0)
  785                 return (0);
  786 
  787         if (*head == NULL) {
  788                 sg = sglist_alloc(count, mflags);
  789                 if (sg == NULL)
  790                         return (ENOMEM);
  791                 *head = sg;
  792         } else {
  793                 sg = *head;
  794                 if (sg->sg_maxseg < count)
  795                         return (EFBIG);
  796                 if (sg->sg_nseg != 0)
  797                         return (EINVAL);
  798         }
  799 
  800         /* Copy 'count' entries to 'sg' from 'original'. */
  801         bcopy(original->sg_segs, sg->sg_segs, count *
  802             sizeof(struct sglist_seg));
  803         sg->sg_nseg = count;
  804 
  805         /*
  806          * If we had to split a list entry, fixup the last entry in
  807          * 'sg' and the new first entry in 'original'.  We also
  808          * decrement 'count' by 1 since we will only be removing
  809          * 'count - 1' segments from 'original' now.
  810          */
  811         if (split != 0) {
  812                 count--;
  813                 sg->sg_segs[count].ss_len -= split;
  814                 original->sg_segs[count].ss_paddr =
  815                     sg->sg_segs[count].ss_paddr + split;
  816                 original->sg_segs[count].ss_len = split;
  817         }
  818 
  819         /* Trim 'count' entries from the front of 'original'. */
  820         original->sg_nseg -= count;
  821         bcopy(original->sg_segs + count, original->sg_segs, count *
  822             sizeof(struct sglist_seg));
  823         return (0);
  824 }
  825 
  826 /*
  827  * Append the scatter/gather list elements in 'second' to the
  828  * scatter/gather list 'first'.  If there is not enough space in
  829  * 'first', EFBIG is returned.
  830  */
  831 int
  832 sglist_join(struct sglist *first, struct sglist *second)
  833 {
  834         struct sglist_seg *flast, *sfirst;
  835         int append;
  836 
  837         /* If 'second' is empty, there is nothing to do. */
  838         if (second->sg_nseg == 0)
  839                 return (0);
  840 
  841         /*
  842          * If the first entry in 'second' can be appended to the last entry
  843          * in 'first' then set append to '1'.
  844          */
  845         append = 0;
  846         flast = &first->sg_segs[first->sg_nseg - 1];
  847         sfirst = &second->sg_segs[0];
  848         if (first->sg_nseg != 0 &&
  849             flast->ss_paddr + flast->ss_len == sfirst->ss_paddr)
  850                 append = 1;
  851 
  852         /* Make sure 'first' has enough room. */
  853         if (first->sg_nseg + second->sg_nseg - append > first->sg_maxseg)
  854                 return (EFBIG);
  855 
  856         /* Merge last in 'first' and first in 'second' if needed. */
  857         if (append)
  858                 flast->ss_len += sfirst->ss_len;
  859 
  860         /* Append new segments from 'second' to 'first'. */
  861         bcopy(first->sg_segs + first->sg_nseg, second->sg_segs + append,
  862             (second->sg_nseg - append) * sizeof(struct sglist_seg));
  863         first->sg_nseg += second->sg_nseg - append;
  864         sglist_reset(second);
  865         return (0);
  866 }
  867 
  868 /*
  869  * Generate a new scatter/gather list from a range of an existing
  870  * scatter/gather list.  The 'offset' and 'length' parameters specify
  871  * the logical range of the 'original' list to extract.  If that range
  872  * is not a subset of the length of 'original', then EINVAL is
  873  * returned.  The new scatter/gather list is stored in '*slice'.
  874  *
  875  * If '*slice' is NULL, then a new list will be allocated using
  876  * 'mflags'.  If M_NOWAIT is specified and the allocation fails,
  877  * ENOMEM will be returned.
  878  *
  879  * If '*slice' is not NULL, it should point to an empty sglist.  If it
  880  * does not have enough room for the remaining space, then EFBIG will
  881  * be returned.  If '*slice' is not empty, then EINVAL will be
  882  * returned.
  883  */
  884 int
  885 sglist_slice(struct sglist *original, struct sglist **slice, size_t offset,
  886     size_t length, int mflags)
  887 {
  888         struct sglist *sg;
  889         size_t space, end, foffs, loffs;
  890         int count, i, fseg;
  891 
  892         /* Nothing to do. */
  893         if (length == 0)
  894                 return (0);
  895 
  896         /* Figure out how many segments '*slice' needs to have. */
  897         end = offset + length;
  898         space = 0;
  899         count = 0;
  900         fseg = 0;
  901         foffs = loffs = 0;
  902         for (i = 0; i < original->sg_nseg; i++) {
  903                 space += original->sg_segs[i].ss_len;
  904                 if (space > offset) {
  905                         /*
  906                          * When we hit the first segment, store its index
  907                          * in 'fseg' and the offset into the first segment
  908                          * of 'offset' in 'foffs'.
  909                          */
  910                         if (count == 0) {
  911                                 fseg = i;
  912                                 foffs = offset - (space -
  913                                     original->sg_segs[i].ss_len);
  914                                 CTR1(KTR_DEV, "sglist_slice: foffs = %08lx",
  915                                     foffs);
  916                         }
  917                         count++;
  918 
  919                         /*
  920                          * When we hit the last segment, break out of
  921                          * the loop.  Store the amount of extra space
  922                          * at the end of this segment in 'loffs'.
  923                          */
  924                         if (space >= end) {
  925                                 loffs = space - end;
  926                                 CTR1(KTR_DEV, "sglist_slice: loffs = %08lx",
  927                                     loffs);
  928                                 break;
  929                         }
  930                 }
  931         }
  932 
  933         /* If we never hit 'end', then 'length' ran off the end, so fail. */
  934         if (space < end)
  935                 return (EINVAL);
  936 
  937         if (*slice == NULL) {
  938                 sg = sglist_alloc(count, mflags);
  939                 if (sg == NULL)
  940                         return (ENOMEM);
  941                 *slice = sg;
  942         } else {
  943                 sg = *slice;
  944                 if (sg->sg_maxseg < count)
  945                         return (EFBIG);
  946                 if (sg->sg_nseg != 0)
  947                         return (EINVAL);
  948         }
  949 
  950         /*
  951          * Copy over 'count' segments from 'original' starting at
  952          * 'fseg' to 'sg'.
  953          */
  954         bcopy(original->sg_segs + fseg, sg->sg_segs,
  955             count * sizeof(struct sglist_seg));
  956         sg->sg_nseg = count;
  957 
  958         /* Fixup first and last segments if needed. */
  959         if (foffs != 0) {
  960                 sg->sg_segs[0].ss_paddr += foffs;
  961                 sg->sg_segs[0].ss_len -= foffs;
  962                 CTR2(KTR_DEV, "sglist_slice seg[0]: %08lx:%08lx",
  963                     (long)sg->sg_segs[0].ss_paddr, sg->sg_segs[0].ss_len);
  964         }
  965         if (loffs != 0) {
  966                 sg->sg_segs[count - 1].ss_len -= loffs;
  967                 CTR2(KTR_DEV, "sglist_slice seg[%d]: len %08x", count - 1,
  968                     sg->sg_segs[count - 1].ss_len);
  969         }
  970         return (0);
  971 }

Cache object: 4b2f155d02312f4e8aa9812fba1a9256


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.