The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_sleepqueue.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. Neither the name of the author nor the names of any co-contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 /*
   31  * Implementation of sleep queues used to hold queue of threads blocked on
   32  * a wait channel.  Sleep queues different from turnstiles in that wait
   33  * channels are not owned by anyone, so there is no priority propagation.
   34  * Sleep queues can also provide a timeout and can also be interrupted by
   35  * signals.  That said, there are several similarities between the turnstile
   36  * and sleep queue implementations.  (Note: turnstiles were implemented
   37  * first.)  For example, both use a hash table of the same size where each
   38  * bucket is referred to as a "chain" that contains both a spin lock and
   39  * a linked list of queues.  An individual queue is located by using a hash
   40  * to pick a chain, locking the chain, and then walking the chain searching
   41  * for the queue.  This means that a wait channel object does not need to
   42  * embed it's queue head just as locks do not embed their turnstile queue
   43  * head.  Threads also carry around a sleep queue that they lend to the
   44  * wait channel when blocking.  Just as in turnstiles, the queue includes
   45  * a free list of the sleep queues of other threads blocked on the same
   46  * wait channel in the case of multiple waiters.
   47  *
   48  * Some additional functionality provided by sleep queues include the
   49  * ability to set a timeout.  The timeout is managed using a per-thread
   50  * callout that resumes a thread if it is asleep.  A thread may also
   51  * catch signals while it is asleep (aka an interruptible sleep).  The
   52  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
   53  * sleep queues also provide some extra assertions.  One is not allowed to
   54  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
   55  * must consistently use the same lock to synchronize with a wait channel,
   56  * though this check is currently only a warning for sleep/wakeup due to
   57  * pre-existing abuse of that API.  The same lock must also be held when
   58  * awakening threads, though that is currently only enforced for condition
   59  * variables.
   60  */
   61 
   62 #include <sys/cdefs.h>
   63 __FBSDID("$FreeBSD: releng/8.0/sys/kern/subr_sleepqueue.c 195702 2009-07-14 22:52:46Z kib $");
   64 
   65 #include "opt_sleepqueue_profiling.h"
   66 #include "opt_ddb.h"
   67 #include "opt_sched.h"
   68 
   69 #include <sys/param.h>
   70 #include <sys/systm.h>
   71 #include <sys/lock.h>
   72 #include <sys/kernel.h>
   73 #include <sys/ktr.h>
   74 #include <sys/mutex.h>
   75 #include <sys/proc.h>
   76 #include <sys/sbuf.h>
   77 #include <sys/sched.h>
   78 #include <sys/signalvar.h>
   79 #include <sys/sleepqueue.h>
   80 #include <sys/sysctl.h>
   81 
   82 #include <vm/uma.h>
   83 
   84 #ifdef DDB
   85 #include <ddb/ddb.h>
   86 #endif
   87 
   88 /*
   89  * Constants for the hash table of sleep queue chains.  These constants are
   90  * the same ones that 4BSD (and possibly earlier versions of BSD) used.
   91  * Basically, we ignore the lower 8 bits of the address since most wait
   92  * channel pointers are aligned and only look at the next 7 bits for the
   93  * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
   94  */
   95 #define SC_TABLESIZE    128                     /* Must be power of 2. */
   96 #define SC_MASK         (SC_TABLESIZE - 1)
   97 #define SC_SHIFT        8
   98 #define SC_HASH(wc)     (((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
   99 #define SC_LOOKUP(wc)   &sleepq_chains[SC_HASH(wc)]
  100 #define NR_SLEEPQS      2
  101 /*
  102  * There two different lists of sleep queues.  Both lists are connected
  103  * via the sq_hash entries.  The first list is the sleep queue chain list
  104  * that a sleep queue is on when it is attached to a wait channel.  The
  105  * second list is the free list hung off of a sleep queue that is attached
  106  * to a wait channel.
  107  *
  108  * Each sleep queue also contains the wait channel it is attached to, the
  109  * list of threads blocked on that wait channel, flags specific to the
  110  * wait channel, and the lock used to synchronize with a wait channel.
  111  * The flags are used to catch mismatches between the various consumers
  112  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
  113  * The lock pointer is only used when invariants are enabled for various
  114  * debugging checks.
  115  *
  116  * Locking key:
  117  *  c - sleep queue chain lock
  118  */
  119 struct sleepqueue {
  120         TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];    /* (c) Blocked threads. */
  121         LIST_ENTRY(sleepqueue) sq_hash;         /* (c) Chain and free list. */
  122         LIST_HEAD(, sleepqueue) sq_free;        /* (c) Free queues. */
  123         void    *sq_wchan;                      /* (c) Wait channel. */
  124 #ifdef INVARIANTS
  125         int     sq_type;                        /* (c) Queue type. */
  126         struct lock_object *sq_lock;            /* (c) Associated lock. */
  127 #endif
  128 };
  129 
  130 struct sleepqueue_chain {
  131         LIST_HEAD(, sleepqueue) sc_queues;      /* List of sleep queues. */
  132         struct mtx sc_lock;                     /* Spin lock for this chain. */
  133 #ifdef SLEEPQUEUE_PROFILING
  134         u_int   sc_depth;                       /* Length of sc_queues. */
  135         u_int   sc_max_depth;                   /* Max length of sc_queues. */
  136 #endif
  137 };
  138 
  139 #ifdef SLEEPQUEUE_PROFILING
  140 u_int sleepq_max_depth;
  141 SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
  142 SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
  143     "sleepq chain stats");
  144 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
  145     0, "maxmimum depth achieved of a single chain");
  146 
  147 static void     sleepq_profile(const char *wmesg);
  148 static int      prof_enabled;
  149 #endif
  150 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
  151 static uma_zone_t sleepq_zone;
  152 
  153 /*
  154  * Prototypes for non-exported routines.
  155  */
  156 static int      sleepq_catch_signals(void *wchan, int pri);
  157 static int      sleepq_check_signals(void);
  158 static int      sleepq_check_timeout(void);
  159 #ifdef INVARIANTS
  160 static void     sleepq_dtor(void *mem, int size, void *arg);
  161 #endif
  162 static int      sleepq_init(void *mem, int size, int flags);
  163 static int      sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
  164                     int pri);
  165 static void     sleepq_switch(void *wchan, int pri);
  166 static void     sleepq_timeout(void *arg);
  167 
  168 /*
  169  * Early initialization of sleep queues that is called from the sleepinit()
  170  * SYSINIT.
  171  */
  172 void
  173 init_sleepqueues(void)
  174 {
  175 #ifdef SLEEPQUEUE_PROFILING
  176         struct sysctl_oid *chain_oid;
  177         char chain_name[10];
  178 #endif
  179         int i;
  180 
  181         for (i = 0; i < SC_TABLESIZE; i++) {
  182                 LIST_INIT(&sleepq_chains[i].sc_queues);
  183                 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
  184                     MTX_SPIN | MTX_RECURSE);
  185 #ifdef SLEEPQUEUE_PROFILING
  186                 snprintf(chain_name, sizeof(chain_name), "%d", i);
  187                 chain_oid = SYSCTL_ADD_NODE(NULL, 
  188                     SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
  189                     chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
  190                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  191                     "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
  192                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  193                     "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
  194                     NULL);
  195 #endif
  196         }
  197         sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
  198 #ifdef INVARIANTS
  199             NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
  200 #else
  201             NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
  202 #endif
  203         
  204         thread0.td_sleepqueue = sleepq_alloc();
  205 }
  206 
  207 /*
  208  * Get a sleep queue for a new thread.
  209  */
  210 struct sleepqueue *
  211 sleepq_alloc(void)
  212 {
  213 
  214         return (uma_zalloc(sleepq_zone, M_WAITOK));
  215 }
  216 
  217 /*
  218  * Free a sleep queue when a thread is destroyed.
  219  */
  220 void
  221 sleepq_free(struct sleepqueue *sq)
  222 {
  223 
  224         uma_zfree(sleepq_zone, sq);
  225 }
  226 
  227 /*
  228  * Lock the sleep queue chain associated with the specified wait channel.
  229  */
  230 void
  231 sleepq_lock(void *wchan)
  232 {
  233         struct sleepqueue_chain *sc;
  234 
  235         sc = SC_LOOKUP(wchan);
  236         mtx_lock_spin(&sc->sc_lock);
  237 }
  238 
  239 /*
  240  * Look up the sleep queue associated with a given wait channel in the hash
  241  * table locking the associated sleep queue chain.  If no queue is found in
  242  * the table, NULL is returned.
  243  */
  244 struct sleepqueue *
  245 sleepq_lookup(void *wchan)
  246 {
  247         struct sleepqueue_chain *sc;
  248         struct sleepqueue *sq;
  249 
  250         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  251         sc = SC_LOOKUP(wchan);
  252         mtx_assert(&sc->sc_lock, MA_OWNED);
  253         LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
  254                 if (sq->sq_wchan == wchan)
  255                         return (sq);
  256         return (NULL);
  257 }
  258 
  259 /*
  260  * Unlock the sleep queue chain associated with a given wait channel.
  261  */
  262 void
  263 sleepq_release(void *wchan)
  264 {
  265         struct sleepqueue_chain *sc;
  266 
  267         sc = SC_LOOKUP(wchan);
  268         mtx_unlock_spin(&sc->sc_lock);
  269 }
  270 
  271 /*
  272  * Places the current thread on the sleep queue for the specified wait
  273  * channel.  If INVARIANTS is enabled, then it associates the passed in
  274  * lock with the sleepq to make sure it is held when that sleep queue is
  275  * woken up.
  276  */
  277 void
  278 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
  279     int queue)
  280 {
  281         struct sleepqueue_chain *sc;
  282         struct sleepqueue *sq;
  283         struct thread *td;
  284 
  285         td = curthread;
  286         sc = SC_LOOKUP(wchan);
  287         mtx_assert(&sc->sc_lock, MA_OWNED);
  288         MPASS(td->td_sleepqueue != NULL);
  289         MPASS(wchan != NULL);
  290         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  291 
  292         /* If this thread is not allowed to sleep, die a horrible death. */
  293         KASSERT(!(td->td_pflags & TDP_NOSLEEPING),
  294             ("Trying sleep, but thread marked as sleeping prohibited"));
  295 
  296         /* Look up the sleep queue associated with the wait channel 'wchan'. */
  297         sq = sleepq_lookup(wchan);
  298 
  299         /*
  300          * If the wait channel does not already have a sleep queue, use
  301          * this thread's sleep queue.  Otherwise, insert the current thread
  302          * into the sleep queue already in use by this wait channel.
  303          */
  304         if (sq == NULL) {
  305 #ifdef INVARIANTS
  306                 int i;
  307 
  308                 sq = td->td_sleepqueue;
  309                 for (i = 0; i < NR_SLEEPQS; i++)
  310                         KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
  311                                 ("thread's sleep queue %d is not empty", i));
  312                 KASSERT(LIST_EMPTY(&sq->sq_free),
  313                     ("thread's sleep queue has a non-empty free list"));
  314                 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
  315                 sq->sq_lock = lock;
  316                 sq->sq_type = flags & SLEEPQ_TYPE;
  317 #endif
  318 #ifdef SLEEPQUEUE_PROFILING
  319                 sc->sc_depth++;
  320                 if (sc->sc_depth > sc->sc_max_depth) {
  321                         sc->sc_max_depth = sc->sc_depth;
  322                         if (sc->sc_max_depth > sleepq_max_depth)
  323                                 sleepq_max_depth = sc->sc_max_depth;
  324                 }
  325 #endif
  326                 sq = td->td_sleepqueue;
  327                 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
  328                 sq->sq_wchan = wchan;
  329         } else {
  330                 MPASS(wchan == sq->sq_wchan);
  331                 MPASS(lock == sq->sq_lock);
  332                 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
  333                 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
  334         }
  335         thread_lock(td);
  336         TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
  337         td->td_sleepqueue = NULL;
  338         td->td_sqqueue = queue;
  339         td->td_wchan = wchan;
  340         td->td_wmesg = wmesg;
  341         if (flags & SLEEPQ_INTERRUPTIBLE) {
  342                 td->td_flags |= TDF_SINTR;
  343                 td->td_flags &= ~TDF_SLEEPABORT;
  344                 if (flags & SLEEPQ_STOP_ON_BDRY)
  345                         td->td_flags |= TDF_SBDRY;
  346         }
  347         thread_unlock(td);
  348 }
  349 
  350 /*
  351  * Sets a timeout that will remove the current thread from the specified
  352  * sleep queue after timo ticks if the thread has not already been awakened.
  353  */
  354 void
  355 sleepq_set_timeout(void *wchan, int timo)
  356 {
  357         struct sleepqueue_chain *sc;
  358         struct thread *td;
  359 
  360         td = curthread;
  361         sc = SC_LOOKUP(wchan);
  362         mtx_assert(&sc->sc_lock, MA_OWNED);
  363         MPASS(TD_ON_SLEEPQ(td));
  364         MPASS(td->td_sleepqueue == NULL);
  365         MPASS(wchan != NULL);
  366         callout_reset_curcpu(&td->td_slpcallout, timo, sleepq_timeout, td);
  367 }
  368 
  369 /*
  370  * Marks the pending sleep of the current thread as interruptible and
  371  * makes an initial check for pending signals before putting a thread
  372  * to sleep. Enters and exits with the thread lock held.  Thread lock
  373  * may have transitioned from the sleepq lock to a run lock.
  374  */
  375 static int
  376 sleepq_catch_signals(void *wchan, int pri)
  377 {
  378         struct sleepqueue_chain *sc;
  379         struct sleepqueue *sq;
  380         struct thread *td;
  381         struct proc *p;
  382         struct sigacts *ps;
  383         int sig, ret, stop_allowed;
  384 
  385         td = curthread;
  386         p = curproc;
  387         sc = SC_LOOKUP(wchan);
  388         mtx_assert(&sc->sc_lock, MA_OWNED);
  389         MPASS(wchan != NULL);
  390         /*
  391          * See if there are any pending signals for this thread.  If not
  392          * we can switch immediately.  Otherwise do the signal processing
  393          * directly.
  394          */
  395         thread_lock(td);
  396         if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
  397                 sleepq_switch(wchan, pri);
  398                 return (0);
  399         }
  400         stop_allowed = (td->td_flags & TDF_SBDRY) ? SIG_STOP_NOT_ALLOWED :
  401             SIG_STOP_ALLOWED;
  402         thread_unlock(td);
  403         mtx_unlock_spin(&sc->sc_lock);
  404         CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
  405                 (void *)td, (long)p->p_pid, td->td_name);
  406         PROC_LOCK(p);
  407         ps = p->p_sigacts;
  408         mtx_lock(&ps->ps_mtx);
  409         sig = cursig(td, stop_allowed);
  410         if (sig == 0) {
  411                 mtx_unlock(&ps->ps_mtx);
  412                 ret = thread_suspend_check(1);
  413                 MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
  414         } else {
  415                 if (SIGISMEMBER(ps->ps_sigintr, sig))
  416                         ret = EINTR;
  417                 else
  418                         ret = ERESTART;
  419                 mtx_unlock(&ps->ps_mtx);
  420         }
  421         /*
  422          * Lock the per-process spinlock prior to dropping the PROC_LOCK
  423          * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
  424          * thread_lock() are currently held in tdsignal().
  425          */
  426         PROC_SLOCK(p);
  427         mtx_lock_spin(&sc->sc_lock);
  428         PROC_UNLOCK(p);
  429         thread_lock(td);
  430         PROC_SUNLOCK(p);
  431         if (ret == 0) {
  432                 sleepq_switch(wchan, pri);
  433                 return (0);
  434         }
  435         /*
  436          * There were pending signals and this thread is still
  437          * on the sleep queue, remove it from the sleep queue.
  438          */
  439         if (TD_ON_SLEEPQ(td)) {
  440                 sq = sleepq_lookup(wchan);
  441                 if (sleepq_resume_thread(sq, td, 0)) {
  442 #ifdef INVARIANTS
  443                         /*
  444                          * This thread hasn't gone to sleep yet, so it
  445                          * should not be swapped out.
  446                          */
  447                         panic("not waking up swapper");
  448 #endif
  449                 }
  450         }
  451         mtx_unlock_spin(&sc->sc_lock);
  452         MPASS(td->td_lock != &sc->sc_lock);
  453         return (ret);
  454 }
  455 
  456 /*
  457  * Switches to another thread if we are still asleep on a sleep queue.
  458  * Returns with thread lock.
  459  */
  460 static void
  461 sleepq_switch(void *wchan, int pri)
  462 {
  463         struct sleepqueue_chain *sc;
  464         struct sleepqueue *sq;
  465         struct thread *td;
  466 
  467         td = curthread;
  468         sc = SC_LOOKUP(wchan);
  469         mtx_assert(&sc->sc_lock, MA_OWNED);
  470         THREAD_LOCK_ASSERT(td, MA_OWNED);
  471 
  472         /* 
  473          * If we have a sleep queue, then we've already been woken up, so
  474          * just return.
  475          */
  476         if (td->td_sleepqueue != NULL) {
  477                 mtx_unlock_spin(&sc->sc_lock);
  478                 return;
  479         }
  480 
  481         /*
  482          * If TDF_TIMEOUT is set, then our sleep has been timed out
  483          * already but we are still on the sleep queue, so dequeue the
  484          * thread and return.
  485          */
  486         if (td->td_flags & TDF_TIMEOUT) {
  487                 MPASS(TD_ON_SLEEPQ(td));
  488                 sq = sleepq_lookup(wchan);
  489                 if (sleepq_resume_thread(sq, td, 0)) {
  490 #ifdef INVARIANTS
  491                         /*
  492                          * This thread hasn't gone to sleep yet, so it
  493                          * should not be swapped out.
  494                          */
  495                         panic("not waking up swapper");
  496 #endif
  497                 }
  498                 mtx_unlock_spin(&sc->sc_lock);
  499                 return;         
  500         }
  501 #ifdef SLEEPQUEUE_PROFILING
  502         if (prof_enabled)
  503                 sleepq_profile(td->td_wmesg);
  504 #endif
  505         MPASS(td->td_sleepqueue == NULL);
  506         sched_sleep(td, pri);
  507         thread_lock_set(td, &sc->sc_lock);
  508         TD_SET_SLEEPING(td);
  509         mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
  510         KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
  511         CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
  512             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
  513 }
  514 
  515 /*
  516  * Check to see if we timed out.
  517  */
  518 static int
  519 sleepq_check_timeout(void)
  520 {
  521         struct thread *td;
  522 
  523         td = curthread;
  524         THREAD_LOCK_ASSERT(td, MA_OWNED);
  525 
  526         /*
  527          * If TDF_TIMEOUT is set, we timed out.
  528          */
  529         if (td->td_flags & TDF_TIMEOUT) {
  530                 td->td_flags &= ~TDF_TIMEOUT;
  531                 return (EWOULDBLOCK);
  532         }
  533 
  534         /*
  535          * If TDF_TIMOFAIL is set, the timeout ran after we had
  536          * already been woken up.
  537          */
  538         if (td->td_flags & TDF_TIMOFAIL)
  539                 td->td_flags &= ~TDF_TIMOFAIL;
  540 
  541         /*
  542          * If callout_stop() fails, then the timeout is running on
  543          * another CPU, so synchronize with it to avoid having it
  544          * accidentally wake up a subsequent sleep.
  545          */
  546         else if (callout_stop(&td->td_slpcallout) == 0) {
  547                 td->td_flags |= TDF_TIMEOUT;
  548                 TD_SET_SLEEPING(td);
  549                 mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
  550         }
  551         return (0);
  552 }
  553 
  554 /*
  555  * Check to see if we were awoken by a signal.
  556  */
  557 static int
  558 sleepq_check_signals(void)
  559 {
  560         struct thread *td;
  561 
  562         td = curthread;
  563         THREAD_LOCK_ASSERT(td, MA_OWNED);
  564 
  565         /* We are no longer in an interruptible sleep. */
  566         if (td->td_flags & TDF_SINTR)
  567                 td->td_flags &= ~(TDF_SINTR | TDF_SBDRY);
  568 
  569         if (td->td_flags & TDF_SLEEPABORT) {
  570                 td->td_flags &= ~TDF_SLEEPABORT;
  571                 return (td->td_intrval);
  572         }
  573 
  574         return (0);
  575 }
  576 
  577 /*
  578  * Block the current thread until it is awakened from its sleep queue.
  579  */
  580 void
  581 sleepq_wait(void *wchan, int pri)
  582 {
  583         struct thread *td;
  584 
  585         td = curthread;
  586         MPASS(!(td->td_flags & TDF_SINTR));
  587         thread_lock(td);
  588         sleepq_switch(wchan, pri);
  589         thread_unlock(td);
  590 }
  591 
  592 /*
  593  * Block the current thread until it is awakened from its sleep queue
  594  * or it is interrupted by a signal.
  595  */
  596 int
  597 sleepq_wait_sig(void *wchan, int pri)
  598 {
  599         int rcatch;
  600         int rval;
  601 
  602         rcatch = sleepq_catch_signals(wchan, pri);
  603         rval = sleepq_check_signals();
  604         thread_unlock(curthread);
  605         if (rcatch)
  606                 return (rcatch);
  607         return (rval);
  608 }
  609 
  610 /*
  611  * Block the current thread until it is awakened from its sleep queue
  612  * or it times out while waiting.
  613  */
  614 int
  615 sleepq_timedwait(void *wchan, int pri)
  616 {
  617         struct thread *td;
  618         int rval;
  619 
  620         td = curthread;
  621         MPASS(!(td->td_flags & TDF_SINTR));
  622         thread_lock(td);
  623         sleepq_switch(wchan, pri);
  624         rval = sleepq_check_timeout();
  625         thread_unlock(td);
  626 
  627         return (rval);
  628 }
  629 
  630 /*
  631  * Block the current thread until it is awakened from its sleep queue,
  632  * it is interrupted by a signal, or it times out waiting to be awakened.
  633  */
  634 int
  635 sleepq_timedwait_sig(void *wchan, int pri)
  636 {
  637         int rcatch, rvalt, rvals;
  638 
  639         rcatch = sleepq_catch_signals(wchan, pri);
  640         rvalt = sleepq_check_timeout();
  641         rvals = sleepq_check_signals();
  642         thread_unlock(curthread);
  643         if (rcatch)
  644                 return (rcatch);
  645         if (rvals)
  646                 return (rvals);
  647         return (rvalt);
  648 }
  649 
  650 /*
  651  * Removes a thread from a sleep queue and makes it
  652  * runnable.
  653  */
  654 static int
  655 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
  656 {
  657         struct sleepqueue_chain *sc;
  658 
  659         MPASS(td != NULL);
  660         MPASS(sq->sq_wchan != NULL);
  661         MPASS(td->td_wchan == sq->sq_wchan);
  662         MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
  663         THREAD_LOCK_ASSERT(td, MA_OWNED);
  664         sc = SC_LOOKUP(sq->sq_wchan);
  665         mtx_assert(&sc->sc_lock, MA_OWNED);
  666 
  667         /* Remove the thread from the queue. */
  668         TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
  669 
  670         /*
  671          * Get a sleep queue for this thread.  If this is the last waiter,
  672          * use the queue itself and take it out of the chain, otherwise,
  673          * remove a queue from the free list.
  674          */
  675         if (LIST_EMPTY(&sq->sq_free)) {
  676                 td->td_sleepqueue = sq;
  677 #ifdef INVARIANTS
  678                 sq->sq_wchan = NULL;
  679 #endif
  680 #ifdef SLEEPQUEUE_PROFILING
  681                 sc->sc_depth--;
  682 #endif
  683         } else
  684                 td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
  685         LIST_REMOVE(td->td_sleepqueue, sq_hash);
  686 
  687         td->td_wmesg = NULL;
  688         td->td_wchan = NULL;
  689         td->td_flags &= ~(TDF_SINTR | TDF_SBDRY);
  690 
  691         CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
  692             (void *)td, (long)td->td_proc->p_pid, td->td_name);
  693 
  694         /* Adjust priority if requested. */
  695         MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
  696         if (pri != 0 && td->td_priority > pri)
  697                 sched_prio(td, pri);
  698 
  699         /*
  700          * Note that thread td might not be sleeping if it is running
  701          * sleepq_catch_signals() on another CPU or is blocked on its
  702          * proc lock to check signals.  There's no need to mark the
  703          * thread runnable in that case.
  704          */
  705         if (TD_IS_SLEEPING(td)) {
  706                 TD_CLR_SLEEPING(td);
  707                 return (setrunnable(td));
  708         }
  709         return (0);
  710 }
  711 
  712 #ifdef INVARIANTS
  713 /*
  714  * UMA zone item deallocator.
  715  */
  716 static void
  717 sleepq_dtor(void *mem, int size, void *arg)
  718 {
  719         struct sleepqueue *sq;
  720         int i;
  721 
  722         sq = mem;
  723         for (i = 0; i < NR_SLEEPQS; i++)
  724                 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
  725 }
  726 #endif
  727 
  728 /*
  729  * UMA zone item initializer.
  730  */
  731 static int
  732 sleepq_init(void *mem, int size, int flags)
  733 {
  734         struct sleepqueue *sq;
  735         int i;
  736 
  737         bzero(mem, size);
  738         sq = mem;
  739         for (i = 0; i < NR_SLEEPQS; i++)
  740                 TAILQ_INIT(&sq->sq_blocked[i]);
  741         LIST_INIT(&sq->sq_free);
  742         return (0);
  743 }
  744 
  745 /*
  746  * Find the highest priority thread sleeping on a wait channel and resume it.
  747  */
  748 int
  749 sleepq_signal(void *wchan, int flags, int pri, int queue)
  750 {
  751         struct sleepqueue *sq;
  752         struct thread *td, *besttd;
  753         int wakeup_swapper;
  754 
  755         CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
  756         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  757         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  758         sq = sleepq_lookup(wchan);
  759         if (sq == NULL)
  760                 return (0);
  761         KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
  762             ("%s: mismatch between sleep/wakeup and cv_*", __func__));
  763 
  764         /*
  765          * Find the highest priority thread on the queue.  If there is a
  766          * tie, use the thread that first appears in the queue as it has
  767          * been sleeping the longest since threads are always added to
  768          * the tail of sleep queues.
  769          */
  770         besttd = NULL;
  771         TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
  772                 if (besttd == NULL || td->td_priority < besttd->td_priority)
  773                         besttd = td;
  774         }
  775         MPASS(besttd != NULL);
  776         thread_lock(besttd);
  777         wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
  778         thread_unlock(besttd);
  779         return (wakeup_swapper);
  780 }
  781 
  782 /*
  783  * Resume all threads sleeping on a specified wait channel.
  784  */
  785 int
  786 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
  787 {
  788         struct sleepqueue *sq;
  789         struct thread *td, *tdn;
  790         int wakeup_swapper;
  791 
  792         CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
  793         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  794         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  795         sq = sleepq_lookup(wchan);
  796         if (sq == NULL)
  797                 return (0);
  798         KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
  799             ("%s: mismatch between sleep/wakeup and cv_*", __func__));
  800 
  801         /* Resume all blocked threads on the sleep queue. */
  802         wakeup_swapper = 0;
  803         TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
  804                 thread_lock(td);
  805                 if (sleepq_resume_thread(sq, td, pri))
  806                         wakeup_swapper = 1;
  807                 thread_unlock(td);
  808         }
  809         return (wakeup_swapper);
  810 }
  811 
  812 /*
  813  * Time sleeping threads out.  When the timeout expires, the thread is
  814  * removed from the sleep queue and made runnable if it is still asleep.
  815  */
  816 static void
  817 sleepq_timeout(void *arg)
  818 {
  819         struct sleepqueue_chain *sc;
  820         struct sleepqueue *sq;
  821         struct thread *td;
  822         void *wchan;
  823         int wakeup_swapper;
  824 
  825         td = arg;
  826         wakeup_swapper = 0;
  827         CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
  828             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
  829 
  830         /*
  831          * First, see if the thread is asleep and get the wait channel if
  832          * it is.
  833          */
  834         thread_lock(td);
  835         if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
  836                 wchan = td->td_wchan;
  837                 sc = SC_LOOKUP(wchan);
  838                 THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
  839                 sq = sleepq_lookup(wchan);
  840                 MPASS(sq != NULL);
  841                 td->td_flags |= TDF_TIMEOUT;
  842                 wakeup_swapper = sleepq_resume_thread(sq, td, 0);
  843                 thread_unlock(td);
  844                 if (wakeup_swapper)
  845                         kick_proc0();
  846                 return;
  847         }
  848 
  849         /*
  850          * If the thread is on the SLEEPQ but isn't sleeping yet, it
  851          * can either be on another CPU in between sleepq_add() and
  852          * one of the sleepq_*wait*() routines or it can be in
  853          * sleepq_catch_signals().
  854          */
  855         if (TD_ON_SLEEPQ(td)) {
  856                 td->td_flags |= TDF_TIMEOUT;
  857                 thread_unlock(td);
  858                 return;
  859         }
  860 
  861         /*
  862          * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
  863          * then the other thread has already yielded to us, so clear
  864          * the flag and resume it.  If TDF_TIMEOUT is not set, then the
  865          * we know that the other thread is not on a sleep queue, but it
  866          * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
  867          * to let it know that the timeout has already run and doesn't
  868          * need to be canceled.
  869          */
  870         if (td->td_flags & TDF_TIMEOUT) {
  871                 MPASS(TD_IS_SLEEPING(td));
  872                 td->td_flags &= ~TDF_TIMEOUT;
  873                 TD_CLR_SLEEPING(td);
  874                 wakeup_swapper = setrunnable(td);
  875         } else
  876                 td->td_flags |= TDF_TIMOFAIL;
  877         thread_unlock(td);
  878         if (wakeup_swapper)
  879                 kick_proc0();
  880 }
  881 
  882 /*
  883  * Resumes a specific thread from the sleep queue associated with a specific
  884  * wait channel if it is on that queue.
  885  */
  886 void
  887 sleepq_remove(struct thread *td, void *wchan)
  888 {
  889         struct sleepqueue *sq;
  890         int wakeup_swapper;
  891 
  892         /*
  893          * Look up the sleep queue for this wait channel, then re-check
  894          * that the thread is asleep on that channel, if it is not, then
  895          * bail.
  896          */
  897         MPASS(wchan != NULL);
  898         sleepq_lock(wchan);
  899         sq = sleepq_lookup(wchan);
  900         /*
  901          * We can not lock the thread here as it may be sleeping on a
  902          * different sleepq.  However, holding the sleepq lock for this
  903          * wchan can guarantee that we do not miss a wakeup for this
  904          * channel.  The asserts below will catch any false positives.
  905          */
  906         if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
  907                 sleepq_release(wchan);
  908                 return;
  909         }
  910         /* Thread is asleep on sleep queue sq, so wake it up. */
  911         thread_lock(td);
  912         MPASS(sq != NULL);
  913         MPASS(td->td_wchan == wchan);
  914         wakeup_swapper = sleepq_resume_thread(sq, td, 0);
  915         thread_unlock(td);
  916         sleepq_release(wchan);
  917         if (wakeup_swapper)
  918                 kick_proc0();
  919 }
  920 
  921 /*
  922  * Abort a thread as if an interrupt had occurred.  Only abort
  923  * interruptible waits (unfortunately it isn't safe to abort others).
  924  */
  925 int
  926 sleepq_abort(struct thread *td, int intrval)
  927 {
  928         struct sleepqueue *sq;
  929         void *wchan;
  930 
  931         THREAD_LOCK_ASSERT(td, MA_OWNED);
  932         MPASS(TD_ON_SLEEPQ(td));
  933         MPASS(td->td_flags & TDF_SINTR);
  934         MPASS(intrval == EINTR || intrval == ERESTART);
  935 
  936         /*
  937          * If the TDF_TIMEOUT flag is set, just leave. A
  938          * timeout is scheduled anyhow.
  939          */
  940         if (td->td_flags & TDF_TIMEOUT)
  941                 return (0);
  942 
  943         CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
  944             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
  945         td->td_intrval = intrval;
  946         td->td_flags |= TDF_SLEEPABORT;
  947         /*
  948          * If the thread has not slept yet it will find the signal in
  949          * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
  950          * we have to do it here.
  951          */
  952         if (!TD_IS_SLEEPING(td))
  953                 return (0);
  954         wchan = td->td_wchan;
  955         MPASS(wchan != NULL);
  956         sq = sleepq_lookup(wchan);
  957         MPASS(sq != NULL);
  958 
  959         /* Thread is asleep on sleep queue sq, so wake it up. */
  960         return (sleepq_resume_thread(sq, td, 0));
  961 }
  962 
  963 #ifdef SLEEPQUEUE_PROFILING
  964 #define SLEEPQ_PROF_LOCATIONS   1024
  965 #define SLEEPQ_SBUFSIZE         (40 * 512)
  966 struct sleepq_prof {
  967         LIST_ENTRY(sleepq_prof) sp_link;
  968         const char      *sp_wmesg;
  969         long            sp_count;
  970 };
  971 
  972 LIST_HEAD(sqphead, sleepq_prof);
  973 
  974 struct sqphead sleepq_prof_free;
  975 struct sqphead sleepq_hash[SC_TABLESIZE];
  976 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
  977 static struct mtx sleepq_prof_lock;
  978 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
  979 
  980 static void
  981 sleepq_profile(const char *wmesg)
  982 {
  983         struct sleepq_prof *sp;
  984 
  985         mtx_lock_spin(&sleepq_prof_lock);
  986         if (prof_enabled == 0)
  987                 goto unlock;
  988         LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
  989                 if (sp->sp_wmesg == wmesg)
  990                         goto done;
  991         sp = LIST_FIRST(&sleepq_prof_free);
  992         if (sp == NULL)
  993                 goto unlock;
  994         sp->sp_wmesg = wmesg;
  995         LIST_REMOVE(sp, sp_link);
  996         LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
  997 done:
  998         sp->sp_count++;
  999 unlock:
 1000         mtx_unlock_spin(&sleepq_prof_lock);
 1001         return;
 1002 }
 1003 
 1004 static void
 1005 sleepq_prof_reset(void)
 1006 {
 1007         struct sleepq_prof *sp;
 1008         int enabled;
 1009         int i;
 1010 
 1011         mtx_lock_spin(&sleepq_prof_lock);
 1012         enabled = prof_enabled;
 1013         prof_enabled = 0;
 1014         for (i = 0; i < SC_TABLESIZE; i++)
 1015                 LIST_INIT(&sleepq_hash[i]);
 1016         LIST_INIT(&sleepq_prof_free);
 1017         for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
 1018                 sp = &sleepq_profent[i];
 1019                 sp->sp_wmesg = NULL;
 1020                 sp->sp_count = 0;
 1021                 LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
 1022         }
 1023         prof_enabled = enabled;
 1024         mtx_unlock_spin(&sleepq_prof_lock);
 1025 }
 1026 
 1027 static int
 1028 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
 1029 {
 1030         int error, v;
 1031 
 1032         v = prof_enabled;
 1033         error = sysctl_handle_int(oidp, &v, v, req);
 1034         if (error)
 1035                 return (error);
 1036         if (req->newptr == NULL)
 1037                 return (error);
 1038         if (v == prof_enabled)
 1039                 return (0);
 1040         if (v == 1)
 1041                 sleepq_prof_reset();
 1042         mtx_lock_spin(&sleepq_prof_lock);
 1043         prof_enabled = !!v;
 1044         mtx_unlock_spin(&sleepq_prof_lock);
 1045 
 1046         return (0);
 1047 }
 1048 
 1049 static int
 1050 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
 1051 {
 1052         int error, v;
 1053 
 1054         v = 0;
 1055         error = sysctl_handle_int(oidp, &v, 0, req);
 1056         if (error)
 1057                 return (error);
 1058         if (req->newptr == NULL)
 1059                 return (error);
 1060         if (v == 0)
 1061                 return (0);
 1062         sleepq_prof_reset();
 1063 
 1064         return (0);
 1065 }
 1066 
 1067 static int
 1068 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
 1069 {
 1070         static int multiplier = 1;
 1071         struct sleepq_prof *sp;
 1072         struct sbuf *sb;
 1073         int enabled;
 1074         int error;
 1075         int i;
 1076 
 1077 retry_sbufops:
 1078         sb = sbuf_new(NULL, NULL, SLEEPQ_SBUFSIZE * multiplier, SBUF_FIXEDLEN);
 1079         sbuf_printf(sb, "\nwmesg\tcount\n");
 1080         enabled = prof_enabled;
 1081         mtx_lock_spin(&sleepq_prof_lock);
 1082         prof_enabled = 0;
 1083         mtx_unlock_spin(&sleepq_prof_lock);
 1084         for (i = 0; i < SC_TABLESIZE; i++) {
 1085                 LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
 1086                         sbuf_printf(sb, "%s\t%ld\n",
 1087                             sp->sp_wmesg, sp->sp_count);
 1088                         if (sbuf_overflowed(sb)) {
 1089                                 sbuf_delete(sb);
 1090                                 multiplier++;
 1091                                 goto retry_sbufops;
 1092                         }
 1093                 }
 1094         }
 1095         mtx_lock_spin(&sleepq_prof_lock);
 1096         prof_enabled = enabled;
 1097         mtx_unlock_spin(&sleepq_prof_lock);
 1098 
 1099         sbuf_finish(sb);
 1100         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
 1101         sbuf_delete(sb);
 1102         return (error);
 1103 }
 1104 
 1105 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
 1106     NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
 1107 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
 1108     NULL, 0, reset_sleepq_prof_stats, "I",
 1109     "Reset sleepqueue profiling statistics");
 1110 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
 1111     NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
 1112 #endif
 1113 
 1114 #ifdef DDB
 1115 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
 1116 {
 1117         struct sleepqueue_chain *sc;
 1118         struct sleepqueue *sq;
 1119 #ifdef INVARIANTS
 1120         struct lock_object *lock;
 1121 #endif
 1122         struct thread *td;
 1123         void *wchan;
 1124         int i;
 1125 
 1126         if (!have_addr)
 1127                 return;
 1128 
 1129         /*
 1130          * First, see if there is an active sleep queue for the wait channel
 1131          * indicated by the address.
 1132          */
 1133         wchan = (void *)addr;
 1134         sc = SC_LOOKUP(wchan);
 1135         LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
 1136                 if (sq->sq_wchan == wchan)
 1137                         goto found;
 1138 
 1139         /*
 1140          * Second, see if there is an active sleep queue at the address
 1141          * indicated.
 1142          */
 1143         for (i = 0; i < SC_TABLESIZE; i++)
 1144                 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
 1145                         if (sq == (struct sleepqueue *)addr)
 1146                                 goto found;
 1147                 }
 1148 
 1149         db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
 1150         return;
 1151 found:
 1152         db_printf("Wait channel: %p\n", sq->sq_wchan);
 1153 #ifdef INVARIANTS
 1154         db_printf("Queue type: %d\n", sq->sq_type);
 1155         if (sq->sq_lock) {
 1156                 lock = sq->sq_lock;
 1157                 db_printf("Associated Interlock: %p - (%s) %s\n", lock,
 1158                     LOCK_CLASS(lock)->lc_name, lock->lo_name);
 1159         }
 1160 #endif
 1161         db_printf("Blocked threads:\n");
 1162         for (i = 0; i < NR_SLEEPQS; i++) {
 1163                 db_printf("\nQueue[%d]:\n", i);
 1164                 if (TAILQ_EMPTY(&sq->sq_blocked[i]))
 1165                         db_printf("\tempty\n");
 1166                 else
 1167                         TAILQ_FOREACH(td, &sq->sq_blocked[0],
 1168                                       td_slpq) {
 1169                                 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
 1170                                           td->td_tid, td->td_proc->p_pid,
 1171                                           td->td_name);
 1172                         }
 1173         }
 1174 }
 1175 
 1176 /* Alias 'show sleepqueue' to 'show sleepq'. */
 1177 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
 1178 #endif

Cache object: d57a34287cfb625b08527b0f5d4a986f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.