The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_sleepqueue.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. Neither the name of the author nor the names of any co-contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 /*
   31  * Implementation of sleep queues used to hold queue of threads blocked on
   32  * a wait channel.  Sleep queues different from turnstiles in that wait
   33  * channels are not owned by anyone, so there is no priority propagation.
   34  * Sleep queues can also provide a timeout and can also be interrupted by
   35  * signals.  That said, there are several similarities between the turnstile
   36  * and sleep queue implementations.  (Note: turnstiles were implemented
   37  * first.)  For example, both use a hash table of the same size where each
   38  * bucket is referred to as a "chain" that contains both a spin lock and
   39  * a linked list of queues.  An individual queue is located by using a hash
   40  * to pick a chain, locking the chain, and then walking the chain searching
   41  * for the queue.  This means that a wait channel object does not need to
   42  * embed it's queue head just as locks do not embed their turnstile queue
   43  * head.  Threads also carry around a sleep queue that they lend to the
   44  * wait channel when blocking.  Just as in turnstiles, the queue includes
   45  * a free list of the sleep queues of other threads blocked on the same
   46  * wait channel in the case of multiple waiters.
   47  *
   48  * Some additional functionality provided by sleep queues include the
   49  * ability to set a timeout.  The timeout is managed using a per-thread
   50  * callout that resumes a thread if it is asleep.  A thread may also
   51  * catch signals while it is asleep (aka an interruptible sleep).  The
   52  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
   53  * sleep queues also provide some extra assertions.  One is not allowed to
   54  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
   55  * must consistently use the same lock to synchronize with a wait channel,
   56  * though this check is currently only a warning for sleep/wakeup due to
   57  * pre-existing abuse of that API.  The same lock must also be held when
   58  * awakening threads, though that is currently only enforced for condition
   59  * variables.
   60  */
   61 
   62 #include <sys/cdefs.h>
   63 __FBSDID("$FreeBSD: releng/6.2/sys/kern/subr_sleepqueue.c 164286 2006-11-14 20:42:41Z cvs2svn $");
   64 
   65 #include "opt_sleepqueue_profiling.h"
   66 #include "opt_ddb.h"
   67 
   68 #include <sys/param.h>
   69 #include <sys/systm.h>
   70 #include <sys/lock.h>
   71 #include <sys/kernel.h>
   72 #include <sys/ktr.h>
   73 #include <sys/malloc.h>
   74 #include <sys/mutex.h>
   75 #include <sys/proc.h>
   76 #include <sys/sched.h>
   77 #include <sys/signalvar.h>
   78 #include <sys/sleepqueue.h>
   79 #include <sys/sysctl.h>
   80 
   81 #ifdef DDB
   82 #include <ddb/ddb.h>
   83 #endif
   84 
   85 /*
   86  * Constants for the hash table of sleep queue chains.  These constants are
   87  * the same ones that 4BSD (and possibly earlier versions of BSD) used.
   88  * Basically, we ignore the lower 8 bits of the address since most wait
   89  * channel pointers are aligned and only look at the next 7 bits for the
   90  * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
   91  */
   92 #define SC_TABLESIZE    128                     /* Must be power of 2. */
   93 #define SC_MASK         (SC_TABLESIZE - 1)
   94 #define SC_SHIFT        8
   95 #define SC_HASH(wc)     (((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
   96 #define SC_LOOKUP(wc)   &sleepq_chains[SC_HASH(wc)]
   97 
   98 /*
   99  * There two different lists of sleep queues.  Both lists are connected
  100  * via the sq_hash entries.  The first list is the sleep queue chain list
  101  * that a sleep queue is on when it is attached to a wait channel.  The
  102  * second list is the free list hung off of a sleep queue that is attached
  103  * to a wait channel.
  104  *
  105  * Each sleep queue also contains the wait channel it is attached to, the
  106  * list of threads blocked on that wait channel, flags specific to the
  107  * wait channel, and the lock used to synchronize with a wait channel.
  108  * The flags are used to catch mismatches between the various consumers
  109  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
  110  * The lock pointer is only used when invariants are enabled for various
  111  * debugging checks.
  112  *
  113  * Locking key:
  114  *  c - sleep queue chain lock
  115  */
  116 struct sleepqueue {
  117         TAILQ_HEAD(, thread) sq_blocked;        /* (c) Blocked threads. */
  118         LIST_ENTRY(sleepqueue) sq_hash;         /* (c) Chain and free list. */
  119         LIST_HEAD(, sleepqueue) sq_free;        /* (c) Free queues. */
  120         void    *sq_wchan;                      /* (c) Wait channel. */
  121 #ifdef INVARIANTS
  122         int     sq_type;                        /* (c) Queue type. */
  123         struct mtx *sq_lock;                    /* (c) Associated lock. */
  124 #endif
  125 };
  126 
  127 struct sleepqueue_chain {
  128         LIST_HEAD(, sleepqueue) sc_queues;      /* List of sleep queues. */
  129         struct mtx sc_lock;                     /* Spin lock for this chain. */
  130 #ifdef SLEEPQUEUE_PROFILING
  131         u_int   sc_depth;                       /* Length of sc_queues. */
  132         u_int   sc_max_depth;                   /* Max length of sc_queues. */
  133 #endif
  134 };
  135 
  136 #ifdef SLEEPQUEUE_PROFILING
  137 u_int sleepq_max_depth;
  138 SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
  139 SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
  140     "sleepq chain stats");
  141 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
  142     0, "maxmimum depth achieved of a single chain");
  143 #endif
  144 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
  145 
  146 static MALLOC_DEFINE(M_SLEEPQUEUE, "sleep queues", "sleep queues");
  147 
  148 /*
  149  * Prototypes for non-exported routines.
  150  */
  151 static int      sleepq_check_timeout(void);
  152 static void     sleepq_switch(void *wchan);
  153 static void     sleepq_timeout(void *arg);
  154 static void     sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri);
  155 
  156 /*
  157  * Early initialization of sleep queues that is called from the sleepinit()
  158  * SYSINIT.
  159  */
  160 void
  161 init_sleepqueues(void)
  162 {
  163 #ifdef SLEEPQUEUE_PROFILING
  164         struct sysctl_oid *chain_oid;
  165         char chain_name[10];
  166 #endif
  167         int i;
  168 
  169         for (i = 0; i < SC_TABLESIZE; i++) {
  170                 LIST_INIT(&sleepq_chains[i].sc_queues);
  171                 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
  172                     MTX_SPIN);
  173 #ifdef SLEEPQUEUE_PROFILING
  174                 snprintf(chain_name, sizeof(chain_name), "%d", i);
  175                 chain_oid = SYSCTL_ADD_NODE(NULL, 
  176                     SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
  177                     chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
  178                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  179                     "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
  180                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  181                     "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
  182                     NULL);
  183 #endif
  184         }
  185         thread0.td_sleepqueue = sleepq_alloc();
  186 }
  187 
  188 /*
  189  * Malloc and initialize a new sleep queue for a new thread.
  190  */
  191 struct sleepqueue *
  192 sleepq_alloc(void)
  193 {
  194         struct sleepqueue *sq;
  195 
  196         sq = malloc(sizeof(struct sleepqueue), M_SLEEPQUEUE, M_WAITOK | M_ZERO);
  197         TAILQ_INIT(&sq->sq_blocked);
  198         LIST_INIT(&sq->sq_free);
  199         return (sq);
  200 }
  201 
  202 /*
  203  * Free a sleep queue when a thread is destroyed.
  204  */
  205 void
  206 sleepq_free(struct sleepqueue *sq)
  207 {
  208 
  209         MPASS(sq != NULL);
  210         MPASS(TAILQ_EMPTY(&sq->sq_blocked));
  211         free(sq, M_SLEEPQUEUE);
  212 }
  213 
  214 /*
  215  * Lock the sleep queue chain associated with the specified wait channel.
  216  */
  217 void
  218 sleepq_lock(void *wchan)
  219 {
  220         struct sleepqueue_chain *sc;
  221 
  222         sc = SC_LOOKUP(wchan);
  223         mtx_lock_spin(&sc->sc_lock);
  224 }
  225 
  226 /*
  227  * Look up the sleep queue associated with a given wait channel in the hash
  228  * table locking the associated sleep queue chain.  If no queue is found in
  229  * the table, NULL is returned.
  230  */
  231 struct sleepqueue *
  232 sleepq_lookup(void *wchan)
  233 {
  234         struct sleepqueue_chain *sc;
  235         struct sleepqueue *sq;
  236 
  237         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  238         sc = SC_LOOKUP(wchan);
  239         mtx_assert(&sc->sc_lock, MA_OWNED);
  240         LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
  241                 if (sq->sq_wchan == wchan)
  242                         return (sq);
  243         return (NULL);
  244 }
  245 
  246 /*
  247  * Unlock the sleep queue chain associated with a given wait channel.
  248  */
  249 void
  250 sleepq_release(void *wchan)
  251 {
  252         struct sleepqueue_chain *sc;
  253 
  254         sc = SC_LOOKUP(wchan);
  255         mtx_unlock_spin(&sc->sc_lock);
  256 }
  257 
  258 /*
  259  * Places the current thread on the sleep queue for the specified wait
  260  * channel.  If INVARIANTS is enabled, then it associates the passed in
  261  * lock with the sleepq to make sure it is held when that sleep queue is
  262  * woken up.
  263  */
  264 void
  265 sleepq_add(void *wchan, struct mtx *lock, const char *wmesg, int flags)
  266 {
  267         struct sleepqueue_chain *sc;
  268         struct sleepqueue *sq;
  269         struct thread *td;
  270 
  271         td = curthread;
  272         sc = SC_LOOKUP(wchan);
  273         mtx_assert(&sc->sc_lock, MA_OWNED);
  274         MPASS(td->td_sleepqueue != NULL);
  275         MPASS(wchan != NULL);
  276 
  277         /* If this thread is not allowed to sleep, die a horrible death. */
  278         KASSERT(!(td->td_pflags & TDP_NOSLEEPING),
  279             ("trying to sleep while sleeping is prohibited"));
  280 
  281         /* Look up the sleep queue associated with the wait channel 'wchan'. */
  282         sq = sleepq_lookup(wchan);
  283 
  284         /*
  285          * If the wait channel does not already have a sleep queue, use
  286          * this thread's sleep queue.  Otherwise, insert the current thread
  287          * into the sleep queue already in use by this wait channel.
  288          */
  289         if (sq == NULL) {
  290 #ifdef SLEEPQUEUE_PROFILING
  291                 sc->sc_depth++;
  292                 if (sc->sc_depth > sc->sc_max_depth) {
  293                         sc->sc_max_depth = sc->sc_depth;
  294                         if (sc->sc_max_depth > sleepq_max_depth)
  295                                 sleepq_max_depth = sc->sc_max_depth;
  296                 }
  297 #endif
  298                 sq = td->td_sleepqueue;
  299                 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
  300                 KASSERT(TAILQ_EMPTY(&sq->sq_blocked),
  301                     ("thread's sleep queue has a non-empty queue"));
  302                 KASSERT(LIST_EMPTY(&sq->sq_free),
  303                     ("thread's sleep queue has a non-empty free list"));
  304                 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
  305                 sq->sq_wchan = wchan;
  306 #ifdef INVARIANTS
  307                 sq->sq_lock = lock;
  308                 sq->sq_type = flags & SLEEPQ_TYPE;
  309 #endif
  310         } else {
  311                 MPASS(wchan == sq->sq_wchan);
  312                 MPASS(lock == sq->sq_lock);
  313                 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
  314                 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
  315         }
  316         TAILQ_INSERT_TAIL(&sq->sq_blocked, td, td_slpq);
  317         td->td_sleepqueue = NULL;
  318         mtx_lock_spin(&sched_lock);
  319         td->td_wchan = wchan;
  320         td->td_wmesg = wmesg;
  321         if (flags & SLEEPQ_INTERRUPTIBLE) {
  322                 td->td_flags |= TDF_SINTR;
  323                 td->td_flags &= ~TDF_SLEEPABORT;
  324         }
  325         mtx_unlock_spin(&sched_lock);
  326 }
  327 
  328 /*
  329  * Sets a timeout that will remove the current thread from the specified
  330  * sleep queue after timo ticks if the thread has not already been awakened.
  331  */
  332 void
  333 sleepq_set_timeout(void *wchan, int timo)
  334 {
  335         struct sleepqueue_chain *sc;
  336         struct thread *td;
  337 
  338         td = curthread;
  339         sc = SC_LOOKUP(wchan);
  340         mtx_assert(&sc->sc_lock, MA_OWNED);
  341         MPASS(TD_ON_SLEEPQ(td));
  342         MPASS(td->td_sleepqueue == NULL);
  343         MPASS(wchan != NULL);
  344         callout_reset(&td->td_slpcallout, timo, sleepq_timeout, td);
  345 }
  346 
  347 /*
  348  * Marks the pending sleep of the current thread as interruptible and
  349  * makes an initial check for pending signals before putting a thread
  350  * to sleep. Return with sleep queue and scheduler lock held.
  351  */
  352 static int
  353 sleepq_catch_signals(void *wchan)
  354 {
  355         struct sleepqueue_chain *sc;
  356         struct sleepqueue *sq;
  357         struct thread *td;
  358         struct proc *p;
  359         struct sigacts *ps;
  360         int sig, ret;
  361 
  362         td = curthread;
  363         p = curproc;
  364         sc = SC_LOOKUP(wchan);
  365         mtx_assert(&sc->sc_lock, MA_OWNED);
  366         MPASS(wchan != NULL);
  367         CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
  368                 (void *)td, (long)p->p_pid, p->p_comm);
  369 
  370         MPASS(td->td_flags & TDF_SINTR);
  371         mtx_unlock_spin(&sc->sc_lock);
  372 
  373         /* See if there are any pending signals for this thread. */
  374         PROC_LOCK(p);
  375         ps = p->p_sigacts;
  376         mtx_lock(&ps->ps_mtx);
  377         sig = cursig(td);
  378         if (sig == 0) {
  379                 mtx_unlock(&ps->ps_mtx);
  380                 ret = thread_suspend_check(1);
  381                 MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
  382         } else {
  383                 if (SIGISMEMBER(ps->ps_sigintr, sig))
  384                         ret = EINTR;
  385                 else
  386                         ret = ERESTART;
  387                 mtx_unlock(&ps->ps_mtx);
  388         }
  389 
  390         if (ret == 0) {
  391                 mtx_lock_spin(&sc->sc_lock);
  392                 /*
  393                  * Lock sched_lock before unlocking proc lock,
  394                  * without this, we could lose a race.
  395                  */
  396                 mtx_lock_spin(&sched_lock);
  397                 PROC_UNLOCK(p);
  398                 if (!(td->td_flags & TDF_INTERRUPT))
  399                         return (0);
  400                 /* KSE threads tried unblocking us. */
  401                 ret = td->td_intrval;
  402                 mtx_unlock_spin(&sched_lock);
  403                 MPASS(ret == EINTR || ret == ERESTART);
  404         } else {
  405                 PROC_UNLOCK(p);
  406                 mtx_lock_spin(&sc->sc_lock);
  407         }
  408         /*
  409          * There were pending signals and this thread is still
  410          * on the sleep queue, remove it from the sleep queue.
  411          */
  412         sq = sleepq_lookup(wchan);
  413         mtx_lock_spin(&sched_lock);
  414         if (TD_ON_SLEEPQ(td))
  415                 sleepq_resume_thread(sq, td, -1);
  416         return (ret);
  417 }
  418 
  419 /*
  420  * Switches to another thread if we are still asleep on a sleep queue and
  421  * drop the lock on the sleep queue chain.  Returns with sched_lock held.
  422  */
  423 static void
  424 sleepq_switch(void *wchan)
  425 {
  426         struct sleepqueue_chain *sc;
  427         struct thread *td;
  428 
  429         td = curthread;
  430         sc = SC_LOOKUP(wchan);
  431         mtx_assert(&sc->sc_lock, MA_OWNED);
  432         mtx_assert(&sched_lock, MA_OWNED);
  433 
  434         /* 
  435          * If we have a sleep queue, then we've already been woken up, so
  436          * just return.
  437          */
  438         if (td->td_sleepqueue != NULL) {
  439                 MPASS(!TD_ON_SLEEPQ(td));
  440                 mtx_unlock_spin(&sc->sc_lock);
  441                 return;
  442         }
  443 
  444         /*
  445          * Otherwise, actually go to sleep.
  446          */
  447         mtx_unlock_spin(&sc->sc_lock);
  448         sched_sleep(td);
  449         TD_SET_SLEEPING(td);
  450         mi_switch(SW_VOL, NULL);
  451         KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
  452         CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
  453             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm);
  454 }
  455 
  456 /*
  457  * Check to see if we timed out.
  458  */
  459 static int
  460 sleepq_check_timeout(void)
  461 {
  462         struct thread *td;
  463 
  464         mtx_assert(&sched_lock, MA_OWNED);
  465         td = curthread;
  466 
  467         /*
  468          * If TDF_TIMEOUT is set, we timed out.
  469          */
  470         if (td->td_flags & TDF_TIMEOUT) {
  471                 td->td_flags &= ~TDF_TIMEOUT;
  472                 return (EWOULDBLOCK);
  473         }
  474 
  475         /*
  476          * If TDF_TIMOFAIL is set, the timeout ran after we had
  477          * already been woken up.
  478          */
  479         if (td->td_flags & TDF_TIMOFAIL)
  480                 td->td_flags &= ~TDF_TIMOFAIL;
  481 
  482         /*
  483          * If callout_stop() fails, then the timeout is running on
  484          * another CPU, so synchronize with it to avoid having it
  485          * accidentally wake up a subsequent sleep.
  486          */
  487         else if (callout_stop(&td->td_slpcallout) == 0) {
  488                 td->td_flags |= TDF_TIMEOUT;
  489                 TD_SET_SLEEPING(td);
  490                 mi_switch(SW_INVOL, NULL);
  491         }
  492         return (0);
  493 }
  494 
  495 /*
  496  * Check to see if we were awoken by a signal.
  497  */
  498 static int
  499 sleepq_check_signals(void)
  500 {
  501         struct thread *td;
  502 
  503         mtx_assert(&sched_lock, MA_OWNED);
  504         td = curthread;
  505 
  506         /* We are no longer in an interruptible sleep. */
  507         if (td->td_flags & TDF_SINTR)
  508                 td->td_flags &= ~TDF_SINTR;
  509 
  510         if (td->td_flags & TDF_SLEEPABORT) {
  511                 td->td_flags &= ~TDF_SLEEPABORT;
  512                 return (td->td_intrval);
  513         }
  514 
  515         if (td->td_flags & TDF_INTERRUPT)
  516                 return (td->td_intrval);
  517 
  518         return (0);
  519 }
  520 
  521 /*
  522  * Block the current thread until it is awakened from its sleep queue.
  523  */
  524 void
  525 sleepq_wait(void *wchan)
  526 {
  527 
  528         MPASS(!(curthread->td_flags & TDF_SINTR));
  529         mtx_lock_spin(&sched_lock);
  530         sleepq_switch(wchan);
  531         mtx_unlock_spin(&sched_lock);
  532 }
  533 
  534 /*
  535  * Block the current thread until it is awakened from its sleep queue
  536  * or it is interrupted by a signal.
  537  */
  538 int
  539 sleepq_wait_sig(void *wchan)
  540 {
  541         int rcatch;
  542         int rval;
  543 
  544         rcatch = sleepq_catch_signals(wchan);
  545         if (rcatch == 0)
  546                 sleepq_switch(wchan);
  547         else
  548                 sleepq_release(wchan);
  549         rval = sleepq_check_signals();
  550         mtx_unlock_spin(&sched_lock); 
  551         if (rcatch)
  552                 return (rcatch);
  553         return (rval);
  554 }
  555 
  556 /*
  557  * Block the current thread until it is awakened from its sleep queue
  558  * or it times out while waiting.
  559  */
  560 int
  561 sleepq_timedwait(void *wchan)
  562 {
  563         int rval;
  564 
  565         MPASS(!(curthread->td_flags & TDF_SINTR));
  566         mtx_lock_spin(&sched_lock);
  567         sleepq_switch(wchan);
  568         rval = sleepq_check_timeout();
  569         mtx_unlock_spin(&sched_lock);
  570         return (rval);
  571 }
  572 
  573 /*
  574  * Block the current thread until it is awakened from its sleep queue,
  575  * it is interrupted by a signal, or it times out waiting to be awakened.
  576  */
  577 int
  578 sleepq_timedwait_sig(void *wchan)
  579 {
  580         int rcatch, rvalt, rvals;
  581 
  582         rcatch = sleepq_catch_signals(wchan);
  583         if (rcatch == 0)
  584                 sleepq_switch(wchan);
  585         else
  586                 sleepq_release(wchan);
  587         rvalt = sleepq_check_timeout();
  588         rvals = sleepq_check_signals();
  589         mtx_unlock_spin(&sched_lock);
  590         if (rcatch)
  591                 return (rcatch);
  592         if (rvals)
  593                 return (rvals);
  594         return (rvalt);
  595 }
  596 
  597 /*
  598  * Removes a thread from a sleep queue and makes it
  599  * runnable.
  600  */
  601 static void
  602 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
  603 {
  604         struct sleepqueue_chain *sc;
  605 
  606         MPASS(td != NULL);
  607         MPASS(sq->sq_wchan != NULL);
  608         MPASS(td->td_wchan == sq->sq_wchan);
  609         sc = SC_LOOKUP(sq->sq_wchan);
  610         mtx_assert(&sc->sc_lock, MA_OWNED);
  611         mtx_assert(&sched_lock, MA_OWNED);
  612 
  613         /* Remove the thread from the queue. */
  614         TAILQ_REMOVE(&sq->sq_blocked, td, td_slpq);
  615 
  616         /*
  617          * Get a sleep queue for this thread.  If this is the last waiter,
  618          * use the queue itself and take it out of the chain, otherwise,
  619          * remove a queue from the free list.
  620          */
  621         if (LIST_EMPTY(&sq->sq_free)) {
  622                 td->td_sleepqueue = sq;
  623 #ifdef INVARIANTS
  624                 sq->sq_wchan = NULL;
  625 #endif
  626 #ifdef SLEEPQUEUE_PROFILING
  627                 sc->sc_depth--;
  628 #endif
  629         } else
  630                 td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
  631         LIST_REMOVE(td->td_sleepqueue, sq_hash);
  632 
  633         td->td_wmesg = NULL;
  634         td->td_wchan = NULL;
  635         td->td_flags &= ~TDF_SINTR;
  636 
  637         /*
  638          * Note that thread td might not be sleeping if it is running
  639          * sleepq_catch_signals() on another CPU or is blocked on
  640          * its proc lock to check signals.  It doesn't hurt to clear
  641          * the sleeping flag if it isn't set though, so we just always
  642          * do it.  However, we can't assert that it is set.
  643          */
  644         CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
  645             (void *)td, (long)td->td_proc->p_pid, td->td_proc->p_comm);
  646         TD_CLR_SLEEPING(td);
  647 
  648         /* Adjust priority if requested. */
  649         MPASS(pri == -1 || (pri >= PRI_MIN && pri <= PRI_MAX));
  650         if (pri != -1 && td->td_priority > pri)
  651                 sched_prio(td, pri);
  652         setrunnable(td);
  653 }
  654 
  655 /*
  656  * Find the highest priority thread sleeping on a wait channel and resume it.
  657  */
  658 void
  659 sleepq_signal(void *wchan, int flags, int pri)
  660 {
  661         struct sleepqueue *sq;
  662         struct thread *td, *besttd;
  663 
  664         CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
  665         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  666         sq = sleepq_lookup(wchan);
  667         if (sq == NULL) {
  668                 sleepq_release(wchan);
  669                 return;
  670         }
  671         KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
  672             ("%s: mismatch between sleep/wakeup and cv_*", __func__));
  673 
  674         /*
  675          * Find the highest priority thread on the queue.  If there is a
  676          * tie, use the thread that first appears in the queue as it has
  677          * been sleeping the longest since threads are always added to
  678          * the tail of sleep queues.
  679          */
  680         besttd = NULL;
  681         TAILQ_FOREACH(td, &sq->sq_blocked, td_slpq) {
  682                 if (besttd == NULL || td->td_priority < besttd->td_priority)
  683                         besttd = td;
  684         }
  685         MPASS(besttd != NULL);
  686         mtx_lock_spin(&sched_lock);
  687         sleepq_resume_thread(sq, besttd, pri);
  688         mtx_unlock_spin(&sched_lock);
  689         sleepq_release(wchan);
  690 }
  691 
  692 /*
  693  * Resume all threads sleeping on a specified wait channel.
  694  */
  695 void
  696 sleepq_broadcast(void *wchan, int flags, int pri)
  697 {
  698         struct sleepqueue *sq;
  699 
  700         CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
  701         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  702         sq = sleepq_lookup(wchan);
  703         if (sq == NULL) {
  704                 sleepq_release(wchan);
  705                 return;
  706         }
  707         KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
  708             ("%s: mismatch between sleep/wakeup and cv_*", __func__));
  709 
  710         /* Resume all blocked threads on the sleep queue. */
  711         mtx_lock_spin(&sched_lock);
  712         while (!TAILQ_EMPTY(&sq->sq_blocked))
  713                 sleepq_resume_thread(sq, TAILQ_FIRST(&sq->sq_blocked), pri);
  714         mtx_unlock_spin(&sched_lock);
  715         sleepq_release(wchan);
  716 }
  717 
  718 /*
  719  * Time sleeping threads out.  When the timeout expires, the thread is
  720  * removed from the sleep queue and made runnable if it is still asleep.
  721  */
  722 static void
  723 sleepq_timeout(void *arg)
  724 {
  725         struct sleepqueue *sq;
  726         struct thread *td;
  727         void *wchan;
  728 
  729         td = arg;
  730         CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
  731             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm);
  732 
  733         /*
  734          * First, see if the thread is asleep and get the wait channel if
  735          * it is.
  736          */
  737         mtx_lock_spin(&sched_lock);
  738         if (TD_ON_SLEEPQ(td)) {
  739                 wchan = td->td_wchan;
  740                 mtx_unlock_spin(&sched_lock);
  741                 sleepq_lock(wchan);
  742                 sq = sleepq_lookup(wchan);
  743                 mtx_lock_spin(&sched_lock);
  744         } else {
  745                 wchan = NULL;
  746                 sq = NULL;
  747         }
  748 
  749         /*
  750          * At this point, if the thread is still on the sleep queue,
  751          * we have that sleep queue locked as it cannot migrate sleep
  752          * queues while we dropped sched_lock.  If it had resumed and
  753          * was on another CPU while the lock was dropped, it would have
  754          * seen that TDF_TIMEOUT and TDF_TIMOFAIL are clear and the
  755          * call to callout_stop() to stop this routine would have failed
  756          * meaning that it would have already set TDF_TIMEOUT to
  757          * synchronize with this function.
  758          */
  759         if (TD_ON_SLEEPQ(td)) {
  760                 MPASS(td->td_wchan == wchan);
  761                 MPASS(sq != NULL);
  762                 td->td_flags |= TDF_TIMEOUT;
  763                 sleepq_resume_thread(sq, td, -1);
  764                 mtx_unlock_spin(&sched_lock);
  765                 sleepq_release(wchan);
  766                 return;
  767         } else if (wchan != NULL)
  768                 sleepq_release(wchan);
  769 
  770         /*
  771          * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
  772          * then the other thread has already yielded to us, so clear
  773          * the flag and resume it.  If TDF_TIMEOUT is not set, then the
  774          * we know that the other thread is not on a sleep queue, but it
  775          * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
  776          * to let it know that the timeout has already run and doesn't
  777          * need to be canceled.
  778          */
  779         if (td->td_flags & TDF_TIMEOUT) {
  780                 MPASS(TD_IS_SLEEPING(td));
  781                 td->td_flags &= ~TDF_TIMEOUT;
  782                 TD_CLR_SLEEPING(td);
  783                 setrunnable(td);
  784         } else
  785                 td->td_flags |= TDF_TIMOFAIL;
  786         mtx_unlock_spin(&sched_lock);
  787 }
  788 
  789 /*
  790  * Resumes a specific thread from the sleep queue associated with a specific
  791  * wait channel if it is on that queue.
  792  */
  793 void
  794 sleepq_remove(struct thread *td, void *wchan)
  795 {
  796         struct sleepqueue *sq;
  797 
  798         /*
  799          * Look up the sleep queue for this wait channel, then re-check
  800          * that the thread is asleep on that channel, if it is not, then
  801          * bail.
  802          */
  803         MPASS(wchan != NULL);
  804         sleepq_lock(wchan);
  805         sq = sleepq_lookup(wchan);
  806         mtx_lock_spin(&sched_lock);
  807         if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
  808                 mtx_unlock_spin(&sched_lock);
  809                 sleepq_release(wchan);
  810                 return;
  811         }
  812         MPASS(sq != NULL);
  813 
  814         /* Thread is asleep on sleep queue sq, so wake it up. */
  815         sleepq_resume_thread(sq, td, -1);
  816         sleepq_release(wchan);
  817         mtx_unlock_spin(&sched_lock);
  818 }
  819 
  820 /*
  821  * Abort a thread as if an interrupt had occurred.  Only abort
  822  * interruptible waits (unfortunately it isn't safe to abort others).
  823  *
  824  * XXX: What in the world does the comment below mean?
  825  * Also, whatever the signal code does...
  826  */
  827 void
  828 sleepq_abort(struct thread *td, int intrval)
  829 {
  830         void *wchan;
  831 
  832         mtx_assert(&sched_lock, MA_OWNED);
  833         MPASS(TD_ON_SLEEPQ(td));
  834         MPASS(td->td_flags & TDF_SINTR);
  835         MPASS(intrval == EINTR || intrval == ERESTART);
  836 
  837         /*
  838          * If the TDF_TIMEOUT flag is set, just leave. A
  839          * timeout is scheduled anyhow.
  840          */
  841         if (td->td_flags & TDF_TIMEOUT)
  842                 return;
  843 
  844         CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
  845             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm);
  846         wchan = td->td_wchan;
  847         if (wchan != NULL) {
  848                 td->td_intrval = intrval;
  849                 td->td_flags |= TDF_SLEEPABORT;
  850         }
  851         mtx_unlock_spin(&sched_lock);
  852         sleepq_remove(td, wchan);
  853         mtx_lock_spin(&sched_lock);
  854 }
  855 
  856 #ifdef DDB
  857 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
  858 {
  859         struct sleepqueue_chain *sc;
  860         struct sleepqueue *sq;
  861 #ifdef INVARIANTS
  862         struct lock_object *lock;
  863 #endif
  864         struct thread *td;
  865         void *wchan;
  866         int i;
  867 
  868         if (!have_addr)
  869                 return;
  870 
  871         /*
  872          * First, see if there is an active sleep queue for the wait channel
  873          * indicated by the address.
  874          */
  875         wchan = (void *)addr;
  876         sc = SC_LOOKUP(wchan);
  877         LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
  878                 if (sq->sq_wchan == wchan)
  879                         goto found;
  880 
  881         /*
  882          * Second, see if there is an active sleep queue at the address
  883          * indicated.
  884          */
  885         for (i = 0; i < SC_TABLESIZE; i++)
  886                 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
  887                         if (sq == (struct sleepqueue *)addr)
  888                                 goto found;
  889                 }
  890 
  891         db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
  892         return;
  893 found:
  894         db_printf("Wait channel: %p\n", sq->sq_wchan);
  895 #ifdef INVARIANTS
  896         db_printf("Queue type: %d\n", sq->sq_type);
  897         if (sq->sq_lock) {
  898                 lock = &sq->sq_lock->mtx_object;
  899                 db_printf("Associated Interlock: %p - (%s) %s\n", lock,
  900                     LOCK_CLASS(lock)->lc_name, lock->lo_name);
  901         }
  902 #endif
  903         db_printf("Blocked threads:\n");
  904         if (TAILQ_EMPTY(&sq->sq_blocked))
  905                 db_printf("\tempty\n");
  906         else
  907                 TAILQ_FOREACH(td, &sq->sq_blocked, td_slpq) {
  908                         db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
  909                             td->td_tid, td->td_proc->p_pid,
  910                             td->td_proc->p_comm);
  911                 }       
  912 }
  913 #endif

Cache object: cce6636cdff1e772a7f94920073a5609


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.