The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_sleepqueue.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. Neither the name of the author nor the names of any co-contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 /*
   31  * Implementation of sleep queues used to hold queue of threads blocked on
   32  * a wait channel.  Sleep queues different from turnstiles in that wait
   33  * channels are not owned by anyone, so there is no priority propagation.
   34  * Sleep queues can also provide a timeout and can also be interrupted by
   35  * signals.  That said, there are several similarities between the turnstile
   36  * and sleep queue implementations.  (Note: turnstiles were implemented
   37  * first.)  For example, both use a hash table of the same size where each
   38  * bucket is referred to as a "chain" that contains both a spin lock and
   39  * a linked list of queues.  An individual queue is located by using a hash
   40  * to pick a chain, locking the chain, and then walking the chain searching
   41  * for the queue.  This means that a wait channel object does not need to
   42  * embed it's queue head just as locks do not embed their turnstile queue
   43  * head.  Threads also carry around a sleep queue that they lend to the
   44  * wait channel when blocking.  Just as in turnstiles, the queue includes
   45  * a free list of the sleep queues of other threads blocked on the same
   46  * wait channel in the case of multiple waiters.
   47  *
   48  * Some additional functionality provided by sleep queues include the
   49  * ability to set a timeout.  The timeout is managed using a per-thread
   50  * callout that resumes a thread if it is asleep.  A thread may also
   51  * catch signals while it is asleep (aka an interruptible sleep).  The
   52  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
   53  * sleep queues also provide some extra assertions.  One is not allowed to
   54  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
   55  * must consistently use the same lock to synchronize with a wait channel,
   56  * though this check is currently only a warning for sleep/wakeup due to
   57  * pre-existing abuse of that API.  The same lock must also be held when
   58  * awakening threads, though that is currently only enforced for condition
   59  * variables.
   60  */
   61 
   62 #include "opt_sleepqueue_profiling.h"
   63 
   64 #include <sys/cdefs.h>
   65 __FBSDID("$FreeBSD$");
   66 
   67 #include <sys/param.h>
   68 #include <sys/systm.h>
   69 #include <sys/lock.h>
   70 #include <sys/kernel.h>
   71 #include <sys/ktr.h>
   72 #include <sys/malloc.h>
   73 #include <sys/mutex.h>
   74 #include <sys/proc.h>
   75 #include <sys/sched.h>
   76 #include <sys/signalvar.h>
   77 #include <sys/sleepqueue.h>
   78 #include <sys/sysctl.h>
   79 
   80 /*
   81  * Constants for the hash table of sleep queue chains.  These constants are
   82  * the same ones that 4BSD (and possibly earlier versions of BSD) used.
   83  * Basically, we ignore the lower 8 bits of the address since most wait
   84  * channel pointers are aligned and only look at the next 7 bits for the
   85  * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
   86  */
   87 #define SC_TABLESIZE    128                     /* Must be power of 2. */
   88 #define SC_MASK         (SC_TABLESIZE - 1)
   89 #define SC_SHIFT        8
   90 #define SC_HASH(wc)     (((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
   91 #define SC_LOOKUP(wc)   &sleepq_chains[SC_HASH(wc)]
   92 
   93 /*
   94  * There two different lists of sleep queues.  Both lists are connected
   95  * via the sq_hash entries.  The first list is the sleep queue chain list
   96  * that a sleep queue is on when it is attached to a wait channel.  The
   97  * second list is the free list hung off of a sleep queue that is attached
   98  * to a wait channel.
   99  *
  100  * Each sleep queue also contains the wait channel it is attached to, the
  101  * list of threads blocked on that wait channel, flags specific to the
  102  * wait channel, and the lock used to synchronize with a wait channel.
  103  * The flags are used to catch mismatches between the various consumers
  104  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
  105  * The lock pointer is only used when invariants are enabled for various
  106  * debugging checks.
  107  *
  108  * Locking key:
  109  *  c - sleep queue chain lock
  110  */
  111 struct sleepqueue {
  112         TAILQ_HEAD(, thread) sq_blocked;        /* (c) Blocked threads. */
  113         LIST_ENTRY(sleepqueue) sq_hash;         /* (c) Chain and free list. */
  114         LIST_HEAD(, sleepqueue) sq_free;        /* (c) Free queues. */
  115         void    *sq_wchan;                      /* (c) Wait channel. */
  116         int     sq_type;                        /* (c) Queue type. */
  117 #ifdef INVARIANTS
  118         struct mtx *sq_lock;                    /* (c) Associated lock. */
  119 #endif
  120 };
  121 
  122 struct sleepqueue_chain {
  123         LIST_HEAD(, sleepqueue) sc_queues;      /* List of sleep queues. */
  124         struct mtx sc_lock;                     /* Spin lock for this chain. */
  125 #ifdef SLEEPQUEUE_PROFILING
  126         u_int   sc_depth;                       /* Length of sc_queues. */
  127         u_int   sc_max_depth;                   /* Max length of sc_queues. */
  128 #endif
  129 };
  130 
  131 #ifdef SLEEPQUEUE_PROFILING
  132 u_int sleepq_max_depth;
  133 SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
  134 SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
  135     "sleepq chain stats");
  136 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
  137     0, "maxmimum depth achieved of a single chain");
  138 #endif
  139 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
  140 
  141 MALLOC_DEFINE(M_SLEEPQUEUE, "sleep queues", "sleep queues");
  142 
  143 /*
  144  * Prototypes for non-exported routines.
  145  */
  146 static int      sleepq_check_timeout(void);
  147 static void     sleepq_switch(void *wchan);
  148 static void     sleepq_timeout(void *arg);
  149 static void     sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri);
  150 
  151 /*
  152  * Early initialization of sleep queues that is called from the sleepinit()
  153  * SYSINIT.
  154  */
  155 void
  156 init_sleepqueues(void)
  157 {
  158 #ifdef SLEEPQUEUE_PROFILING
  159         struct sysctl_oid *chain_oid;
  160         char chain_name[10];
  161 #endif
  162         int i;
  163 
  164         for (i = 0; i < SC_TABLESIZE; i++) {
  165                 LIST_INIT(&sleepq_chains[i].sc_queues);
  166                 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
  167                     MTX_SPIN);
  168 #ifdef SLEEPQUEUE_PROFILING
  169                 snprintf(chain_name, sizeof(chain_name), "%d", i);
  170                 chain_oid = SYSCTL_ADD_NODE(NULL, 
  171                     SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
  172                     chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
  173                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  174                     "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
  175                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  176                     "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
  177                     NULL);
  178 #endif
  179         }
  180         thread0.td_sleepqueue = sleepq_alloc();
  181 }
  182 
  183 /*
  184  * Malloc and initialize a new sleep queue for a new thread.
  185  */
  186 struct sleepqueue *
  187 sleepq_alloc(void)
  188 {
  189         struct sleepqueue *sq;
  190 
  191         sq = malloc(sizeof(struct sleepqueue), M_SLEEPQUEUE, M_WAITOK | M_ZERO);
  192         TAILQ_INIT(&sq->sq_blocked);
  193         LIST_INIT(&sq->sq_free);
  194         return (sq);
  195 }
  196 
  197 /*
  198  * Free a sleep queue when a thread is destroyed.
  199  */
  200 void
  201 sleepq_free(struct sleepqueue *sq)
  202 {
  203 
  204         MPASS(sq != NULL);
  205         MPASS(TAILQ_EMPTY(&sq->sq_blocked));
  206         free(sq, M_SLEEPQUEUE);
  207 }
  208 
  209 /*
  210  * Look up the sleep queue associated with a given wait channel in the hash
  211  * table locking the associated sleep queue chain.  Return holdind the sleep
  212  * queue chain lock.  If no queue is found in the table, NULL is returned.
  213  */
  214 struct sleepqueue *
  215 sleepq_lookup(void *wchan)
  216 {
  217         struct sleepqueue_chain *sc;
  218         struct sleepqueue *sq;
  219 
  220         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  221         sc = SC_LOOKUP(wchan);
  222         mtx_lock_spin(&sc->sc_lock);
  223         LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
  224                 if (sq->sq_wchan == wchan)
  225                         return (sq);
  226         return (NULL);
  227 }
  228 
  229 /*
  230  * Unlock the sleep queue chain associated with a given wait channel.
  231  */
  232 void
  233 sleepq_release(void *wchan)
  234 {
  235         struct sleepqueue_chain *sc;
  236 
  237         sc = SC_LOOKUP(wchan);
  238         mtx_unlock_spin(&sc->sc_lock);
  239 }
  240 
  241 /*
  242  * Places the current thread on the sleep queue for the specified wait
  243  * channel.  If INVARIANTS is enabled, then it associates the passed in
  244  * lock with the sleepq to make sure it is held when that sleep queue is
  245  * woken up.
  246  */
  247 void
  248 sleepq_add(struct sleepqueue *sq, void *wchan, struct mtx *lock,
  249     const char *wmesg, int flags)
  250 {
  251         struct sleepqueue_chain *sc;
  252         struct thread *td;
  253 
  254         td = curthread;
  255         sc = SC_LOOKUP(wchan);
  256         mtx_assert(&sc->sc_lock, MA_OWNED);
  257         MPASS(td->td_sleepqueue != NULL);
  258         MPASS(wchan != NULL);
  259 
  260         /* If the passed in sleep queue is NULL, use this thread's queue. */
  261         if (sq == NULL) {
  262 #ifdef SLEEPQUEUE_PROFILING
  263                 sc->sc_depth++;
  264                 if (sc->sc_depth > sc->sc_max_depth) {
  265                         sc->sc_max_depth = sc->sc_depth;
  266                         if (sc->sc_max_depth > sleepq_max_depth)
  267                                 sleepq_max_depth = sc->sc_max_depth;
  268                 }
  269 #endif
  270                 sq = td->td_sleepqueue;
  271                 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
  272                 KASSERT(TAILQ_EMPTY(&sq->sq_blocked),
  273                     ("thread's sleep queue has a non-empty queue"));
  274                 KASSERT(LIST_EMPTY(&sq->sq_free),
  275                     ("thread's sleep queue has a non-empty free list"));
  276                 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
  277                 sq->sq_wchan = wchan;
  278 #ifdef INVARIANTS
  279                 sq->sq_lock = lock;
  280 #endif
  281                 sq->sq_type = flags & SLEEPQ_TYPE;
  282         } else {
  283                 MPASS(wchan == sq->sq_wchan);
  284                 MPASS(lock == sq->sq_lock);
  285                 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
  286         }
  287         TAILQ_INSERT_TAIL(&sq->sq_blocked, td, td_slpq);
  288         td->td_sleepqueue = NULL;
  289         mtx_lock_spin(&sched_lock);
  290         td->td_wchan = wchan;
  291         td->td_wmesg = wmesg;
  292         if (flags & SLEEPQ_INTERRUPTIBLE)
  293                 td->td_flags |= TDF_SINTR;
  294         mtx_unlock_spin(&sched_lock);
  295 }
  296 
  297 /*
  298  * Sets a timeout that will remove the current thread from the specified
  299  * sleep queue after timo ticks if the thread has not already been awakened.
  300  */
  301 void
  302 sleepq_set_timeout(void *wchan, int timo)
  303 {
  304         struct sleepqueue_chain *sc;
  305         struct thread *td;
  306 
  307         td = curthread;
  308         sc = SC_LOOKUP(wchan);
  309         mtx_assert(&sc->sc_lock, MA_OWNED);
  310         MPASS(TD_ON_SLEEPQ(td));
  311         MPASS(td->td_sleepqueue == NULL);
  312         MPASS(wchan != NULL);
  313         callout_reset(&td->td_slpcallout, timo, sleepq_timeout, td);
  314 }
  315 
  316 /*
  317  * Marks the pending sleep of the current thread as interruptible and
  318  * makes an initial check for pending signals before putting a thread
  319  * to sleep.
  320  */
  321 int
  322 sleepq_catch_signals(void *wchan)
  323 {
  324         struct sleepqueue_chain *sc;
  325         struct sleepqueue *sq;
  326         struct thread *td;
  327         struct proc *p;
  328         int do_upcall;
  329         int sig;
  330 
  331         do_upcall = 0;
  332         td = curthread;
  333         p = td->td_proc;
  334         sc = SC_LOOKUP(wchan);
  335         mtx_assert(&sc->sc_lock, MA_OWNED);
  336         MPASS(td->td_sleepqueue == NULL);
  337         MPASS(wchan != NULL);
  338         CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
  339             (void *)td, (long)p->p_pid, p->p_comm);
  340 
  341         /* Mark thread as being in an interruptible sleep. */
  342         MPASS(td->td_flags & TDF_SINTR);
  343         MPASS(TD_ON_SLEEPQ(td));
  344         sleepq_release(wchan);
  345 
  346         /* See if there are any pending signals for this thread. */
  347         PROC_LOCK(p);
  348         mtx_lock(&p->p_sigacts->ps_mtx);
  349         sig = cursig(td);
  350         mtx_unlock(&p->p_sigacts->ps_mtx);
  351         if (sig == 0 && thread_suspend_check(1))
  352                 sig = SIGSTOP;
  353         else
  354                 do_upcall = thread_upcall_check(td);
  355         PROC_UNLOCK(p);
  356 
  357         /*
  358          * If there were pending signals and this thread is still on
  359          * the sleep queue, remove it from the sleep queue.  If the
  360          * thread was removed from the sleep queue while we were blocked
  361          * above, then clear TDF_SINTR before returning.
  362          */
  363         sq = sleepq_lookup(wchan);
  364         mtx_lock_spin(&sched_lock);
  365         if (TD_ON_SLEEPQ(td) && (sig != 0 || do_upcall != 0))
  366                 sleepq_resume_thread(sq, td, -1);
  367         else if (!TD_ON_SLEEPQ(td) && sig == 0)
  368                 td->td_flags &= ~TDF_SINTR;
  369         mtx_unlock_spin(&sched_lock);
  370         return (sig);
  371 }
  372 
  373 /*
  374  * Switches to another thread if we are still asleep on a sleep queue and
  375  * drop the lock on the sleep queue chain.  Returns with sched_lock held.
  376  */
  377 static void
  378 sleepq_switch(void *wchan)
  379 {
  380         struct sleepqueue_chain *sc;
  381         struct thread *td;
  382 
  383         td = curthread;
  384         sc = SC_LOOKUP(wchan);
  385         mtx_assert(&sc->sc_lock, MA_OWNED);
  386 
  387         /* 
  388          * If we have a sleep queue, then we've already been woken up, so
  389          * just return.
  390          */
  391         if (td->td_sleepqueue != NULL) {
  392                 MPASS(!TD_ON_SLEEPQ(td));
  393                 mtx_unlock_spin(&sc->sc_lock);
  394                 mtx_lock_spin(&sched_lock);
  395                 return;
  396         }
  397 
  398         /*
  399          * Otherwise, actually go to sleep.
  400          */
  401         mtx_lock_spin(&sched_lock);
  402         mtx_unlock_spin(&sc->sc_lock);
  403 
  404         sched_sleep(td);
  405         TD_SET_SLEEPING(td);
  406         mi_switch(SW_VOL, NULL);
  407         KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
  408         CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
  409             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm);
  410 }
  411 
  412 /*
  413  * Check to see if we timed out.
  414  */
  415 static int
  416 sleepq_check_timeout(void)
  417 {
  418         struct thread *td;
  419 
  420         mtx_assert(&sched_lock, MA_OWNED);
  421         td = curthread;
  422 
  423         /*
  424          * If TDF_TIMEOUT is set, we timed out.
  425          */
  426         if (td->td_flags & TDF_TIMEOUT) {
  427                 td->td_flags &= ~TDF_TIMEOUT;
  428                 return (EWOULDBLOCK);
  429         }
  430 
  431         /*
  432          * If TDF_TIMOFAIL is set, the timeout ran after we had
  433          * already been woken up.
  434          */
  435         if (td->td_flags & TDF_TIMOFAIL)
  436                 td->td_flags &= ~TDF_TIMOFAIL;
  437 
  438         /*
  439          * If callout_stop() fails, then the timeout is running on
  440          * another CPU, so synchronize with it to avoid having it
  441          * accidentally wake up a subsequent sleep.
  442          */
  443         else if (callout_stop(&td->td_slpcallout) == 0) {
  444                 td->td_flags |= TDF_TIMEOUT;
  445                 TD_SET_SLEEPING(td);
  446                 mi_switch(SW_INVOL, NULL);
  447         }
  448         return (0);
  449 }
  450 
  451 /*
  452  * Check to see if we were awoken by a signal.
  453  */
  454 static int
  455 sleepq_check_signals(void)
  456 {
  457         struct thread *td;
  458 
  459         mtx_assert(&sched_lock, MA_OWNED);
  460         td = curthread;
  461 
  462         /*
  463          * If TDF_SINTR is clear, then we were awakened while executing
  464          * sleepq_catch_signals().
  465          */
  466         if (!(td->td_flags & TDF_SINTR))
  467                 return (0);
  468 
  469         /* We are no longer in an interruptible sleep. */
  470         td->td_flags &= ~TDF_SINTR;
  471 
  472         if (td->td_flags & TDF_INTERRUPT)
  473                 return (td->td_intrval);
  474         return (0);
  475 }
  476 
  477 /*
  478  * If we were in an interruptible sleep and we weren't interrupted and
  479  * didn't timeout, check to see if there are any pending signals and
  480  * which return value we should use if so.  The return value from an
  481  * earlier call to sleepq_catch_signals() should be passed in as the
  482  * argument.
  483  */
  484 int
  485 sleepq_calc_signal_retval(int sig)
  486 {
  487         struct thread *td;
  488         struct proc *p;
  489         int rval;
  490 
  491         td = curthread;
  492         p = td->td_proc;
  493         PROC_LOCK(p);
  494         mtx_lock(&p->p_sigacts->ps_mtx);
  495         /* XXX: Should we always be calling cursig()? */
  496         if (sig == 0)
  497                 sig = cursig(td);
  498         if (sig != 0) {
  499                 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
  500                         rval = EINTR;
  501                 else
  502                         rval = ERESTART;
  503         } else
  504                 rval = 0;
  505         mtx_unlock(&p->p_sigacts->ps_mtx);
  506         PROC_UNLOCK(p);
  507         return (rval);
  508 }
  509 
  510 /*
  511  * Block the current thread until it is awakened from its sleep queue.
  512  */
  513 void
  514 sleepq_wait(void *wchan)
  515 {
  516 
  517         MPASS(!(curthread->td_flags & TDF_SINTR));
  518         sleepq_switch(wchan);
  519         mtx_unlock_spin(&sched_lock);
  520 }
  521 
  522 /*
  523  * Block the current thread until it is awakened from its sleep queue
  524  * or it is interrupted by a signal.
  525  */
  526 int
  527 sleepq_wait_sig(void *wchan)
  528 {
  529         int rval;
  530 
  531         sleepq_switch(wchan);
  532         rval = sleepq_check_signals();
  533         mtx_unlock_spin(&sched_lock); 
  534         return (rval);
  535 }
  536 
  537 /*
  538  * Block the current thread until it is awakened from its sleep queue
  539  * or it times out while waiting.
  540  */
  541 int
  542 sleepq_timedwait(void *wchan)
  543 {
  544         int rval;
  545 
  546         MPASS(!(curthread->td_flags & TDF_SINTR));
  547         sleepq_switch(wchan);
  548         rval = sleepq_check_timeout();
  549         mtx_unlock_spin(&sched_lock);
  550         return (rval);
  551 }
  552 
  553 /*
  554  * Block the current thread until it is awakened from its sleep queue,
  555  * it is interrupted by a signal, or it times out waiting to be awakened.
  556  */
  557 int
  558 sleepq_timedwait_sig(void *wchan, int signal_caught)
  559 {
  560         int rvalt, rvals;
  561 
  562         sleepq_switch(wchan);
  563         rvalt = sleepq_check_timeout();
  564         rvals = sleepq_check_signals();
  565         mtx_unlock_spin(&sched_lock);
  566         if (signal_caught || rvalt == 0)
  567                 return (rvals);
  568         else
  569                 return (rvalt);
  570 }
  571 
  572 /*
  573  * Removes a thread from a sleep queue and makes it
  574  * runnable.
  575  */
  576 static void
  577 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
  578 {
  579         struct sleepqueue_chain *sc;
  580 
  581         MPASS(td != NULL);
  582         MPASS(sq->sq_wchan != NULL);
  583         MPASS(td->td_wchan == sq->sq_wchan);
  584         sc = SC_LOOKUP(sq->sq_wchan);
  585         mtx_assert(&sc->sc_lock, MA_OWNED);
  586         mtx_assert(&sched_lock, MA_OWNED);
  587 
  588         /* Remove the thread from the queue. */
  589         TAILQ_REMOVE(&sq->sq_blocked, td, td_slpq);
  590 
  591         /*
  592          * Get a sleep queue for this thread.  If this is the last waiter,
  593          * use the queue itself and take it out of the chain, otherwise,
  594          * remove a queue from the free list.
  595          */
  596         if (LIST_EMPTY(&sq->sq_free)) {
  597                 td->td_sleepqueue = sq;
  598 #ifdef INVARIANTS
  599                 sq->sq_wchan = NULL;
  600 #endif
  601 #ifdef SLEEPQUEUE_PROFILING
  602                 sc->sc_depth--;
  603 #endif
  604         } else
  605                 td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
  606         LIST_REMOVE(td->td_sleepqueue, sq_hash);
  607 
  608         td->td_wmesg = NULL;
  609         td->td_wchan = NULL;
  610 
  611         /*
  612          * Note that thread td might not be sleeping if it is running
  613          * sleepq_catch_signals() on another CPU or is blocked on
  614          * its proc lock to check signals.  It doesn't hurt to clear
  615          * the sleeping flag if it isn't set though, so we just always
  616          * do it.  However, we can't assert that it is set.
  617          */
  618         CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
  619             (void *)td, (long)td->td_proc->p_pid, td->td_proc->p_comm);
  620         TD_CLR_SLEEPING(td);
  621 
  622         /* Adjust priority if requested. */
  623         MPASS(pri == -1 || (pri >= PRI_MIN && pri <= PRI_MAX));
  624         if (pri != -1 && td->td_priority > pri)
  625                 sched_prio(td, pri);
  626         setrunnable(td);
  627 }
  628 
  629 /*
  630  * Find the highest priority thread sleeping on a wait channel and resume it.
  631  */
  632 void
  633 sleepq_signal(void *wchan, int flags, int pri)
  634 {
  635         struct sleepqueue *sq;
  636         struct thread *td, *besttd;
  637 
  638         CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
  639         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  640         sq = sleepq_lookup(wchan);
  641         if (sq == NULL) {
  642                 sleepq_release(wchan);
  643                 return;
  644         }
  645         KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
  646             ("%s: mismatch between sleep/wakeup and cv_*", __func__));
  647         /* XXX: Do for all sleep queues eventually. */
  648         if (flags & SLEEPQ_CONDVAR)
  649                 mtx_assert(sq->sq_lock, MA_OWNED);
  650 
  651         /*
  652          * Find the highest priority thread on the queue.  If there is a
  653          * tie, use the thread that first appears in the queue as it has
  654          * been sleeping the longest since threads are always added to
  655          * the tail of sleep queues.
  656          */
  657         besttd = NULL;
  658         TAILQ_FOREACH(td, &sq->sq_blocked, td_slpq) {
  659                 if (besttd == NULL || td->td_priority < besttd->td_priority)
  660                         besttd = td;
  661         }
  662         MPASS(besttd != NULL);
  663         mtx_lock_spin(&sched_lock);
  664         sleepq_resume_thread(sq, besttd, pri);
  665         mtx_unlock_spin(&sched_lock);
  666         sleepq_release(wchan);
  667 }
  668 
  669 /*
  670  * Resume all threads sleeping on a specified wait channel.
  671  */
  672 void
  673 sleepq_broadcast(void *wchan, int flags, int pri)
  674 {
  675         struct sleepqueue *sq;
  676 
  677         CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
  678         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  679         sq = sleepq_lookup(wchan);
  680         if (sq == NULL) {
  681                 sleepq_release(wchan);
  682                 return;
  683         }
  684         KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
  685             ("%s: mismatch between sleep/wakeup and cv_*", __func__));
  686         /* XXX: Do for all sleep queues eventually. */
  687         if (flags & SLEEPQ_CONDVAR)
  688                 mtx_assert(sq->sq_lock, MA_OWNED);
  689 
  690         /* Resume all blocked threads on the sleep queue. */
  691         mtx_lock_spin(&sched_lock);
  692         while (!TAILQ_EMPTY(&sq->sq_blocked))
  693                 sleepq_resume_thread(sq, TAILQ_FIRST(&sq->sq_blocked), pri);
  694         mtx_unlock_spin(&sched_lock);
  695         sleepq_release(wchan);
  696 }
  697 
  698 /*
  699  * Time sleeping threads out.  When the timeout expires, the thread is
  700  * removed from the sleep queue and made runnable if it is still asleep.
  701  */
  702 static void
  703 sleepq_timeout(void *arg)
  704 {
  705         struct sleepqueue *sq;
  706         struct thread *td;
  707         void *wchan;
  708 
  709         td = arg;
  710         CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
  711             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm);
  712 
  713         /*
  714          * First, see if the thread is asleep and get the wait channel if
  715          * it is.
  716          */
  717         mtx_lock_spin(&sched_lock);
  718         if (TD_ON_SLEEPQ(td)) {
  719                 wchan = td->td_wchan;
  720                 mtx_unlock_spin(&sched_lock);
  721                 sq = sleepq_lookup(wchan);
  722                 mtx_lock_spin(&sched_lock);
  723         } else {
  724                 wchan = NULL;
  725                 sq = NULL;
  726         }
  727 
  728         /*
  729          * At this point, if the thread is still on the sleep queue,
  730          * we have that sleep queue locked as it cannot migrate sleep
  731          * queues while we dropped sched_lock.  If it had resumed and
  732          * was on another CPU while the lock was dropped, it would have
  733          * seen that TDF_TIMEOUT and TDF_TIMOFAIL are clear and the
  734          * call to callout_stop() to stop this routine would have failed
  735          * meaning that it would have already set TDF_TIMEOUT to
  736          * synchronize with this function.
  737          */
  738         if (TD_ON_SLEEPQ(td)) {
  739                 MPASS(td->td_wchan == wchan);
  740                 MPASS(sq != NULL);
  741                 td->td_flags |= TDF_TIMEOUT;
  742                 sleepq_resume_thread(sq, td, -1);
  743                 mtx_unlock_spin(&sched_lock);
  744                 sleepq_release(wchan);
  745                 return;
  746         } else if (wchan != NULL)
  747                 sleepq_release(wchan);
  748 
  749         /*
  750          * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
  751          * then the other thread has already yielded to us, so clear
  752          * the flag and resume it.  If TDF_TIMEOUT is not set, then the
  753          * we know that the other thread is not on a sleep queue, but it
  754          * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
  755          * to let it know that the timeout has already run and doesn't
  756          * need to be canceled.
  757          */
  758         if (td->td_flags & TDF_TIMEOUT) {
  759                 MPASS(TD_IS_SLEEPING(td));
  760                 td->td_flags &= ~TDF_TIMEOUT;
  761                 TD_CLR_SLEEPING(td);
  762                 setrunnable(td);
  763         } else
  764                 td->td_flags |= TDF_TIMOFAIL;
  765         mtx_unlock_spin(&sched_lock);
  766 }
  767 
  768 /*
  769  * Resumes a specific thread from the sleep queue associated with a specific
  770  * wait channel if it is on that queue.
  771  */
  772 void
  773 sleepq_remove(struct thread *td, void *wchan)
  774 {
  775         struct sleepqueue *sq;
  776 
  777         /*
  778          * Look up the sleep queue for this wait channel, then re-check
  779          * that the thread is asleep on that channel, if it is not, then
  780          * bail.
  781          */
  782         MPASS(wchan != NULL);
  783         sq = sleepq_lookup(wchan);
  784         mtx_lock_spin(&sched_lock);
  785         if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
  786                 mtx_unlock_spin(&sched_lock);
  787                 sleepq_release(wchan);
  788                 return;
  789         }
  790         MPASS(sq != NULL);
  791 
  792         /* Thread is asleep on sleep queue sq, so wake it up. */
  793         sleepq_resume_thread(sq, td, -1);
  794         sleepq_release(wchan);
  795         mtx_unlock_spin(&sched_lock);
  796 }
  797 
  798 /*
  799  * Abort a thread as if an interrupt had occurred.  Only abort
  800  * interruptible waits (unfortunately it isn't safe to abort others).
  801  *
  802  * XXX: What in the world does the comment below mean?
  803  * Also, whatever the signal code does...
  804  */
  805 void
  806 sleepq_abort(struct thread *td)
  807 {
  808         void *wchan;
  809 
  810         mtx_assert(&sched_lock, MA_OWNED);
  811         MPASS(TD_ON_SLEEPQ(td));
  812         MPASS(td->td_flags & TDF_SINTR);
  813 
  814         /*
  815          * If the TDF_TIMEOUT flag is set, just leave. A
  816          * timeout is scheduled anyhow.
  817          */
  818         if (td->td_flags & TDF_TIMEOUT)
  819                 return;
  820 
  821         CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
  822             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm);
  823         wchan = td->td_wchan;
  824         mtx_unlock_spin(&sched_lock);
  825         sleepq_remove(td, wchan);
  826         mtx_lock_spin(&sched_lock);
  827 }

Cache object: 18a16531361d7d35d619e1b5ba16f334


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.