The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_sleepqueue.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. Neither the name of the author nor the names of any co-contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 /*
   31  * Implementation of sleep queues used to hold queue of threads blocked on
   32  * a wait channel.  Sleep queues different from turnstiles in that wait
   33  * channels are not owned by anyone, so there is no priority propagation.
   34  * Sleep queues can also provide a timeout and can also be interrupted by
   35  * signals.  That said, there are several similarities between the turnstile
   36  * and sleep queue implementations.  (Note: turnstiles were implemented
   37  * first.)  For example, both use a hash table of the same size where each
   38  * bucket is referred to as a "chain" that contains both a spin lock and
   39  * a linked list of queues.  An individual queue is located by using a hash
   40  * to pick a chain, locking the chain, and then walking the chain searching
   41  * for the queue.  This means that a wait channel object does not need to
   42  * embed it's queue head just as locks do not embed their turnstile queue
   43  * head.  Threads also carry around a sleep queue that they lend to the
   44  * wait channel when blocking.  Just as in turnstiles, the queue includes
   45  * a free list of the sleep queues of other threads blocked on the same
   46  * wait channel in the case of multiple waiters.
   47  *
   48  * Some additional functionality provided by sleep queues include the
   49  * ability to set a timeout.  The timeout is managed using a per-thread
   50  * callout that resumes a thread if it is asleep.  A thread may also
   51  * catch signals while it is asleep (aka an interruptible sleep).  The
   52  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
   53  * sleep queues also provide some extra assertions.  One is not allowed to
   54  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
   55  * must consistently use the same lock to synchronize with a wait channel,
   56  * though this check is currently only a warning for sleep/wakeup due to
   57  * pre-existing abuse of that API.  The same lock must also be held when
   58  * awakening threads, though that is currently only enforced for condition
   59  * variables.
   60  */
   61 
   62 #include <sys/cdefs.h>
   63 __FBSDID("$FreeBSD: releng/10.0/sys/kern/subr_sleepqueue.c 248470 2013-03-18 17:23:58Z jhb $");
   64 
   65 #include "opt_sleepqueue_profiling.h"
   66 #include "opt_ddb.h"
   67 #include "opt_kdtrace.h"
   68 #include "opt_sched.h"
   69 
   70 #include <sys/param.h>
   71 #include <sys/systm.h>
   72 #include <sys/lock.h>
   73 #include <sys/kernel.h>
   74 #include <sys/ktr.h>
   75 #include <sys/mutex.h>
   76 #include <sys/proc.h>
   77 #include <sys/sbuf.h>
   78 #include <sys/sched.h>
   79 #include <sys/sdt.h>
   80 #include <sys/signalvar.h>
   81 #include <sys/sleepqueue.h>
   82 #include <sys/sysctl.h>
   83 
   84 #include <vm/uma.h>
   85 
   86 #ifdef DDB
   87 #include <ddb/ddb.h>
   88 #endif
   89 
   90 /*
   91  * Constants for the hash table of sleep queue chains.
   92  * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
   93  */
   94 #define SC_TABLESIZE    256                     /* Must be power of 2. */
   95 #define SC_MASK         (SC_TABLESIZE - 1)
   96 #define SC_SHIFT        8
   97 #define SC_HASH(wc)     ((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
   98                             SC_MASK)
   99 #define SC_LOOKUP(wc)   &sleepq_chains[SC_HASH(wc)]
  100 #define NR_SLEEPQS      2
  101 /*
  102  * There two different lists of sleep queues.  Both lists are connected
  103  * via the sq_hash entries.  The first list is the sleep queue chain list
  104  * that a sleep queue is on when it is attached to a wait channel.  The
  105  * second list is the free list hung off of a sleep queue that is attached
  106  * to a wait channel.
  107  *
  108  * Each sleep queue also contains the wait channel it is attached to, the
  109  * list of threads blocked on that wait channel, flags specific to the
  110  * wait channel, and the lock used to synchronize with a wait channel.
  111  * The flags are used to catch mismatches between the various consumers
  112  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
  113  * The lock pointer is only used when invariants are enabled for various
  114  * debugging checks.
  115  *
  116  * Locking key:
  117  *  c - sleep queue chain lock
  118  */
  119 struct sleepqueue {
  120         TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];    /* (c) Blocked threads. */
  121         u_int sq_blockedcnt[NR_SLEEPQS];        /* (c) N. of blocked threads. */
  122         LIST_ENTRY(sleepqueue) sq_hash;         /* (c) Chain and free list. */
  123         LIST_HEAD(, sleepqueue) sq_free;        /* (c) Free queues. */
  124         void    *sq_wchan;                      /* (c) Wait channel. */
  125         int     sq_type;                        /* (c) Queue type. */
  126 #ifdef INVARIANTS
  127         struct lock_object *sq_lock;            /* (c) Associated lock. */
  128 #endif
  129 };
  130 
  131 struct sleepqueue_chain {
  132         LIST_HEAD(, sleepqueue) sc_queues;      /* List of sleep queues. */
  133         struct mtx sc_lock;                     /* Spin lock for this chain. */
  134 #ifdef SLEEPQUEUE_PROFILING
  135         u_int   sc_depth;                       /* Length of sc_queues. */
  136         u_int   sc_max_depth;                   /* Max length of sc_queues. */
  137 #endif
  138 };
  139 
  140 #ifdef SLEEPQUEUE_PROFILING
  141 u_int sleepq_max_depth;
  142 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
  143 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
  144     "sleepq chain stats");
  145 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
  146     0, "maxmimum depth achieved of a single chain");
  147 
  148 static void     sleepq_profile(const char *wmesg);
  149 static int      prof_enabled;
  150 #endif
  151 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
  152 static uma_zone_t sleepq_zone;
  153 
  154 /*
  155  * Prototypes for non-exported routines.
  156  */
  157 static int      sleepq_catch_signals(void *wchan, int pri);
  158 static int      sleepq_check_signals(void);
  159 static int      sleepq_check_timeout(void);
  160 #ifdef INVARIANTS
  161 static void     sleepq_dtor(void *mem, int size, void *arg);
  162 #endif
  163 static int      sleepq_init(void *mem, int size, int flags);
  164 static int      sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
  165                     int pri);
  166 static void     sleepq_switch(void *wchan, int pri);
  167 static void     sleepq_timeout(void *arg);
  168 
  169 SDT_PROBE_DECLARE(sched, , , sleep);
  170 SDT_PROBE_DECLARE(sched, , , wakeup);
  171 
  172 /*
  173  * Early initialization of sleep queues that is called from the sleepinit()
  174  * SYSINIT.
  175  */
  176 void
  177 init_sleepqueues(void)
  178 {
  179 #ifdef SLEEPQUEUE_PROFILING
  180         struct sysctl_oid *chain_oid;
  181         char chain_name[10];
  182 #endif
  183         int i;
  184 
  185         for (i = 0; i < SC_TABLESIZE; i++) {
  186                 LIST_INIT(&sleepq_chains[i].sc_queues);
  187                 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
  188                     MTX_SPIN | MTX_RECURSE);
  189 #ifdef SLEEPQUEUE_PROFILING
  190                 snprintf(chain_name, sizeof(chain_name), "%d", i);
  191                 chain_oid = SYSCTL_ADD_NODE(NULL, 
  192                     SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
  193                     chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
  194                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  195                     "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
  196                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  197                     "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
  198                     NULL);
  199 #endif
  200         }
  201         sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
  202 #ifdef INVARIANTS
  203             NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
  204 #else
  205             NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
  206 #endif
  207         
  208         thread0.td_sleepqueue = sleepq_alloc();
  209 }
  210 
  211 /*
  212  * Get a sleep queue for a new thread.
  213  */
  214 struct sleepqueue *
  215 sleepq_alloc(void)
  216 {
  217 
  218         return (uma_zalloc(sleepq_zone, M_WAITOK));
  219 }
  220 
  221 /*
  222  * Free a sleep queue when a thread is destroyed.
  223  */
  224 void
  225 sleepq_free(struct sleepqueue *sq)
  226 {
  227 
  228         uma_zfree(sleepq_zone, sq);
  229 }
  230 
  231 /*
  232  * Lock the sleep queue chain associated with the specified wait channel.
  233  */
  234 void
  235 sleepq_lock(void *wchan)
  236 {
  237         struct sleepqueue_chain *sc;
  238 
  239         sc = SC_LOOKUP(wchan);
  240         mtx_lock_spin(&sc->sc_lock);
  241 }
  242 
  243 /*
  244  * Look up the sleep queue associated with a given wait channel in the hash
  245  * table locking the associated sleep queue chain.  If no queue is found in
  246  * the table, NULL is returned.
  247  */
  248 struct sleepqueue *
  249 sleepq_lookup(void *wchan)
  250 {
  251         struct sleepqueue_chain *sc;
  252         struct sleepqueue *sq;
  253 
  254         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  255         sc = SC_LOOKUP(wchan);
  256         mtx_assert(&sc->sc_lock, MA_OWNED);
  257         LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
  258                 if (sq->sq_wchan == wchan)
  259                         return (sq);
  260         return (NULL);
  261 }
  262 
  263 /*
  264  * Unlock the sleep queue chain associated with a given wait channel.
  265  */
  266 void
  267 sleepq_release(void *wchan)
  268 {
  269         struct sleepqueue_chain *sc;
  270 
  271         sc = SC_LOOKUP(wchan);
  272         mtx_unlock_spin(&sc->sc_lock);
  273 }
  274 
  275 /*
  276  * Places the current thread on the sleep queue for the specified wait
  277  * channel.  If INVARIANTS is enabled, then it associates the passed in
  278  * lock with the sleepq to make sure it is held when that sleep queue is
  279  * woken up.
  280  */
  281 void
  282 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
  283     int queue)
  284 {
  285         struct sleepqueue_chain *sc;
  286         struct sleepqueue *sq;
  287         struct thread *td;
  288 
  289         td = curthread;
  290         sc = SC_LOOKUP(wchan);
  291         mtx_assert(&sc->sc_lock, MA_OWNED);
  292         MPASS(td->td_sleepqueue != NULL);
  293         MPASS(wchan != NULL);
  294         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  295 
  296         /* If this thread is not allowed to sleep, die a horrible death. */
  297         KASSERT(td->td_no_sleeping == 0,
  298             ("%s: td %p to sleep on wchan %p with sleeping prohibited",
  299             __func__, td, wchan));
  300 
  301         /* Look up the sleep queue associated with the wait channel 'wchan'. */
  302         sq = sleepq_lookup(wchan);
  303 
  304         /*
  305          * If the wait channel does not already have a sleep queue, use
  306          * this thread's sleep queue.  Otherwise, insert the current thread
  307          * into the sleep queue already in use by this wait channel.
  308          */
  309         if (sq == NULL) {
  310 #ifdef INVARIANTS
  311                 int i;
  312 
  313                 sq = td->td_sleepqueue;
  314                 for (i = 0; i < NR_SLEEPQS; i++) {
  315                         KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
  316                             ("thread's sleep queue %d is not empty", i));
  317                         KASSERT(sq->sq_blockedcnt[i] == 0,
  318                             ("thread's sleep queue %d count mismatches", i));
  319                 }
  320                 KASSERT(LIST_EMPTY(&sq->sq_free),
  321                     ("thread's sleep queue has a non-empty free list"));
  322                 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
  323                 sq->sq_lock = lock;
  324 #endif
  325 #ifdef SLEEPQUEUE_PROFILING
  326                 sc->sc_depth++;
  327                 if (sc->sc_depth > sc->sc_max_depth) {
  328                         sc->sc_max_depth = sc->sc_depth;
  329                         if (sc->sc_max_depth > sleepq_max_depth)
  330                                 sleepq_max_depth = sc->sc_max_depth;
  331                 }
  332 #endif
  333                 sq = td->td_sleepqueue;
  334                 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
  335                 sq->sq_wchan = wchan;
  336                 sq->sq_type = flags & SLEEPQ_TYPE;
  337         } else {
  338                 MPASS(wchan == sq->sq_wchan);
  339                 MPASS(lock == sq->sq_lock);
  340                 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
  341                 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
  342         }
  343         thread_lock(td);
  344         TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
  345         sq->sq_blockedcnt[queue]++;
  346         td->td_sleepqueue = NULL;
  347         td->td_sqqueue = queue;
  348         td->td_wchan = wchan;
  349         td->td_wmesg = wmesg;
  350         if (flags & SLEEPQ_INTERRUPTIBLE) {
  351                 td->td_flags |= TDF_SINTR;
  352                 td->td_flags &= ~TDF_SLEEPABORT;
  353         }
  354         thread_unlock(td);
  355 }
  356 
  357 /*
  358  * Sets a timeout that will remove the current thread from the specified
  359  * sleep queue after timo ticks if the thread has not already been awakened.
  360  */
  361 void
  362 sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr,
  363     int flags)
  364 {
  365         struct sleepqueue_chain *sc;
  366         struct thread *td;
  367 
  368         td = curthread;
  369         sc = SC_LOOKUP(wchan);
  370         mtx_assert(&sc->sc_lock, MA_OWNED);
  371         MPASS(TD_ON_SLEEPQ(td));
  372         MPASS(td->td_sleepqueue == NULL);
  373         MPASS(wchan != NULL);
  374         callout_reset_sbt_on(&td->td_slpcallout, sbt, pr,
  375             sleepq_timeout, td, PCPU_GET(cpuid), flags | C_DIRECT_EXEC);
  376 }
  377 
  378 /*
  379  * Return the number of actual sleepers for the specified queue.
  380  */
  381 u_int
  382 sleepq_sleepcnt(void *wchan, int queue)
  383 {
  384         struct sleepqueue *sq;
  385 
  386         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  387         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  388         sq = sleepq_lookup(wchan);
  389         if (sq == NULL)
  390                 return (0);
  391         return (sq->sq_blockedcnt[queue]);
  392 }
  393 
  394 /*
  395  * Marks the pending sleep of the current thread as interruptible and
  396  * makes an initial check for pending signals before putting a thread
  397  * to sleep. Enters and exits with the thread lock held.  Thread lock
  398  * may have transitioned from the sleepq lock to a run lock.
  399  */
  400 static int
  401 sleepq_catch_signals(void *wchan, int pri)
  402 {
  403         struct sleepqueue_chain *sc;
  404         struct sleepqueue *sq;
  405         struct thread *td;
  406         struct proc *p;
  407         struct sigacts *ps;
  408         int sig, ret;
  409 
  410         td = curthread;
  411         p = curproc;
  412         sc = SC_LOOKUP(wchan);
  413         mtx_assert(&sc->sc_lock, MA_OWNED);
  414         MPASS(wchan != NULL);
  415         if ((td->td_pflags & TDP_WAKEUP) != 0) {
  416                 td->td_pflags &= ~TDP_WAKEUP;
  417                 ret = EINTR;
  418                 thread_lock(td);
  419                 goto out;
  420         }
  421 
  422         /*
  423          * See if there are any pending signals for this thread.  If not
  424          * we can switch immediately.  Otherwise do the signal processing
  425          * directly.
  426          */
  427         thread_lock(td);
  428         if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
  429                 sleepq_switch(wchan, pri);
  430                 return (0);
  431         }
  432         thread_unlock(td);
  433         mtx_unlock_spin(&sc->sc_lock);
  434         CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
  435                 (void *)td, (long)p->p_pid, td->td_name);
  436         PROC_LOCK(p);
  437         ps = p->p_sigacts;
  438         mtx_lock(&ps->ps_mtx);
  439         sig = cursig(td);
  440         if (sig == 0) {
  441                 mtx_unlock(&ps->ps_mtx);
  442                 ret = thread_suspend_check(1);
  443                 MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
  444         } else {
  445                 if (SIGISMEMBER(ps->ps_sigintr, sig))
  446                         ret = EINTR;
  447                 else
  448                         ret = ERESTART;
  449                 mtx_unlock(&ps->ps_mtx);
  450         }
  451         /*
  452          * Lock the per-process spinlock prior to dropping the PROC_LOCK
  453          * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
  454          * thread_lock() are currently held in tdsendsignal().
  455          */
  456         PROC_SLOCK(p);
  457         mtx_lock_spin(&sc->sc_lock);
  458         PROC_UNLOCK(p);
  459         thread_lock(td);
  460         PROC_SUNLOCK(p);
  461         if (ret == 0) {
  462                 sleepq_switch(wchan, pri);
  463                 return (0);
  464         }
  465 out:
  466         /*
  467          * There were pending signals and this thread is still
  468          * on the sleep queue, remove it from the sleep queue.
  469          */
  470         if (TD_ON_SLEEPQ(td)) {
  471                 sq = sleepq_lookup(wchan);
  472                 if (sleepq_resume_thread(sq, td, 0)) {
  473 #ifdef INVARIANTS
  474                         /*
  475                          * This thread hasn't gone to sleep yet, so it
  476                          * should not be swapped out.
  477                          */
  478                         panic("not waking up swapper");
  479 #endif
  480                 }
  481         }
  482         mtx_unlock_spin(&sc->sc_lock);
  483         MPASS(td->td_lock != &sc->sc_lock);
  484         return (ret);
  485 }
  486 
  487 /*
  488  * Switches to another thread if we are still asleep on a sleep queue.
  489  * Returns with thread lock.
  490  */
  491 static void
  492 sleepq_switch(void *wchan, int pri)
  493 {
  494         struct sleepqueue_chain *sc;
  495         struct sleepqueue *sq;
  496         struct thread *td;
  497 
  498         td = curthread;
  499         sc = SC_LOOKUP(wchan);
  500         mtx_assert(&sc->sc_lock, MA_OWNED);
  501         THREAD_LOCK_ASSERT(td, MA_OWNED);
  502 
  503         /* 
  504          * If we have a sleep queue, then we've already been woken up, so
  505          * just return.
  506          */
  507         if (td->td_sleepqueue != NULL) {
  508                 mtx_unlock_spin(&sc->sc_lock);
  509                 return;
  510         }
  511 
  512         /*
  513          * If TDF_TIMEOUT is set, then our sleep has been timed out
  514          * already but we are still on the sleep queue, so dequeue the
  515          * thread and return.
  516          */
  517         if (td->td_flags & TDF_TIMEOUT) {
  518                 MPASS(TD_ON_SLEEPQ(td));
  519                 sq = sleepq_lookup(wchan);
  520                 if (sleepq_resume_thread(sq, td, 0)) {
  521 #ifdef INVARIANTS
  522                         /*
  523                          * This thread hasn't gone to sleep yet, so it
  524                          * should not be swapped out.
  525                          */
  526                         panic("not waking up swapper");
  527 #endif
  528                 }
  529                 mtx_unlock_spin(&sc->sc_lock);
  530                 return;         
  531         }
  532 #ifdef SLEEPQUEUE_PROFILING
  533         if (prof_enabled)
  534                 sleepq_profile(td->td_wmesg);
  535 #endif
  536         MPASS(td->td_sleepqueue == NULL);
  537         sched_sleep(td, pri);
  538         thread_lock_set(td, &sc->sc_lock);
  539         SDT_PROBE0(sched, , , sleep);
  540         TD_SET_SLEEPING(td);
  541         mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
  542         KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
  543         CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
  544             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
  545 }
  546 
  547 /*
  548  * Check to see if we timed out.
  549  */
  550 static int
  551 sleepq_check_timeout(void)
  552 {
  553         struct thread *td;
  554 
  555         td = curthread;
  556         THREAD_LOCK_ASSERT(td, MA_OWNED);
  557 
  558         /*
  559          * If TDF_TIMEOUT is set, we timed out.
  560          */
  561         if (td->td_flags & TDF_TIMEOUT) {
  562                 td->td_flags &= ~TDF_TIMEOUT;
  563                 return (EWOULDBLOCK);
  564         }
  565 
  566         /*
  567          * If TDF_TIMOFAIL is set, the timeout ran after we had
  568          * already been woken up.
  569          */
  570         if (td->td_flags & TDF_TIMOFAIL)
  571                 td->td_flags &= ~TDF_TIMOFAIL;
  572 
  573         /*
  574          * If callout_stop() fails, then the timeout is running on
  575          * another CPU, so synchronize with it to avoid having it
  576          * accidentally wake up a subsequent sleep.
  577          */
  578         else if (callout_stop(&td->td_slpcallout) == 0) {
  579                 td->td_flags |= TDF_TIMEOUT;
  580                 TD_SET_SLEEPING(td);
  581                 mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
  582         }
  583         return (0);
  584 }
  585 
  586 /*
  587  * Check to see if we were awoken by a signal.
  588  */
  589 static int
  590 sleepq_check_signals(void)
  591 {
  592         struct thread *td;
  593 
  594         td = curthread;
  595         THREAD_LOCK_ASSERT(td, MA_OWNED);
  596 
  597         /* We are no longer in an interruptible sleep. */
  598         if (td->td_flags & TDF_SINTR)
  599                 td->td_flags &= ~TDF_SINTR;
  600 
  601         if (td->td_flags & TDF_SLEEPABORT) {
  602                 td->td_flags &= ~TDF_SLEEPABORT;
  603                 return (td->td_intrval);
  604         }
  605 
  606         return (0);
  607 }
  608 
  609 /*
  610  * Block the current thread until it is awakened from its sleep queue.
  611  */
  612 void
  613 sleepq_wait(void *wchan, int pri)
  614 {
  615         struct thread *td;
  616 
  617         td = curthread;
  618         MPASS(!(td->td_flags & TDF_SINTR));
  619         thread_lock(td);
  620         sleepq_switch(wchan, pri);
  621         thread_unlock(td);
  622 }
  623 
  624 /*
  625  * Block the current thread until it is awakened from its sleep queue
  626  * or it is interrupted by a signal.
  627  */
  628 int
  629 sleepq_wait_sig(void *wchan, int pri)
  630 {
  631         int rcatch;
  632         int rval;
  633 
  634         rcatch = sleepq_catch_signals(wchan, pri);
  635         rval = sleepq_check_signals();
  636         thread_unlock(curthread);
  637         if (rcatch)
  638                 return (rcatch);
  639         return (rval);
  640 }
  641 
  642 /*
  643  * Block the current thread until it is awakened from its sleep queue
  644  * or it times out while waiting.
  645  */
  646 int
  647 sleepq_timedwait(void *wchan, int pri)
  648 {
  649         struct thread *td;
  650         int rval;
  651 
  652         td = curthread;
  653         MPASS(!(td->td_flags & TDF_SINTR));
  654         thread_lock(td);
  655         sleepq_switch(wchan, pri);
  656         rval = sleepq_check_timeout();
  657         thread_unlock(td);
  658 
  659         return (rval);
  660 }
  661 
  662 /*
  663  * Block the current thread until it is awakened from its sleep queue,
  664  * it is interrupted by a signal, or it times out waiting to be awakened.
  665  */
  666 int
  667 sleepq_timedwait_sig(void *wchan, int pri)
  668 {
  669         int rcatch, rvalt, rvals;
  670 
  671         rcatch = sleepq_catch_signals(wchan, pri);
  672         rvalt = sleepq_check_timeout();
  673         rvals = sleepq_check_signals();
  674         thread_unlock(curthread);
  675         if (rcatch)
  676                 return (rcatch);
  677         if (rvals)
  678                 return (rvals);
  679         return (rvalt);
  680 }
  681 
  682 /*
  683  * Returns the type of sleepqueue given a waitchannel.
  684  */
  685 int
  686 sleepq_type(void *wchan)
  687 {
  688         struct sleepqueue *sq;
  689         int type;
  690 
  691         MPASS(wchan != NULL);
  692 
  693         sleepq_lock(wchan);
  694         sq = sleepq_lookup(wchan);
  695         if (sq == NULL) {
  696                 sleepq_release(wchan);
  697                 return (-1);
  698         }
  699         type = sq->sq_type;
  700         sleepq_release(wchan);
  701         return (type);
  702 }
  703 
  704 /*
  705  * Removes a thread from a sleep queue and makes it
  706  * runnable.
  707  */
  708 static int
  709 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
  710 {
  711         struct sleepqueue_chain *sc;
  712 
  713         MPASS(td != NULL);
  714         MPASS(sq->sq_wchan != NULL);
  715         MPASS(td->td_wchan == sq->sq_wchan);
  716         MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
  717         THREAD_LOCK_ASSERT(td, MA_OWNED);
  718         sc = SC_LOOKUP(sq->sq_wchan);
  719         mtx_assert(&sc->sc_lock, MA_OWNED);
  720 
  721         SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
  722 
  723         /* Remove the thread from the queue. */
  724         sq->sq_blockedcnt[td->td_sqqueue]--;
  725         TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
  726 
  727         /*
  728          * Get a sleep queue for this thread.  If this is the last waiter,
  729          * use the queue itself and take it out of the chain, otherwise,
  730          * remove a queue from the free list.
  731          */
  732         if (LIST_EMPTY(&sq->sq_free)) {
  733                 td->td_sleepqueue = sq;
  734 #ifdef INVARIANTS
  735                 sq->sq_wchan = NULL;
  736 #endif
  737 #ifdef SLEEPQUEUE_PROFILING
  738                 sc->sc_depth--;
  739 #endif
  740         } else
  741                 td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
  742         LIST_REMOVE(td->td_sleepqueue, sq_hash);
  743 
  744         td->td_wmesg = NULL;
  745         td->td_wchan = NULL;
  746         td->td_flags &= ~TDF_SINTR;
  747 
  748         CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
  749             (void *)td, (long)td->td_proc->p_pid, td->td_name);
  750 
  751         /* Adjust priority if requested. */
  752         MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
  753         if (pri != 0 && td->td_priority > pri &&
  754             PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
  755                 sched_prio(td, pri);
  756 
  757         /*
  758          * Note that thread td might not be sleeping if it is running
  759          * sleepq_catch_signals() on another CPU or is blocked on its
  760          * proc lock to check signals.  There's no need to mark the
  761          * thread runnable in that case.
  762          */
  763         if (TD_IS_SLEEPING(td)) {
  764                 TD_CLR_SLEEPING(td);
  765                 return (setrunnable(td));
  766         }
  767         return (0);
  768 }
  769 
  770 #ifdef INVARIANTS
  771 /*
  772  * UMA zone item deallocator.
  773  */
  774 static void
  775 sleepq_dtor(void *mem, int size, void *arg)
  776 {
  777         struct sleepqueue *sq;
  778         int i;
  779 
  780         sq = mem;
  781         for (i = 0; i < NR_SLEEPQS; i++) {
  782                 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
  783                 MPASS(sq->sq_blockedcnt[i] == 0);
  784         }
  785 }
  786 #endif
  787 
  788 /*
  789  * UMA zone item initializer.
  790  */
  791 static int
  792 sleepq_init(void *mem, int size, int flags)
  793 {
  794         struct sleepqueue *sq;
  795         int i;
  796 
  797         bzero(mem, size);
  798         sq = mem;
  799         for (i = 0; i < NR_SLEEPQS; i++) {
  800                 TAILQ_INIT(&sq->sq_blocked[i]);
  801                 sq->sq_blockedcnt[i] = 0;
  802         }
  803         LIST_INIT(&sq->sq_free);
  804         return (0);
  805 }
  806 
  807 /*
  808  * Find the highest priority thread sleeping on a wait channel and resume it.
  809  */
  810 int
  811 sleepq_signal(void *wchan, int flags, int pri, int queue)
  812 {
  813         struct sleepqueue *sq;
  814         struct thread *td, *besttd;
  815         int wakeup_swapper;
  816 
  817         CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
  818         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  819         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  820         sq = sleepq_lookup(wchan);
  821         if (sq == NULL)
  822                 return (0);
  823         KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
  824             ("%s: mismatch between sleep/wakeup and cv_*", __func__));
  825 
  826         /*
  827          * Find the highest priority thread on the queue.  If there is a
  828          * tie, use the thread that first appears in the queue as it has
  829          * been sleeping the longest since threads are always added to
  830          * the tail of sleep queues.
  831          */
  832         besttd = NULL;
  833         TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
  834                 if (besttd == NULL || td->td_priority < besttd->td_priority)
  835                         besttd = td;
  836         }
  837         MPASS(besttd != NULL);
  838         thread_lock(besttd);
  839         wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
  840         thread_unlock(besttd);
  841         return (wakeup_swapper);
  842 }
  843 
  844 /*
  845  * Resume all threads sleeping on a specified wait channel.
  846  */
  847 int
  848 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
  849 {
  850         struct sleepqueue *sq;
  851         struct thread *td, *tdn;
  852         int wakeup_swapper;
  853 
  854         CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
  855         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  856         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  857         sq = sleepq_lookup(wchan);
  858         if (sq == NULL)
  859                 return (0);
  860         KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
  861             ("%s: mismatch between sleep/wakeup and cv_*", __func__));
  862 
  863         /* Resume all blocked threads on the sleep queue. */
  864         wakeup_swapper = 0;
  865         TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
  866                 thread_lock(td);
  867                 if (sleepq_resume_thread(sq, td, pri))
  868                         wakeup_swapper = 1;
  869                 thread_unlock(td);
  870         }
  871         return (wakeup_swapper);
  872 }
  873 
  874 /*
  875  * Time sleeping threads out.  When the timeout expires, the thread is
  876  * removed from the sleep queue and made runnable if it is still asleep.
  877  */
  878 static void
  879 sleepq_timeout(void *arg)
  880 {
  881         struct sleepqueue_chain *sc;
  882         struct sleepqueue *sq;
  883         struct thread *td;
  884         void *wchan;
  885         int wakeup_swapper;
  886 
  887         td = arg;
  888         wakeup_swapper = 0;
  889         CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
  890             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
  891 
  892         /*
  893          * First, see if the thread is asleep and get the wait channel if
  894          * it is.
  895          */
  896         thread_lock(td);
  897         if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
  898                 wchan = td->td_wchan;
  899                 sc = SC_LOOKUP(wchan);
  900                 THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
  901                 sq = sleepq_lookup(wchan);
  902                 MPASS(sq != NULL);
  903                 td->td_flags |= TDF_TIMEOUT;
  904                 wakeup_swapper = sleepq_resume_thread(sq, td, 0);
  905                 thread_unlock(td);
  906                 if (wakeup_swapper)
  907                         kick_proc0();
  908                 return;
  909         }
  910 
  911         /*
  912          * If the thread is on the SLEEPQ but isn't sleeping yet, it
  913          * can either be on another CPU in between sleepq_add() and
  914          * one of the sleepq_*wait*() routines or it can be in
  915          * sleepq_catch_signals().
  916          */
  917         if (TD_ON_SLEEPQ(td)) {
  918                 td->td_flags |= TDF_TIMEOUT;
  919                 thread_unlock(td);
  920                 return;
  921         }
  922 
  923         /*
  924          * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
  925          * then the other thread has already yielded to us, so clear
  926          * the flag and resume it.  If TDF_TIMEOUT is not set, then the
  927          * we know that the other thread is not on a sleep queue, but it
  928          * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
  929          * to let it know that the timeout has already run and doesn't
  930          * need to be canceled.
  931          */
  932         if (td->td_flags & TDF_TIMEOUT) {
  933                 MPASS(TD_IS_SLEEPING(td));
  934                 td->td_flags &= ~TDF_TIMEOUT;
  935                 TD_CLR_SLEEPING(td);
  936                 wakeup_swapper = setrunnable(td);
  937         } else
  938                 td->td_flags |= TDF_TIMOFAIL;
  939         thread_unlock(td);
  940         if (wakeup_swapper)
  941                 kick_proc0();
  942 }
  943 
  944 /*
  945  * Resumes a specific thread from the sleep queue associated with a specific
  946  * wait channel if it is on that queue.
  947  */
  948 void
  949 sleepq_remove(struct thread *td, void *wchan)
  950 {
  951         struct sleepqueue *sq;
  952         int wakeup_swapper;
  953 
  954         /*
  955          * Look up the sleep queue for this wait channel, then re-check
  956          * that the thread is asleep on that channel, if it is not, then
  957          * bail.
  958          */
  959         MPASS(wchan != NULL);
  960         sleepq_lock(wchan);
  961         sq = sleepq_lookup(wchan);
  962         /*
  963          * We can not lock the thread here as it may be sleeping on a
  964          * different sleepq.  However, holding the sleepq lock for this
  965          * wchan can guarantee that we do not miss a wakeup for this
  966          * channel.  The asserts below will catch any false positives.
  967          */
  968         if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
  969                 sleepq_release(wchan);
  970                 return;
  971         }
  972         /* Thread is asleep on sleep queue sq, so wake it up. */
  973         thread_lock(td);
  974         MPASS(sq != NULL);
  975         MPASS(td->td_wchan == wchan);
  976         wakeup_swapper = sleepq_resume_thread(sq, td, 0);
  977         thread_unlock(td);
  978         sleepq_release(wchan);
  979         if (wakeup_swapper)
  980                 kick_proc0();
  981 }
  982 
  983 /*
  984  * Abort a thread as if an interrupt had occurred.  Only abort
  985  * interruptible waits (unfortunately it isn't safe to abort others).
  986  */
  987 int
  988 sleepq_abort(struct thread *td, int intrval)
  989 {
  990         struct sleepqueue *sq;
  991         void *wchan;
  992 
  993         THREAD_LOCK_ASSERT(td, MA_OWNED);
  994         MPASS(TD_ON_SLEEPQ(td));
  995         MPASS(td->td_flags & TDF_SINTR);
  996         MPASS(intrval == EINTR || intrval == ERESTART);
  997 
  998         /*
  999          * If the TDF_TIMEOUT flag is set, just leave. A
 1000          * timeout is scheduled anyhow.
 1001          */
 1002         if (td->td_flags & TDF_TIMEOUT)
 1003                 return (0);
 1004 
 1005         CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
 1006             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
 1007         td->td_intrval = intrval;
 1008         td->td_flags |= TDF_SLEEPABORT;
 1009         /*
 1010          * If the thread has not slept yet it will find the signal in
 1011          * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
 1012          * we have to do it here.
 1013          */
 1014         if (!TD_IS_SLEEPING(td))
 1015                 return (0);
 1016         wchan = td->td_wchan;
 1017         MPASS(wchan != NULL);
 1018         sq = sleepq_lookup(wchan);
 1019         MPASS(sq != NULL);
 1020 
 1021         /* Thread is asleep on sleep queue sq, so wake it up. */
 1022         return (sleepq_resume_thread(sq, td, 0));
 1023 }
 1024 
 1025 #ifdef SLEEPQUEUE_PROFILING
 1026 #define SLEEPQ_PROF_LOCATIONS   1024
 1027 #define SLEEPQ_SBUFSIZE         512
 1028 struct sleepq_prof {
 1029         LIST_ENTRY(sleepq_prof) sp_link;
 1030         const char      *sp_wmesg;
 1031         long            sp_count;
 1032 };
 1033 
 1034 LIST_HEAD(sqphead, sleepq_prof);
 1035 
 1036 struct sqphead sleepq_prof_free;
 1037 struct sqphead sleepq_hash[SC_TABLESIZE];
 1038 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
 1039 static struct mtx sleepq_prof_lock;
 1040 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
 1041 
 1042 static void
 1043 sleepq_profile(const char *wmesg)
 1044 {
 1045         struct sleepq_prof *sp;
 1046 
 1047         mtx_lock_spin(&sleepq_prof_lock);
 1048         if (prof_enabled == 0)
 1049                 goto unlock;
 1050         LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
 1051                 if (sp->sp_wmesg == wmesg)
 1052                         goto done;
 1053         sp = LIST_FIRST(&sleepq_prof_free);
 1054         if (sp == NULL)
 1055                 goto unlock;
 1056         sp->sp_wmesg = wmesg;
 1057         LIST_REMOVE(sp, sp_link);
 1058         LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
 1059 done:
 1060         sp->sp_count++;
 1061 unlock:
 1062         mtx_unlock_spin(&sleepq_prof_lock);
 1063         return;
 1064 }
 1065 
 1066 static void
 1067 sleepq_prof_reset(void)
 1068 {
 1069         struct sleepq_prof *sp;
 1070         int enabled;
 1071         int i;
 1072 
 1073         mtx_lock_spin(&sleepq_prof_lock);
 1074         enabled = prof_enabled;
 1075         prof_enabled = 0;
 1076         for (i = 0; i < SC_TABLESIZE; i++)
 1077                 LIST_INIT(&sleepq_hash[i]);
 1078         LIST_INIT(&sleepq_prof_free);
 1079         for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
 1080                 sp = &sleepq_profent[i];
 1081                 sp->sp_wmesg = NULL;
 1082                 sp->sp_count = 0;
 1083                 LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
 1084         }
 1085         prof_enabled = enabled;
 1086         mtx_unlock_spin(&sleepq_prof_lock);
 1087 }
 1088 
 1089 static int
 1090 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
 1091 {
 1092         int error, v;
 1093 
 1094         v = prof_enabled;
 1095         error = sysctl_handle_int(oidp, &v, v, req);
 1096         if (error)
 1097                 return (error);
 1098         if (req->newptr == NULL)
 1099                 return (error);
 1100         if (v == prof_enabled)
 1101                 return (0);
 1102         if (v == 1)
 1103                 sleepq_prof_reset();
 1104         mtx_lock_spin(&sleepq_prof_lock);
 1105         prof_enabled = !!v;
 1106         mtx_unlock_spin(&sleepq_prof_lock);
 1107 
 1108         return (0);
 1109 }
 1110 
 1111 static int
 1112 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
 1113 {
 1114         int error, v;
 1115 
 1116         v = 0;
 1117         error = sysctl_handle_int(oidp, &v, 0, req);
 1118         if (error)
 1119                 return (error);
 1120         if (req->newptr == NULL)
 1121                 return (error);
 1122         if (v == 0)
 1123                 return (0);
 1124         sleepq_prof_reset();
 1125 
 1126         return (0);
 1127 }
 1128 
 1129 static int
 1130 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
 1131 {
 1132         struct sleepq_prof *sp;
 1133         struct sbuf *sb;
 1134         int enabled;
 1135         int error;
 1136         int i;
 1137 
 1138         error = sysctl_wire_old_buffer(req, 0);
 1139         if (error != 0)
 1140                 return (error);
 1141         sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
 1142         sbuf_printf(sb, "\nwmesg\tcount\n");
 1143         enabled = prof_enabled;
 1144         mtx_lock_spin(&sleepq_prof_lock);
 1145         prof_enabled = 0;
 1146         mtx_unlock_spin(&sleepq_prof_lock);
 1147         for (i = 0; i < SC_TABLESIZE; i++) {
 1148                 LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
 1149                         sbuf_printf(sb, "%s\t%ld\n",
 1150                             sp->sp_wmesg, sp->sp_count);
 1151                 }
 1152         }
 1153         mtx_lock_spin(&sleepq_prof_lock);
 1154         prof_enabled = enabled;
 1155         mtx_unlock_spin(&sleepq_prof_lock);
 1156 
 1157         error = sbuf_finish(sb);
 1158         sbuf_delete(sb);
 1159         return (error);
 1160 }
 1161 
 1162 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
 1163     NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
 1164 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
 1165     NULL, 0, reset_sleepq_prof_stats, "I",
 1166     "Reset sleepqueue profiling statistics");
 1167 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
 1168     NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
 1169 #endif
 1170 
 1171 #ifdef DDB
 1172 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
 1173 {
 1174         struct sleepqueue_chain *sc;
 1175         struct sleepqueue *sq;
 1176 #ifdef INVARIANTS
 1177         struct lock_object *lock;
 1178 #endif
 1179         struct thread *td;
 1180         void *wchan;
 1181         int i;
 1182 
 1183         if (!have_addr)
 1184                 return;
 1185 
 1186         /*
 1187          * First, see if there is an active sleep queue for the wait channel
 1188          * indicated by the address.
 1189          */
 1190         wchan = (void *)addr;
 1191         sc = SC_LOOKUP(wchan);
 1192         LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
 1193                 if (sq->sq_wchan == wchan)
 1194                         goto found;
 1195 
 1196         /*
 1197          * Second, see if there is an active sleep queue at the address
 1198          * indicated.
 1199          */
 1200         for (i = 0; i < SC_TABLESIZE; i++)
 1201                 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
 1202                         if (sq == (struct sleepqueue *)addr)
 1203                                 goto found;
 1204                 }
 1205 
 1206         db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
 1207         return;
 1208 found:
 1209         db_printf("Wait channel: %p\n", sq->sq_wchan);
 1210         db_printf("Queue type: %d\n", sq->sq_type);
 1211 #ifdef INVARIANTS
 1212         if (sq->sq_lock) {
 1213                 lock = sq->sq_lock;
 1214                 db_printf("Associated Interlock: %p - (%s) %s\n", lock,
 1215                     LOCK_CLASS(lock)->lc_name, lock->lo_name);
 1216         }
 1217 #endif
 1218         db_printf("Blocked threads:\n");
 1219         for (i = 0; i < NR_SLEEPQS; i++) {
 1220                 db_printf("\nQueue[%d]:\n", i);
 1221                 if (TAILQ_EMPTY(&sq->sq_blocked[i]))
 1222                         db_printf("\tempty\n");
 1223                 else
 1224                         TAILQ_FOREACH(td, &sq->sq_blocked[0],
 1225                                       td_slpq) {
 1226                                 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
 1227                                           td->td_tid, td->td_proc->p_pid,
 1228                                           td->td_name);
 1229                         }
 1230                 db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
 1231         }
 1232 }
 1233 
 1234 /* Alias 'show sleepqueue' to 'show sleepq'. */
 1235 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
 1236 #endif

Cache object: e87db500cbf6ca4af8be24a6787c164f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.