The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_sleepqueue.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. Neither the name of the author nor the names of any co-contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 /*
   31  * Implementation of sleep queues used to hold queue of threads blocked on
   32  * a wait channel.  Sleep queues different from turnstiles in that wait
   33  * channels are not owned by anyone, so there is no priority propagation.
   34  * Sleep queues can also provide a timeout and can also be interrupted by
   35  * signals.  That said, there are several similarities between the turnstile
   36  * and sleep queue implementations.  (Note: turnstiles were implemented
   37  * first.)  For example, both use a hash table of the same size where each
   38  * bucket is referred to as a "chain" that contains both a spin lock and
   39  * a linked list of queues.  An individual queue is located by using a hash
   40  * to pick a chain, locking the chain, and then walking the chain searching
   41  * for the queue.  This means that a wait channel object does not need to
   42  * embed it's queue head just as locks do not embed their turnstile queue
   43  * head.  Threads also carry around a sleep queue that they lend to the
   44  * wait channel when blocking.  Just as in turnstiles, the queue includes
   45  * a free list of the sleep queues of other threads blocked on the same
   46  * wait channel in the case of multiple waiters.
   47  *
   48  * Some additional functionality provided by sleep queues include the
   49  * ability to set a timeout.  The timeout is managed using a per-thread
   50  * callout that resumes a thread if it is asleep.  A thread may also
   51  * catch signals while it is asleep (aka an interruptible sleep).  The
   52  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
   53  * sleep queues also provide some extra assertions.  One is not allowed to
   54  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
   55  * must consistently use the same lock to synchronize with a wait channel,
   56  * though this check is currently only a warning for sleep/wakeup due to
   57  * pre-existing abuse of that API.  The same lock must also be held when
   58  * awakening threads, though that is currently only enforced for condition
   59  * variables.
   60  */
   61 
   62 #include <sys/cdefs.h>
   63 __FBSDID("$FreeBSD$");
   64 
   65 #include "opt_sleepqueue_profiling.h"
   66 #include "opt_ddb.h"
   67 #include "opt_kdtrace.h"
   68 #include "opt_sched.h"
   69 
   70 #include <sys/param.h>
   71 #include <sys/systm.h>
   72 #include <sys/lock.h>
   73 #include <sys/kernel.h>
   74 #include <sys/ktr.h>
   75 #include <sys/mutex.h>
   76 #include <sys/proc.h>
   77 #include <sys/sbuf.h>
   78 #include <sys/sched.h>
   79 #include <sys/sdt.h>
   80 #include <sys/signalvar.h>
   81 #include <sys/sleepqueue.h>
   82 #include <sys/sysctl.h>
   83 
   84 #include <vm/uma.h>
   85 
   86 #ifdef DDB
   87 #include <ddb/ddb.h>
   88 #endif
   89 
   90 /*
   91  * Constants for the hash table of sleep queue chains.  These constants are
   92  * the same ones that 4BSD (and possibly earlier versions of BSD) used.
   93  * Basically, we ignore the lower 8 bits of the address since most wait
   94  * channel pointers are aligned and only look at the next 7 bits for the
   95  * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
   96  */
   97 #define SC_TABLESIZE    128                     /* Must be power of 2. */
   98 #define SC_MASK         (SC_TABLESIZE - 1)
   99 #define SC_SHIFT        8
  100 #define SC_HASH(wc)     (((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
  101 #define SC_LOOKUP(wc)   &sleepq_chains[SC_HASH(wc)]
  102 #define NR_SLEEPQS      2
  103 /*
  104  * There two different lists of sleep queues.  Both lists are connected
  105  * via the sq_hash entries.  The first list is the sleep queue chain list
  106  * that a sleep queue is on when it is attached to a wait channel.  The
  107  * second list is the free list hung off of a sleep queue that is attached
  108  * to a wait channel.
  109  *
  110  * Each sleep queue also contains the wait channel it is attached to, the
  111  * list of threads blocked on that wait channel, flags specific to the
  112  * wait channel, and the lock used to synchronize with a wait channel.
  113  * The flags are used to catch mismatches between the various consumers
  114  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
  115  * The lock pointer is only used when invariants are enabled for various
  116  * debugging checks.
  117  *
  118  * Locking key:
  119  *  c - sleep queue chain lock
  120  */
  121 struct sleepqueue {
  122         TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];    /* (c) Blocked threads. */
  123         u_int sq_blockedcnt[NR_SLEEPQS];        /* (c) N. of blocked threads. */
  124         LIST_ENTRY(sleepqueue) sq_hash;         /* (c) Chain and free list. */
  125         LIST_HEAD(, sleepqueue) sq_free;        /* (c) Free queues. */
  126         void    *sq_wchan;                      /* (c) Wait channel. */
  127         int     sq_type;                        /* (c) Queue type. */
  128 #ifdef INVARIANTS
  129         struct lock_object *sq_lock;            /* (c) Associated lock. */
  130 #endif
  131 };
  132 
  133 struct sleepqueue_chain {
  134         LIST_HEAD(, sleepqueue) sc_queues;      /* List of sleep queues. */
  135         struct mtx sc_lock;                     /* Spin lock for this chain. */
  136 #ifdef SLEEPQUEUE_PROFILING
  137         u_int   sc_depth;                       /* Length of sc_queues. */
  138         u_int   sc_max_depth;                   /* Max length of sc_queues. */
  139 #endif
  140 };
  141 
  142 #ifdef SLEEPQUEUE_PROFILING
  143 u_int sleepq_max_depth;
  144 SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
  145 SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
  146     "sleepq chain stats");
  147 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
  148     0, "maxmimum depth achieved of a single chain");
  149 
  150 static void     sleepq_profile(const char *wmesg);
  151 static int      prof_enabled;
  152 #endif
  153 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
  154 static uma_zone_t sleepq_zone;
  155 
  156 /*
  157  * Prototypes for non-exported routines.
  158  */
  159 static int      sleepq_catch_signals(void *wchan, int pri);
  160 static int      sleepq_check_signals(void);
  161 static int      sleepq_check_timeout(void);
  162 #ifdef INVARIANTS
  163 static void     sleepq_dtor(void *mem, int size, void *arg);
  164 #endif
  165 static int      sleepq_init(void *mem, int size, int flags);
  166 static int      sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
  167                     int pri);
  168 static void     sleepq_switch(void *wchan, int pri);
  169 static void     sleepq_timeout(void *arg);
  170 
  171 SDT_PROBE_DECLARE(sched, , , sleep);
  172 SDT_PROBE_DECLARE(sched, , , wakeup);
  173 
  174 /*
  175  * Early initialization of sleep queues that is called from the sleepinit()
  176  * SYSINIT.
  177  */
  178 void
  179 init_sleepqueues(void)
  180 {
  181 #ifdef SLEEPQUEUE_PROFILING
  182         struct sysctl_oid *chain_oid;
  183         char chain_name[10];
  184 #endif
  185         int i;
  186 
  187         for (i = 0; i < SC_TABLESIZE; i++) {
  188                 LIST_INIT(&sleepq_chains[i].sc_queues);
  189                 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
  190                     MTX_SPIN | MTX_RECURSE);
  191 #ifdef SLEEPQUEUE_PROFILING
  192                 snprintf(chain_name, sizeof(chain_name), "%d", i);
  193                 chain_oid = SYSCTL_ADD_NODE(NULL, 
  194                     SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
  195                     chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
  196                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  197                     "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
  198                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  199                     "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
  200                     NULL);
  201 #endif
  202         }
  203         sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
  204 #ifdef INVARIANTS
  205             NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
  206 #else
  207             NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
  208 #endif
  209         
  210         thread0.td_sleepqueue = sleepq_alloc();
  211 }
  212 
  213 /*
  214  * Get a sleep queue for a new thread.
  215  */
  216 struct sleepqueue *
  217 sleepq_alloc(void)
  218 {
  219 
  220         return (uma_zalloc(sleepq_zone, M_WAITOK));
  221 }
  222 
  223 /*
  224  * Free a sleep queue when a thread is destroyed.
  225  */
  226 void
  227 sleepq_free(struct sleepqueue *sq)
  228 {
  229 
  230         uma_zfree(sleepq_zone, sq);
  231 }
  232 
  233 /*
  234  * Lock the sleep queue chain associated with the specified wait channel.
  235  */
  236 void
  237 sleepq_lock(void *wchan)
  238 {
  239         struct sleepqueue_chain *sc;
  240 
  241         sc = SC_LOOKUP(wchan);
  242         mtx_lock_spin(&sc->sc_lock);
  243 }
  244 
  245 /*
  246  * Look up the sleep queue associated with a given wait channel in the hash
  247  * table locking the associated sleep queue chain.  If no queue is found in
  248  * the table, NULL is returned.
  249  */
  250 struct sleepqueue *
  251 sleepq_lookup(void *wchan)
  252 {
  253         struct sleepqueue_chain *sc;
  254         struct sleepqueue *sq;
  255 
  256         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  257         sc = SC_LOOKUP(wchan);
  258         mtx_assert(&sc->sc_lock, MA_OWNED);
  259         LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
  260                 if (sq->sq_wchan == wchan)
  261                         return (sq);
  262         return (NULL);
  263 }
  264 
  265 /*
  266  * Unlock the sleep queue chain associated with a given wait channel.
  267  */
  268 void
  269 sleepq_release(void *wchan)
  270 {
  271         struct sleepqueue_chain *sc;
  272 
  273         sc = SC_LOOKUP(wchan);
  274         mtx_unlock_spin(&sc->sc_lock);
  275 }
  276 
  277 /*
  278  * Places the current thread on the sleep queue for the specified wait
  279  * channel.  If INVARIANTS is enabled, then it associates the passed in
  280  * lock with the sleepq to make sure it is held when that sleep queue is
  281  * woken up.
  282  */
  283 void
  284 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
  285     int queue)
  286 {
  287         struct sleepqueue_chain *sc;
  288         struct sleepqueue *sq;
  289         struct thread *td;
  290 
  291         td = curthread;
  292         sc = SC_LOOKUP(wchan);
  293         mtx_assert(&sc->sc_lock, MA_OWNED);
  294         MPASS(td->td_sleepqueue != NULL);
  295         MPASS(wchan != NULL);
  296         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  297 
  298         /* If this thread is not allowed to sleep, die a horrible death. */
  299         KASSERT(!(td->td_pflags & TDP_NOSLEEPING),
  300             ("Trying sleep, but thread marked as sleeping prohibited"));
  301 
  302         /* Look up the sleep queue associated with the wait channel 'wchan'. */
  303         sq = sleepq_lookup(wchan);
  304 
  305         /*
  306          * If the wait channel does not already have a sleep queue, use
  307          * this thread's sleep queue.  Otherwise, insert the current thread
  308          * into the sleep queue already in use by this wait channel.
  309          */
  310         if (sq == NULL) {
  311 #ifdef INVARIANTS
  312                 int i;
  313 
  314                 sq = td->td_sleepqueue;
  315                 for (i = 0; i < NR_SLEEPQS; i++) {
  316                         KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
  317                             ("thread's sleep queue %d is not empty", i));
  318                         KASSERT(sq->sq_blockedcnt[i] == 0,
  319                             ("thread's sleep queue %d count mismatches", i));
  320                 }
  321                 KASSERT(LIST_EMPTY(&sq->sq_free),
  322                     ("thread's sleep queue has a non-empty free list"));
  323                 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
  324                 sq->sq_lock = lock;
  325 #endif
  326 #ifdef SLEEPQUEUE_PROFILING
  327                 sc->sc_depth++;
  328                 if (sc->sc_depth > sc->sc_max_depth) {
  329                         sc->sc_max_depth = sc->sc_depth;
  330                         if (sc->sc_max_depth > sleepq_max_depth)
  331                                 sleepq_max_depth = sc->sc_max_depth;
  332                 }
  333 #endif
  334                 sq = td->td_sleepqueue;
  335                 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
  336                 sq->sq_wchan = wchan;
  337                 sq->sq_type = flags & SLEEPQ_TYPE;
  338         } else {
  339                 MPASS(wchan == sq->sq_wchan);
  340                 MPASS(lock == sq->sq_lock);
  341                 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
  342                 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
  343         }
  344         thread_lock(td);
  345         TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
  346         sq->sq_blockedcnt[queue]++;
  347         td->td_sleepqueue = NULL;
  348         td->td_sqqueue = queue;
  349         td->td_wchan = wchan;
  350         td->td_wmesg = wmesg;
  351         if (flags & SLEEPQ_INTERRUPTIBLE) {
  352                 td->td_flags |= TDF_SINTR;
  353                 td->td_flags &= ~TDF_SLEEPABORT;
  354         }
  355         thread_unlock(td);
  356 }
  357 
  358 /*
  359  * Sets a timeout that will remove the current thread from the specified
  360  * sleep queue after timo ticks if the thread has not already been awakened.
  361  */
  362 void
  363 sleepq_set_timeout(void *wchan, int timo)
  364 {
  365         struct sleepqueue_chain *sc;
  366         struct thread *td;
  367 
  368         td = curthread;
  369         sc = SC_LOOKUP(wchan);
  370         mtx_assert(&sc->sc_lock, MA_OWNED);
  371         MPASS(TD_ON_SLEEPQ(td));
  372         MPASS(td->td_sleepqueue == NULL);
  373         MPASS(wchan != NULL);
  374         callout_reset_curcpu(&td->td_slpcallout, timo, sleepq_timeout, td);
  375 }
  376 
  377 /*
  378  * Return the number of actual sleepers for the specified queue.
  379  */
  380 u_int
  381 sleepq_sleepcnt(void *wchan, int queue)
  382 {
  383         struct sleepqueue *sq;
  384 
  385         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  386         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  387         sq = sleepq_lookup(wchan);
  388         if (sq == NULL)
  389                 return (0);
  390         return (sq->sq_blockedcnt[queue]);
  391 }
  392 
  393 /*
  394  * Marks the pending sleep of the current thread as interruptible and
  395  * makes an initial check for pending signals before putting a thread
  396  * to sleep. Enters and exits with the thread lock held.  Thread lock
  397  * may have transitioned from the sleepq lock to a run lock.
  398  */
  399 static int
  400 sleepq_catch_signals(void *wchan, int pri)
  401 {
  402         struct sleepqueue_chain *sc;
  403         struct sleepqueue *sq;
  404         struct thread *td;
  405         struct proc *p;
  406         struct sigacts *ps;
  407         int sig, ret, stop_allowed;
  408 
  409         td = curthread;
  410         p = curproc;
  411         sc = SC_LOOKUP(wchan);
  412         mtx_assert(&sc->sc_lock, MA_OWNED);
  413         MPASS(wchan != NULL);
  414         /*
  415          * See if there are any pending signals for this thread.  If not
  416          * we can switch immediately.  Otherwise do the signal processing
  417          * directly.
  418          */
  419         thread_lock(td);
  420         if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
  421                 sleepq_switch(wchan, pri);
  422                 return (0);
  423         }
  424         stop_allowed = (td->td_flags & TDF_SBDRY) ? SIG_STOP_NOT_ALLOWED :
  425             SIG_STOP_ALLOWED;
  426         thread_unlock(td);
  427         mtx_unlock_spin(&sc->sc_lock);
  428         CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
  429                 (void *)td, (long)p->p_pid, td->td_name);
  430         PROC_LOCK(p);
  431         ps = p->p_sigacts;
  432         mtx_lock(&ps->ps_mtx);
  433         sig = cursig(td, stop_allowed);
  434         if (sig == 0) {
  435                 mtx_unlock(&ps->ps_mtx);
  436                 ret = thread_suspend_check(1);
  437                 MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
  438         } else {
  439                 if (SIGISMEMBER(ps->ps_sigintr, sig))
  440                         ret = EINTR;
  441                 else
  442                         ret = ERESTART;
  443                 mtx_unlock(&ps->ps_mtx);
  444         }
  445         /*
  446          * Lock the per-process spinlock prior to dropping the PROC_LOCK
  447          * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
  448          * thread_lock() are currently held in tdsignal().
  449          */
  450         PROC_SLOCK(p);
  451         mtx_lock_spin(&sc->sc_lock);
  452         PROC_UNLOCK(p);
  453         thread_lock(td);
  454         PROC_SUNLOCK(p);
  455         if (ret == 0) {
  456                 sleepq_switch(wchan, pri);
  457                 return (0);
  458         }
  459         /*
  460          * There were pending signals and this thread is still
  461          * on the sleep queue, remove it from the sleep queue.
  462          */
  463         if (TD_ON_SLEEPQ(td)) {
  464                 sq = sleepq_lookup(wchan);
  465                 if (sleepq_resume_thread(sq, td, 0)) {
  466 #ifdef INVARIANTS
  467                         /*
  468                          * This thread hasn't gone to sleep yet, so it
  469                          * should not be swapped out.
  470                          */
  471                         panic("not waking up swapper");
  472 #endif
  473                 }
  474         }
  475         mtx_unlock_spin(&sc->sc_lock);
  476         MPASS(td->td_lock != &sc->sc_lock);
  477         return (ret);
  478 }
  479 
  480 /*
  481  * Switches to another thread if we are still asleep on a sleep queue.
  482  * Returns with thread lock.
  483  */
  484 static void
  485 sleepq_switch(void *wchan, int pri)
  486 {
  487         struct sleepqueue_chain *sc;
  488         struct sleepqueue *sq;
  489         struct thread *td;
  490 
  491         td = curthread;
  492         sc = SC_LOOKUP(wchan);
  493         mtx_assert(&sc->sc_lock, MA_OWNED);
  494         THREAD_LOCK_ASSERT(td, MA_OWNED);
  495 
  496         /* 
  497          * If we have a sleep queue, then we've already been woken up, so
  498          * just return.
  499          */
  500         if (td->td_sleepqueue != NULL) {
  501                 mtx_unlock_spin(&sc->sc_lock);
  502                 return;
  503         }
  504 
  505         /*
  506          * If TDF_TIMEOUT is set, then our sleep has been timed out
  507          * already but we are still on the sleep queue, so dequeue the
  508          * thread and return.
  509          */
  510         if (td->td_flags & TDF_TIMEOUT) {
  511                 MPASS(TD_ON_SLEEPQ(td));
  512                 sq = sleepq_lookup(wchan);
  513                 if (sleepq_resume_thread(sq, td, 0)) {
  514 #ifdef INVARIANTS
  515                         /*
  516                          * This thread hasn't gone to sleep yet, so it
  517                          * should not be swapped out.
  518                          */
  519                         panic("not waking up swapper");
  520 #endif
  521                 }
  522                 mtx_unlock_spin(&sc->sc_lock);
  523                 return;         
  524         }
  525 #ifdef SLEEPQUEUE_PROFILING
  526         if (prof_enabled)
  527                 sleepq_profile(td->td_wmesg);
  528 #endif
  529         MPASS(td->td_sleepqueue == NULL);
  530         sched_sleep(td, pri);
  531         thread_lock_set(td, &sc->sc_lock);
  532         SDT_PROBE0(sched, , , sleep);
  533         TD_SET_SLEEPING(td);
  534         mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
  535         KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
  536         CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
  537             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
  538 }
  539 
  540 /*
  541  * Check to see if we timed out.
  542  */
  543 static int
  544 sleepq_check_timeout(void)
  545 {
  546         struct thread *td;
  547 
  548         td = curthread;
  549         THREAD_LOCK_ASSERT(td, MA_OWNED);
  550 
  551         /*
  552          * If TDF_TIMEOUT is set, we timed out.
  553          */
  554         if (td->td_flags & TDF_TIMEOUT) {
  555                 td->td_flags &= ~TDF_TIMEOUT;
  556                 return (EWOULDBLOCK);
  557         }
  558 
  559         /*
  560          * If TDF_TIMOFAIL is set, the timeout ran after we had
  561          * already been woken up.
  562          */
  563         if (td->td_flags & TDF_TIMOFAIL)
  564                 td->td_flags &= ~TDF_TIMOFAIL;
  565 
  566         /*
  567          * If callout_stop() fails, then the timeout is running on
  568          * another CPU, so synchronize with it to avoid having it
  569          * accidentally wake up a subsequent sleep.
  570          */
  571         else if (callout_stop(&td->td_slpcallout) == 0) {
  572                 td->td_flags |= TDF_TIMEOUT;
  573                 TD_SET_SLEEPING(td);
  574                 mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
  575         }
  576         return (0);
  577 }
  578 
  579 /*
  580  * Check to see if we were awoken by a signal.
  581  */
  582 static int
  583 sleepq_check_signals(void)
  584 {
  585         struct thread *td;
  586 
  587         td = curthread;
  588         THREAD_LOCK_ASSERT(td, MA_OWNED);
  589 
  590         /* We are no longer in an interruptible sleep. */
  591         if (td->td_flags & TDF_SINTR)
  592                 td->td_flags &= ~TDF_SINTR;
  593 
  594         if (td->td_flags & TDF_SLEEPABORT) {
  595                 td->td_flags &= ~TDF_SLEEPABORT;
  596                 return (td->td_intrval);
  597         }
  598 
  599         return (0);
  600 }
  601 
  602 /*
  603  * Block the current thread until it is awakened from its sleep queue.
  604  */
  605 void
  606 sleepq_wait(void *wchan, int pri)
  607 {
  608         struct thread *td;
  609 
  610         td = curthread;
  611         MPASS(!(td->td_flags & TDF_SINTR));
  612         thread_lock(td);
  613         sleepq_switch(wchan, pri);
  614         thread_unlock(td);
  615 }
  616 
  617 /*
  618  * Block the current thread until it is awakened from its sleep queue
  619  * or it is interrupted by a signal.
  620  */
  621 int
  622 sleepq_wait_sig(void *wchan, int pri)
  623 {
  624         int rcatch;
  625         int rval;
  626 
  627         rcatch = sleepq_catch_signals(wchan, pri);
  628         rval = sleepq_check_signals();
  629         thread_unlock(curthread);
  630         if (rcatch)
  631                 return (rcatch);
  632         return (rval);
  633 }
  634 
  635 /*
  636  * Block the current thread until it is awakened from its sleep queue
  637  * or it times out while waiting.
  638  */
  639 int
  640 sleepq_timedwait(void *wchan, int pri)
  641 {
  642         struct thread *td;
  643         int rval;
  644 
  645         td = curthread;
  646         MPASS(!(td->td_flags & TDF_SINTR));
  647         thread_lock(td);
  648         sleepq_switch(wchan, pri);
  649         rval = sleepq_check_timeout();
  650         thread_unlock(td);
  651 
  652         return (rval);
  653 }
  654 
  655 /*
  656  * Block the current thread until it is awakened from its sleep queue,
  657  * it is interrupted by a signal, or it times out waiting to be awakened.
  658  */
  659 int
  660 sleepq_timedwait_sig(void *wchan, int pri)
  661 {
  662         int rcatch, rvalt, rvals;
  663 
  664         rcatch = sleepq_catch_signals(wchan, pri);
  665         rvalt = sleepq_check_timeout();
  666         rvals = sleepq_check_signals();
  667         thread_unlock(curthread);
  668         if (rcatch)
  669                 return (rcatch);
  670         if (rvals)
  671                 return (rvals);
  672         return (rvalt);
  673 }
  674 
  675 /*
  676  * Returns the type of sleepqueue given a waitchannel.
  677  */
  678 int
  679 sleepq_type(void *wchan)
  680 {
  681         struct sleepqueue *sq;
  682         int type;
  683 
  684         MPASS(wchan != NULL);
  685 
  686         sleepq_lock(wchan);
  687         sq = sleepq_lookup(wchan);
  688         if (sq == NULL) {
  689                 sleepq_release(wchan);
  690                 return (-1);
  691         }
  692         type = sq->sq_type;
  693         sleepq_release(wchan);
  694         return (type);
  695 }
  696 
  697 /*
  698  * Removes a thread from a sleep queue and makes it
  699  * runnable.
  700  */
  701 static int
  702 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
  703 {
  704         struct sleepqueue_chain *sc;
  705 
  706         MPASS(td != NULL);
  707         MPASS(sq->sq_wchan != NULL);
  708         MPASS(td->td_wchan == sq->sq_wchan);
  709         MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
  710         THREAD_LOCK_ASSERT(td, MA_OWNED);
  711         sc = SC_LOOKUP(sq->sq_wchan);
  712         mtx_assert(&sc->sc_lock, MA_OWNED);
  713 
  714         SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
  715 
  716         /* Remove the thread from the queue. */
  717         sq->sq_blockedcnt[td->td_sqqueue]--;
  718         TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
  719 
  720         /*
  721          * Get a sleep queue for this thread.  If this is the last waiter,
  722          * use the queue itself and take it out of the chain, otherwise,
  723          * remove a queue from the free list.
  724          */
  725         if (LIST_EMPTY(&sq->sq_free)) {
  726                 td->td_sleepqueue = sq;
  727 #ifdef INVARIANTS
  728                 sq->sq_wchan = NULL;
  729 #endif
  730 #ifdef SLEEPQUEUE_PROFILING
  731                 sc->sc_depth--;
  732 #endif
  733         } else
  734                 td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
  735         LIST_REMOVE(td->td_sleepqueue, sq_hash);
  736 
  737         td->td_wmesg = NULL;
  738         td->td_wchan = NULL;
  739         td->td_flags &= ~TDF_SINTR;
  740 
  741         CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
  742             (void *)td, (long)td->td_proc->p_pid, td->td_name);
  743 
  744         /* Adjust priority if requested. */
  745         MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
  746         if (pri != 0 && td->td_priority > pri)
  747                 sched_prio(td, pri);
  748 
  749         /*
  750          * Note that thread td might not be sleeping if it is running
  751          * sleepq_catch_signals() on another CPU or is blocked on its
  752          * proc lock to check signals.  There's no need to mark the
  753          * thread runnable in that case.
  754          */
  755         if (TD_IS_SLEEPING(td)) {
  756                 TD_CLR_SLEEPING(td);
  757                 return (setrunnable(td));
  758         }
  759         return (0);
  760 }
  761 
  762 #ifdef INVARIANTS
  763 /*
  764  * UMA zone item deallocator.
  765  */
  766 static void
  767 sleepq_dtor(void *mem, int size, void *arg)
  768 {
  769         struct sleepqueue *sq;
  770         int i;
  771 
  772         sq = mem;
  773         for (i = 0; i < NR_SLEEPQS; i++) {
  774                 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
  775                 MPASS(sq->sq_blockedcnt[i] == 0);
  776         }
  777 }
  778 #endif
  779 
  780 /*
  781  * UMA zone item initializer.
  782  */
  783 static int
  784 sleepq_init(void *mem, int size, int flags)
  785 {
  786         struct sleepqueue *sq;
  787         int i;
  788 
  789         bzero(mem, size);
  790         sq = mem;
  791         for (i = 0; i < NR_SLEEPQS; i++) {
  792                 TAILQ_INIT(&sq->sq_blocked[i]);
  793                 sq->sq_blockedcnt[i] = 0;
  794         }
  795         LIST_INIT(&sq->sq_free);
  796         return (0);
  797 }
  798 
  799 /*
  800  * Find the highest priority thread sleeping on a wait channel and resume it.
  801  */
  802 int
  803 sleepq_signal(void *wchan, int flags, int pri, int queue)
  804 {
  805         struct sleepqueue *sq;
  806         struct thread *td, *besttd;
  807         int wakeup_swapper;
  808 
  809         CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
  810         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  811         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  812         sq = sleepq_lookup(wchan);
  813         if (sq == NULL)
  814                 return (0);
  815         KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
  816             ("%s: mismatch between sleep/wakeup and cv_*", __func__));
  817 
  818         /*
  819          * Find the highest priority thread on the queue.  If there is a
  820          * tie, use the thread that first appears in the queue as it has
  821          * been sleeping the longest since threads are always added to
  822          * the tail of sleep queues.
  823          */
  824         besttd = NULL;
  825         TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
  826                 if (besttd == NULL || td->td_priority < besttd->td_priority)
  827                         besttd = td;
  828         }
  829         MPASS(besttd != NULL);
  830         thread_lock(besttd);
  831         wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
  832         thread_unlock(besttd);
  833         return (wakeup_swapper);
  834 }
  835 
  836 /*
  837  * Resume all threads sleeping on a specified wait channel.
  838  */
  839 int
  840 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
  841 {
  842         struct sleepqueue *sq;
  843         struct thread *td, *tdn;
  844         int wakeup_swapper;
  845 
  846         CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
  847         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  848         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  849         sq = sleepq_lookup(wchan);
  850         if (sq == NULL)
  851                 return (0);
  852         KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
  853             ("%s: mismatch between sleep/wakeup and cv_*", __func__));
  854 
  855         /* Resume all blocked threads on the sleep queue. */
  856         wakeup_swapper = 0;
  857         TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
  858                 thread_lock(td);
  859                 if (sleepq_resume_thread(sq, td, pri))
  860                         wakeup_swapper = 1;
  861                 thread_unlock(td);
  862         }
  863         return (wakeup_swapper);
  864 }
  865 
  866 /*
  867  * Time sleeping threads out.  When the timeout expires, the thread is
  868  * removed from the sleep queue and made runnable if it is still asleep.
  869  */
  870 static void
  871 sleepq_timeout(void *arg)
  872 {
  873         struct sleepqueue_chain *sc;
  874         struct sleepqueue *sq;
  875         struct thread *td;
  876         void *wchan;
  877         int wakeup_swapper;
  878 
  879         td = arg;
  880         wakeup_swapper = 0;
  881         CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
  882             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
  883 
  884         /*
  885          * First, see if the thread is asleep and get the wait channel if
  886          * it is.
  887          */
  888         thread_lock(td);
  889         if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
  890                 wchan = td->td_wchan;
  891                 sc = SC_LOOKUP(wchan);
  892                 THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
  893                 sq = sleepq_lookup(wchan);
  894                 MPASS(sq != NULL);
  895                 td->td_flags |= TDF_TIMEOUT;
  896                 wakeup_swapper = sleepq_resume_thread(sq, td, 0);
  897                 thread_unlock(td);
  898                 if (wakeup_swapper)
  899                         kick_proc0();
  900                 return;
  901         }
  902 
  903         /*
  904          * If the thread is on the SLEEPQ but isn't sleeping yet, it
  905          * can either be on another CPU in between sleepq_add() and
  906          * one of the sleepq_*wait*() routines or it can be in
  907          * sleepq_catch_signals().
  908          */
  909         if (TD_ON_SLEEPQ(td)) {
  910                 td->td_flags |= TDF_TIMEOUT;
  911                 thread_unlock(td);
  912                 return;
  913         }
  914 
  915         /*
  916          * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
  917          * then the other thread has already yielded to us, so clear
  918          * the flag and resume it.  If TDF_TIMEOUT is not set, then the
  919          * we know that the other thread is not on a sleep queue, but it
  920          * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
  921          * to let it know that the timeout has already run and doesn't
  922          * need to be canceled.
  923          */
  924         if (td->td_flags & TDF_TIMEOUT) {
  925                 MPASS(TD_IS_SLEEPING(td));
  926                 td->td_flags &= ~TDF_TIMEOUT;
  927                 TD_CLR_SLEEPING(td);
  928                 wakeup_swapper = setrunnable(td);
  929         } else
  930                 td->td_flags |= TDF_TIMOFAIL;
  931         thread_unlock(td);
  932         if (wakeup_swapper)
  933                 kick_proc0();
  934 }
  935 
  936 /*
  937  * Resumes a specific thread from the sleep queue associated with a specific
  938  * wait channel if it is on that queue.
  939  */
  940 void
  941 sleepq_remove(struct thread *td, void *wchan)
  942 {
  943         struct sleepqueue *sq;
  944         int wakeup_swapper;
  945 
  946         /*
  947          * Look up the sleep queue for this wait channel, then re-check
  948          * that the thread is asleep on that channel, if it is not, then
  949          * bail.
  950          */
  951         MPASS(wchan != NULL);
  952         sleepq_lock(wchan);
  953         sq = sleepq_lookup(wchan);
  954         /*
  955          * We can not lock the thread here as it may be sleeping on a
  956          * different sleepq.  However, holding the sleepq lock for this
  957          * wchan can guarantee that we do not miss a wakeup for this
  958          * channel.  The asserts below will catch any false positives.
  959          */
  960         if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
  961                 sleepq_release(wchan);
  962                 return;
  963         }
  964         /* Thread is asleep on sleep queue sq, so wake it up. */
  965         thread_lock(td);
  966         MPASS(sq != NULL);
  967         MPASS(td->td_wchan == wchan);
  968         wakeup_swapper = sleepq_resume_thread(sq, td, 0);
  969         thread_unlock(td);
  970         sleepq_release(wchan);
  971         if (wakeup_swapper)
  972                 kick_proc0();
  973 }
  974 
  975 /*
  976  * Abort a thread as if an interrupt had occurred.  Only abort
  977  * interruptible waits (unfortunately it isn't safe to abort others).
  978  */
  979 int
  980 sleepq_abort(struct thread *td, int intrval)
  981 {
  982         struct sleepqueue *sq;
  983         void *wchan;
  984 
  985         THREAD_LOCK_ASSERT(td, MA_OWNED);
  986         MPASS(TD_ON_SLEEPQ(td));
  987         MPASS(td->td_flags & TDF_SINTR);
  988         MPASS(intrval == EINTR || intrval == ERESTART);
  989 
  990         /*
  991          * If the TDF_TIMEOUT flag is set, just leave. A
  992          * timeout is scheduled anyhow.
  993          */
  994         if (td->td_flags & TDF_TIMEOUT)
  995                 return (0);
  996 
  997         CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
  998             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
  999         td->td_intrval = intrval;
 1000         td->td_flags |= TDF_SLEEPABORT;
 1001         /*
 1002          * If the thread has not slept yet it will find the signal in
 1003          * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
 1004          * we have to do it here.
 1005          */
 1006         if (!TD_IS_SLEEPING(td))
 1007                 return (0);
 1008         wchan = td->td_wchan;
 1009         MPASS(wchan != NULL);
 1010         sq = sleepq_lookup(wchan);
 1011         MPASS(sq != NULL);
 1012 
 1013         /* Thread is asleep on sleep queue sq, so wake it up. */
 1014         return (sleepq_resume_thread(sq, td, 0));
 1015 }
 1016 
 1017 #ifdef SLEEPQUEUE_PROFILING
 1018 #define SLEEPQ_PROF_LOCATIONS   1024
 1019 #define SLEEPQ_SBUFSIZE         (40 * 512)
 1020 struct sleepq_prof {
 1021         LIST_ENTRY(sleepq_prof) sp_link;
 1022         const char      *sp_wmesg;
 1023         long            sp_count;
 1024 };
 1025 
 1026 LIST_HEAD(sqphead, sleepq_prof);
 1027 
 1028 struct sqphead sleepq_prof_free;
 1029 struct sqphead sleepq_hash[SC_TABLESIZE];
 1030 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
 1031 static struct mtx sleepq_prof_lock;
 1032 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
 1033 
 1034 static void
 1035 sleepq_profile(const char *wmesg)
 1036 {
 1037         struct sleepq_prof *sp;
 1038 
 1039         mtx_lock_spin(&sleepq_prof_lock);
 1040         if (prof_enabled == 0)
 1041                 goto unlock;
 1042         LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
 1043                 if (sp->sp_wmesg == wmesg)
 1044                         goto done;
 1045         sp = LIST_FIRST(&sleepq_prof_free);
 1046         if (sp == NULL)
 1047                 goto unlock;
 1048         sp->sp_wmesg = wmesg;
 1049         LIST_REMOVE(sp, sp_link);
 1050         LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
 1051 done:
 1052         sp->sp_count++;
 1053 unlock:
 1054         mtx_unlock_spin(&sleepq_prof_lock);
 1055         return;
 1056 }
 1057 
 1058 static void
 1059 sleepq_prof_reset(void)
 1060 {
 1061         struct sleepq_prof *sp;
 1062         int enabled;
 1063         int i;
 1064 
 1065         mtx_lock_spin(&sleepq_prof_lock);
 1066         enabled = prof_enabled;
 1067         prof_enabled = 0;
 1068         for (i = 0; i < SC_TABLESIZE; i++)
 1069                 LIST_INIT(&sleepq_hash[i]);
 1070         LIST_INIT(&sleepq_prof_free);
 1071         for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
 1072                 sp = &sleepq_profent[i];
 1073                 sp->sp_wmesg = NULL;
 1074                 sp->sp_count = 0;
 1075                 LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
 1076         }
 1077         prof_enabled = enabled;
 1078         mtx_unlock_spin(&sleepq_prof_lock);
 1079 }
 1080 
 1081 static int
 1082 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
 1083 {
 1084         int error, v;
 1085 
 1086         v = prof_enabled;
 1087         error = sysctl_handle_int(oidp, &v, v, req);
 1088         if (error)
 1089                 return (error);
 1090         if (req->newptr == NULL)
 1091                 return (error);
 1092         if (v == prof_enabled)
 1093                 return (0);
 1094         if (v == 1)
 1095                 sleepq_prof_reset();
 1096         mtx_lock_spin(&sleepq_prof_lock);
 1097         prof_enabled = !!v;
 1098         mtx_unlock_spin(&sleepq_prof_lock);
 1099 
 1100         return (0);
 1101 }
 1102 
 1103 static int
 1104 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
 1105 {
 1106         int error, v;
 1107 
 1108         v = 0;
 1109         error = sysctl_handle_int(oidp, &v, 0, req);
 1110         if (error)
 1111                 return (error);
 1112         if (req->newptr == NULL)
 1113                 return (error);
 1114         if (v == 0)
 1115                 return (0);
 1116         sleepq_prof_reset();
 1117 
 1118         return (0);
 1119 }
 1120 
 1121 static int
 1122 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
 1123 {
 1124         static int multiplier = 1;
 1125         struct sleepq_prof *sp;
 1126         struct sbuf *sb;
 1127         int enabled;
 1128         int error;
 1129         int i;
 1130 
 1131 retry_sbufops:
 1132         sb = sbuf_new(NULL, NULL, SLEEPQ_SBUFSIZE * multiplier, SBUF_FIXEDLEN);
 1133         sbuf_printf(sb, "\nwmesg\tcount\n");
 1134         enabled = prof_enabled;
 1135         mtx_lock_spin(&sleepq_prof_lock);
 1136         prof_enabled = 0;
 1137         mtx_unlock_spin(&sleepq_prof_lock);
 1138         for (i = 0; i < SC_TABLESIZE; i++) {
 1139                 LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
 1140                         sbuf_printf(sb, "%s\t%ld\n",
 1141                             sp->sp_wmesg, sp->sp_count);
 1142                         if (sbuf_overflowed(sb)) {
 1143                                 sbuf_delete(sb);
 1144                                 multiplier++;
 1145                                 goto retry_sbufops;
 1146                         }
 1147                 }
 1148         }
 1149         mtx_lock_spin(&sleepq_prof_lock);
 1150         prof_enabled = enabled;
 1151         mtx_unlock_spin(&sleepq_prof_lock);
 1152 
 1153         sbuf_finish(sb);
 1154         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
 1155         sbuf_delete(sb);
 1156         return (error);
 1157 }
 1158 
 1159 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
 1160     NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
 1161 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
 1162     NULL, 0, reset_sleepq_prof_stats, "I",
 1163     "Reset sleepqueue profiling statistics");
 1164 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
 1165     NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
 1166 #endif
 1167 
 1168 #ifdef DDB
 1169 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
 1170 {
 1171         struct sleepqueue_chain *sc;
 1172         struct sleepqueue *sq;
 1173 #ifdef INVARIANTS
 1174         struct lock_object *lock;
 1175 #endif
 1176         struct thread *td;
 1177         void *wchan;
 1178         int i;
 1179 
 1180         if (!have_addr)
 1181                 return;
 1182 
 1183         /*
 1184          * First, see if there is an active sleep queue for the wait channel
 1185          * indicated by the address.
 1186          */
 1187         wchan = (void *)addr;
 1188         sc = SC_LOOKUP(wchan);
 1189         LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
 1190                 if (sq->sq_wchan == wchan)
 1191                         goto found;
 1192 
 1193         /*
 1194          * Second, see if there is an active sleep queue at the address
 1195          * indicated.
 1196          */
 1197         for (i = 0; i < SC_TABLESIZE; i++)
 1198                 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
 1199                         if (sq == (struct sleepqueue *)addr)
 1200                                 goto found;
 1201                 }
 1202 
 1203         db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
 1204         return;
 1205 found:
 1206         db_printf("Wait channel: %p\n", sq->sq_wchan);
 1207         db_printf("Queue type: %d\n", sq->sq_type);
 1208 #ifdef INVARIANTS
 1209         if (sq->sq_lock) {
 1210                 lock = sq->sq_lock;
 1211                 db_printf("Associated Interlock: %p - (%s) %s\n", lock,
 1212                     LOCK_CLASS(lock)->lc_name, lock->lo_name);
 1213         }
 1214 #endif
 1215         db_printf("Blocked threads:\n");
 1216         for (i = 0; i < NR_SLEEPQS; i++) {
 1217                 db_printf("\nQueue[%d]:\n", i);
 1218                 if (TAILQ_EMPTY(&sq->sq_blocked[i]))
 1219                         db_printf("\tempty\n");
 1220                 else
 1221                         TAILQ_FOREACH(td, &sq->sq_blocked[0],
 1222                                       td_slpq) {
 1223                                 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
 1224                                           td->td_tid, td->td_proc->p_pid,
 1225                                           td->td_name);
 1226                         }
 1227                 db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
 1228         }
 1229 }
 1230 
 1231 /* Alias 'show sleepqueue' to 'show sleepq'. */
 1232 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
 1233 #endif

Cache object: ad043c235119d47eb47c5a089dd4a446


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.