The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_sleepqueue.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. Neither the name of the author nor the names of any co-contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 /*
   31  * Implementation of sleep queues used to hold queue of threads blocked on
   32  * a wait channel.  Sleep queues different from turnstiles in that wait
   33  * channels are not owned by anyone, so there is no priority propagation.
   34  * Sleep queues can also provide a timeout and can also be interrupted by
   35  * signals.  That said, there are several similarities between the turnstile
   36  * and sleep queue implementations.  (Note: turnstiles were implemented
   37  * first.)  For example, both use a hash table of the same size where each
   38  * bucket is referred to as a "chain" that contains both a spin lock and
   39  * a linked list of queues.  An individual queue is located by using a hash
   40  * to pick a chain, locking the chain, and then walking the chain searching
   41  * for the queue.  This means that a wait channel object does not need to
   42  * embed it's queue head just as locks do not embed their turnstile queue
   43  * head.  Threads also carry around a sleep queue that they lend to the
   44  * wait channel when blocking.  Just as in turnstiles, the queue includes
   45  * a free list of the sleep queues of other threads blocked on the same
   46  * wait channel in the case of multiple waiters.
   47  *
   48  * Some additional functionality provided by sleep queues include the
   49  * ability to set a timeout.  The timeout is managed using a per-thread
   50  * callout that resumes a thread if it is asleep.  A thread may also
   51  * catch signals while it is asleep (aka an interruptible sleep).  The
   52  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
   53  * sleep queues also provide some extra assertions.  One is not allowed to
   54  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
   55  * must consistently use the same lock to synchronize with a wait channel,
   56  * though this check is currently only a warning for sleep/wakeup due to
   57  * pre-existing abuse of that API.  The same lock must also be held when
   58  * awakening threads, though that is currently only enforced for condition
   59  * variables.
   60  */
   61 
   62 #include <sys/cdefs.h>
   63 __FBSDID("$FreeBSD: releng/9.2/sys/kern/subr_sleepqueue.c 251147 2013-05-30 19:14:34Z jhb $");
   64 
   65 #include "opt_sleepqueue_profiling.h"
   66 #include "opt_ddb.h"
   67 #include "opt_kdtrace.h"
   68 #include "opt_sched.h"
   69 
   70 #include <sys/param.h>
   71 #include <sys/systm.h>
   72 #include <sys/lock.h>
   73 #include <sys/kernel.h>
   74 #include <sys/ktr.h>
   75 #include <sys/mutex.h>
   76 #include <sys/proc.h>
   77 #include <sys/sbuf.h>
   78 #include <sys/sched.h>
   79 #include <sys/sdt.h>
   80 #include <sys/signalvar.h>
   81 #include <sys/sleepqueue.h>
   82 #include <sys/sysctl.h>
   83 
   84 #include <vm/uma.h>
   85 
   86 #ifdef DDB
   87 #include <ddb/ddb.h>
   88 #endif
   89 
   90 /*
   91  * Constants for the hash table of sleep queue chains.  These constants are
   92  * the same ones that 4BSD (and possibly earlier versions of BSD) used.
   93  * Basically, we ignore the lower 8 bits of the address since most wait
   94  * channel pointers are aligned and only look at the next 7 bits for the
   95  * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
   96  */
   97 #define SC_TABLESIZE    128                     /* Must be power of 2. */
   98 #define SC_MASK         (SC_TABLESIZE - 1)
   99 #define SC_SHIFT        8
  100 #define SC_HASH(wc)     (((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
  101 #define SC_LOOKUP(wc)   &sleepq_chains[SC_HASH(wc)]
  102 #define NR_SLEEPQS      2
  103 /*
  104  * There two different lists of sleep queues.  Both lists are connected
  105  * via the sq_hash entries.  The first list is the sleep queue chain list
  106  * that a sleep queue is on when it is attached to a wait channel.  The
  107  * second list is the free list hung off of a sleep queue that is attached
  108  * to a wait channel.
  109  *
  110  * Each sleep queue also contains the wait channel it is attached to, the
  111  * list of threads blocked on that wait channel, flags specific to the
  112  * wait channel, and the lock used to synchronize with a wait channel.
  113  * The flags are used to catch mismatches between the various consumers
  114  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
  115  * The lock pointer is only used when invariants are enabled for various
  116  * debugging checks.
  117  *
  118  * Locking key:
  119  *  c - sleep queue chain lock
  120  */
  121 struct sleepqueue {
  122         TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];    /* (c) Blocked threads. */
  123         u_int sq_blockedcnt[NR_SLEEPQS];        /* (c) N. of blocked threads. */
  124         LIST_ENTRY(sleepqueue) sq_hash;         /* (c) Chain and free list. */
  125         LIST_HEAD(, sleepqueue) sq_free;        /* (c) Free queues. */
  126         void    *sq_wchan;                      /* (c) Wait channel. */
  127         int     sq_type;                        /* (c) Queue type. */
  128 #ifdef INVARIANTS
  129         struct lock_object *sq_lock;            /* (c) Associated lock. */
  130 #endif
  131 };
  132 
  133 struct sleepqueue_chain {
  134         LIST_HEAD(, sleepqueue) sc_queues;      /* List of sleep queues. */
  135         struct mtx sc_lock;                     /* Spin lock for this chain. */
  136 #ifdef SLEEPQUEUE_PROFILING
  137         u_int   sc_depth;                       /* Length of sc_queues. */
  138         u_int   sc_max_depth;                   /* Max length of sc_queues. */
  139 #endif
  140 };
  141 
  142 #ifdef SLEEPQUEUE_PROFILING
  143 u_int sleepq_max_depth;
  144 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
  145 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
  146     "sleepq chain stats");
  147 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
  148     0, "maxmimum depth achieved of a single chain");
  149 
  150 static void     sleepq_profile(const char *wmesg);
  151 static int      prof_enabled;
  152 #endif
  153 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
  154 static uma_zone_t sleepq_zone;
  155 
  156 /*
  157  * Prototypes for non-exported routines.
  158  */
  159 static int      sleepq_catch_signals(void *wchan, int pri);
  160 static int      sleepq_check_signals(void);
  161 static int      sleepq_check_timeout(void);
  162 #ifdef INVARIANTS
  163 static void     sleepq_dtor(void *mem, int size, void *arg);
  164 #endif
  165 static int      sleepq_init(void *mem, int size, int flags);
  166 static int      sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
  167                     int pri);
  168 static void     sleepq_switch(void *wchan, int pri);
  169 static void     sleepq_timeout(void *arg);
  170 
  171 SDT_PROBE_DECLARE(sched, , , sleep);
  172 SDT_PROBE_DECLARE(sched, , , wakeup);
  173 
  174 /*
  175  * Early initialization of sleep queues that is called from the sleepinit()
  176  * SYSINIT.
  177  */
  178 void
  179 init_sleepqueues(void)
  180 {
  181 #ifdef SLEEPQUEUE_PROFILING
  182         struct sysctl_oid *chain_oid;
  183         char chain_name[10];
  184 #endif
  185         int i;
  186 
  187         for (i = 0; i < SC_TABLESIZE; i++) {
  188                 LIST_INIT(&sleepq_chains[i].sc_queues);
  189                 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
  190                     MTX_SPIN | MTX_RECURSE);
  191 #ifdef SLEEPQUEUE_PROFILING
  192                 snprintf(chain_name, sizeof(chain_name), "%d", i);
  193                 chain_oid = SYSCTL_ADD_NODE(NULL, 
  194                     SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
  195                     chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
  196                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  197                     "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
  198                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  199                     "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
  200                     NULL);
  201 #endif
  202         }
  203         sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
  204 #ifdef INVARIANTS
  205             NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
  206 #else
  207             NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
  208 #endif
  209         
  210         thread0.td_sleepqueue = sleepq_alloc();
  211 }
  212 
  213 /*
  214  * Get a sleep queue for a new thread.
  215  */
  216 struct sleepqueue *
  217 sleepq_alloc(void)
  218 {
  219 
  220         return (uma_zalloc(sleepq_zone, M_WAITOK));
  221 }
  222 
  223 /*
  224  * Free a sleep queue when a thread is destroyed.
  225  */
  226 void
  227 sleepq_free(struct sleepqueue *sq)
  228 {
  229 
  230         uma_zfree(sleepq_zone, sq);
  231 }
  232 
  233 /*
  234  * Lock the sleep queue chain associated with the specified wait channel.
  235  */
  236 void
  237 sleepq_lock(void *wchan)
  238 {
  239         struct sleepqueue_chain *sc;
  240 
  241         sc = SC_LOOKUP(wchan);
  242         mtx_lock_spin(&sc->sc_lock);
  243 }
  244 
  245 /*
  246  * Look up the sleep queue associated with a given wait channel in the hash
  247  * table locking the associated sleep queue chain.  If no queue is found in
  248  * the table, NULL is returned.
  249  */
  250 struct sleepqueue *
  251 sleepq_lookup(void *wchan)
  252 {
  253         struct sleepqueue_chain *sc;
  254         struct sleepqueue *sq;
  255 
  256         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  257         sc = SC_LOOKUP(wchan);
  258         mtx_assert(&sc->sc_lock, MA_OWNED);
  259         LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
  260                 if (sq->sq_wchan == wchan)
  261                         return (sq);
  262         return (NULL);
  263 }
  264 
  265 /*
  266  * Unlock the sleep queue chain associated with a given wait channel.
  267  */
  268 void
  269 sleepq_release(void *wchan)
  270 {
  271         struct sleepqueue_chain *sc;
  272 
  273         sc = SC_LOOKUP(wchan);
  274         mtx_unlock_spin(&sc->sc_lock);
  275 }
  276 
  277 /*
  278  * Places the current thread on the sleep queue for the specified wait
  279  * channel.  If INVARIANTS is enabled, then it associates the passed in
  280  * lock with the sleepq to make sure it is held when that sleep queue is
  281  * woken up.
  282  */
  283 void
  284 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
  285     int queue)
  286 {
  287         struct sleepqueue_chain *sc;
  288         struct sleepqueue *sq;
  289         struct thread *td;
  290 
  291         td = curthread;
  292         sc = SC_LOOKUP(wchan);
  293         mtx_assert(&sc->sc_lock, MA_OWNED);
  294         MPASS(td->td_sleepqueue != NULL);
  295         MPASS(wchan != NULL);
  296         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  297 
  298         /* If this thread is not allowed to sleep, die a horrible death. */
  299         KASSERT(!(td->td_pflags & TDP_NOSLEEPING),
  300             ("Trying sleep, but thread marked as sleeping prohibited"));
  301 
  302         /* Look up the sleep queue associated with the wait channel 'wchan'. */
  303         sq = sleepq_lookup(wchan);
  304 
  305         /*
  306          * If the wait channel does not already have a sleep queue, use
  307          * this thread's sleep queue.  Otherwise, insert the current thread
  308          * into the sleep queue already in use by this wait channel.
  309          */
  310         if (sq == NULL) {
  311 #ifdef INVARIANTS
  312                 int i;
  313 
  314                 sq = td->td_sleepqueue;
  315                 for (i = 0; i < NR_SLEEPQS; i++) {
  316                         KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
  317                             ("thread's sleep queue %d is not empty", i));
  318                         KASSERT(sq->sq_blockedcnt[i] == 0,
  319                             ("thread's sleep queue %d count mismatches", i));
  320                 }
  321                 KASSERT(LIST_EMPTY(&sq->sq_free),
  322                     ("thread's sleep queue has a non-empty free list"));
  323                 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
  324                 sq->sq_lock = lock;
  325 #endif
  326 #ifdef SLEEPQUEUE_PROFILING
  327                 sc->sc_depth++;
  328                 if (sc->sc_depth > sc->sc_max_depth) {
  329                         sc->sc_max_depth = sc->sc_depth;
  330                         if (sc->sc_max_depth > sleepq_max_depth)
  331                                 sleepq_max_depth = sc->sc_max_depth;
  332                 }
  333 #endif
  334                 sq = td->td_sleepqueue;
  335                 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
  336                 sq->sq_wchan = wchan;
  337                 sq->sq_type = flags & SLEEPQ_TYPE;
  338         } else {
  339                 MPASS(wchan == sq->sq_wchan);
  340                 MPASS(lock == sq->sq_lock);
  341                 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
  342                 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
  343         }
  344         thread_lock(td);
  345         TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
  346         sq->sq_blockedcnt[queue]++;
  347         td->td_sleepqueue = NULL;
  348         td->td_sqqueue = queue;
  349         td->td_wchan = wchan;
  350         td->td_wmesg = wmesg;
  351         if (flags & SLEEPQ_INTERRUPTIBLE) {
  352                 td->td_flags |= TDF_SINTR;
  353                 td->td_flags &= ~TDF_SLEEPABORT;
  354         }
  355         thread_unlock(td);
  356 }
  357 
  358 /*
  359  * Sets a timeout that will remove the current thread from the specified
  360  * sleep queue after timo ticks if the thread has not already been awakened.
  361  */
  362 void
  363 sleepq_set_timeout(void *wchan, int timo)
  364 {
  365         struct sleepqueue_chain *sc;
  366         struct thread *td;
  367 
  368         td = curthread;
  369         sc = SC_LOOKUP(wchan);
  370         mtx_assert(&sc->sc_lock, MA_OWNED);
  371         MPASS(TD_ON_SLEEPQ(td));
  372         MPASS(td->td_sleepqueue == NULL);
  373         MPASS(wchan != NULL);
  374         callout_reset_curcpu(&td->td_slpcallout, timo, sleepq_timeout, td);
  375 }
  376 
  377 /*
  378  * Return the number of actual sleepers for the specified queue.
  379  */
  380 u_int
  381 sleepq_sleepcnt(void *wchan, int queue)
  382 {
  383         struct sleepqueue *sq;
  384 
  385         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  386         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  387         sq = sleepq_lookup(wchan);
  388         if (sq == NULL)
  389                 return (0);
  390         return (sq->sq_blockedcnt[queue]);
  391 }
  392 
  393 /*
  394  * Marks the pending sleep of the current thread as interruptible and
  395  * makes an initial check for pending signals before putting a thread
  396  * to sleep. Enters and exits with the thread lock held.  Thread lock
  397  * may have transitioned from the sleepq lock to a run lock.
  398  */
  399 static int
  400 sleepq_catch_signals(void *wchan, int pri)
  401 {
  402         struct sleepqueue_chain *sc;
  403         struct sleepqueue *sq;
  404         struct thread *td;
  405         struct proc *p;
  406         struct sigacts *ps;
  407         int sig, ret, stop_allowed;
  408 
  409         td = curthread;
  410         p = curproc;
  411         sc = SC_LOOKUP(wchan);
  412         mtx_assert(&sc->sc_lock, MA_OWNED);
  413         MPASS(wchan != NULL);
  414         if ((td->td_pflags & TDP_WAKEUP) != 0) {
  415                 td->td_pflags &= ~TDP_WAKEUP;
  416                 ret = EINTR;
  417                 thread_lock(td);
  418                 goto out;
  419         }
  420 
  421         /*
  422          * See if there are any pending signals for this thread.  If not
  423          * we can switch immediately.  Otherwise do the signal processing
  424          * directly.
  425          */
  426         thread_lock(td);
  427         if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
  428                 sleepq_switch(wchan, pri);
  429                 return (0);
  430         }
  431         stop_allowed = (td->td_flags & TDF_SBDRY) ? SIG_STOP_NOT_ALLOWED :
  432             SIG_STOP_ALLOWED;
  433         thread_unlock(td);
  434         mtx_unlock_spin(&sc->sc_lock);
  435         CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
  436                 (void *)td, (long)p->p_pid, td->td_name);
  437         PROC_LOCK(p);
  438         ps = p->p_sigacts;
  439         mtx_lock(&ps->ps_mtx);
  440         sig = cursig(td, stop_allowed);
  441         if (sig == 0) {
  442                 mtx_unlock(&ps->ps_mtx);
  443                 ret = thread_suspend_check(1);
  444                 MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
  445         } else {
  446                 if (SIGISMEMBER(ps->ps_sigintr, sig))
  447                         ret = EINTR;
  448                 else
  449                         ret = ERESTART;
  450                 mtx_unlock(&ps->ps_mtx);
  451         }
  452         /*
  453          * Lock the per-process spinlock prior to dropping the PROC_LOCK
  454          * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
  455          * thread_lock() are currently held in tdsendsignal().
  456          */
  457         PROC_SLOCK(p);
  458         mtx_lock_spin(&sc->sc_lock);
  459         PROC_UNLOCK(p);
  460         thread_lock(td);
  461         PROC_SUNLOCK(p);
  462         if (ret == 0) {
  463                 sleepq_switch(wchan, pri);
  464                 return (0);
  465         }
  466 out:
  467         /*
  468          * There were pending signals and this thread is still
  469          * on the sleep queue, remove it from the sleep queue.
  470          */
  471         if (TD_ON_SLEEPQ(td)) {
  472                 sq = sleepq_lookup(wchan);
  473                 if (sleepq_resume_thread(sq, td, 0)) {
  474 #ifdef INVARIANTS
  475                         /*
  476                          * This thread hasn't gone to sleep yet, so it
  477                          * should not be swapped out.
  478                          */
  479                         panic("not waking up swapper");
  480 #endif
  481                 }
  482         }
  483         mtx_unlock_spin(&sc->sc_lock);
  484         MPASS(td->td_lock != &sc->sc_lock);
  485         return (ret);
  486 }
  487 
  488 /*
  489  * Switches to another thread if we are still asleep on a sleep queue.
  490  * Returns with thread lock.
  491  */
  492 static void
  493 sleepq_switch(void *wchan, int pri)
  494 {
  495         struct sleepqueue_chain *sc;
  496         struct sleepqueue *sq;
  497         struct thread *td;
  498 
  499         td = curthread;
  500         sc = SC_LOOKUP(wchan);
  501         mtx_assert(&sc->sc_lock, MA_OWNED);
  502         THREAD_LOCK_ASSERT(td, MA_OWNED);
  503 
  504         /* 
  505          * If we have a sleep queue, then we've already been woken up, so
  506          * just return.
  507          */
  508         if (td->td_sleepqueue != NULL) {
  509                 mtx_unlock_spin(&sc->sc_lock);
  510                 return;
  511         }
  512 
  513         /*
  514          * If TDF_TIMEOUT is set, then our sleep has been timed out
  515          * already but we are still on the sleep queue, so dequeue the
  516          * thread and return.
  517          */
  518         if (td->td_flags & TDF_TIMEOUT) {
  519                 MPASS(TD_ON_SLEEPQ(td));
  520                 sq = sleepq_lookup(wchan);
  521                 if (sleepq_resume_thread(sq, td, 0)) {
  522 #ifdef INVARIANTS
  523                         /*
  524                          * This thread hasn't gone to sleep yet, so it
  525                          * should not be swapped out.
  526                          */
  527                         panic("not waking up swapper");
  528 #endif
  529                 }
  530                 mtx_unlock_spin(&sc->sc_lock);
  531                 return;         
  532         }
  533 #ifdef SLEEPQUEUE_PROFILING
  534         if (prof_enabled)
  535                 sleepq_profile(td->td_wmesg);
  536 #endif
  537         MPASS(td->td_sleepqueue == NULL);
  538         sched_sleep(td, pri);
  539         thread_lock_set(td, &sc->sc_lock);
  540         SDT_PROBE0(sched, , , sleep);
  541         TD_SET_SLEEPING(td);
  542         mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
  543         KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
  544         CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
  545             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
  546 }
  547 
  548 /*
  549  * Check to see if we timed out.
  550  */
  551 static int
  552 sleepq_check_timeout(void)
  553 {
  554         struct thread *td;
  555 
  556         td = curthread;
  557         THREAD_LOCK_ASSERT(td, MA_OWNED);
  558 
  559         /*
  560          * If TDF_TIMEOUT is set, we timed out.
  561          */
  562         if (td->td_flags & TDF_TIMEOUT) {
  563                 td->td_flags &= ~TDF_TIMEOUT;
  564                 return (EWOULDBLOCK);
  565         }
  566 
  567         /*
  568          * If TDF_TIMOFAIL is set, the timeout ran after we had
  569          * already been woken up.
  570          */
  571         if (td->td_flags & TDF_TIMOFAIL)
  572                 td->td_flags &= ~TDF_TIMOFAIL;
  573 
  574         /*
  575          * If callout_stop() fails, then the timeout is running on
  576          * another CPU, so synchronize with it to avoid having it
  577          * accidentally wake up a subsequent sleep.
  578          */
  579         else if (callout_stop(&td->td_slpcallout) == 0) {
  580                 td->td_flags |= TDF_TIMEOUT;
  581                 TD_SET_SLEEPING(td);
  582                 mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
  583         }
  584         return (0);
  585 }
  586 
  587 /*
  588  * Check to see if we were awoken by a signal.
  589  */
  590 static int
  591 sleepq_check_signals(void)
  592 {
  593         struct thread *td;
  594 
  595         td = curthread;
  596         THREAD_LOCK_ASSERT(td, MA_OWNED);
  597 
  598         /* We are no longer in an interruptible sleep. */
  599         if (td->td_flags & TDF_SINTR)
  600                 td->td_flags &= ~TDF_SINTR;
  601 
  602         if (td->td_flags & TDF_SLEEPABORT) {
  603                 td->td_flags &= ~TDF_SLEEPABORT;
  604                 return (td->td_intrval);
  605         }
  606 
  607         return (0);
  608 }
  609 
  610 /*
  611  * Block the current thread until it is awakened from its sleep queue.
  612  */
  613 void
  614 sleepq_wait(void *wchan, int pri)
  615 {
  616         struct thread *td;
  617 
  618         td = curthread;
  619         MPASS(!(td->td_flags & TDF_SINTR));
  620         thread_lock(td);
  621         sleepq_switch(wchan, pri);
  622         thread_unlock(td);
  623 }
  624 
  625 /*
  626  * Block the current thread until it is awakened from its sleep queue
  627  * or it is interrupted by a signal.
  628  */
  629 int
  630 sleepq_wait_sig(void *wchan, int pri)
  631 {
  632         int rcatch;
  633         int rval;
  634 
  635         rcatch = sleepq_catch_signals(wchan, pri);
  636         rval = sleepq_check_signals();
  637         thread_unlock(curthread);
  638         if (rcatch)
  639                 return (rcatch);
  640         return (rval);
  641 }
  642 
  643 /*
  644  * Block the current thread until it is awakened from its sleep queue
  645  * or it times out while waiting.
  646  */
  647 int
  648 sleepq_timedwait(void *wchan, int pri)
  649 {
  650         struct thread *td;
  651         int rval;
  652 
  653         td = curthread;
  654         MPASS(!(td->td_flags & TDF_SINTR));
  655         thread_lock(td);
  656         sleepq_switch(wchan, pri);
  657         rval = sleepq_check_timeout();
  658         thread_unlock(td);
  659 
  660         return (rval);
  661 }
  662 
  663 /*
  664  * Block the current thread until it is awakened from its sleep queue,
  665  * it is interrupted by a signal, or it times out waiting to be awakened.
  666  */
  667 int
  668 sleepq_timedwait_sig(void *wchan, int pri)
  669 {
  670         int rcatch, rvalt, rvals;
  671 
  672         rcatch = sleepq_catch_signals(wchan, pri);
  673         rvalt = sleepq_check_timeout();
  674         rvals = sleepq_check_signals();
  675         thread_unlock(curthread);
  676         if (rcatch)
  677                 return (rcatch);
  678         if (rvals)
  679                 return (rvals);
  680         return (rvalt);
  681 }
  682 
  683 /*
  684  * Returns the type of sleepqueue given a waitchannel.
  685  */
  686 int
  687 sleepq_type(void *wchan)
  688 {
  689         struct sleepqueue *sq;
  690         int type;
  691 
  692         MPASS(wchan != NULL);
  693 
  694         sleepq_lock(wchan);
  695         sq = sleepq_lookup(wchan);
  696         if (sq == NULL) {
  697                 sleepq_release(wchan);
  698                 return (-1);
  699         }
  700         type = sq->sq_type;
  701         sleepq_release(wchan);
  702         return (type);
  703 }
  704 
  705 /*
  706  * Removes a thread from a sleep queue and makes it
  707  * runnable.
  708  */
  709 static int
  710 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
  711 {
  712         struct sleepqueue_chain *sc;
  713 
  714         MPASS(td != NULL);
  715         MPASS(sq->sq_wchan != NULL);
  716         MPASS(td->td_wchan == sq->sq_wchan);
  717         MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
  718         THREAD_LOCK_ASSERT(td, MA_OWNED);
  719         sc = SC_LOOKUP(sq->sq_wchan);
  720         mtx_assert(&sc->sc_lock, MA_OWNED);
  721 
  722         SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
  723 
  724         /* Remove the thread from the queue. */
  725         sq->sq_blockedcnt[td->td_sqqueue]--;
  726         TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
  727 
  728         /*
  729          * Get a sleep queue for this thread.  If this is the last waiter,
  730          * use the queue itself and take it out of the chain, otherwise,
  731          * remove a queue from the free list.
  732          */
  733         if (LIST_EMPTY(&sq->sq_free)) {
  734                 td->td_sleepqueue = sq;
  735 #ifdef INVARIANTS
  736                 sq->sq_wchan = NULL;
  737 #endif
  738 #ifdef SLEEPQUEUE_PROFILING
  739                 sc->sc_depth--;
  740 #endif
  741         } else
  742                 td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
  743         LIST_REMOVE(td->td_sleepqueue, sq_hash);
  744 
  745         td->td_wmesg = NULL;
  746         td->td_wchan = NULL;
  747         td->td_flags &= ~TDF_SINTR;
  748 
  749         CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
  750             (void *)td, (long)td->td_proc->p_pid, td->td_name);
  751 
  752         /* Adjust priority if requested. */
  753         MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
  754         if (pri != 0 && td->td_priority > pri &&
  755             PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
  756                 sched_prio(td, pri);
  757 
  758         /*
  759          * Note that thread td might not be sleeping if it is running
  760          * sleepq_catch_signals() on another CPU or is blocked on its
  761          * proc lock to check signals.  There's no need to mark the
  762          * thread runnable in that case.
  763          */
  764         if (TD_IS_SLEEPING(td)) {
  765                 TD_CLR_SLEEPING(td);
  766                 return (setrunnable(td));
  767         }
  768         return (0);
  769 }
  770 
  771 #ifdef INVARIANTS
  772 /*
  773  * UMA zone item deallocator.
  774  */
  775 static void
  776 sleepq_dtor(void *mem, int size, void *arg)
  777 {
  778         struct sleepqueue *sq;
  779         int i;
  780 
  781         sq = mem;
  782         for (i = 0; i < NR_SLEEPQS; i++) {
  783                 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
  784                 MPASS(sq->sq_blockedcnt[i] == 0);
  785         }
  786 }
  787 #endif
  788 
  789 /*
  790  * UMA zone item initializer.
  791  */
  792 static int
  793 sleepq_init(void *mem, int size, int flags)
  794 {
  795         struct sleepqueue *sq;
  796         int i;
  797 
  798         bzero(mem, size);
  799         sq = mem;
  800         for (i = 0; i < NR_SLEEPQS; i++) {
  801                 TAILQ_INIT(&sq->sq_blocked[i]);
  802                 sq->sq_blockedcnt[i] = 0;
  803         }
  804         LIST_INIT(&sq->sq_free);
  805         return (0);
  806 }
  807 
  808 /*
  809  * Find the highest priority thread sleeping on a wait channel and resume it.
  810  */
  811 int
  812 sleepq_signal(void *wchan, int flags, int pri, int queue)
  813 {
  814         struct sleepqueue *sq;
  815         struct thread *td, *besttd;
  816         int wakeup_swapper;
  817 
  818         CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
  819         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  820         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  821         sq = sleepq_lookup(wchan);
  822         if (sq == NULL)
  823                 return (0);
  824         KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
  825             ("%s: mismatch between sleep/wakeup and cv_*", __func__));
  826 
  827         /*
  828          * Find the highest priority thread on the queue.  If there is a
  829          * tie, use the thread that first appears in the queue as it has
  830          * been sleeping the longest since threads are always added to
  831          * the tail of sleep queues.
  832          */
  833         besttd = NULL;
  834         TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
  835                 if (besttd == NULL || td->td_priority < besttd->td_priority)
  836                         besttd = td;
  837         }
  838         MPASS(besttd != NULL);
  839         thread_lock(besttd);
  840         wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
  841         thread_unlock(besttd);
  842         return (wakeup_swapper);
  843 }
  844 
  845 /*
  846  * Resume all threads sleeping on a specified wait channel.
  847  */
  848 int
  849 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
  850 {
  851         struct sleepqueue *sq;
  852         struct thread *td, *tdn;
  853         int wakeup_swapper;
  854 
  855         CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
  856         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  857         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  858         sq = sleepq_lookup(wchan);
  859         if (sq == NULL)
  860                 return (0);
  861         KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
  862             ("%s: mismatch between sleep/wakeup and cv_*", __func__));
  863 
  864         /* Resume all blocked threads on the sleep queue. */
  865         wakeup_swapper = 0;
  866         TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
  867                 thread_lock(td);
  868                 if (sleepq_resume_thread(sq, td, pri))
  869                         wakeup_swapper = 1;
  870                 thread_unlock(td);
  871         }
  872         return (wakeup_swapper);
  873 }
  874 
  875 /*
  876  * Time sleeping threads out.  When the timeout expires, the thread is
  877  * removed from the sleep queue and made runnable if it is still asleep.
  878  */
  879 static void
  880 sleepq_timeout(void *arg)
  881 {
  882         struct sleepqueue_chain *sc;
  883         struct sleepqueue *sq;
  884         struct thread *td;
  885         void *wchan;
  886         int wakeup_swapper;
  887 
  888         td = arg;
  889         wakeup_swapper = 0;
  890         CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
  891             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
  892 
  893         /*
  894          * First, see if the thread is asleep and get the wait channel if
  895          * it is.
  896          */
  897         thread_lock(td);
  898         if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
  899                 wchan = td->td_wchan;
  900                 sc = SC_LOOKUP(wchan);
  901                 THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
  902                 sq = sleepq_lookup(wchan);
  903                 MPASS(sq != NULL);
  904                 td->td_flags |= TDF_TIMEOUT;
  905                 wakeup_swapper = sleepq_resume_thread(sq, td, 0);
  906                 thread_unlock(td);
  907                 if (wakeup_swapper)
  908                         kick_proc0();
  909                 return;
  910         }
  911 
  912         /*
  913          * If the thread is on the SLEEPQ but isn't sleeping yet, it
  914          * can either be on another CPU in between sleepq_add() and
  915          * one of the sleepq_*wait*() routines or it can be in
  916          * sleepq_catch_signals().
  917          */
  918         if (TD_ON_SLEEPQ(td)) {
  919                 td->td_flags |= TDF_TIMEOUT;
  920                 thread_unlock(td);
  921                 return;
  922         }
  923 
  924         /*
  925          * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
  926          * then the other thread has already yielded to us, so clear
  927          * the flag and resume it.  If TDF_TIMEOUT is not set, then the
  928          * we know that the other thread is not on a sleep queue, but it
  929          * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
  930          * to let it know that the timeout has already run and doesn't
  931          * need to be canceled.
  932          */
  933         if (td->td_flags & TDF_TIMEOUT) {
  934                 MPASS(TD_IS_SLEEPING(td));
  935                 td->td_flags &= ~TDF_TIMEOUT;
  936                 TD_CLR_SLEEPING(td);
  937                 wakeup_swapper = setrunnable(td);
  938         } else
  939                 td->td_flags |= TDF_TIMOFAIL;
  940         thread_unlock(td);
  941         if (wakeup_swapper)
  942                 kick_proc0();
  943 }
  944 
  945 /*
  946  * Resumes a specific thread from the sleep queue associated with a specific
  947  * wait channel if it is on that queue.
  948  */
  949 void
  950 sleepq_remove(struct thread *td, void *wchan)
  951 {
  952         struct sleepqueue *sq;
  953         int wakeup_swapper;
  954 
  955         /*
  956          * Look up the sleep queue for this wait channel, then re-check
  957          * that the thread is asleep on that channel, if it is not, then
  958          * bail.
  959          */
  960         MPASS(wchan != NULL);
  961         sleepq_lock(wchan);
  962         sq = sleepq_lookup(wchan);
  963         /*
  964          * We can not lock the thread here as it may be sleeping on a
  965          * different sleepq.  However, holding the sleepq lock for this
  966          * wchan can guarantee that we do not miss a wakeup for this
  967          * channel.  The asserts below will catch any false positives.
  968          */
  969         if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
  970                 sleepq_release(wchan);
  971                 return;
  972         }
  973         /* Thread is asleep on sleep queue sq, so wake it up. */
  974         thread_lock(td);
  975         MPASS(sq != NULL);
  976         MPASS(td->td_wchan == wchan);
  977         wakeup_swapper = sleepq_resume_thread(sq, td, 0);
  978         thread_unlock(td);
  979         sleepq_release(wchan);
  980         if (wakeup_swapper)
  981                 kick_proc0();
  982 }
  983 
  984 /*
  985  * Abort a thread as if an interrupt had occurred.  Only abort
  986  * interruptible waits (unfortunately it isn't safe to abort others).
  987  */
  988 int
  989 sleepq_abort(struct thread *td, int intrval)
  990 {
  991         struct sleepqueue *sq;
  992         void *wchan;
  993 
  994         THREAD_LOCK_ASSERT(td, MA_OWNED);
  995         MPASS(TD_ON_SLEEPQ(td));
  996         MPASS(td->td_flags & TDF_SINTR);
  997         MPASS(intrval == EINTR || intrval == ERESTART);
  998 
  999         /*
 1000          * If the TDF_TIMEOUT flag is set, just leave. A
 1001          * timeout is scheduled anyhow.
 1002          */
 1003         if (td->td_flags & TDF_TIMEOUT)
 1004                 return (0);
 1005 
 1006         CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
 1007             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
 1008         td->td_intrval = intrval;
 1009         td->td_flags |= TDF_SLEEPABORT;
 1010         /*
 1011          * If the thread has not slept yet it will find the signal in
 1012          * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
 1013          * we have to do it here.
 1014          */
 1015         if (!TD_IS_SLEEPING(td))
 1016                 return (0);
 1017         wchan = td->td_wchan;
 1018         MPASS(wchan != NULL);
 1019         sq = sleepq_lookup(wchan);
 1020         MPASS(sq != NULL);
 1021 
 1022         /* Thread is asleep on sleep queue sq, so wake it up. */
 1023         return (sleepq_resume_thread(sq, td, 0));
 1024 }
 1025 
 1026 #ifdef SLEEPQUEUE_PROFILING
 1027 #define SLEEPQ_PROF_LOCATIONS   1024
 1028 #define SLEEPQ_SBUFSIZE         512
 1029 struct sleepq_prof {
 1030         LIST_ENTRY(sleepq_prof) sp_link;
 1031         const char      *sp_wmesg;
 1032         long            sp_count;
 1033 };
 1034 
 1035 LIST_HEAD(sqphead, sleepq_prof);
 1036 
 1037 struct sqphead sleepq_prof_free;
 1038 struct sqphead sleepq_hash[SC_TABLESIZE];
 1039 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
 1040 static struct mtx sleepq_prof_lock;
 1041 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
 1042 
 1043 static void
 1044 sleepq_profile(const char *wmesg)
 1045 {
 1046         struct sleepq_prof *sp;
 1047 
 1048         mtx_lock_spin(&sleepq_prof_lock);
 1049         if (prof_enabled == 0)
 1050                 goto unlock;
 1051         LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
 1052                 if (sp->sp_wmesg == wmesg)
 1053                         goto done;
 1054         sp = LIST_FIRST(&sleepq_prof_free);
 1055         if (sp == NULL)
 1056                 goto unlock;
 1057         sp->sp_wmesg = wmesg;
 1058         LIST_REMOVE(sp, sp_link);
 1059         LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
 1060 done:
 1061         sp->sp_count++;
 1062 unlock:
 1063         mtx_unlock_spin(&sleepq_prof_lock);
 1064         return;
 1065 }
 1066 
 1067 static void
 1068 sleepq_prof_reset(void)
 1069 {
 1070         struct sleepq_prof *sp;
 1071         int enabled;
 1072         int i;
 1073 
 1074         mtx_lock_spin(&sleepq_prof_lock);
 1075         enabled = prof_enabled;
 1076         prof_enabled = 0;
 1077         for (i = 0; i < SC_TABLESIZE; i++)
 1078                 LIST_INIT(&sleepq_hash[i]);
 1079         LIST_INIT(&sleepq_prof_free);
 1080         for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
 1081                 sp = &sleepq_profent[i];
 1082                 sp->sp_wmesg = NULL;
 1083                 sp->sp_count = 0;
 1084                 LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
 1085         }
 1086         prof_enabled = enabled;
 1087         mtx_unlock_spin(&sleepq_prof_lock);
 1088 }
 1089 
 1090 static int
 1091 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
 1092 {
 1093         int error, v;
 1094 
 1095         v = prof_enabled;
 1096         error = sysctl_handle_int(oidp, &v, v, req);
 1097         if (error)
 1098                 return (error);
 1099         if (req->newptr == NULL)
 1100                 return (error);
 1101         if (v == prof_enabled)
 1102                 return (0);
 1103         if (v == 1)
 1104                 sleepq_prof_reset();
 1105         mtx_lock_spin(&sleepq_prof_lock);
 1106         prof_enabled = !!v;
 1107         mtx_unlock_spin(&sleepq_prof_lock);
 1108 
 1109         return (0);
 1110 }
 1111 
 1112 static int
 1113 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
 1114 {
 1115         int error, v;
 1116 
 1117         v = 0;
 1118         error = sysctl_handle_int(oidp, &v, 0, req);
 1119         if (error)
 1120                 return (error);
 1121         if (req->newptr == NULL)
 1122                 return (error);
 1123         if (v == 0)
 1124                 return (0);
 1125         sleepq_prof_reset();
 1126 
 1127         return (0);
 1128 }
 1129 
 1130 static int
 1131 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
 1132 {
 1133         struct sleepq_prof *sp;
 1134         struct sbuf *sb;
 1135         int enabled;
 1136         int error;
 1137         int i;
 1138 
 1139         error = sysctl_wire_old_buffer(req, 0);
 1140         if (error != 0)
 1141                 return (error);
 1142         sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
 1143         sbuf_printf(sb, "\nwmesg\tcount\n");
 1144         enabled = prof_enabled;
 1145         mtx_lock_spin(&sleepq_prof_lock);
 1146         prof_enabled = 0;
 1147         mtx_unlock_spin(&sleepq_prof_lock);
 1148         for (i = 0; i < SC_TABLESIZE; i++) {
 1149                 LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
 1150                         sbuf_printf(sb, "%s\t%ld\n",
 1151                             sp->sp_wmesg, sp->sp_count);
 1152                 }
 1153         }
 1154         mtx_lock_spin(&sleepq_prof_lock);
 1155         prof_enabled = enabled;
 1156         mtx_unlock_spin(&sleepq_prof_lock);
 1157 
 1158         error = sbuf_finish(sb);
 1159         sbuf_delete(sb);
 1160         return (error);
 1161 }
 1162 
 1163 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
 1164     NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
 1165 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
 1166     NULL, 0, reset_sleepq_prof_stats, "I",
 1167     "Reset sleepqueue profiling statistics");
 1168 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
 1169     NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
 1170 #endif
 1171 
 1172 #ifdef DDB
 1173 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
 1174 {
 1175         struct sleepqueue_chain *sc;
 1176         struct sleepqueue *sq;
 1177 #ifdef INVARIANTS
 1178         struct lock_object *lock;
 1179 #endif
 1180         struct thread *td;
 1181         void *wchan;
 1182         int i;
 1183 
 1184         if (!have_addr)
 1185                 return;
 1186 
 1187         /*
 1188          * First, see if there is an active sleep queue for the wait channel
 1189          * indicated by the address.
 1190          */
 1191         wchan = (void *)addr;
 1192         sc = SC_LOOKUP(wchan);
 1193         LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
 1194                 if (sq->sq_wchan == wchan)
 1195                         goto found;
 1196 
 1197         /*
 1198          * Second, see if there is an active sleep queue at the address
 1199          * indicated.
 1200          */
 1201         for (i = 0; i < SC_TABLESIZE; i++)
 1202                 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
 1203                         if (sq == (struct sleepqueue *)addr)
 1204                                 goto found;
 1205                 }
 1206 
 1207         db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
 1208         return;
 1209 found:
 1210         db_printf("Wait channel: %p\n", sq->sq_wchan);
 1211         db_printf("Queue type: %d\n", sq->sq_type);
 1212 #ifdef INVARIANTS
 1213         if (sq->sq_lock) {
 1214                 lock = sq->sq_lock;
 1215                 db_printf("Associated Interlock: %p - (%s) %s\n", lock,
 1216                     LOCK_CLASS(lock)->lc_name, lock->lo_name);
 1217         }
 1218 #endif
 1219         db_printf("Blocked threads:\n");
 1220         for (i = 0; i < NR_SLEEPQS; i++) {
 1221                 db_printf("\nQueue[%d]:\n", i);
 1222                 if (TAILQ_EMPTY(&sq->sq_blocked[i]))
 1223                         db_printf("\tempty\n");
 1224                 else
 1225                         TAILQ_FOREACH(td, &sq->sq_blocked[0],
 1226                                       td_slpq) {
 1227                                 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
 1228                                           td->td_tid, td->td_proc->p_pid,
 1229                                           td->td_name);
 1230                         }
 1231                 db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
 1232         }
 1233 }
 1234 
 1235 /* Alias 'show sleepqueue' to 'show sleepq'. */
 1236 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
 1237 #endif

Cache object: c9d956b73fcc9545f301a787de26d85e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.