The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_sleepqueue.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. Neither the name of the author nor the names of any co-contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 /*
   31  * Implementation of sleep queues used to hold queue of threads blocked on
   32  * a wait channel.  Sleep queues different from turnstiles in that wait
   33  * channels are not owned by anyone, so there is no priority propagation.
   34  * Sleep queues can also provide a timeout and can also be interrupted by
   35  * signals.  That said, there are several similarities between the turnstile
   36  * and sleep queue implementations.  (Note: turnstiles were implemented
   37  * first.)  For example, both use a hash table of the same size where each
   38  * bucket is referred to as a "chain" that contains both a spin lock and
   39  * a linked list of queues.  An individual queue is located by using a hash
   40  * to pick a chain, locking the chain, and then walking the chain searching
   41  * for the queue.  This means that a wait channel object does not need to
   42  * embed it's queue head just as locks do not embed their turnstile queue
   43  * head.  Threads also carry around a sleep queue that they lend to the
   44  * wait channel when blocking.  Just as in turnstiles, the queue includes
   45  * a free list of the sleep queues of other threads blocked on the same
   46  * wait channel in the case of multiple waiters.
   47  *
   48  * Some additional functionality provided by sleep queues include the
   49  * ability to set a timeout.  The timeout is managed using a per-thread
   50  * callout that resumes a thread if it is asleep.  A thread may also
   51  * catch signals while it is asleep (aka an interruptible sleep).  The
   52  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
   53  * sleep queues also provide some extra assertions.  One is not allowed to
   54  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
   55  * must consistently use the same lock to synchronize with a wait channel,
   56  * though this check is currently only a warning for sleep/wakeup due to
   57  * pre-existing abuse of that API.  The same lock must also be held when
   58  * awakening threads, though that is currently only enforced for condition
   59  * variables.
   60  */
   61 
   62 #include "opt_sleepqueue_profiling.h"
   63 
   64 #include <sys/cdefs.h>
   65 __FBSDID("$FreeBSD: releng/5.3/sys/kern/subr_sleepqueue.c 136588 2004-10-16 08:43:07Z cvs2svn $");
   66 
   67 #include <sys/param.h>
   68 #include <sys/systm.h>
   69 #include <sys/lock.h>
   70 #include <sys/kernel.h>
   71 #include <sys/ktr.h>
   72 #include <sys/malloc.h>
   73 #include <sys/mutex.h>
   74 #include <sys/proc.h>
   75 #include <sys/sched.h>
   76 #include <sys/signalvar.h>
   77 #include <sys/sleepqueue.h>
   78 #include <sys/sysctl.h>
   79 
   80 /*
   81  * Constants for the hash table of sleep queue chains.  These constants are
   82  * the same ones that 4BSD (and possibly earlier versions of BSD) used.
   83  * Basically, we ignore the lower 8 bits of the address since most wait
   84  * channel pointers are aligned and only look at the next 7 bits for the
   85  * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
   86  */
   87 #define SC_TABLESIZE    128                     /* Must be power of 2. */
   88 #define SC_MASK         (SC_TABLESIZE - 1)
   89 #define SC_SHIFT        8
   90 #define SC_HASH(wc)     (((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
   91 #define SC_LOOKUP(wc)   &sleepq_chains[SC_HASH(wc)]
   92 
   93 /*
   94  * There two different lists of sleep queues.  Both lists are connected
   95  * via the sq_hash entries.  The first list is the sleep queue chain list
   96  * that a sleep queue is on when it is attached to a wait channel.  The
   97  * second list is the free list hung off of a sleep queue that is attached
   98  * to a wait channel.
   99  *
  100  * Each sleep queue also contains the wait channel it is attached to, the
  101  * list of threads blocked on that wait channel, flags specific to the
  102  * wait channel, and the lock used to synchronize with a wait channel.
  103  * The flags are used to catch mismatches between the various consumers
  104  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
  105  * The lock pointer is only used when invariants are enabled for various
  106  * debugging checks.
  107  *
  108  * Locking key:
  109  *  c - sleep queue chain lock
  110  */
  111 struct sleepqueue {
  112         TAILQ_HEAD(, thread) sq_blocked;        /* (c) Blocked threads. */
  113         LIST_ENTRY(sleepqueue) sq_hash;         /* (c) Chain and free list. */
  114         LIST_HEAD(, sleepqueue) sq_free;        /* (c) Free queues. */
  115         void    *sq_wchan;                      /* (c) Wait channel. */
  116         int     sq_type;                        /* (c) Queue type. */
  117 #ifdef INVARIANTS
  118         struct mtx *sq_lock;                    /* (c) Associated lock. */
  119 #endif
  120 };
  121 
  122 struct sleepqueue_chain {
  123         LIST_HEAD(, sleepqueue) sc_queues;      /* List of sleep queues. */
  124         struct mtx sc_lock;                     /* Spin lock for this chain. */
  125 #ifdef SLEEPQUEUE_PROFILING
  126         u_int   sc_depth;                       /* Length of sc_queues. */
  127         u_int   sc_max_depth;                   /* Max length of sc_queues. */
  128 #endif
  129 };
  130 
  131 #ifdef SLEEPQUEUE_PROFILING
  132 u_int sleepq_max_depth;
  133 SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
  134 SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
  135     "sleepq chain stats");
  136 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
  137     0, "maxmimum depth achieved of a single chain");
  138 #endif
  139 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
  140 
  141 MALLOC_DEFINE(M_SLEEPQUEUE, "sleep queues", "sleep queues");
  142 
  143 /*
  144  * Prototypes for non-exported routines.
  145  */
  146 static int      sleepq_check_timeout(void);
  147 static void     sleepq_switch(void *wchan);
  148 static void     sleepq_timeout(void *arg);
  149 static void     sleepq_remove_thread(struct sleepqueue *sq, struct thread *td);
  150 static void     sleepq_resume_thread(struct thread *td, int pri);
  151 
  152 /*
  153  * Early initialization of sleep queues that is called from the sleepinit()
  154  * SYSINIT.
  155  */
  156 void
  157 init_sleepqueues(void)
  158 {
  159 #ifdef SLEEPQUEUE_PROFILING
  160         struct sysctl_oid *chain_oid;
  161         char chain_name[10];
  162 #endif
  163         int i;
  164 
  165         for (i = 0; i < SC_TABLESIZE; i++) {
  166                 LIST_INIT(&sleepq_chains[i].sc_queues);
  167                 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
  168                     MTX_SPIN);
  169 #ifdef SLEEPQUEUE_PROFILING
  170                 snprintf(chain_name, sizeof(chain_name), "%d", i);
  171                 chain_oid = SYSCTL_ADD_NODE(NULL, 
  172                     SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
  173                     chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
  174                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  175                     "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
  176                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  177                     "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
  178                     NULL);
  179 #endif
  180         }
  181         thread0.td_sleepqueue = sleepq_alloc();
  182 }
  183 
  184 /*
  185  * Malloc and initialize a new sleep queue for a new thread.
  186  */
  187 struct sleepqueue *
  188 sleepq_alloc(void)
  189 {
  190         struct sleepqueue *sq;
  191 
  192         sq = malloc(sizeof(struct sleepqueue), M_SLEEPQUEUE, M_WAITOK | M_ZERO);
  193         TAILQ_INIT(&sq->sq_blocked);
  194         LIST_INIT(&sq->sq_free);
  195         return (sq);
  196 }
  197 
  198 /*
  199  * Free a sleep queue when a thread is destroyed.
  200  */
  201 void
  202 sleepq_free(struct sleepqueue *sq)
  203 {
  204 
  205         MPASS(sq != NULL);
  206         MPASS(TAILQ_EMPTY(&sq->sq_blocked));
  207         free(sq, M_SLEEPQUEUE);
  208 }
  209 
  210 /*
  211  * Look up the sleep queue associated with a given wait channel in the hash
  212  * table locking the associated sleep queue chain.  Return holdind the sleep
  213  * queue chain lock.  If no queue is found in the table, NULL is returned.
  214  */
  215 struct sleepqueue *
  216 sleepq_lookup(void *wchan)
  217 {
  218         struct sleepqueue_chain *sc;
  219         struct sleepqueue *sq;
  220 
  221         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  222         sc = SC_LOOKUP(wchan);
  223         mtx_lock_spin(&sc->sc_lock);
  224         LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
  225                 if (sq->sq_wchan == wchan)
  226                         return (sq);
  227         return (NULL);
  228 }
  229 
  230 /*
  231  * Unlock the sleep queue chain associated with a given wait channel.
  232  */
  233 void
  234 sleepq_release(void *wchan)
  235 {
  236         struct sleepqueue_chain *sc;
  237 
  238         sc = SC_LOOKUP(wchan);
  239         mtx_unlock_spin(&sc->sc_lock);
  240 }
  241 
  242 /*
  243  * Places the current thread on the sleepqueue for the specified wait
  244  * channel.  If INVARIANTS is enabled, then it associates the passed in
  245  * lock with the sleepq to make sure it is held when that sleep queue is
  246  * woken up.
  247  */
  248 void
  249 sleepq_add(struct sleepqueue *sq, void *wchan, struct mtx *lock,
  250     const char *wmesg, int flags)
  251 {
  252         struct sleepqueue_chain *sc;
  253         struct thread *td, *td1;
  254 
  255         td = curthread;
  256         sc = SC_LOOKUP(wchan);
  257         mtx_assert(&sc->sc_lock, MA_OWNED);
  258         MPASS(td->td_sleepqueue != NULL);
  259         MPASS(wchan != NULL);
  260 
  261         /* If the passed in sleep queue is NULL, use this thread's queue. */
  262         if (sq == NULL) {
  263 #ifdef SLEEPQUEUE_PROFILING
  264                 sc->sc_depth++;
  265                 if (sc->sc_depth > sc->sc_max_depth) {
  266                         sc->sc_max_depth = sc->sc_depth;
  267                         if (sc->sc_max_depth > sleepq_max_depth)
  268                                 sleepq_max_depth = sc->sc_max_depth;
  269                 }
  270 #endif
  271                 sq = td->td_sleepqueue;
  272                 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
  273                 KASSERT(TAILQ_EMPTY(&sq->sq_blocked),
  274                     ("thread's sleep queue has a non-empty queue"));
  275                 KASSERT(LIST_EMPTY(&sq->sq_free),
  276                     ("thread's sleep queue has a non-empty free list"));
  277                 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
  278                 sq->sq_wchan = wchan;
  279 #ifdef INVARIANTS
  280                 sq->sq_lock = lock;
  281 #endif
  282                 sq->sq_type = flags & SLEEPQ_TYPE;
  283                 TAILQ_INSERT_TAIL(&sq->sq_blocked, td, td_slpq);
  284         } else {
  285                 MPASS(wchan == sq->sq_wchan);
  286                 MPASS(lock == sq->sq_lock);
  287                 TAILQ_FOREACH(td1, &sq->sq_blocked, td_slpq)
  288                         if (td1->td_priority > td->td_priority)
  289                                 break;
  290                 if (td1 != NULL)
  291                         TAILQ_INSERT_BEFORE(td1, td, td_slpq);
  292                 else
  293                         TAILQ_INSERT_TAIL(&sq->sq_blocked, td, td_slpq);
  294                 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
  295         }
  296         td->td_sleepqueue = NULL;
  297         mtx_lock_spin(&sched_lock);
  298         td->td_wchan = wchan;
  299         td->td_wmesg = wmesg;
  300         if (flags & SLEEPQ_INTERRUPTIBLE)
  301                 td->td_flags |= TDF_SINTR;
  302         mtx_unlock_spin(&sched_lock);
  303 }
  304 
  305 /*
  306  * Sets a timeout that will remove the current thread from the specified
  307  * sleep queue after timo ticks if the thread has not already been awakened.
  308  */
  309 void
  310 sleepq_set_timeout(void *wchan, int timo)
  311 {
  312         struct sleepqueue_chain *sc;
  313         struct thread *td;
  314 
  315         td = curthread;
  316         sc = SC_LOOKUP(wchan);
  317         mtx_assert(&sc->sc_lock, MA_OWNED);
  318         MPASS(TD_ON_SLEEPQ(td));
  319         MPASS(td->td_sleepqueue == NULL);
  320         MPASS(wchan != NULL);
  321         callout_reset(&td->td_slpcallout, timo, sleepq_timeout, td);
  322 }
  323 
  324 /*
  325  * Marks the pending sleep of the current thread as interruptible and
  326  * makes an initial check for pending signals before putting a thread
  327  * to sleep.
  328  */
  329 int
  330 sleepq_catch_signals(void *wchan)
  331 {
  332         struct sleepqueue_chain *sc;
  333         struct sleepqueue *sq;
  334         struct thread *td;
  335         struct proc *p;
  336         int do_upcall;
  337         int sig;
  338 
  339         do_upcall = 0;
  340         td = curthread;
  341         p = td->td_proc;
  342         sc = SC_LOOKUP(wchan);
  343         mtx_assert(&sc->sc_lock, MA_OWNED);
  344         MPASS(td->td_sleepqueue == NULL);
  345         MPASS(wchan != NULL);
  346         CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
  347             (void *)td, (long)p->p_pid, p->p_comm);
  348 
  349         /* Mark thread as being in an interruptible sleep. */
  350         MPASS(td->td_flags & TDF_SINTR);
  351         MPASS(TD_ON_SLEEPQ(td));
  352         sleepq_release(wchan);
  353 
  354         /* See if there are any pending signals for this thread. */
  355         PROC_LOCK(p);
  356         mtx_lock(&p->p_sigacts->ps_mtx);
  357         sig = cursig(td);
  358         mtx_unlock(&p->p_sigacts->ps_mtx);
  359         if (sig == 0 && thread_suspend_check(1))
  360                 sig = SIGSTOP;
  361         else
  362                 do_upcall = thread_upcall_check(td);
  363         PROC_UNLOCK(p);
  364 
  365         /*
  366          * If there were pending signals and this thread is still on
  367          * the sleep queue, remove it from the sleep queue.  If the
  368          * thread was removed from the sleep queue while we were blocked
  369          * above, then clear TDF_SINTR before returning.
  370          */
  371         sq = sleepq_lookup(wchan);
  372         mtx_lock_spin(&sched_lock);
  373         if (TD_ON_SLEEPQ(td) && (sig != 0 || do_upcall != 0)) {
  374                 mtx_unlock_spin(&sched_lock);
  375                 sleepq_remove_thread(sq, td);
  376         } else {
  377                 if (!TD_ON_SLEEPQ(td) && sig == 0)
  378                         td->td_flags &= ~TDF_SINTR;
  379                 mtx_unlock_spin(&sched_lock);
  380         }
  381         return (sig);
  382 }
  383 
  384 /*
  385  * Switches to another thread if we are still asleep on a sleep queue and
  386  * drop the lock on the sleepqueue chain.  Returns with sched_lock held.
  387  */
  388 static void
  389 sleepq_switch(void *wchan)
  390 {
  391         struct sleepqueue_chain *sc;
  392         struct thread *td;
  393 
  394         td = curthread;
  395         sc = SC_LOOKUP(wchan);
  396         mtx_assert(&sc->sc_lock, MA_OWNED);
  397 
  398         /* 
  399          * If we have a sleep queue, then we've already been woken up, so
  400          * just return.
  401          */
  402         if (td->td_sleepqueue != NULL) {
  403                 MPASS(!TD_ON_SLEEPQ(td));
  404                 mtx_unlock_spin(&sc->sc_lock);
  405                 mtx_lock_spin(&sched_lock);
  406                 return;
  407         }
  408 
  409         /*
  410          * Otherwise, actually go to sleep.
  411          */
  412         mtx_lock_spin(&sched_lock);
  413         mtx_unlock_spin(&sc->sc_lock);
  414 
  415         sched_sleep(td);
  416         TD_SET_SLEEPING(td);
  417         mi_switch(SW_VOL, NULL);
  418         KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
  419         CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
  420             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm);
  421 }
  422 
  423 /*
  424  * Check to see if we timed out.
  425  */
  426 static int
  427 sleepq_check_timeout(void)
  428 {
  429         struct thread *td;
  430 
  431         mtx_assert(&sched_lock, MA_OWNED);
  432         td = curthread;
  433 
  434         /*
  435          * If TDF_TIMEOUT is set, we timed out.
  436          */
  437         if (td->td_flags & TDF_TIMEOUT) {
  438                 td->td_flags &= ~TDF_TIMEOUT;
  439                 return (EWOULDBLOCK);
  440         }
  441 
  442         /*
  443          * If TDF_TIMOFAIL is set, the timeout ran after we had
  444          * already been woken up.
  445          */
  446         if (td->td_flags & TDF_TIMOFAIL)
  447                 td->td_flags &= ~TDF_TIMOFAIL;
  448 
  449         /*
  450          * If callout_stop() fails, then the timeout is running on
  451          * another CPU, so synchronize with it to avoid having it
  452          * accidentally wake up a subsequent sleep.
  453          */
  454         else if (callout_stop(&td->td_slpcallout) == 0) {
  455                 td->td_flags |= TDF_TIMEOUT;
  456                 TD_SET_SLEEPING(td);
  457                 mi_switch(SW_INVOL, NULL);
  458         }
  459         return (0);
  460 }
  461 
  462 /*
  463  * Check to see if we were awoken by a signal.
  464  */
  465 static int
  466 sleepq_check_signals(void)
  467 {
  468         struct thread *td;
  469 
  470         mtx_assert(&sched_lock, MA_OWNED);
  471         td = curthread;
  472 
  473         /*
  474          * If TDF_SINTR is clear, then we were awakened while executing
  475          * sleepq_catch_signals().
  476          */
  477         if (!(td->td_flags & TDF_SINTR))
  478                 return (0);
  479 
  480         /* We are no longer in an interruptible sleep. */
  481         td->td_flags &= ~TDF_SINTR;
  482 
  483         if (td->td_flags & TDF_INTERRUPT)
  484                 return (td->td_intrval);
  485         return (0);
  486 }
  487 
  488 /*
  489  * If we were in an interruptible sleep and we weren't interrupted and
  490  * didn't timeout, check to see if there are any pending signals and
  491  * which return value we should use if so.  The return value from an
  492  * earlier call to sleepq_catch_signals() should be passed in as the
  493  * argument.
  494  */
  495 int
  496 sleepq_calc_signal_retval(int sig)
  497 {
  498         struct thread *td;
  499         struct proc *p;
  500         int rval;
  501 
  502         td = curthread;
  503         p = td->td_proc;
  504         PROC_LOCK(p);
  505         mtx_lock(&p->p_sigacts->ps_mtx);
  506         /* XXX: Should we always be calling cursig()? */
  507         if (sig == 0)
  508                 sig = cursig(td);
  509         if (sig != 0) {
  510                 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
  511                         rval = EINTR;
  512                 else
  513                         rval = ERESTART;
  514         } else
  515                 rval = 0;
  516         mtx_unlock(&p->p_sigacts->ps_mtx);
  517         PROC_UNLOCK(p);
  518         return (rval);
  519 }
  520 
  521 /*
  522  * Block the current thread until it is awakened from its sleep queue.
  523  */
  524 void
  525 sleepq_wait(void *wchan)
  526 {
  527 
  528         MPASS(!(curthread->td_flags & TDF_SINTR));
  529         sleepq_switch(wchan);
  530         mtx_unlock_spin(&sched_lock);
  531 }
  532 
  533 /*
  534  * Block the current thread until it is awakened from its sleep queue
  535  * or it is interrupted by a signal.
  536  */
  537 int
  538 sleepq_wait_sig(void *wchan)
  539 {
  540         int rval;
  541 
  542         sleepq_switch(wchan);
  543         rval = sleepq_check_signals();
  544         mtx_unlock_spin(&sched_lock); 
  545         return (rval);
  546 }
  547 
  548 /*
  549  * Block the current thread until it is awakened from its sleep queue
  550  * or it times out while waiting.
  551  */
  552 int
  553 sleepq_timedwait(void *wchan)
  554 {
  555         int rval;
  556 
  557         MPASS(!(curthread->td_flags & TDF_SINTR));
  558         sleepq_switch(wchan);
  559         rval = sleepq_check_timeout();
  560         mtx_unlock_spin(&sched_lock);
  561         return (rval);
  562 }
  563 
  564 /*
  565  * Block the current thread until it is awakened from its sleep queue,
  566  * it is interrupted by a signal, or it times out waiting to be awakened.
  567  */
  568 int
  569 sleepq_timedwait_sig(void *wchan, int signal_caught)
  570 {
  571         int rvalt, rvals;
  572 
  573         sleepq_switch(wchan);
  574         rvalt = sleepq_check_timeout();
  575         rvals = sleepq_check_signals();
  576         mtx_unlock_spin(&sched_lock);
  577         if (signal_caught || rvalt == 0)
  578                 return (rvals);
  579         else
  580                 return (rvalt);
  581 }
  582 
  583 /*
  584  * Removes a thread from a sleep queue.
  585  */
  586 static void
  587 sleepq_remove_thread(struct sleepqueue *sq, struct thread *td)
  588 {
  589         struct sleepqueue_chain *sc;
  590 
  591         MPASS(td != NULL);
  592         MPASS(sq->sq_wchan != NULL);
  593         MPASS(td->td_wchan == sq->sq_wchan);
  594         sc = SC_LOOKUP(sq->sq_wchan);
  595         mtx_assert(&sc->sc_lock, MA_OWNED);
  596 
  597         /* Remove the thread from the queue. */
  598         TAILQ_REMOVE(&sq->sq_blocked, td, td_slpq);
  599 
  600         /*
  601          * Get a sleep queue for this thread.  If this is the last waiter,
  602          * use the queue itself and take it out of the chain, otherwise,
  603          * remove a queue from the free list.
  604          */
  605         if (LIST_EMPTY(&sq->sq_free)) {
  606                 td->td_sleepqueue = sq;
  607 #ifdef INVARIANTS
  608                 sq->sq_wchan = NULL;
  609 #endif
  610 #ifdef SLEEPQUEUE_PROFILING
  611                 sc->sc_depth--;
  612 #endif
  613         } else
  614                 td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
  615         LIST_REMOVE(td->td_sleepqueue, sq_hash);
  616 
  617         mtx_lock_spin(&sched_lock);
  618         td->td_wmesg = NULL;
  619         td->td_wchan = NULL;
  620         mtx_unlock_spin(&sched_lock);
  621 }
  622 
  623 /*
  624  * Resumes a thread that was asleep on a queue.
  625  */
  626 static void
  627 sleepq_resume_thread(struct thread *td, int pri)
  628 {
  629 
  630         /*
  631          * Note that thread td might not be sleeping if it is running
  632          * sleepq_catch_signals() on another CPU or is blocked on
  633          * its proc lock to check signals.  It doesn't hurt to clear
  634          * the sleeping flag if it isn't set though, so we just always
  635          * do it.  However, we can't assert that it is set.
  636          */
  637         mtx_lock_spin(&sched_lock);
  638         CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
  639             (void *)td, (long)td->td_proc->p_pid, td->td_proc->p_comm);
  640         TD_CLR_SLEEPING(td);
  641 
  642         /* Adjust priority if requested. */
  643         MPASS(pri == -1 || (pri >= PRI_MIN && pri <= PRI_MAX));
  644         if (pri != -1 && td->td_priority > pri)
  645                 sched_prio(td, pri);
  646         setrunnable(td);
  647         mtx_unlock_spin(&sched_lock);
  648 }
  649 
  650 /*
  651  * Find the highest priority thread sleeping on a wait channel and resume it.
  652  */
  653 void
  654 sleepq_signal(void *wchan, int flags, int pri)
  655 {
  656         struct sleepqueue *sq;
  657         struct thread *td;
  658 
  659         CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
  660         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  661         sq = sleepq_lookup(wchan);
  662         if (sq == NULL) {
  663                 sleepq_release(wchan);
  664                 return;
  665         }
  666         KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
  667             ("%s: mismatch between sleep/wakeup and cv_*", __func__));
  668         /* XXX: Do for all sleep queues eventually. */
  669         if (flags & SLEEPQ_CONDVAR)
  670                 mtx_assert(sq->sq_lock, MA_OWNED);
  671 
  672         /* Remove first thread from queue and awaken it. */
  673         td = TAILQ_FIRST(&sq->sq_blocked);
  674         sleepq_remove_thread(sq, td);
  675         sleepq_release(wchan);
  676         sleepq_resume_thread(td, pri);
  677 }
  678 
  679 /*
  680  * Resume all threads sleeping on a specified wait channel.
  681  */
  682 void
  683 sleepq_broadcast(void *wchan, int flags, int pri)
  684 {
  685         TAILQ_HEAD(, thread) list;
  686         struct sleepqueue *sq;
  687         struct thread *td;
  688 
  689         CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
  690         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  691         sq = sleepq_lookup(wchan);
  692         if (sq == NULL) {
  693                 sleepq_release(wchan);
  694                 return;
  695         }
  696         KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
  697             ("%s: mismatch between sleep/wakeup and cv_*", __func__));
  698         /* XXX: Do for all sleep queues eventually. */
  699         if (flags & SLEEPQ_CONDVAR)
  700                 mtx_assert(sq->sq_lock, MA_OWNED);
  701 
  702         /* Move blocked threads from the sleep queue to a temporary list. */
  703         TAILQ_INIT(&list);
  704         while (!TAILQ_EMPTY(&sq->sq_blocked)) {
  705                 td = TAILQ_FIRST(&sq->sq_blocked);
  706                 sleepq_remove_thread(sq, td);
  707                 TAILQ_INSERT_TAIL(&list, td, td_slpq);
  708         }
  709         sleepq_release(wchan);
  710 
  711         /* Resume all the threads on the temporary list. */
  712         while (!TAILQ_EMPTY(&list)) {
  713                 td = TAILQ_FIRST(&list);
  714                 TAILQ_REMOVE(&list, td, td_slpq);
  715                 sleepq_resume_thread(td, pri);
  716         }
  717 }
  718 
  719 /*
  720  * Time sleeping threads out.  When the timeout expires, the thread is
  721  * removed from the sleep queue and made runnable if it is still asleep.
  722  */
  723 static void
  724 sleepq_timeout(void *arg)
  725 {
  726         struct sleepqueue *sq;
  727         struct thread *td;
  728         void *wchan;
  729 
  730         td = arg;
  731         CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
  732             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm);
  733 
  734         /*
  735          * First, see if the thread is asleep and get the wait channel if
  736          * it is.
  737          */
  738         mtx_lock_spin(&sched_lock);
  739         if (TD_ON_SLEEPQ(td)) {
  740                 wchan = td->td_wchan;
  741                 mtx_unlock_spin(&sched_lock);
  742                 sq = sleepq_lookup(wchan);
  743                 mtx_lock_spin(&sched_lock);
  744         } else {
  745                 wchan = NULL;
  746                 sq = NULL;
  747         }
  748 
  749         /*
  750          * At this point, if the thread is still on the sleep queue,
  751          * we have that sleep queue locked as it cannot migrate sleep
  752          * queues while we dropped sched_lock.  If it had resumed and
  753          * was on another CPU while the lock was dropped, it would have
  754          * seen that TDF_TIMEOUT and TDF_TIMOFAIL are clear and the
  755          * call to callout_stop() to stop this routine would have failed
  756          * meaning that it would have already set TDF_TIMEOUT to
  757          * synchronize with this function.
  758          */
  759         if (TD_ON_SLEEPQ(td)) {
  760                 MPASS(td->td_wchan == wchan);
  761                 MPASS(sq != NULL);
  762                 td->td_flags |= TDF_TIMEOUT;
  763                 mtx_unlock_spin(&sched_lock);
  764                 sleepq_remove_thread(sq, td);
  765                 sleepq_release(wchan);
  766                 sleepq_resume_thread(td, -1);
  767                 return;
  768         } else if (wchan != NULL)
  769                 sleepq_release(wchan);
  770 
  771         /*
  772          * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
  773          * then the other thread has already yielded to us, so clear
  774          * the flag and resume it.  If TDF_TIMEOUT is not set, then the
  775          * we know that the other thread is not on a sleep queue, but it
  776          * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
  777          * to let it know that the timeout has already run and doesn't
  778          * need to be canceled.
  779          */
  780         if (td->td_flags & TDF_TIMEOUT) {
  781                 MPASS(TD_IS_SLEEPING(td));
  782                 td->td_flags &= ~TDF_TIMEOUT;
  783                 TD_CLR_SLEEPING(td);
  784                 setrunnable(td);
  785         } else
  786                 td->td_flags |= TDF_TIMOFAIL;
  787         mtx_unlock_spin(&sched_lock);
  788 }
  789 
  790 /*
  791  * Resumes a specific thread from the sleep queue associated with a specific
  792  * wait channel if it is on that queue.
  793  */
  794 void
  795 sleepq_remove(struct thread *td, void *wchan)
  796 {
  797         struct sleepqueue *sq;
  798 
  799         /*
  800          * Look up the sleep queue for this wait channel, then re-check
  801          * that the thread is asleep on that channel, if it is not, then
  802          * bail.
  803          */
  804         MPASS(wchan != NULL);
  805         sq = sleepq_lookup(wchan);
  806         mtx_lock_spin(&sched_lock);
  807         if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
  808                 mtx_unlock_spin(&sched_lock);
  809                 sleepq_release(wchan);
  810                 return;
  811         }
  812         mtx_unlock_spin(&sched_lock);
  813         MPASS(sq != NULL);
  814 
  815         /* Thread is asleep on sleep queue sq, so wake it up. */
  816         sleepq_remove_thread(sq, td);
  817         sleepq_release(wchan);
  818         sleepq_resume_thread(td, -1);
  819 }
  820 
  821 /*
  822  * Abort a thread as if an interrupt had occurred.  Only abort
  823  * interruptible waits (unfortunately it isn't safe to abort others).
  824  *
  825  * XXX: What in the world does the comment below mean?
  826  * Also, whatever the signal code does...
  827  */
  828 void
  829 sleepq_abort(struct thread *td)
  830 {
  831         void *wchan;
  832 
  833         mtx_assert(&sched_lock, MA_OWNED);
  834         MPASS(TD_ON_SLEEPQ(td));
  835         MPASS(td->td_flags & TDF_SINTR);
  836 
  837         /*
  838          * If the TDF_TIMEOUT flag is set, just leave. A
  839          * timeout is scheduled anyhow.
  840          */
  841         if (td->td_flags & TDF_TIMEOUT)
  842                 return;
  843 
  844         CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
  845             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm);
  846         wchan = td->td_wchan;
  847         mtx_unlock_spin(&sched_lock);
  848         sleepq_remove(td, wchan);
  849         mtx_lock_spin(&sched_lock);
  850 }

Cache object: 028c22c1664f0d8a143220a58b93611c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.