The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_sleepqueue.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 /*
   29  * Implementation of sleep queues used to hold queue of threads blocked on
   30  * a wait channel.  Sleep queues are different from turnstiles in that wait
   31  * channels are not owned by anyone, so there is no priority propagation.
   32  * Sleep queues can also provide a timeout and can also be interrupted by
   33  * signals.  That said, there are several similarities between the turnstile
   34  * and sleep queue implementations.  (Note: turnstiles were implemented
   35  * first.)  For example, both use a hash table of the same size where each
   36  * bucket is referred to as a "chain" that contains both a spin lock and
   37  * a linked list of queues.  An individual queue is located by using a hash
   38  * to pick a chain, locking the chain, and then walking the chain searching
   39  * for the queue.  This means that a wait channel object does not need to
   40  * embed its queue head just as locks do not embed their turnstile queue
   41  * head.  Threads also carry around a sleep queue that they lend to the
   42  * wait channel when blocking.  Just as in turnstiles, the queue includes
   43  * a free list of the sleep queues of other threads blocked on the same
   44  * wait channel in the case of multiple waiters.
   45  *
   46  * Some additional functionality provided by sleep queues include the
   47  * ability to set a timeout.  The timeout is managed using a per-thread
   48  * callout that resumes a thread if it is asleep.  A thread may also
   49  * catch signals while it is asleep (aka an interruptible sleep).  The
   50  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
   51  * sleep queues also provide some extra assertions.  One is not allowed to
   52  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
   53  * must consistently use the same lock to synchronize with a wait channel,
   54  * though this check is currently only a warning for sleep/wakeup due to
   55  * pre-existing abuse of that API.  The same lock must also be held when
   56  * awakening threads, though that is currently only enforced for condition
   57  * variables.
   58  */
   59 
   60 #include <sys/cdefs.h>
   61 __FBSDID("$FreeBSD$");
   62 
   63 #include "opt_sleepqueue_profiling.h"
   64 #include "opt_ddb.h"
   65 #include "opt_sched.h"
   66 #include "opt_stack.h"
   67 
   68 #include <sys/param.h>
   69 #include <sys/systm.h>
   70 #include <sys/lock.h>
   71 #include <sys/kernel.h>
   72 #include <sys/ktr.h>
   73 #include <sys/mutex.h>
   74 #include <sys/proc.h>
   75 #include <sys/sbuf.h>
   76 #include <sys/sched.h>
   77 #include <sys/sdt.h>
   78 #include <sys/signalvar.h>
   79 #include <sys/sleepqueue.h>
   80 #include <sys/stack.h>
   81 #include <sys/sysctl.h>
   82 #include <sys/time.h>
   83 
   84 #include <machine/atomic.h>
   85 
   86 #include <vm/uma.h>
   87 
   88 #ifdef DDB
   89 #include <ddb/ddb.h>
   90 #endif
   91 
   92 
   93 /*
   94  * Constants for the hash table of sleep queue chains.
   95  * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
   96  */
   97 #ifndef SC_TABLESIZE
   98 #define SC_TABLESIZE    256
   99 #endif
  100 CTASSERT(powerof2(SC_TABLESIZE));
  101 #define SC_MASK         (SC_TABLESIZE - 1)
  102 #define SC_SHIFT        8
  103 #define SC_HASH(wc)     ((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
  104                             SC_MASK)
  105 #define SC_LOOKUP(wc)   &sleepq_chains[SC_HASH(wc)]
  106 #define NR_SLEEPQS      2
  107 /*
  108  * There are two different lists of sleep queues.  Both lists are connected
  109  * via the sq_hash entries.  The first list is the sleep queue chain list
  110  * that a sleep queue is on when it is attached to a wait channel.  The
  111  * second list is the free list hung off of a sleep queue that is attached
  112  * to a wait channel.
  113  *
  114  * Each sleep queue also contains the wait channel it is attached to, the
  115  * list of threads blocked on that wait channel, flags specific to the
  116  * wait channel, and the lock used to synchronize with a wait channel.
  117  * The flags are used to catch mismatches between the various consumers
  118  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
  119  * The lock pointer is only used when invariants are enabled for various
  120  * debugging checks.
  121  *
  122  * Locking key:
  123  *  c - sleep queue chain lock
  124  */
  125 struct sleepqueue {
  126         struct threadqueue sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */
  127         u_int sq_blockedcnt[NR_SLEEPQS];        /* (c) N. of blocked threads. */
  128         LIST_ENTRY(sleepqueue) sq_hash;         /* (c) Chain and free list. */
  129         LIST_HEAD(, sleepqueue) sq_free;        /* (c) Free queues. */
  130         void    *sq_wchan;                      /* (c) Wait channel. */
  131         int     sq_type;                        /* (c) Queue type. */
  132 #ifdef INVARIANTS
  133         struct lock_object *sq_lock;            /* (c) Associated lock. */
  134 #endif
  135 };
  136 
  137 struct sleepqueue_chain {
  138         LIST_HEAD(, sleepqueue) sc_queues;      /* List of sleep queues. */
  139         struct mtx sc_lock;                     /* Spin lock for this chain. */
  140 #ifdef SLEEPQUEUE_PROFILING
  141         u_int   sc_depth;                       /* Length of sc_queues. */
  142         u_int   sc_max_depth;                   /* Max length of sc_queues. */
  143 #endif
  144 } __aligned(CACHE_LINE_SIZE);
  145 
  146 #ifdef SLEEPQUEUE_PROFILING
  147 u_int sleepq_max_depth;
  148 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
  149 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
  150     "sleepq chain stats");
  151 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
  152     0, "maxmimum depth achieved of a single chain");
  153 
  154 static void     sleepq_profile(const char *wmesg);
  155 static int      prof_enabled;
  156 #endif
  157 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
  158 static uma_zone_t sleepq_zone;
  159 
  160 /*
  161  * Prototypes for non-exported routines.
  162  */
  163 static int      sleepq_catch_signals(void *wchan, int pri);
  164 static int      sleepq_check_signals(void);
  165 static int      sleepq_check_timeout(void);
  166 #ifdef INVARIANTS
  167 static void     sleepq_dtor(void *mem, int size, void *arg);
  168 #endif
  169 static int      sleepq_init(void *mem, int size, int flags);
  170 static int      sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
  171                     int pri);
  172 static void     sleepq_switch(void *wchan, int pri);
  173 static void     sleepq_timeout(void *arg);
  174 
  175 SDT_PROBE_DECLARE(sched, , , sleep);
  176 SDT_PROBE_DECLARE(sched, , , wakeup);
  177 
  178 /*
  179  * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes.
  180  * Note that it must happen after sleepinit() has been fully executed, so
  181  * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup.
  182  */
  183 #ifdef SLEEPQUEUE_PROFILING
  184 static void
  185 init_sleepqueue_profiling(void)
  186 {
  187         char chain_name[10];
  188         struct sysctl_oid *chain_oid;
  189         u_int i;
  190 
  191         for (i = 0; i < SC_TABLESIZE; i++) {
  192                 snprintf(chain_name, sizeof(chain_name), "%u", i);
  193                 chain_oid = SYSCTL_ADD_NODE(NULL,
  194                     SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
  195                     chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
  196                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  197                     "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
  198                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  199                     "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
  200                     NULL);
  201         }
  202 }
  203 
  204 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
  205     init_sleepqueue_profiling, NULL);
  206 #endif
  207 
  208 /*
  209  * Early initialization of sleep queues that is called from the sleepinit()
  210  * SYSINIT.
  211  */
  212 void
  213 init_sleepqueues(void)
  214 {
  215         int i;
  216 
  217         for (i = 0; i < SC_TABLESIZE; i++) {
  218                 LIST_INIT(&sleepq_chains[i].sc_queues);
  219                 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
  220                     MTX_SPIN | MTX_RECURSE);
  221         }
  222         sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
  223 #ifdef INVARIANTS
  224             NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
  225 #else
  226             NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
  227 #endif
  228 
  229         thread0.td_sleepqueue = sleepq_alloc();
  230 }
  231 
  232 /*
  233  * Get a sleep queue for a new thread.
  234  */
  235 struct sleepqueue *
  236 sleepq_alloc(void)
  237 {
  238 
  239         return (uma_zalloc(sleepq_zone, M_WAITOK));
  240 }
  241 
  242 /*
  243  * Free a sleep queue when a thread is destroyed.
  244  */
  245 void
  246 sleepq_free(struct sleepqueue *sq)
  247 {
  248 
  249         uma_zfree(sleepq_zone, sq);
  250 }
  251 
  252 /*
  253  * Lock the sleep queue chain associated with the specified wait channel.
  254  */
  255 void
  256 sleepq_lock(void *wchan)
  257 {
  258         struct sleepqueue_chain *sc;
  259 
  260         sc = SC_LOOKUP(wchan);
  261         mtx_lock_spin(&sc->sc_lock);
  262 }
  263 
  264 /*
  265  * Look up the sleep queue associated with a given wait channel in the hash
  266  * table locking the associated sleep queue chain.  If no queue is found in
  267  * the table, NULL is returned.
  268  */
  269 struct sleepqueue *
  270 sleepq_lookup(void *wchan)
  271 {
  272         struct sleepqueue_chain *sc;
  273         struct sleepqueue *sq;
  274 
  275         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  276         sc = SC_LOOKUP(wchan);
  277         mtx_assert(&sc->sc_lock, MA_OWNED);
  278         LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
  279                 if (sq->sq_wchan == wchan)
  280                         return (sq);
  281         return (NULL);
  282 }
  283 
  284 /*
  285  * Unlock the sleep queue chain associated with a given wait channel.
  286  */
  287 void
  288 sleepq_release(void *wchan)
  289 {
  290         struct sleepqueue_chain *sc;
  291 
  292         sc = SC_LOOKUP(wchan);
  293         mtx_unlock_spin(&sc->sc_lock);
  294 }
  295 
  296 /*
  297  * Places the current thread on the sleep queue for the specified wait
  298  * channel.  If INVARIANTS is enabled, then it associates the passed in
  299  * lock with the sleepq to make sure it is held when that sleep queue is
  300  * woken up.
  301  */
  302 void
  303 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
  304     int queue)
  305 {
  306         struct sleepqueue_chain *sc;
  307         struct sleepqueue *sq;
  308         struct thread *td;
  309 
  310         td = curthread;
  311         sc = SC_LOOKUP(wchan);
  312         mtx_assert(&sc->sc_lock, MA_OWNED);
  313         MPASS(td->td_sleepqueue != NULL);
  314         MPASS(wchan != NULL);
  315         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  316 
  317         /* If this thread is not allowed to sleep, die a horrible death. */
  318         KASSERT(td->td_no_sleeping == 0,
  319             ("%s: td %p to sleep on wchan %p with sleeping prohibited",
  320             __func__, td, wchan));
  321 
  322         /* Look up the sleep queue associated with the wait channel 'wchan'. */
  323         sq = sleepq_lookup(wchan);
  324 
  325         /*
  326          * If the wait channel does not already have a sleep queue, use
  327          * this thread's sleep queue.  Otherwise, insert the current thread
  328          * into the sleep queue already in use by this wait channel.
  329          */
  330         if (sq == NULL) {
  331 #ifdef INVARIANTS
  332                 int i;
  333 
  334                 sq = td->td_sleepqueue;
  335                 for (i = 0; i < NR_SLEEPQS; i++) {
  336                         KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
  337                             ("thread's sleep queue %d is not empty", i));
  338                         KASSERT(sq->sq_blockedcnt[i] == 0,
  339                             ("thread's sleep queue %d count mismatches", i));
  340                 }
  341                 KASSERT(LIST_EMPTY(&sq->sq_free),
  342                     ("thread's sleep queue has a non-empty free list"));
  343                 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
  344                 sq->sq_lock = lock;
  345 #endif
  346 #ifdef SLEEPQUEUE_PROFILING
  347                 sc->sc_depth++;
  348                 if (sc->sc_depth > sc->sc_max_depth) {
  349                         sc->sc_max_depth = sc->sc_depth;
  350                         if (sc->sc_max_depth > sleepq_max_depth)
  351                                 sleepq_max_depth = sc->sc_max_depth;
  352                 }
  353 #endif
  354                 sq = td->td_sleepqueue;
  355                 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
  356                 sq->sq_wchan = wchan;
  357                 sq->sq_type = flags & SLEEPQ_TYPE;
  358         } else {
  359                 MPASS(wchan == sq->sq_wchan);
  360                 MPASS(lock == sq->sq_lock);
  361                 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
  362                 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
  363         }
  364         thread_lock(td);
  365         TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
  366         sq->sq_blockedcnt[queue]++;
  367         td->td_sleepqueue = NULL;
  368         td->td_sqqueue = queue;
  369         td->td_wchan = wchan;
  370         td->td_wmesg = wmesg;
  371         if (flags & SLEEPQ_INTERRUPTIBLE) {
  372                 td->td_flags |= TDF_SINTR;
  373                 td->td_flags &= ~TDF_SLEEPABORT;
  374         }
  375         thread_unlock(td);
  376 }
  377 
  378 /*
  379  * Sets a timeout that will remove the current thread from the specified
  380  * sleep queue after timo ticks if the thread has not already been awakened.
  381  */
  382 void
  383 sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr,
  384     int flags)
  385 {
  386         struct sleepqueue_chain *sc __unused;
  387         struct thread *td;
  388         sbintime_t pr1;
  389 
  390         td = curthread;
  391         sc = SC_LOOKUP(wchan);
  392         mtx_assert(&sc->sc_lock, MA_OWNED);
  393         MPASS(TD_ON_SLEEPQ(td));
  394         MPASS(td->td_sleepqueue == NULL);
  395         MPASS(wchan != NULL);
  396         if (cold && td == &thread0)
  397                 panic("timed sleep before timers are working");
  398         KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx",
  399             td->td_tid, td, (uintmax_t)td->td_sleeptimo));
  400         thread_lock(td);
  401         callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1);
  402         thread_unlock(td);
  403         callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1,
  404             sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC |
  405             C_DIRECT_EXEC);
  406 }
  407 
  408 /*
  409  * Return the number of actual sleepers for the specified queue.
  410  */
  411 u_int
  412 sleepq_sleepcnt(void *wchan, int queue)
  413 {
  414         struct sleepqueue *sq;
  415 
  416         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  417         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  418         sq = sleepq_lookup(wchan);
  419         if (sq == NULL)
  420                 return (0);
  421         return (sq->sq_blockedcnt[queue]);
  422 }
  423 
  424 /*
  425  * Marks the pending sleep of the current thread as interruptible and
  426  * makes an initial check for pending signals before putting a thread
  427  * to sleep. Enters and exits with the thread lock held.  Thread lock
  428  * may have transitioned from the sleepq lock to a run lock.
  429  */
  430 static int
  431 sleepq_catch_signals(void *wchan, int pri)
  432 {
  433         struct sleepqueue_chain *sc;
  434         struct sleepqueue *sq;
  435         struct thread *td;
  436         struct proc *p;
  437         struct sigacts *ps;
  438         int sig, ret;
  439 
  440         ret = 0;
  441         td = curthread;
  442         p = curproc;
  443         sc = SC_LOOKUP(wchan);
  444         mtx_assert(&sc->sc_lock, MA_OWNED);
  445         MPASS(wchan != NULL);
  446         if ((td->td_pflags & TDP_WAKEUP) != 0) {
  447                 td->td_pflags &= ~TDP_WAKEUP;
  448                 ret = EINTR;
  449                 thread_lock(td);
  450                 goto out;
  451         }
  452 
  453         /*
  454          * See if there are any pending signals or suspension requests for this
  455          * thread.  If not, we can switch immediately.
  456          */
  457         thread_lock(td);
  458         if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) != 0) {
  459                 thread_unlock(td);
  460                 mtx_unlock_spin(&sc->sc_lock);
  461                 CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
  462                         (void *)td, (long)p->p_pid, td->td_name);
  463                 PROC_LOCK(p);
  464                 /*
  465                  * Check for suspension first. Checking for signals and then
  466                  * suspending could result in a missed signal, since a signal
  467                  * can be delivered while this thread is suspended.
  468                  */
  469                 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) {
  470                         ret = thread_suspend_check(1);
  471                         MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
  472                         if (ret != 0) {
  473                                 PROC_UNLOCK(p);
  474                                 mtx_lock_spin(&sc->sc_lock);
  475                                 thread_lock(td);
  476                                 goto out;
  477                         }
  478                 }
  479                 if ((td->td_flags & TDF_NEEDSIGCHK) != 0) {
  480                         ps = p->p_sigacts;
  481                         mtx_lock(&ps->ps_mtx);
  482                         sig = cursig(td);
  483                         if (sig == -1) {
  484                                 mtx_unlock(&ps->ps_mtx);
  485                                 KASSERT((td->td_flags & TDF_SBDRY) != 0,
  486                                     ("lost TDF_SBDRY"));
  487                                 KASSERT(TD_SBDRY_INTR(td),
  488                                     ("lost TDF_SERESTART of TDF_SEINTR"));
  489                                 KASSERT((td->td_flags &
  490                                     (TDF_SEINTR | TDF_SERESTART)) !=
  491                                     (TDF_SEINTR | TDF_SERESTART),
  492                                     ("both TDF_SEINTR and TDF_SERESTART"));
  493                                 ret = TD_SBDRY_ERRNO(td);
  494                         } else if (sig != 0) {
  495                                 ret = SIGISMEMBER(ps->ps_sigintr, sig) ?
  496                                     EINTR : ERESTART;
  497                                 mtx_unlock(&ps->ps_mtx);
  498                         } else {
  499                                 mtx_unlock(&ps->ps_mtx);
  500                         }
  501 
  502                         /*
  503                          * Do not go into sleep if this thread was the
  504                          * ptrace(2) attach leader.  cursig() consumed
  505                          * SIGSTOP from PT_ATTACH, but we usually act
  506                          * on the signal by interrupting sleep, and
  507                          * should do that here as well.
  508                          */
  509                         if ((td->td_dbgflags & TDB_FSTP) != 0) {
  510                                 if (ret == 0)
  511                                         ret = EINTR;
  512                                 td->td_dbgflags &= ~TDB_FSTP;
  513                         }
  514                 }
  515                 /*
  516                  * Lock the per-process spinlock prior to dropping the PROC_LOCK
  517                  * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
  518                  * thread_lock() are currently held in tdsendsignal().
  519                  */
  520                 PROC_SLOCK(p);
  521                 mtx_lock_spin(&sc->sc_lock);
  522                 PROC_UNLOCK(p);
  523                 thread_lock(td);
  524                 PROC_SUNLOCK(p);
  525         }
  526         if (ret == 0) {
  527                 sleepq_switch(wchan, pri);
  528                 return (0);
  529         }
  530 out:
  531         /*
  532          * There were pending signals and this thread is still
  533          * on the sleep queue, remove it from the sleep queue.
  534          */
  535         if (TD_ON_SLEEPQ(td)) {
  536                 sq = sleepq_lookup(wchan);
  537                 if (sleepq_resume_thread(sq, td, 0)) {
  538 #ifdef INVARIANTS
  539                         /*
  540                          * This thread hasn't gone to sleep yet, so it
  541                          * should not be swapped out.
  542                          */
  543                         panic("not waking up swapper");
  544 #endif
  545                 }
  546         }
  547         mtx_unlock_spin(&sc->sc_lock);
  548         MPASS(td->td_lock != &sc->sc_lock);
  549         return (ret);
  550 }
  551 
  552 /*
  553  * Switches to another thread if we are still asleep on a sleep queue.
  554  * Returns with thread lock.
  555  */
  556 static void
  557 sleepq_switch(void *wchan, int pri)
  558 {
  559         struct sleepqueue_chain *sc;
  560         struct sleepqueue *sq;
  561         struct thread *td;
  562         bool rtc_changed;
  563 
  564         td = curthread;
  565         sc = SC_LOOKUP(wchan);
  566         mtx_assert(&sc->sc_lock, MA_OWNED);
  567         THREAD_LOCK_ASSERT(td, MA_OWNED);
  568 
  569         /*
  570          * If we have a sleep queue, then we've already been woken up, so
  571          * just return.
  572          */
  573         if (td->td_sleepqueue != NULL) {
  574                 mtx_unlock_spin(&sc->sc_lock);
  575                 return;
  576         }
  577 
  578         /*
  579          * If TDF_TIMEOUT is set, then our sleep has been timed out
  580          * already but we are still on the sleep queue, so dequeue the
  581          * thread and return.
  582          *
  583          * Do the same if the real-time clock has been adjusted since this
  584          * thread calculated its timeout based on that clock.  This handles
  585          * the following race:
  586          * - The Ts thread needs to sleep until an absolute real-clock time.
  587          *   It copies the global rtc_generation into curthread->td_rtcgen,
  588          *   reads the RTC, and calculates a sleep duration based on that time.
  589          *   See umtxq_sleep() for an example.
  590          * - The Tc thread adjusts the RTC, bumps rtc_generation, and wakes
  591          *   threads that are sleeping until an absolute real-clock time.
  592          *   See tc_setclock() and the POSIX specification of clock_settime().
  593          * - Ts reaches the code below.  It holds the sleepqueue chain lock,
  594          *   so Tc has finished waking, so this thread must test td_rtcgen.
  595          * (The declaration of td_rtcgen refers to this comment.)
  596          */
  597         rtc_changed = td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation;
  598         if ((td->td_flags & TDF_TIMEOUT) || rtc_changed) {
  599                 if (rtc_changed) {
  600                         td->td_rtcgen = 0;
  601                 }
  602                 MPASS(TD_ON_SLEEPQ(td));
  603                 sq = sleepq_lookup(wchan);
  604                 if (sleepq_resume_thread(sq, td, 0)) {
  605 #ifdef INVARIANTS
  606                         /*
  607                          * This thread hasn't gone to sleep yet, so it
  608                          * should not be swapped out.
  609                          */
  610                         panic("not waking up swapper");
  611 #endif
  612                 }
  613                 mtx_unlock_spin(&sc->sc_lock);
  614                 return;
  615         }
  616 #ifdef SLEEPQUEUE_PROFILING
  617         if (prof_enabled)
  618                 sleepq_profile(td->td_wmesg);
  619 #endif
  620         MPASS(td->td_sleepqueue == NULL);
  621         sched_sleep(td, pri);
  622         thread_lock_set(td, &sc->sc_lock);
  623         SDT_PROBE0(sched, , , sleep);
  624         TD_SET_SLEEPING(td);
  625         mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
  626         KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
  627         CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
  628             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
  629 }
  630 
  631 /*
  632  * Check to see if we timed out.
  633  */
  634 static int
  635 sleepq_check_timeout(void)
  636 {
  637         struct thread *td;
  638         int res;
  639 
  640         td = curthread;
  641         THREAD_LOCK_ASSERT(td, MA_OWNED);
  642 
  643         /*
  644          * If TDF_TIMEOUT is set, we timed out.  But recheck
  645          * td_sleeptimo anyway.
  646          */
  647         res = 0;
  648         if (td->td_sleeptimo != 0) {
  649                 if (td->td_sleeptimo <= sbinuptime())
  650                         res = EWOULDBLOCK;
  651                 td->td_sleeptimo = 0;
  652         }
  653         if (td->td_flags & TDF_TIMEOUT)
  654                 td->td_flags &= ~TDF_TIMEOUT;
  655         else
  656                 /*
  657                  * We ignore the situation where timeout subsystem was
  658                  * unable to stop our callout.  The struct thread is
  659                  * type-stable, the callout will use the correct
  660                  * memory when running.  The checks of the
  661                  * td_sleeptimo value in this function and in
  662                  * sleepq_timeout() ensure that the thread does not
  663                  * get spurious wakeups, even if the callout was reset
  664                  * or thread reused.
  665                  */
  666                 callout_stop(&td->td_slpcallout);
  667         return (res);
  668 }
  669 
  670 /*
  671  * Check to see if we were awoken by a signal.
  672  */
  673 static int
  674 sleepq_check_signals(void)
  675 {
  676         struct thread *td;
  677 
  678         td = curthread;
  679         THREAD_LOCK_ASSERT(td, MA_OWNED);
  680 
  681         /* We are no longer in an interruptible sleep. */
  682         if (td->td_flags & TDF_SINTR)
  683                 td->td_flags &= ~TDF_SINTR;
  684 
  685         if (td->td_flags & TDF_SLEEPABORT) {
  686                 td->td_flags &= ~TDF_SLEEPABORT;
  687                 return (td->td_intrval);
  688         }
  689 
  690         return (0);
  691 }
  692 
  693 /*
  694  * Block the current thread until it is awakened from its sleep queue.
  695  */
  696 void
  697 sleepq_wait(void *wchan, int pri)
  698 {
  699         struct thread *td;
  700 
  701         td = curthread;
  702         MPASS(!(td->td_flags & TDF_SINTR));
  703         thread_lock(td);
  704         sleepq_switch(wchan, pri);
  705         thread_unlock(td);
  706 }
  707 
  708 /*
  709  * Block the current thread until it is awakened from its sleep queue
  710  * or it is interrupted by a signal.
  711  */
  712 int
  713 sleepq_wait_sig(void *wchan, int pri)
  714 {
  715         int rcatch;
  716         int rval;
  717 
  718         rcatch = sleepq_catch_signals(wchan, pri);
  719         rval = sleepq_check_signals();
  720         thread_unlock(curthread);
  721         if (rcatch)
  722                 return (rcatch);
  723         return (rval);
  724 }
  725 
  726 /*
  727  * Block the current thread until it is awakened from its sleep queue
  728  * or it times out while waiting.
  729  */
  730 int
  731 sleepq_timedwait(void *wchan, int pri)
  732 {
  733         struct thread *td;
  734         int rval;
  735 
  736         td = curthread;
  737         MPASS(!(td->td_flags & TDF_SINTR));
  738         thread_lock(td);
  739         sleepq_switch(wchan, pri);
  740         rval = sleepq_check_timeout();
  741         thread_unlock(td);
  742 
  743         return (rval);
  744 }
  745 
  746 /*
  747  * Block the current thread until it is awakened from its sleep queue,
  748  * it is interrupted by a signal, or it times out waiting to be awakened.
  749  */
  750 int
  751 sleepq_timedwait_sig(void *wchan, int pri)
  752 {
  753         int rcatch, rvalt, rvals;
  754 
  755         rcatch = sleepq_catch_signals(wchan, pri);
  756         rvalt = sleepq_check_timeout();
  757         rvals = sleepq_check_signals();
  758         thread_unlock(curthread);
  759         if (rcatch)
  760                 return (rcatch);
  761         if (rvals)
  762                 return (rvals);
  763         return (rvalt);
  764 }
  765 
  766 /*
  767  * Returns the type of sleepqueue given a waitchannel.
  768  */
  769 int
  770 sleepq_type(void *wchan)
  771 {
  772         struct sleepqueue *sq;
  773         int type;
  774 
  775         MPASS(wchan != NULL);
  776 
  777         sleepq_lock(wchan);
  778         sq = sleepq_lookup(wchan);
  779         if (sq == NULL) {
  780                 sleepq_release(wchan);
  781                 return (-1);
  782         }
  783         type = sq->sq_type;
  784         sleepq_release(wchan);
  785         return (type);
  786 }
  787 
  788 /*
  789  * Removes a thread from a sleep queue and makes it
  790  * runnable.
  791  */
  792 static int
  793 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
  794 {
  795         struct sleepqueue_chain *sc __unused;
  796 
  797         MPASS(td != NULL);
  798         MPASS(sq->sq_wchan != NULL);
  799         MPASS(td->td_wchan == sq->sq_wchan);
  800         MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
  801         THREAD_LOCK_ASSERT(td, MA_OWNED);
  802         sc = SC_LOOKUP(sq->sq_wchan);
  803         mtx_assert(&sc->sc_lock, MA_OWNED);
  804 
  805         SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
  806 
  807         /* Remove the thread from the queue. */
  808         sq->sq_blockedcnt[td->td_sqqueue]--;
  809         TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
  810 
  811         /*
  812          * Get a sleep queue for this thread.  If this is the last waiter,
  813          * use the queue itself and take it out of the chain, otherwise,
  814          * remove a queue from the free list.
  815          */
  816         if (LIST_EMPTY(&sq->sq_free)) {
  817                 td->td_sleepqueue = sq;
  818 #ifdef INVARIANTS
  819                 sq->sq_wchan = NULL;
  820 #endif
  821 #ifdef SLEEPQUEUE_PROFILING
  822                 sc->sc_depth--;
  823 #endif
  824         } else
  825                 td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
  826         LIST_REMOVE(td->td_sleepqueue, sq_hash);
  827 
  828         td->td_wmesg = NULL;
  829         td->td_wchan = NULL;
  830         td->td_flags &= ~TDF_SINTR;
  831 
  832         CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
  833             (void *)td, (long)td->td_proc->p_pid, td->td_name);
  834 
  835         /* Adjust priority if requested. */
  836         MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
  837         if (pri != 0 && td->td_priority > pri &&
  838             PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
  839                 sched_prio(td, pri);
  840 
  841         /*
  842          * Note that thread td might not be sleeping if it is running
  843          * sleepq_catch_signals() on another CPU or is blocked on its
  844          * proc lock to check signals.  There's no need to mark the
  845          * thread runnable in that case.
  846          */
  847         if (TD_IS_SLEEPING(td)) {
  848                 TD_CLR_SLEEPING(td);
  849                 return (setrunnable(td));
  850         }
  851         return (0);
  852 }
  853 
  854 #ifdef INVARIANTS
  855 /*
  856  * UMA zone item deallocator.
  857  */
  858 static void
  859 sleepq_dtor(void *mem, int size, void *arg)
  860 {
  861         struct sleepqueue *sq;
  862         int i;
  863 
  864         sq = mem;
  865         for (i = 0; i < NR_SLEEPQS; i++) {
  866                 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
  867                 MPASS(sq->sq_blockedcnt[i] == 0);
  868         }
  869 }
  870 #endif
  871 
  872 /*
  873  * UMA zone item initializer.
  874  */
  875 static int
  876 sleepq_init(void *mem, int size, int flags)
  877 {
  878         struct sleepqueue *sq;
  879         int i;
  880 
  881         bzero(mem, size);
  882         sq = mem;
  883         for (i = 0; i < NR_SLEEPQS; i++) {
  884                 TAILQ_INIT(&sq->sq_blocked[i]);
  885                 sq->sq_blockedcnt[i] = 0;
  886         }
  887         LIST_INIT(&sq->sq_free);
  888         return (0);
  889 }
  890 
  891 /*
  892  * Find thread sleeping on a wait channel and resume it.
  893  */
  894 int
  895 sleepq_signal(void *wchan, int flags, int pri, int queue)
  896 {
  897         struct sleepqueue_chain *sc;
  898         struct sleepqueue *sq;
  899         struct threadqueue *head;
  900         struct thread *td, *besttd;
  901         int wakeup_swapper;
  902 
  903         CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
  904         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  905         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  906         sq = sleepq_lookup(wchan);
  907         if (sq == NULL)
  908                 return (0);
  909         KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
  910             ("%s: mismatch between sleep/wakeup and cv_*", __func__));
  911 
  912         head = &sq->sq_blocked[queue];
  913         if (flags & SLEEPQ_UNFAIR) {
  914                 /*
  915                  * Find the most recently sleeping thread, but try to
  916                  * skip threads still in process of context switch to
  917                  * avoid spinning on the thread lock.
  918                  */
  919                 sc = SC_LOOKUP(wchan);
  920                 besttd = TAILQ_LAST_FAST(head, thread, td_slpq);
  921                 while (besttd->td_lock != &sc->sc_lock) {
  922                         td = TAILQ_PREV_FAST(besttd, head, thread, td_slpq);
  923                         if (td == NULL)
  924                                 break;
  925                         besttd = td;
  926                 }
  927         } else {
  928                 /*
  929                  * Find the highest priority thread on the queue.  If there
  930                  * is a tie, use the thread that first appears in the queue
  931                  * as it has been sleeping the longest since threads are
  932                  * always added to the tail of sleep queues.
  933                  */
  934                 besttd = td = TAILQ_FIRST(head);
  935                 while ((td = TAILQ_NEXT(td, td_slpq)) != NULL) {
  936                         if (td->td_priority < besttd->td_priority)
  937                                 besttd = td;
  938                 }
  939         }
  940         MPASS(besttd != NULL);
  941         thread_lock(besttd);
  942         wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
  943         thread_unlock(besttd);
  944         return (wakeup_swapper);
  945 }
  946 
  947 static bool
  948 match_any(struct thread *td __unused)
  949 {
  950 
  951         return (true);
  952 }
  953 
  954 /*
  955  * Resume all threads sleeping on a specified wait channel.
  956  */
  957 int
  958 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
  959 {
  960         struct sleepqueue *sq;
  961 
  962         CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
  963         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  964         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  965         sq = sleepq_lookup(wchan);
  966         if (sq == NULL)
  967                 return (0);
  968         KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
  969             ("%s: mismatch between sleep/wakeup and cv_*", __func__));
  970 
  971         return (sleepq_remove_matching(sq, queue, match_any, pri));
  972 }
  973 
  974 /*
  975  * Resume threads on the sleep queue that match the given predicate.
  976  */
  977 int
  978 sleepq_remove_matching(struct sleepqueue *sq, int queue,
  979     bool (*matches)(struct thread *), int pri)
  980 {
  981         struct thread *td, *tdn;
  982         int wakeup_swapper;
  983 
  984         /*
  985          * The last thread will be given ownership of sq and may
  986          * re-enqueue itself before sleepq_resume_thread() returns,
  987          * so we must cache the "next" queue item at the beginning
  988          * of the final iteration.
  989          */
  990         wakeup_swapper = 0;
  991         TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
  992                 thread_lock(td);
  993                 if (matches(td))
  994                         wakeup_swapper |= sleepq_resume_thread(sq, td, pri);
  995                 thread_unlock(td);
  996         }
  997 
  998         return (wakeup_swapper);
  999 }
 1000 
 1001 /*
 1002  * Time sleeping threads out.  When the timeout expires, the thread is
 1003  * removed from the sleep queue and made runnable if it is still asleep.
 1004  */
 1005 static void
 1006 sleepq_timeout(void *arg)
 1007 {
 1008         struct sleepqueue_chain *sc __unused;
 1009         struct sleepqueue *sq;
 1010         struct thread *td;
 1011         void *wchan;
 1012         int wakeup_swapper;
 1013 
 1014         td = arg;
 1015         wakeup_swapper = 0;
 1016         CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
 1017             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
 1018 
 1019         thread_lock(td);
 1020 
 1021         if (td->td_sleeptimo > sbinuptime() || td->td_sleeptimo == 0) {
 1022                 /*
 1023                  * The thread does not want a timeout (yet).
 1024                  */
 1025         } else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
 1026                 /*
 1027                  * See if the thread is asleep and get the wait
 1028                  * channel if it is.
 1029                  */
 1030                 wchan = td->td_wchan;
 1031                 sc = SC_LOOKUP(wchan);
 1032                 THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
 1033                 sq = sleepq_lookup(wchan);
 1034                 MPASS(sq != NULL);
 1035                 td->td_flags |= TDF_TIMEOUT;
 1036                 wakeup_swapper = sleepq_resume_thread(sq, td, 0);
 1037         } else if (TD_ON_SLEEPQ(td)) {
 1038                 /*
 1039                  * If the thread is on the SLEEPQ but isn't sleeping
 1040                  * yet, it can either be on another CPU in between
 1041                  * sleepq_add() and one of the sleepq_*wait*()
 1042                  * routines or it can be in sleepq_catch_signals().
 1043                  */
 1044                 td->td_flags |= TDF_TIMEOUT;
 1045         }
 1046 
 1047         thread_unlock(td);
 1048         if (wakeup_swapper)
 1049                 kick_proc0();
 1050 }
 1051 
 1052 /*
 1053  * Resumes a specific thread from the sleep queue associated with a specific
 1054  * wait channel if it is on that queue.
 1055  */
 1056 void
 1057 sleepq_remove(struct thread *td, void *wchan)
 1058 {
 1059         struct sleepqueue *sq;
 1060         int wakeup_swapper;
 1061 
 1062         /*
 1063          * Look up the sleep queue for this wait channel, then re-check
 1064          * that the thread is asleep on that channel, if it is not, then
 1065          * bail.
 1066          */
 1067         MPASS(wchan != NULL);
 1068         sleepq_lock(wchan);
 1069         sq = sleepq_lookup(wchan);
 1070         /*
 1071          * We can not lock the thread here as it may be sleeping on a
 1072          * different sleepq.  However, holding the sleepq lock for this
 1073          * wchan can guarantee that we do not miss a wakeup for this
 1074          * channel.  The asserts below will catch any false positives.
 1075          */
 1076         if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
 1077                 sleepq_release(wchan);
 1078                 return;
 1079         }
 1080         /* Thread is asleep on sleep queue sq, so wake it up. */
 1081         thread_lock(td);
 1082         MPASS(sq != NULL);
 1083         MPASS(td->td_wchan == wchan);
 1084         wakeup_swapper = sleepq_resume_thread(sq, td, 0);
 1085         thread_unlock(td);
 1086         sleepq_release(wchan);
 1087         if (wakeup_swapper)
 1088                 kick_proc0();
 1089 }
 1090 
 1091 /*
 1092  * Abort a thread as if an interrupt had occurred.  Only abort
 1093  * interruptible waits (unfortunately it isn't safe to abort others).
 1094  */
 1095 int
 1096 sleepq_abort(struct thread *td, int intrval)
 1097 {
 1098         struct sleepqueue *sq;
 1099         void *wchan;
 1100 
 1101         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1102         MPASS(TD_ON_SLEEPQ(td));
 1103         MPASS(td->td_flags & TDF_SINTR);
 1104         MPASS(intrval == EINTR || intrval == ERESTART);
 1105 
 1106         /*
 1107          * If the TDF_TIMEOUT flag is set, just leave. A
 1108          * timeout is scheduled anyhow.
 1109          */
 1110         if (td->td_flags & TDF_TIMEOUT)
 1111                 return (0);
 1112 
 1113         CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
 1114             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
 1115         td->td_intrval = intrval;
 1116         td->td_flags |= TDF_SLEEPABORT;
 1117         /*
 1118          * If the thread has not slept yet it will find the signal in
 1119          * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
 1120          * we have to do it here.
 1121          */
 1122         if (!TD_IS_SLEEPING(td))
 1123                 return (0);
 1124         wchan = td->td_wchan;
 1125         MPASS(wchan != NULL);
 1126         sq = sleepq_lookup(wchan);
 1127         MPASS(sq != NULL);
 1128 
 1129         /* Thread is asleep on sleep queue sq, so wake it up. */
 1130         return (sleepq_resume_thread(sq, td, 0));
 1131 }
 1132 
 1133 void
 1134 sleepq_chains_remove_matching(bool (*matches)(struct thread *))
 1135 {
 1136         struct sleepqueue_chain *sc;
 1137         struct sleepqueue *sq, *sq1;
 1138         int i, wakeup_swapper;
 1139 
 1140         wakeup_swapper = 0;
 1141         for (sc = &sleepq_chains[0]; sc < sleepq_chains + SC_TABLESIZE; ++sc) {
 1142                 if (LIST_EMPTY(&sc->sc_queues)) {
 1143                         continue;
 1144                 }
 1145                 mtx_lock_spin(&sc->sc_lock);
 1146                 LIST_FOREACH_SAFE(sq, &sc->sc_queues, sq_hash, sq1) {
 1147                         for (i = 0; i < NR_SLEEPQS; ++i) {
 1148                                 wakeup_swapper |= sleepq_remove_matching(sq, i,
 1149                                     matches, 0);
 1150                         }
 1151                 }
 1152                 mtx_unlock_spin(&sc->sc_lock);
 1153         }
 1154         if (wakeup_swapper) {
 1155                 kick_proc0();
 1156         }
 1157 }
 1158 
 1159 /*
 1160  * Prints the stacks of all threads presently sleeping on wchan/queue to
 1161  * the sbuf sb.  Sets count_stacks_printed to the number of stacks actually
 1162  * printed.  Typically, this will equal the number of threads sleeping on the
 1163  * queue, but may be less if sb overflowed before all stacks were printed.
 1164  */
 1165 #ifdef STACK
 1166 int
 1167 sleepq_sbuf_print_stacks(struct sbuf *sb, void *wchan, int queue,
 1168     int *count_stacks_printed)
 1169 {
 1170         struct thread *td, *td_next;
 1171         struct sleepqueue *sq;
 1172         struct stack **st;
 1173         struct sbuf **td_infos;
 1174         int i, stack_idx, error, stacks_to_allocate;
 1175         bool finished;
 1176 
 1177         error = 0;
 1178         finished = false;
 1179 
 1180         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
 1181         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
 1182 
 1183         stacks_to_allocate = 10;
 1184         for (i = 0; i < 3 && !finished ; i++) {
 1185                 /* We cannot malloc while holding the queue's spinlock, so
 1186                  * we do our mallocs now, and hope it is enough.  If it
 1187                  * isn't, we will free these, drop the lock, malloc more,
 1188                  * and try again, up to a point.  After that point we will
 1189                  * give up and report ENOMEM. We also cannot write to sb
 1190                  * during this time since the client may have set the
 1191                  * SBUF_AUTOEXTEND flag on their sbuf, which could cause a
 1192                  * malloc as we print to it.  So we defer actually printing
 1193                  * to sb until after we drop the spinlock.
 1194                  */
 1195 
 1196                 /* Where we will store the stacks. */
 1197                 st = malloc(sizeof(struct stack *) * stacks_to_allocate,
 1198                     M_TEMP, M_WAITOK);
 1199                 for (stack_idx = 0; stack_idx < stacks_to_allocate;
 1200                     stack_idx++)
 1201                         st[stack_idx] = stack_create(M_WAITOK);
 1202 
 1203                 /* Where we will store the td name, tid, etc. */
 1204                 td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate,
 1205                     M_TEMP, M_WAITOK);
 1206                 for (stack_idx = 0; stack_idx < stacks_to_allocate;
 1207                     stack_idx++)
 1208                         td_infos[stack_idx] = sbuf_new(NULL, NULL,
 1209                             MAXCOMLEN + sizeof(struct thread *) * 2 + 40,
 1210                             SBUF_FIXEDLEN);
 1211 
 1212                 sleepq_lock(wchan);
 1213                 sq = sleepq_lookup(wchan);
 1214                 if (sq == NULL) {
 1215                         /* This sleepq does not exist; exit and return ENOENT. */
 1216                         error = ENOENT;
 1217                         finished = true;
 1218                         sleepq_release(wchan);
 1219                         goto loop_end;
 1220                 }
 1221 
 1222                 stack_idx = 0;
 1223                 /* Save thread info */
 1224                 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq,
 1225                     td_next) {
 1226                         if (stack_idx >= stacks_to_allocate)
 1227                                 goto loop_end;
 1228 
 1229                         /* Note the td_lock is equal to the sleepq_lock here. */
 1230                         stack_save_td(st[stack_idx], td);
 1231 
 1232                         sbuf_printf(td_infos[stack_idx], "%d: %s %p",
 1233                             td->td_tid, td->td_name, td);
 1234 
 1235                         ++stack_idx;
 1236                 }
 1237 
 1238                 finished = true;
 1239                 sleepq_release(wchan);
 1240 
 1241                 /* Print the stacks */
 1242                 for (i = 0; i < stack_idx; i++) {
 1243                         sbuf_finish(td_infos[i]);
 1244                         sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i]));
 1245                         stack_sbuf_print(sb, st[i]);
 1246                         sbuf_printf(sb, "\n");
 1247 
 1248                         error = sbuf_error(sb);
 1249                         if (error == 0)
 1250                                 *count_stacks_printed = stack_idx;
 1251                 }
 1252 
 1253 loop_end:
 1254                 if (!finished)
 1255                         sleepq_release(wchan);
 1256                 for (stack_idx = 0; stack_idx < stacks_to_allocate;
 1257                     stack_idx++)
 1258                         stack_destroy(st[stack_idx]);
 1259                 for (stack_idx = 0; stack_idx < stacks_to_allocate;
 1260                     stack_idx++)
 1261                         sbuf_delete(td_infos[stack_idx]);
 1262                 free(st, M_TEMP);
 1263                 free(td_infos, M_TEMP);
 1264                 stacks_to_allocate *= 10;
 1265         }
 1266 
 1267         if (!finished && error == 0)
 1268                 error = ENOMEM;
 1269 
 1270         return (error);
 1271 }
 1272 #endif
 1273 
 1274 #ifdef SLEEPQUEUE_PROFILING
 1275 #define SLEEPQ_PROF_LOCATIONS   1024
 1276 #define SLEEPQ_SBUFSIZE         512
 1277 struct sleepq_prof {
 1278         LIST_ENTRY(sleepq_prof) sp_link;
 1279         const char      *sp_wmesg;
 1280         long            sp_count;
 1281 };
 1282 
 1283 LIST_HEAD(sqphead, sleepq_prof);
 1284 
 1285 struct sqphead sleepq_prof_free;
 1286 struct sqphead sleepq_hash[SC_TABLESIZE];
 1287 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
 1288 static struct mtx sleepq_prof_lock;
 1289 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
 1290 
 1291 static void
 1292 sleepq_profile(const char *wmesg)
 1293 {
 1294         struct sleepq_prof *sp;
 1295 
 1296         mtx_lock_spin(&sleepq_prof_lock);
 1297         if (prof_enabled == 0)
 1298                 goto unlock;
 1299         LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
 1300                 if (sp->sp_wmesg == wmesg)
 1301                         goto done;
 1302         sp = LIST_FIRST(&sleepq_prof_free);
 1303         if (sp == NULL)
 1304                 goto unlock;
 1305         sp->sp_wmesg = wmesg;
 1306         LIST_REMOVE(sp, sp_link);
 1307         LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
 1308 done:
 1309         sp->sp_count++;
 1310 unlock:
 1311         mtx_unlock_spin(&sleepq_prof_lock);
 1312         return;
 1313 }
 1314 
 1315 static void
 1316 sleepq_prof_reset(void)
 1317 {
 1318         struct sleepq_prof *sp;
 1319         int enabled;
 1320         int i;
 1321 
 1322         mtx_lock_spin(&sleepq_prof_lock);
 1323         enabled = prof_enabled;
 1324         prof_enabled = 0;
 1325         for (i = 0; i < SC_TABLESIZE; i++)
 1326                 LIST_INIT(&sleepq_hash[i]);
 1327         LIST_INIT(&sleepq_prof_free);
 1328         for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
 1329                 sp = &sleepq_profent[i];
 1330                 sp->sp_wmesg = NULL;
 1331                 sp->sp_count = 0;
 1332                 LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
 1333         }
 1334         prof_enabled = enabled;
 1335         mtx_unlock_spin(&sleepq_prof_lock);
 1336 }
 1337 
 1338 static int
 1339 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
 1340 {
 1341         int error, v;
 1342 
 1343         v = prof_enabled;
 1344         error = sysctl_handle_int(oidp, &v, v, req);
 1345         if (error)
 1346                 return (error);
 1347         if (req->newptr == NULL)
 1348                 return (error);
 1349         if (v == prof_enabled)
 1350                 return (0);
 1351         if (v == 1)
 1352                 sleepq_prof_reset();
 1353         mtx_lock_spin(&sleepq_prof_lock);
 1354         prof_enabled = !!v;
 1355         mtx_unlock_spin(&sleepq_prof_lock);
 1356 
 1357         return (0);
 1358 }
 1359 
 1360 static int
 1361 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
 1362 {
 1363         int error, v;
 1364 
 1365         v = 0;
 1366         error = sysctl_handle_int(oidp, &v, 0, req);
 1367         if (error)
 1368                 return (error);
 1369         if (req->newptr == NULL)
 1370                 return (error);
 1371         if (v == 0)
 1372                 return (0);
 1373         sleepq_prof_reset();
 1374 
 1375         return (0);
 1376 }
 1377 
 1378 static int
 1379 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
 1380 {
 1381         struct sleepq_prof *sp;
 1382         struct sbuf *sb;
 1383         int enabled;
 1384         int error;
 1385         int i;
 1386 
 1387         error = sysctl_wire_old_buffer(req, 0);
 1388         if (error != 0)
 1389                 return (error);
 1390         sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
 1391         sbuf_printf(sb, "\nwmesg\tcount\n");
 1392         enabled = prof_enabled;
 1393         mtx_lock_spin(&sleepq_prof_lock);
 1394         prof_enabled = 0;
 1395         mtx_unlock_spin(&sleepq_prof_lock);
 1396         for (i = 0; i < SC_TABLESIZE; i++) {
 1397                 LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
 1398                         sbuf_printf(sb, "%s\t%ld\n",
 1399                             sp->sp_wmesg, sp->sp_count);
 1400                 }
 1401         }
 1402         mtx_lock_spin(&sleepq_prof_lock);
 1403         prof_enabled = enabled;
 1404         mtx_unlock_spin(&sleepq_prof_lock);
 1405 
 1406         error = sbuf_finish(sb);
 1407         sbuf_delete(sb);
 1408         return (error);
 1409 }
 1410 
 1411 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
 1412     NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
 1413 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
 1414     NULL, 0, reset_sleepq_prof_stats, "I",
 1415     "Reset sleepqueue profiling statistics");
 1416 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
 1417     NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
 1418 #endif
 1419 
 1420 #ifdef DDB
 1421 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
 1422 {
 1423         struct sleepqueue_chain *sc;
 1424         struct sleepqueue *sq;
 1425 #ifdef INVARIANTS
 1426         struct lock_object *lock;
 1427 #endif
 1428         struct thread *td;
 1429         void *wchan;
 1430         int i;
 1431 
 1432         if (!have_addr)
 1433                 return;
 1434 
 1435         /*
 1436          * First, see if there is an active sleep queue for the wait channel
 1437          * indicated by the address.
 1438          */
 1439         wchan = (void *)addr;
 1440         sc = SC_LOOKUP(wchan);
 1441         LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
 1442                 if (sq->sq_wchan == wchan)
 1443                         goto found;
 1444 
 1445         /*
 1446          * Second, see if there is an active sleep queue at the address
 1447          * indicated.
 1448          */
 1449         for (i = 0; i < SC_TABLESIZE; i++)
 1450                 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
 1451                         if (sq == (struct sleepqueue *)addr)
 1452                                 goto found;
 1453                 }
 1454 
 1455         db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
 1456         return;
 1457 found:
 1458         db_printf("Wait channel: %p\n", sq->sq_wchan);
 1459         db_printf("Queue type: %d\n", sq->sq_type);
 1460 #ifdef INVARIANTS
 1461         if (sq->sq_lock) {
 1462                 lock = sq->sq_lock;
 1463                 db_printf("Associated Interlock: %p - (%s) %s\n", lock,
 1464                     LOCK_CLASS(lock)->lc_name, lock->lo_name);
 1465         }
 1466 #endif
 1467         db_printf("Blocked threads:\n");
 1468         for (i = 0; i < NR_SLEEPQS; i++) {
 1469                 db_printf("\nQueue[%d]:\n", i);
 1470                 if (TAILQ_EMPTY(&sq->sq_blocked[i]))
 1471                         db_printf("\tempty\n");
 1472                 else
 1473                         TAILQ_FOREACH(td, &sq->sq_blocked[i],
 1474                                       td_slpq) {
 1475                                 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
 1476                                           td->td_tid, td->td_proc->p_pid,
 1477                                           td->td_name);
 1478                         }
 1479                 db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
 1480         }
 1481 }
 1482 
 1483 /* Alias 'show sleepqueue' to 'show sleepq'. */
 1484 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
 1485 #endif

Cache object: 76e52b4de8cc0515dce3c9ddd8bc543e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.