The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_sleepqueue.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. Neither the name of the author nor the names of any co-contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 /*
   31  * Implementation of sleep queues used to hold queue of threads blocked on
   32  * a wait channel.  Sleep queues different from turnstiles in that wait
   33  * channels are not owned by anyone, so there is no priority propagation.
   34  * Sleep queues can also provide a timeout and can also be interrupted by
   35  * signals.  That said, there are several similarities between the turnstile
   36  * and sleep queue implementations.  (Note: turnstiles were implemented
   37  * first.)  For example, both use a hash table of the same size where each
   38  * bucket is referred to as a "chain" that contains both a spin lock and
   39  * a linked list of queues.  An individual queue is located by using a hash
   40  * to pick a chain, locking the chain, and then walking the chain searching
   41  * for the queue.  This means that a wait channel object does not need to
   42  * embed it's queue head just as locks do not embed their turnstile queue
   43  * head.  Threads also carry around a sleep queue that they lend to the
   44  * wait channel when blocking.  Just as in turnstiles, the queue includes
   45  * a free list of the sleep queues of other threads blocked on the same
   46  * wait channel in the case of multiple waiters.
   47  *
   48  * Some additional functionality provided by sleep queues include the
   49  * ability to set a timeout.  The timeout is managed using a per-thread
   50  * callout that resumes a thread if it is asleep.  A thread may also
   51  * catch signals while it is asleep (aka an interruptible sleep).  The
   52  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
   53  * sleep queues also provide some extra assertions.  One is not allowed to
   54  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
   55  * must consistently use the same lock to synchronize with a wait channel,
   56  * though this check is currently only a warning for sleep/wakeup due to
   57  * pre-existing abuse of that API.  The same lock must also be held when
   58  * awakening threads, though that is currently only enforced for condition
   59  * variables.
   60  */
   61 
   62 #include <sys/cdefs.h>
   63 __FBSDID("$FreeBSD: releng/9.1/sys/kern/subr_sleepqueue.c 236344 2012-05-30 23:22:52Z rstone $");
   64 
   65 #include "opt_sleepqueue_profiling.h"
   66 #include "opt_ddb.h"
   67 #include "opt_kdtrace.h"
   68 #include "opt_sched.h"
   69 
   70 #include <sys/param.h>
   71 #include <sys/systm.h>
   72 #include <sys/lock.h>
   73 #include <sys/kernel.h>
   74 #include <sys/ktr.h>
   75 #include <sys/mutex.h>
   76 #include <sys/proc.h>
   77 #include <sys/sbuf.h>
   78 #include <sys/sched.h>
   79 #include <sys/sdt.h>
   80 #include <sys/signalvar.h>
   81 #include <sys/sleepqueue.h>
   82 #include <sys/sysctl.h>
   83 
   84 #include <vm/uma.h>
   85 
   86 #ifdef DDB
   87 #include <ddb/ddb.h>
   88 #endif
   89 
   90 /*
   91  * Constants for the hash table of sleep queue chains.  These constants are
   92  * the same ones that 4BSD (and possibly earlier versions of BSD) used.
   93  * Basically, we ignore the lower 8 bits of the address since most wait
   94  * channel pointers are aligned and only look at the next 7 bits for the
   95  * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
   96  */
   97 #define SC_TABLESIZE    128                     /* Must be power of 2. */
   98 #define SC_MASK         (SC_TABLESIZE - 1)
   99 #define SC_SHIFT        8
  100 #define SC_HASH(wc)     (((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
  101 #define SC_LOOKUP(wc)   &sleepq_chains[SC_HASH(wc)]
  102 #define NR_SLEEPQS      2
  103 /*
  104  * There two different lists of sleep queues.  Both lists are connected
  105  * via the sq_hash entries.  The first list is the sleep queue chain list
  106  * that a sleep queue is on when it is attached to a wait channel.  The
  107  * second list is the free list hung off of a sleep queue that is attached
  108  * to a wait channel.
  109  *
  110  * Each sleep queue also contains the wait channel it is attached to, the
  111  * list of threads blocked on that wait channel, flags specific to the
  112  * wait channel, and the lock used to synchronize with a wait channel.
  113  * The flags are used to catch mismatches between the various consumers
  114  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
  115  * The lock pointer is only used when invariants are enabled for various
  116  * debugging checks.
  117  *
  118  * Locking key:
  119  *  c - sleep queue chain lock
  120  */
  121 struct sleepqueue {
  122         TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];    /* (c) Blocked threads. */
  123         u_int sq_blockedcnt[NR_SLEEPQS];        /* (c) N. of blocked threads. */
  124         LIST_ENTRY(sleepqueue) sq_hash;         /* (c) Chain and free list. */
  125         LIST_HEAD(, sleepqueue) sq_free;        /* (c) Free queues. */
  126         void    *sq_wchan;                      /* (c) Wait channel. */
  127         int     sq_type;                        /* (c) Queue type. */
  128 #ifdef INVARIANTS
  129         struct lock_object *sq_lock;            /* (c) Associated lock. */
  130 #endif
  131 };
  132 
  133 struct sleepqueue_chain {
  134         LIST_HEAD(, sleepqueue) sc_queues;      /* List of sleep queues. */
  135         struct mtx sc_lock;                     /* Spin lock for this chain. */
  136 #ifdef SLEEPQUEUE_PROFILING
  137         u_int   sc_depth;                       /* Length of sc_queues. */
  138         u_int   sc_max_depth;                   /* Max length of sc_queues. */
  139 #endif
  140 };
  141 
  142 #ifdef SLEEPQUEUE_PROFILING
  143 u_int sleepq_max_depth;
  144 SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
  145 SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
  146     "sleepq chain stats");
  147 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
  148     0, "maxmimum depth achieved of a single chain");
  149 
  150 static void     sleepq_profile(const char *wmesg);
  151 static int      prof_enabled;
  152 #endif
  153 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
  154 static uma_zone_t sleepq_zone;
  155 
  156 /*
  157  * Prototypes for non-exported routines.
  158  */
  159 static int      sleepq_catch_signals(void *wchan, int pri);
  160 static int      sleepq_check_signals(void);
  161 static int      sleepq_check_timeout(void);
  162 #ifdef INVARIANTS
  163 static void     sleepq_dtor(void *mem, int size, void *arg);
  164 #endif
  165 static int      sleepq_init(void *mem, int size, int flags);
  166 static int      sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
  167                     int pri);
  168 static void     sleepq_switch(void *wchan, int pri);
  169 static void     sleepq_timeout(void *arg);
  170 
  171 SDT_PROBE_DECLARE(sched, , , sleep);
  172 SDT_PROBE_DECLARE(sched, , , wakeup);
  173 
  174 /*
  175  * Early initialization of sleep queues that is called from the sleepinit()
  176  * SYSINIT.
  177  */
  178 void
  179 init_sleepqueues(void)
  180 {
  181 #ifdef SLEEPQUEUE_PROFILING
  182         struct sysctl_oid *chain_oid;
  183         char chain_name[10];
  184 #endif
  185         int i;
  186 
  187         for (i = 0; i < SC_TABLESIZE; i++) {
  188                 LIST_INIT(&sleepq_chains[i].sc_queues);
  189                 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
  190                     MTX_SPIN | MTX_RECURSE);
  191 #ifdef SLEEPQUEUE_PROFILING
  192                 snprintf(chain_name, sizeof(chain_name), "%d", i);
  193                 chain_oid = SYSCTL_ADD_NODE(NULL, 
  194                     SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
  195                     chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
  196                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  197                     "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
  198                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  199                     "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
  200                     NULL);
  201 #endif
  202         }
  203         sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
  204 #ifdef INVARIANTS
  205             NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
  206 #else
  207             NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
  208 #endif
  209         
  210         thread0.td_sleepqueue = sleepq_alloc();
  211 }
  212 
  213 /*
  214  * Get a sleep queue for a new thread.
  215  */
  216 struct sleepqueue *
  217 sleepq_alloc(void)
  218 {
  219 
  220         return (uma_zalloc(sleepq_zone, M_WAITOK));
  221 }
  222 
  223 /*
  224  * Free a sleep queue when a thread is destroyed.
  225  */
  226 void
  227 sleepq_free(struct sleepqueue *sq)
  228 {
  229 
  230         uma_zfree(sleepq_zone, sq);
  231 }
  232 
  233 /*
  234  * Lock the sleep queue chain associated with the specified wait channel.
  235  */
  236 void
  237 sleepq_lock(void *wchan)
  238 {
  239         struct sleepqueue_chain *sc;
  240 
  241         sc = SC_LOOKUP(wchan);
  242         mtx_lock_spin(&sc->sc_lock);
  243 }
  244 
  245 /*
  246  * Look up the sleep queue associated with a given wait channel in the hash
  247  * table locking the associated sleep queue chain.  If no queue is found in
  248  * the table, NULL is returned.
  249  */
  250 struct sleepqueue *
  251 sleepq_lookup(void *wchan)
  252 {
  253         struct sleepqueue_chain *sc;
  254         struct sleepqueue *sq;
  255 
  256         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  257         sc = SC_LOOKUP(wchan);
  258         mtx_assert(&sc->sc_lock, MA_OWNED);
  259         LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
  260                 if (sq->sq_wchan == wchan)
  261                         return (sq);
  262         return (NULL);
  263 }
  264 
  265 /*
  266  * Unlock the sleep queue chain associated with a given wait channel.
  267  */
  268 void
  269 sleepq_release(void *wchan)
  270 {
  271         struct sleepqueue_chain *sc;
  272 
  273         sc = SC_LOOKUP(wchan);
  274         mtx_unlock_spin(&sc->sc_lock);
  275 }
  276 
  277 /*
  278  * Places the current thread on the sleep queue for the specified wait
  279  * channel.  If INVARIANTS is enabled, then it associates the passed in
  280  * lock with the sleepq to make sure it is held when that sleep queue is
  281  * woken up.
  282  */
  283 void
  284 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
  285     int queue)
  286 {
  287         struct sleepqueue_chain *sc;
  288         struct sleepqueue *sq;
  289         struct thread *td;
  290 
  291         td = curthread;
  292         sc = SC_LOOKUP(wchan);
  293         mtx_assert(&sc->sc_lock, MA_OWNED);
  294         MPASS(td->td_sleepqueue != NULL);
  295         MPASS(wchan != NULL);
  296         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  297 
  298         /* If this thread is not allowed to sleep, die a horrible death. */
  299         KASSERT(!(td->td_pflags & TDP_NOSLEEPING),
  300             ("Trying sleep, but thread marked as sleeping prohibited"));
  301 
  302         /* Look up the sleep queue associated with the wait channel 'wchan'. */
  303         sq = sleepq_lookup(wchan);
  304 
  305         /*
  306          * If the wait channel does not already have a sleep queue, use
  307          * this thread's sleep queue.  Otherwise, insert the current thread
  308          * into the sleep queue already in use by this wait channel.
  309          */
  310         if (sq == NULL) {
  311 #ifdef INVARIANTS
  312                 int i;
  313 
  314                 sq = td->td_sleepqueue;
  315                 for (i = 0; i < NR_SLEEPQS; i++) {
  316                         KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
  317                             ("thread's sleep queue %d is not empty", i));
  318                         KASSERT(sq->sq_blockedcnt[i] == 0,
  319                             ("thread's sleep queue %d count mismatches", i));
  320                 }
  321                 KASSERT(LIST_EMPTY(&sq->sq_free),
  322                     ("thread's sleep queue has a non-empty free list"));
  323                 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
  324                 sq->sq_lock = lock;
  325 #endif
  326 #ifdef SLEEPQUEUE_PROFILING
  327                 sc->sc_depth++;
  328                 if (sc->sc_depth > sc->sc_max_depth) {
  329                         sc->sc_max_depth = sc->sc_depth;
  330                         if (sc->sc_max_depth > sleepq_max_depth)
  331                                 sleepq_max_depth = sc->sc_max_depth;
  332                 }
  333 #endif
  334                 sq = td->td_sleepqueue;
  335                 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
  336                 sq->sq_wchan = wchan;
  337                 sq->sq_type = flags & SLEEPQ_TYPE;
  338         } else {
  339                 MPASS(wchan == sq->sq_wchan);
  340                 MPASS(lock == sq->sq_lock);
  341                 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
  342                 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
  343         }
  344         thread_lock(td);
  345         TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
  346         sq->sq_blockedcnt[queue]++;
  347         td->td_sleepqueue = NULL;
  348         td->td_sqqueue = queue;
  349         td->td_wchan = wchan;
  350         td->td_wmesg = wmesg;
  351         if (flags & SLEEPQ_INTERRUPTIBLE) {
  352                 td->td_flags |= TDF_SINTR;
  353                 td->td_flags &= ~TDF_SLEEPABORT;
  354                 if (flags & SLEEPQ_STOP_ON_BDRY)
  355                         td->td_flags |= TDF_SBDRY;
  356         }
  357         thread_unlock(td);
  358 }
  359 
  360 /*
  361  * Sets a timeout that will remove the current thread from the specified
  362  * sleep queue after timo ticks if the thread has not already been awakened.
  363  */
  364 void
  365 sleepq_set_timeout(void *wchan, int timo)
  366 {
  367         struct sleepqueue_chain *sc;
  368         struct thread *td;
  369 
  370         td = curthread;
  371         sc = SC_LOOKUP(wchan);
  372         mtx_assert(&sc->sc_lock, MA_OWNED);
  373         MPASS(TD_ON_SLEEPQ(td));
  374         MPASS(td->td_sleepqueue == NULL);
  375         MPASS(wchan != NULL);
  376         callout_reset_curcpu(&td->td_slpcallout, timo, sleepq_timeout, td);
  377 }
  378 
  379 /*
  380  * Return the number of actual sleepers for the specified queue.
  381  */
  382 u_int
  383 sleepq_sleepcnt(void *wchan, int queue)
  384 {
  385         struct sleepqueue *sq;
  386 
  387         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  388         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  389         sq = sleepq_lookup(wchan);
  390         if (sq == NULL)
  391                 return (0);
  392         return (sq->sq_blockedcnt[queue]);
  393 }
  394 
  395 /*
  396  * Marks the pending sleep of the current thread as interruptible and
  397  * makes an initial check for pending signals before putting a thread
  398  * to sleep. Enters and exits with the thread lock held.  Thread lock
  399  * may have transitioned from the sleepq lock to a run lock.
  400  */
  401 static int
  402 sleepq_catch_signals(void *wchan, int pri)
  403 {
  404         struct sleepqueue_chain *sc;
  405         struct sleepqueue *sq;
  406         struct thread *td;
  407         struct proc *p;
  408         struct sigacts *ps;
  409         int sig, ret, stop_allowed;
  410 
  411         td = curthread;
  412         p = curproc;
  413         sc = SC_LOOKUP(wchan);
  414         mtx_assert(&sc->sc_lock, MA_OWNED);
  415         MPASS(wchan != NULL);
  416         if ((td->td_pflags & TDP_WAKEUP) != 0) {
  417                 td->td_pflags &= ~TDP_WAKEUP;
  418                 ret = EINTR;
  419                 thread_lock(td);
  420                 goto out;
  421         }
  422 
  423         /*
  424          * See if there are any pending signals for this thread.  If not
  425          * we can switch immediately.  Otherwise do the signal processing
  426          * directly.
  427          */
  428         thread_lock(td);
  429         if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
  430                 sleepq_switch(wchan, pri);
  431                 return (0);
  432         }
  433         stop_allowed = (td->td_flags & TDF_SBDRY) ? SIG_STOP_NOT_ALLOWED :
  434             SIG_STOP_ALLOWED;
  435         thread_unlock(td);
  436         mtx_unlock_spin(&sc->sc_lock);
  437         CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
  438                 (void *)td, (long)p->p_pid, td->td_name);
  439         PROC_LOCK(p);
  440         ps = p->p_sigacts;
  441         mtx_lock(&ps->ps_mtx);
  442         sig = cursig(td, stop_allowed);
  443         if (sig == 0) {
  444                 mtx_unlock(&ps->ps_mtx);
  445                 ret = thread_suspend_check(1);
  446                 MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
  447         } else {
  448                 if (SIGISMEMBER(ps->ps_sigintr, sig))
  449                         ret = EINTR;
  450                 else
  451                         ret = ERESTART;
  452                 mtx_unlock(&ps->ps_mtx);
  453         }
  454         /*
  455          * Lock the per-process spinlock prior to dropping the PROC_LOCK
  456          * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
  457          * thread_lock() are currently held in tdsendsignal().
  458          */
  459         PROC_SLOCK(p);
  460         mtx_lock_spin(&sc->sc_lock);
  461         PROC_UNLOCK(p);
  462         thread_lock(td);
  463         PROC_SUNLOCK(p);
  464         if (ret == 0) {
  465                 sleepq_switch(wchan, pri);
  466                 return (0);
  467         }
  468 out:
  469         /*
  470          * There were pending signals and this thread is still
  471          * on the sleep queue, remove it from the sleep queue.
  472          */
  473         if (TD_ON_SLEEPQ(td)) {
  474                 sq = sleepq_lookup(wchan);
  475                 if (sleepq_resume_thread(sq, td, 0)) {
  476 #ifdef INVARIANTS
  477                         /*
  478                          * This thread hasn't gone to sleep yet, so it
  479                          * should not be swapped out.
  480                          */
  481                         panic("not waking up swapper");
  482 #endif
  483                 }
  484         }
  485         mtx_unlock_spin(&sc->sc_lock);
  486         MPASS(td->td_lock != &sc->sc_lock);
  487         return (ret);
  488 }
  489 
  490 /*
  491  * Switches to another thread if we are still asleep on a sleep queue.
  492  * Returns with thread lock.
  493  */
  494 static void
  495 sleepq_switch(void *wchan, int pri)
  496 {
  497         struct sleepqueue_chain *sc;
  498         struct sleepqueue *sq;
  499         struct thread *td;
  500 
  501         td = curthread;
  502         sc = SC_LOOKUP(wchan);
  503         mtx_assert(&sc->sc_lock, MA_OWNED);
  504         THREAD_LOCK_ASSERT(td, MA_OWNED);
  505 
  506         /* 
  507          * If we have a sleep queue, then we've already been woken up, so
  508          * just return.
  509          */
  510         if (td->td_sleepqueue != NULL) {
  511                 mtx_unlock_spin(&sc->sc_lock);
  512                 return;
  513         }
  514 
  515         /*
  516          * If TDF_TIMEOUT is set, then our sleep has been timed out
  517          * already but we are still on the sleep queue, so dequeue the
  518          * thread and return.
  519          */
  520         if (td->td_flags & TDF_TIMEOUT) {
  521                 MPASS(TD_ON_SLEEPQ(td));
  522                 sq = sleepq_lookup(wchan);
  523                 if (sleepq_resume_thread(sq, td, 0)) {
  524 #ifdef INVARIANTS
  525                         /*
  526                          * This thread hasn't gone to sleep yet, so it
  527                          * should not be swapped out.
  528                          */
  529                         panic("not waking up swapper");
  530 #endif
  531                 }
  532                 mtx_unlock_spin(&sc->sc_lock);
  533                 return;         
  534         }
  535 #ifdef SLEEPQUEUE_PROFILING
  536         if (prof_enabled)
  537                 sleepq_profile(td->td_wmesg);
  538 #endif
  539         MPASS(td->td_sleepqueue == NULL);
  540         sched_sleep(td, pri);
  541         thread_lock_set(td, &sc->sc_lock);
  542         SDT_PROBE0(sched, , , sleep);
  543         TD_SET_SLEEPING(td);
  544         mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
  545         KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
  546         CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
  547             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
  548 }
  549 
  550 /*
  551  * Check to see if we timed out.
  552  */
  553 static int
  554 sleepq_check_timeout(void)
  555 {
  556         struct thread *td;
  557 
  558         td = curthread;
  559         THREAD_LOCK_ASSERT(td, MA_OWNED);
  560 
  561         /*
  562          * If TDF_TIMEOUT is set, we timed out.
  563          */
  564         if (td->td_flags & TDF_TIMEOUT) {
  565                 td->td_flags &= ~TDF_TIMEOUT;
  566                 return (EWOULDBLOCK);
  567         }
  568 
  569         /*
  570          * If TDF_TIMOFAIL is set, the timeout ran after we had
  571          * already been woken up.
  572          */
  573         if (td->td_flags & TDF_TIMOFAIL)
  574                 td->td_flags &= ~TDF_TIMOFAIL;
  575 
  576         /*
  577          * If callout_stop() fails, then the timeout is running on
  578          * another CPU, so synchronize with it to avoid having it
  579          * accidentally wake up a subsequent sleep.
  580          */
  581         else if (callout_stop(&td->td_slpcallout) == 0) {
  582                 td->td_flags |= TDF_TIMEOUT;
  583                 TD_SET_SLEEPING(td);
  584                 mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
  585         }
  586         return (0);
  587 }
  588 
  589 /*
  590  * Check to see if we were awoken by a signal.
  591  */
  592 static int
  593 sleepq_check_signals(void)
  594 {
  595         struct thread *td;
  596 
  597         td = curthread;
  598         THREAD_LOCK_ASSERT(td, MA_OWNED);
  599 
  600         /* We are no longer in an interruptible sleep. */
  601         if (td->td_flags & TDF_SINTR)
  602                 td->td_flags &= ~(TDF_SINTR | TDF_SBDRY);
  603 
  604         if (td->td_flags & TDF_SLEEPABORT) {
  605                 td->td_flags &= ~TDF_SLEEPABORT;
  606                 return (td->td_intrval);
  607         }
  608 
  609         return (0);
  610 }
  611 
  612 /*
  613  * Block the current thread until it is awakened from its sleep queue.
  614  */
  615 void
  616 sleepq_wait(void *wchan, int pri)
  617 {
  618         struct thread *td;
  619 
  620         td = curthread;
  621         MPASS(!(td->td_flags & TDF_SINTR));
  622         thread_lock(td);
  623         sleepq_switch(wchan, pri);
  624         thread_unlock(td);
  625 }
  626 
  627 /*
  628  * Block the current thread until it is awakened from its sleep queue
  629  * or it is interrupted by a signal.
  630  */
  631 int
  632 sleepq_wait_sig(void *wchan, int pri)
  633 {
  634         int rcatch;
  635         int rval;
  636 
  637         rcatch = sleepq_catch_signals(wchan, pri);
  638         rval = sleepq_check_signals();
  639         thread_unlock(curthread);
  640         if (rcatch)
  641                 return (rcatch);
  642         return (rval);
  643 }
  644 
  645 /*
  646  * Block the current thread until it is awakened from its sleep queue
  647  * or it times out while waiting.
  648  */
  649 int
  650 sleepq_timedwait(void *wchan, int pri)
  651 {
  652         struct thread *td;
  653         int rval;
  654 
  655         td = curthread;
  656         MPASS(!(td->td_flags & TDF_SINTR));
  657         thread_lock(td);
  658         sleepq_switch(wchan, pri);
  659         rval = sleepq_check_timeout();
  660         thread_unlock(td);
  661 
  662         return (rval);
  663 }
  664 
  665 /*
  666  * Block the current thread until it is awakened from its sleep queue,
  667  * it is interrupted by a signal, or it times out waiting to be awakened.
  668  */
  669 int
  670 sleepq_timedwait_sig(void *wchan, int pri)
  671 {
  672         int rcatch, rvalt, rvals;
  673 
  674         rcatch = sleepq_catch_signals(wchan, pri);
  675         rvalt = sleepq_check_timeout();
  676         rvals = sleepq_check_signals();
  677         thread_unlock(curthread);
  678         if (rcatch)
  679                 return (rcatch);
  680         if (rvals)
  681                 return (rvals);
  682         return (rvalt);
  683 }
  684 
  685 /*
  686  * Returns the type of sleepqueue given a waitchannel.
  687  */
  688 int
  689 sleepq_type(void *wchan)
  690 {
  691         struct sleepqueue *sq;
  692         int type;
  693 
  694         MPASS(wchan != NULL);
  695 
  696         sleepq_lock(wchan);
  697         sq = sleepq_lookup(wchan);
  698         if (sq == NULL) {
  699                 sleepq_release(wchan);
  700                 return (-1);
  701         }
  702         type = sq->sq_type;
  703         sleepq_release(wchan);
  704         return (type);
  705 }
  706 
  707 /*
  708  * Removes a thread from a sleep queue and makes it
  709  * runnable.
  710  */
  711 static int
  712 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
  713 {
  714         struct sleepqueue_chain *sc;
  715 
  716         MPASS(td != NULL);
  717         MPASS(sq->sq_wchan != NULL);
  718         MPASS(td->td_wchan == sq->sq_wchan);
  719         MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
  720         THREAD_LOCK_ASSERT(td, MA_OWNED);
  721         sc = SC_LOOKUP(sq->sq_wchan);
  722         mtx_assert(&sc->sc_lock, MA_OWNED);
  723 
  724         SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
  725 
  726         /* Remove the thread from the queue. */
  727         sq->sq_blockedcnt[td->td_sqqueue]--;
  728         TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
  729 
  730         /*
  731          * Get a sleep queue for this thread.  If this is the last waiter,
  732          * use the queue itself and take it out of the chain, otherwise,
  733          * remove a queue from the free list.
  734          */
  735         if (LIST_EMPTY(&sq->sq_free)) {
  736                 td->td_sleepqueue = sq;
  737 #ifdef INVARIANTS
  738                 sq->sq_wchan = NULL;
  739 #endif
  740 #ifdef SLEEPQUEUE_PROFILING
  741                 sc->sc_depth--;
  742 #endif
  743         } else
  744                 td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
  745         LIST_REMOVE(td->td_sleepqueue, sq_hash);
  746 
  747         td->td_wmesg = NULL;
  748         td->td_wchan = NULL;
  749         td->td_flags &= ~(TDF_SINTR | TDF_SBDRY);
  750 
  751         CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
  752             (void *)td, (long)td->td_proc->p_pid, td->td_name);
  753 
  754         /* Adjust priority if requested. */
  755         MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
  756         if (pri != 0 && td->td_priority > pri &&
  757             PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
  758                 sched_prio(td, pri);
  759 
  760         /*
  761          * Note that thread td might not be sleeping if it is running
  762          * sleepq_catch_signals() on another CPU or is blocked on its
  763          * proc lock to check signals.  There's no need to mark the
  764          * thread runnable in that case.
  765          */
  766         if (TD_IS_SLEEPING(td)) {
  767                 TD_CLR_SLEEPING(td);
  768                 return (setrunnable(td));
  769         }
  770         return (0);
  771 }
  772 
  773 #ifdef INVARIANTS
  774 /*
  775  * UMA zone item deallocator.
  776  */
  777 static void
  778 sleepq_dtor(void *mem, int size, void *arg)
  779 {
  780         struct sleepqueue *sq;
  781         int i;
  782 
  783         sq = mem;
  784         for (i = 0; i < NR_SLEEPQS; i++) {
  785                 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
  786                 MPASS(sq->sq_blockedcnt[i] == 0);
  787         }
  788 }
  789 #endif
  790 
  791 /*
  792  * UMA zone item initializer.
  793  */
  794 static int
  795 sleepq_init(void *mem, int size, int flags)
  796 {
  797         struct sleepqueue *sq;
  798         int i;
  799 
  800         bzero(mem, size);
  801         sq = mem;
  802         for (i = 0; i < NR_SLEEPQS; i++) {
  803                 TAILQ_INIT(&sq->sq_blocked[i]);
  804                 sq->sq_blockedcnt[i] = 0;
  805         }
  806         LIST_INIT(&sq->sq_free);
  807         return (0);
  808 }
  809 
  810 /*
  811  * Find the highest priority thread sleeping on a wait channel and resume it.
  812  */
  813 int
  814 sleepq_signal(void *wchan, int flags, int pri, int queue)
  815 {
  816         struct sleepqueue *sq;
  817         struct thread *td, *besttd;
  818         int wakeup_swapper;
  819 
  820         CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
  821         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  822         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  823         sq = sleepq_lookup(wchan);
  824         if (sq == NULL)
  825                 return (0);
  826         KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
  827             ("%s: mismatch between sleep/wakeup and cv_*", __func__));
  828 
  829         /*
  830          * Find the highest priority thread on the queue.  If there is a
  831          * tie, use the thread that first appears in the queue as it has
  832          * been sleeping the longest since threads are always added to
  833          * the tail of sleep queues.
  834          */
  835         besttd = NULL;
  836         TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
  837                 if (besttd == NULL || td->td_priority < besttd->td_priority)
  838                         besttd = td;
  839         }
  840         MPASS(besttd != NULL);
  841         thread_lock(besttd);
  842         wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
  843         thread_unlock(besttd);
  844         return (wakeup_swapper);
  845 }
  846 
  847 /*
  848  * Resume all threads sleeping on a specified wait channel.
  849  */
  850 int
  851 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
  852 {
  853         struct sleepqueue *sq;
  854         struct thread *td, *tdn;
  855         int wakeup_swapper;
  856 
  857         CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
  858         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  859         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  860         sq = sleepq_lookup(wchan);
  861         if (sq == NULL)
  862                 return (0);
  863         KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
  864             ("%s: mismatch between sleep/wakeup and cv_*", __func__));
  865 
  866         /* Resume all blocked threads on the sleep queue. */
  867         wakeup_swapper = 0;
  868         TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
  869                 thread_lock(td);
  870                 if (sleepq_resume_thread(sq, td, pri))
  871                         wakeup_swapper = 1;
  872                 thread_unlock(td);
  873         }
  874         return (wakeup_swapper);
  875 }
  876 
  877 /*
  878  * Time sleeping threads out.  When the timeout expires, the thread is
  879  * removed from the sleep queue and made runnable if it is still asleep.
  880  */
  881 static void
  882 sleepq_timeout(void *arg)
  883 {
  884         struct sleepqueue_chain *sc;
  885         struct sleepqueue *sq;
  886         struct thread *td;
  887         void *wchan;
  888         int wakeup_swapper;
  889 
  890         td = arg;
  891         wakeup_swapper = 0;
  892         CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
  893             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
  894 
  895         /*
  896          * First, see if the thread is asleep and get the wait channel if
  897          * it is.
  898          */
  899         thread_lock(td);
  900         if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
  901                 wchan = td->td_wchan;
  902                 sc = SC_LOOKUP(wchan);
  903                 THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
  904                 sq = sleepq_lookup(wchan);
  905                 MPASS(sq != NULL);
  906                 td->td_flags |= TDF_TIMEOUT;
  907                 wakeup_swapper = sleepq_resume_thread(sq, td, 0);
  908                 thread_unlock(td);
  909                 if (wakeup_swapper)
  910                         kick_proc0();
  911                 return;
  912         }
  913 
  914         /*
  915          * If the thread is on the SLEEPQ but isn't sleeping yet, it
  916          * can either be on another CPU in between sleepq_add() and
  917          * one of the sleepq_*wait*() routines or it can be in
  918          * sleepq_catch_signals().
  919          */
  920         if (TD_ON_SLEEPQ(td)) {
  921                 td->td_flags |= TDF_TIMEOUT;
  922                 thread_unlock(td);
  923                 return;
  924         }
  925 
  926         /*
  927          * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
  928          * then the other thread has already yielded to us, so clear
  929          * the flag and resume it.  If TDF_TIMEOUT is not set, then the
  930          * we know that the other thread is not on a sleep queue, but it
  931          * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
  932          * to let it know that the timeout has already run and doesn't
  933          * need to be canceled.
  934          */
  935         if (td->td_flags & TDF_TIMEOUT) {
  936                 MPASS(TD_IS_SLEEPING(td));
  937                 td->td_flags &= ~TDF_TIMEOUT;
  938                 TD_CLR_SLEEPING(td);
  939                 wakeup_swapper = setrunnable(td);
  940         } else
  941                 td->td_flags |= TDF_TIMOFAIL;
  942         thread_unlock(td);
  943         if (wakeup_swapper)
  944                 kick_proc0();
  945 }
  946 
  947 /*
  948  * Resumes a specific thread from the sleep queue associated with a specific
  949  * wait channel if it is on that queue.
  950  */
  951 void
  952 sleepq_remove(struct thread *td, void *wchan)
  953 {
  954         struct sleepqueue *sq;
  955         int wakeup_swapper;
  956 
  957         /*
  958          * Look up the sleep queue for this wait channel, then re-check
  959          * that the thread is asleep on that channel, if it is not, then
  960          * bail.
  961          */
  962         MPASS(wchan != NULL);
  963         sleepq_lock(wchan);
  964         sq = sleepq_lookup(wchan);
  965         /*
  966          * We can not lock the thread here as it may be sleeping on a
  967          * different sleepq.  However, holding the sleepq lock for this
  968          * wchan can guarantee that we do not miss a wakeup for this
  969          * channel.  The asserts below will catch any false positives.
  970          */
  971         if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
  972                 sleepq_release(wchan);
  973                 return;
  974         }
  975         /* Thread is asleep on sleep queue sq, so wake it up. */
  976         thread_lock(td);
  977         MPASS(sq != NULL);
  978         MPASS(td->td_wchan == wchan);
  979         wakeup_swapper = sleepq_resume_thread(sq, td, 0);
  980         thread_unlock(td);
  981         sleepq_release(wchan);
  982         if (wakeup_swapper)
  983                 kick_proc0();
  984 }
  985 
  986 /*
  987  * Abort a thread as if an interrupt had occurred.  Only abort
  988  * interruptible waits (unfortunately it isn't safe to abort others).
  989  */
  990 int
  991 sleepq_abort(struct thread *td, int intrval)
  992 {
  993         struct sleepqueue *sq;
  994         void *wchan;
  995 
  996         THREAD_LOCK_ASSERT(td, MA_OWNED);
  997         MPASS(TD_ON_SLEEPQ(td));
  998         MPASS(td->td_flags & TDF_SINTR);
  999         MPASS(intrval == EINTR || intrval == ERESTART);
 1000 
 1001         /*
 1002          * If the TDF_TIMEOUT flag is set, just leave. A
 1003          * timeout is scheduled anyhow.
 1004          */
 1005         if (td->td_flags & TDF_TIMEOUT)
 1006                 return (0);
 1007 
 1008         CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
 1009             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
 1010         td->td_intrval = intrval;
 1011         td->td_flags |= TDF_SLEEPABORT;
 1012         /*
 1013          * If the thread has not slept yet it will find the signal in
 1014          * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
 1015          * we have to do it here.
 1016          */
 1017         if (!TD_IS_SLEEPING(td))
 1018                 return (0);
 1019         wchan = td->td_wchan;
 1020         MPASS(wchan != NULL);
 1021         sq = sleepq_lookup(wchan);
 1022         MPASS(sq != NULL);
 1023 
 1024         /* Thread is asleep on sleep queue sq, so wake it up. */
 1025         return (sleepq_resume_thread(sq, td, 0));
 1026 }
 1027 
 1028 #ifdef SLEEPQUEUE_PROFILING
 1029 #define SLEEPQ_PROF_LOCATIONS   1024
 1030 #define SLEEPQ_SBUFSIZE         512
 1031 struct sleepq_prof {
 1032         LIST_ENTRY(sleepq_prof) sp_link;
 1033         const char      *sp_wmesg;
 1034         long            sp_count;
 1035 };
 1036 
 1037 LIST_HEAD(sqphead, sleepq_prof);
 1038 
 1039 struct sqphead sleepq_prof_free;
 1040 struct sqphead sleepq_hash[SC_TABLESIZE];
 1041 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
 1042 static struct mtx sleepq_prof_lock;
 1043 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
 1044 
 1045 static void
 1046 sleepq_profile(const char *wmesg)
 1047 {
 1048         struct sleepq_prof *sp;
 1049 
 1050         mtx_lock_spin(&sleepq_prof_lock);
 1051         if (prof_enabled == 0)
 1052                 goto unlock;
 1053         LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
 1054                 if (sp->sp_wmesg == wmesg)
 1055                         goto done;
 1056         sp = LIST_FIRST(&sleepq_prof_free);
 1057         if (sp == NULL)
 1058                 goto unlock;
 1059         sp->sp_wmesg = wmesg;
 1060         LIST_REMOVE(sp, sp_link);
 1061         LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
 1062 done:
 1063         sp->sp_count++;
 1064 unlock:
 1065         mtx_unlock_spin(&sleepq_prof_lock);
 1066         return;
 1067 }
 1068 
 1069 static void
 1070 sleepq_prof_reset(void)
 1071 {
 1072         struct sleepq_prof *sp;
 1073         int enabled;
 1074         int i;
 1075 
 1076         mtx_lock_spin(&sleepq_prof_lock);
 1077         enabled = prof_enabled;
 1078         prof_enabled = 0;
 1079         for (i = 0; i < SC_TABLESIZE; i++)
 1080                 LIST_INIT(&sleepq_hash[i]);
 1081         LIST_INIT(&sleepq_prof_free);
 1082         for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
 1083                 sp = &sleepq_profent[i];
 1084                 sp->sp_wmesg = NULL;
 1085                 sp->sp_count = 0;
 1086                 LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
 1087         }
 1088         prof_enabled = enabled;
 1089         mtx_unlock_spin(&sleepq_prof_lock);
 1090 }
 1091 
 1092 static int
 1093 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
 1094 {
 1095         int error, v;
 1096 
 1097         v = prof_enabled;
 1098         error = sysctl_handle_int(oidp, &v, v, req);
 1099         if (error)
 1100                 return (error);
 1101         if (req->newptr == NULL)
 1102                 return (error);
 1103         if (v == prof_enabled)
 1104                 return (0);
 1105         if (v == 1)
 1106                 sleepq_prof_reset();
 1107         mtx_lock_spin(&sleepq_prof_lock);
 1108         prof_enabled = !!v;
 1109         mtx_unlock_spin(&sleepq_prof_lock);
 1110 
 1111         return (0);
 1112 }
 1113 
 1114 static int
 1115 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
 1116 {
 1117         int error, v;
 1118 
 1119         v = 0;
 1120         error = sysctl_handle_int(oidp, &v, 0, req);
 1121         if (error)
 1122                 return (error);
 1123         if (req->newptr == NULL)
 1124                 return (error);
 1125         if (v == 0)
 1126                 return (0);
 1127         sleepq_prof_reset();
 1128 
 1129         return (0);
 1130 }
 1131 
 1132 static int
 1133 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
 1134 {
 1135         struct sleepq_prof *sp;
 1136         struct sbuf *sb;
 1137         int enabled;
 1138         int error;
 1139         int i;
 1140 
 1141         error = sysctl_wire_old_buffer(req, 0);
 1142         if (error != 0)
 1143                 return (error);
 1144         sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
 1145         sbuf_printf(sb, "\nwmesg\tcount\n");
 1146         enabled = prof_enabled;
 1147         mtx_lock_spin(&sleepq_prof_lock);
 1148         prof_enabled = 0;
 1149         mtx_unlock_spin(&sleepq_prof_lock);
 1150         for (i = 0; i < SC_TABLESIZE; i++) {
 1151                 LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
 1152                         sbuf_printf(sb, "%s\t%ld\n",
 1153                             sp->sp_wmesg, sp->sp_count);
 1154                 }
 1155         }
 1156         mtx_lock_spin(&sleepq_prof_lock);
 1157         prof_enabled = enabled;
 1158         mtx_unlock_spin(&sleepq_prof_lock);
 1159 
 1160         error = sbuf_finish(sb);
 1161         sbuf_delete(sb);
 1162         return (error);
 1163 }
 1164 
 1165 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
 1166     NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
 1167 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
 1168     NULL, 0, reset_sleepq_prof_stats, "I",
 1169     "Reset sleepqueue profiling statistics");
 1170 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
 1171     NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
 1172 #endif
 1173 
 1174 #ifdef DDB
 1175 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
 1176 {
 1177         struct sleepqueue_chain *sc;
 1178         struct sleepqueue *sq;
 1179 #ifdef INVARIANTS
 1180         struct lock_object *lock;
 1181 #endif
 1182         struct thread *td;
 1183         void *wchan;
 1184         int i;
 1185 
 1186         if (!have_addr)
 1187                 return;
 1188 
 1189         /*
 1190          * First, see if there is an active sleep queue for the wait channel
 1191          * indicated by the address.
 1192          */
 1193         wchan = (void *)addr;
 1194         sc = SC_LOOKUP(wchan);
 1195         LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
 1196                 if (sq->sq_wchan == wchan)
 1197                         goto found;
 1198 
 1199         /*
 1200          * Second, see if there is an active sleep queue at the address
 1201          * indicated.
 1202          */
 1203         for (i = 0; i < SC_TABLESIZE; i++)
 1204                 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
 1205                         if (sq == (struct sleepqueue *)addr)
 1206                                 goto found;
 1207                 }
 1208 
 1209         db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
 1210         return;
 1211 found:
 1212         db_printf("Wait channel: %p\n", sq->sq_wchan);
 1213         db_printf("Queue type: %d\n", sq->sq_type);
 1214 #ifdef INVARIANTS
 1215         if (sq->sq_lock) {
 1216                 lock = sq->sq_lock;
 1217                 db_printf("Associated Interlock: %p - (%s) %s\n", lock,
 1218                     LOCK_CLASS(lock)->lc_name, lock->lo_name);
 1219         }
 1220 #endif
 1221         db_printf("Blocked threads:\n");
 1222         for (i = 0; i < NR_SLEEPQS; i++) {
 1223                 db_printf("\nQueue[%d]:\n", i);
 1224                 if (TAILQ_EMPTY(&sq->sq_blocked[i]))
 1225                         db_printf("\tempty\n");
 1226                 else
 1227                         TAILQ_FOREACH(td, &sq->sq_blocked[0],
 1228                                       td_slpq) {
 1229                                 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
 1230                                           td->td_tid, td->td_proc->p_pid,
 1231                                           td->td_name);
 1232                         }
 1233                 db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
 1234         }
 1235 }
 1236 
 1237 /* Alias 'show sleepqueue' to 'show sleepq'. */
 1238 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
 1239 #endif

Cache object: 9e8f8c13085927d6fa5aa48734df2bbe


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.