The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_sleepqueue.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 /*
   28  * Implementation of sleep queues used to hold queue of threads blocked on
   29  * a wait channel.  Sleep queues different from turnstiles in that wait
   30  * channels are not owned by anyone, so there is no priority propagation.
   31  * Sleep queues can also provide a timeout and can also be interrupted by
   32  * signals.  That said, there are several similarities between the turnstile
   33  * and sleep queue implementations.  (Note: turnstiles were implemented
   34  * first.)  For example, both use a hash table of the same size where each
   35  * bucket is referred to as a "chain" that contains both a spin lock and
   36  * a linked list of queues.  An individual queue is located by using a hash
   37  * to pick a chain, locking the chain, and then walking the chain searching
   38  * for the queue.  This means that a wait channel object does not need to
   39  * embed it's queue head just as locks do not embed their turnstile queue
   40  * head.  Threads also carry around a sleep queue that they lend to the
   41  * wait channel when blocking.  Just as in turnstiles, the queue includes
   42  * a free list of the sleep queues of other threads blocked on the same
   43  * wait channel in the case of multiple waiters.
   44  *
   45  * Some additional functionality provided by sleep queues include the
   46  * ability to set a timeout.  The timeout is managed using a per-thread
   47  * callout that resumes a thread if it is asleep.  A thread may also
   48  * catch signals while it is asleep (aka an interruptible sleep).  The
   49  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
   50  * sleep queues also provide some extra assertions.  One is not allowed to
   51  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
   52  * must consistently use the same lock to synchronize with a wait channel,
   53  * though this check is currently only a warning for sleep/wakeup due to
   54  * pre-existing abuse of that API.  The same lock must also be held when
   55  * awakening threads, though that is currently only enforced for condition
   56  * variables.
   57  */
   58 
   59 #include <sys/cdefs.h>
   60 __FBSDID("$FreeBSD$");
   61 
   62 #include "opt_sleepqueue_profiling.h"
   63 #include "opt_ddb.h"
   64 #include "opt_kdtrace.h"
   65 #include "opt_sched.h"
   66 
   67 #include <sys/param.h>
   68 #include <sys/systm.h>
   69 #include <sys/lock.h>
   70 #include <sys/kernel.h>
   71 #include <sys/ktr.h>
   72 #include <sys/mutex.h>
   73 #include <sys/proc.h>
   74 #include <sys/sbuf.h>
   75 #include <sys/sched.h>
   76 #include <sys/sdt.h>
   77 #include <sys/signalvar.h>
   78 #include <sys/sleepqueue.h>
   79 #include <sys/sysctl.h>
   80 
   81 #include <vm/uma.h>
   82 
   83 #ifdef DDB
   84 #include <ddb/ddb.h>
   85 #endif
   86 
   87 /*
   88  * Constants for the hash table of sleep queue chains.  These constants are
   89  * the same ones that 4BSD (and possibly earlier versions of BSD) used.
   90  * Basically, we ignore the lower 8 bits of the address since most wait
   91  * channel pointers are aligned and only look at the next 7 bits for the
   92  * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
   93  */
   94 #define SC_TABLESIZE    128                     /* Must be power of 2. */
   95 #define SC_MASK         (SC_TABLESIZE - 1)
   96 #define SC_SHIFT        8
   97 #define SC_HASH(wc)     (((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
   98 #define SC_LOOKUP(wc)   &sleepq_chains[SC_HASH(wc)]
   99 #define NR_SLEEPQS      2
  100 /*
  101  * There two different lists of sleep queues.  Both lists are connected
  102  * via the sq_hash entries.  The first list is the sleep queue chain list
  103  * that a sleep queue is on when it is attached to a wait channel.  The
  104  * second list is the free list hung off of a sleep queue that is attached
  105  * to a wait channel.
  106  *
  107  * Each sleep queue also contains the wait channel it is attached to, the
  108  * list of threads blocked on that wait channel, flags specific to the
  109  * wait channel, and the lock used to synchronize with a wait channel.
  110  * The flags are used to catch mismatches between the various consumers
  111  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
  112  * The lock pointer is only used when invariants are enabled for various
  113  * debugging checks.
  114  *
  115  * Locking key:
  116  *  c - sleep queue chain lock
  117  */
  118 struct sleepqueue {
  119         TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];    /* (c) Blocked threads. */
  120         u_int sq_blockedcnt[NR_SLEEPQS];        /* (c) N. of blocked threads. */
  121         LIST_ENTRY(sleepqueue) sq_hash;         /* (c) Chain and free list. */
  122         LIST_HEAD(, sleepqueue) sq_free;        /* (c) Free queues. */
  123         void    *sq_wchan;                      /* (c) Wait channel. */
  124         int     sq_type;                        /* (c) Queue type. */
  125 #ifdef INVARIANTS
  126         struct lock_object *sq_lock;            /* (c) Associated lock. */
  127 #endif
  128 };
  129 
  130 struct sleepqueue_chain {
  131         LIST_HEAD(, sleepqueue) sc_queues;      /* List of sleep queues. */
  132         struct mtx sc_lock;                     /* Spin lock for this chain. */
  133 #ifdef SLEEPQUEUE_PROFILING
  134         u_int   sc_depth;                       /* Length of sc_queues. */
  135         u_int   sc_max_depth;                   /* Max length of sc_queues. */
  136 #endif
  137 };
  138 
  139 #ifdef SLEEPQUEUE_PROFILING
  140 u_int sleepq_max_depth;
  141 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
  142 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
  143     "sleepq chain stats");
  144 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
  145     0, "maxmimum depth achieved of a single chain");
  146 
  147 static void     sleepq_profile(const char *wmesg);
  148 static int      prof_enabled;
  149 #endif
  150 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
  151 static uma_zone_t sleepq_zone;
  152 
  153 /*
  154  * Prototypes for non-exported routines.
  155  */
  156 static int      sleepq_catch_signals(void *wchan, int pri);
  157 static int      sleepq_check_signals(void);
  158 static int      sleepq_check_timeout(void);
  159 #ifdef INVARIANTS
  160 static void     sleepq_dtor(void *mem, int size, void *arg);
  161 #endif
  162 static int      sleepq_init(void *mem, int size, int flags);
  163 static int      sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
  164                     int pri);
  165 static void     sleepq_switch(void *wchan, int pri);
  166 static void     sleepq_timeout(void *arg);
  167 
  168 SDT_PROBE_DECLARE(sched, , , sleep);
  169 SDT_PROBE_DECLARE(sched, , , wakeup);
  170 
  171 /*
  172  * Early initialization of sleep queues that is called from the sleepinit()
  173  * SYSINIT.
  174  */
  175 void
  176 init_sleepqueues(void)
  177 {
  178 #ifdef SLEEPQUEUE_PROFILING
  179         struct sysctl_oid *chain_oid;
  180         char chain_name[10];
  181 #endif
  182         int i;
  183 
  184         for (i = 0; i < SC_TABLESIZE; i++) {
  185                 LIST_INIT(&sleepq_chains[i].sc_queues);
  186                 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
  187                     MTX_SPIN | MTX_RECURSE);
  188 #ifdef SLEEPQUEUE_PROFILING
  189                 snprintf(chain_name, sizeof(chain_name), "%d", i);
  190                 chain_oid = SYSCTL_ADD_NODE(NULL, 
  191                     SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
  192                     chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
  193                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  194                     "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
  195                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  196                     "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
  197                     NULL);
  198 #endif
  199         }
  200         sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
  201 #ifdef INVARIANTS
  202             NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
  203 #else
  204             NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
  205 #endif
  206         
  207         thread0.td_sleepqueue = sleepq_alloc();
  208 }
  209 
  210 /*
  211  * Get a sleep queue for a new thread.
  212  */
  213 struct sleepqueue *
  214 sleepq_alloc(void)
  215 {
  216 
  217         return (uma_zalloc(sleepq_zone, M_WAITOK));
  218 }
  219 
  220 /*
  221  * Free a sleep queue when a thread is destroyed.
  222  */
  223 void
  224 sleepq_free(struct sleepqueue *sq)
  225 {
  226 
  227         uma_zfree(sleepq_zone, sq);
  228 }
  229 
  230 /*
  231  * Lock the sleep queue chain associated with the specified wait channel.
  232  */
  233 void
  234 sleepq_lock(void *wchan)
  235 {
  236         struct sleepqueue_chain *sc;
  237 
  238         sc = SC_LOOKUP(wchan);
  239         mtx_lock_spin(&sc->sc_lock);
  240 }
  241 
  242 /*
  243  * Look up the sleep queue associated with a given wait channel in the hash
  244  * table locking the associated sleep queue chain.  If no queue is found in
  245  * the table, NULL is returned.
  246  */
  247 struct sleepqueue *
  248 sleepq_lookup(void *wchan)
  249 {
  250         struct sleepqueue_chain *sc;
  251         struct sleepqueue *sq;
  252 
  253         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  254         sc = SC_LOOKUP(wchan);
  255         mtx_assert(&sc->sc_lock, MA_OWNED);
  256         LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
  257                 if (sq->sq_wchan == wchan)
  258                         return (sq);
  259         return (NULL);
  260 }
  261 
  262 /*
  263  * Unlock the sleep queue chain associated with a given wait channel.
  264  */
  265 void
  266 sleepq_release(void *wchan)
  267 {
  268         struct sleepqueue_chain *sc;
  269 
  270         sc = SC_LOOKUP(wchan);
  271         mtx_unlock_spin(&sc->sc_lock);
  272 }
  273 
  274 /*
  275  * Places the current thread on the sleep queue for the specified wait
  276  * channel.  If INVARIANTS is enabled, then it associates the passed in
  277  * lock with the sleepq to make sure it is held when that sleep queue is
  278  * woken up.
  279  */
  280 void
  281 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
  282     int queue)
  283 {
  284         struct sleepqueue_chain *sc;
  285         struct sleepqueue *sq;
  286         struct thread *td;
  287 
  288         td = curthread;
  289         sc = SC_LOOKUP(wchan);
  290         mtx_assert(&sc->sc_lock, MA_OWNED);
  291         MPASS(td->td_sleepqueue != NULL);
  292         MPASS(wchan != NULL);
  293         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  294 
  295         /* If this thread is not allowed to sleep, die a horrible death. */
  296         KASSERT(!(td->td_pflags & TDP_NOSLEEPING),
  297             ("Trying sleep, but thread marked as sleeping prohibited"));
  298 
  299         /* Look up the sleep queue associated with the wait channel 'wchan'. */
  300         sq = sleepq_lookup(wchan);
  301 
  302         /*
  303          * If the wait channel does not already have a sleep queue, use
  304          * this thread's sleep queue.  Otherwise, insert the current thread
  305          * into the sleep queue already in use by this wait channel.
  306          */
  307         if (sq == NULL) {
  308 #ifdef INVARIANTS
  309                 int i;
  310 
  311                 sq = td->td_sleepqueue;
  312                 for (i = 0; i < NR_SLEEPQS; i++) {
  313                         KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
  314                             ("thread's sleep queue %d is not empty", i));
  315                         KASSERT(sq->sq_blockedcnt[i] == 0,
  316                             ("thread's sleep queue %d count mismatches", i));
  317                 }
  318                 KASSERT(LIST_EMPTY(&sq->sq_free),
  319                     ("thread's sleep queue has a non-empty free list"));
  320                 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
  321                 sq->sq_lock = lock;
  322 #endif
  323 #ifdef SLEEPQUEUE_PROFILING
  324                 sc->sc_depth++;
  325                 if (sc->sc_depth > sc->sc_max_depth) {
  326                         sc->sc_max_depth = sc->sc_depth;
  327                         if (sc->sc_max_depth > sleepq_max_depth)
  328                                 sleepq_max_depth = sc->sc_max_depth;
  329                 }
  330 #endif
  331                 sq = td->td_sleepqueue;
  332                 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
  333                 sq->sq_wchan = wchan;
  334                 sq->sq_type = flags & SLEEPQ_TYPE;
  335         } else {
  336                 MPASS(wchan == sq->sq_wchan);
  337                 MPASS(lock == sq->sq_lock);
  338                 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
  339                 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
  340         }
  341         thread_lock(td);
  342         TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
  343         sq->sq_blockedcnt[queue]++;
  344         td->td_sleepqueue = NULL;
  345         td->td_sqqueue = queue;
  346         td->td_wchan = wchan;
  347         td->td_wmesg = wmesg;
  348         if (flags & SLEEPQ_INTERRUPTIBLE) {
  349                 td->td_flags |= TDF_SINTR;
  350                 td->td_flags &= ~TDF_SLEEPABORT;
  351         }
  352         thread_unlock(td);
  353 }
  354 
  355 /*
  356  * Sets a timeout that will remove the current thread from the specified
  357  * sleep queue after timo ticks if the thread has not already been awakened.
  358  */
  359 void
  360 sleepq_set_timeout(void *wchan, int timo)
  361 {
  362         struct sleepqueue_chain *sc;
  363         struct thread *td;
  364 
  365         td = curthread;
  366         sc = SC_LOOKUP(wchan);
  367         mtx_assert(&sc->sc_lock, MA_OWNED);
  368         MPASS(TD_ON_SLEEPQ(td));
  369         MPASS(td->td_sleepqueue == NULL);
  370         MPASS(wchan != NULL);
  371         callout_reset_curcpu(&td->td_slpcallout, timo, sleepq_timeout, td);
  372 }
  373 
  374 /*
  375  * Return the number of actual sleepers for the specified queue.
  376  */
  377 u_int
  378 sleepq_sleepcnt(void *wchan, int queue)
  379 {
  380         struct sleepqueue *sq;
  381 
  382         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  383         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  384         sq = sleepq_lookup(wchan);
  385         if (sq == NULL)
  386                 return (0);
  387         return (sq->sq_blockedcnt[queue]);
  388 }
  389 
  390 /*
  391  * Marks the pending sleep of the current thread as interruptible and
  392  * makes an initial check for pending signals before putting a thread
  393  * to sleep. Enters and exits with the thread lock held.  Thread lock
  394  * may have transitioned from the sleepq lock to a run lock.
  395  */
  396 static int
  397 sleepq_catch_signals(void *wchan, int pri)
  398 {
  399         struct sleepqueue_chain *sc;
  400         struct sleepqueue *sq;
  401         struct thread *td;
  402         struct proc *p;
  403         struct sigacts *ps;
  404         int sig, ret, stop_allowed;
  405 
  406         td = curthread;
  407         p = curproc;
  408         sc = SC_LOOKUP(wchan);
  409         mtx_assert(&sc->sc_lock, MA_OWNED);
  410         MPASS(wchan != NULL);
  411         if ((td->td_pflags & TDP_WAKEUP) != 0) {
  412                 td->td_pflags &= ~TDP_WAKEUP;
  413                 ret = EINTR;
  414                 thread_lock(td);
  415                 goto out;
  416         }
  417 
  418         /*
  419          * See if there are any pending signals for this thread.  If not
  420          * we can switch immediately.  Otherwise do the signal processing
  421          * directly.
  422          */
  423         thread_lock(td);
  424         if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
  425                 sleepq_switch(wchan, pri);
  426                 return (0);
  427         }
  428         stop_allowed = (td->td_flags & TDF_SBDRY) ? SIG_STOP_NOT_ALLOWED :
  429             SIG_STOP_ALLOWED;
  430         thread_unlock(td);
  431         mtx_unlock_spin(&sc->sc_lock);
  432         CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
  433                 (void *)td, (long)p->p_pid, td->td_name);
  434         PROC_LOCK(p);
  435         ps = p->p_sigacts;
  436         mtx_lock(&ps->ps_mtx);
  437         sig = cursig(td, stop_allowed);
  438         if (sig == 0) {
  439                 mtx_unlock(&ps->ps_mtx);
  440                 ret = thread_suspend_check(1);
  441                 MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
  442         } else {
  443                 if (SIGISMEMBER(ps->ps_sigintr, sig))
  444                         ret = EINTR;
  445                 else
  446                         ret = ERESTART;
  447                 mtx_unlock(&ps->ps_mtx);
  448         }
  449         /*
  450          * Lock the per-process spinlock prior to dropping the PROC_LOCK
  451          * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
  452          * thread_lock() are currently held in tdsendsignal().
  453          */
  454         PROC_SLOCK(p);
  455         mtx_lock_spin(&sc->sc_lock);
  456         PROC_UNLOCK(p);
  457         thread_lock(td);
  458         PROC_SUNLOCK(p);
  459         if (ret == 0) {
  460                 sleepq_switch(wchan, pri);
  461                 return (0);
  462         }
  463 out:
  464         /*
  465          * There were pending signals and this thread is still
  466          * on the sleep queue, remove it from the sleep queue.
  467          */
  468         if (TD_ON_SLEEPQ(td)) {
  469                 sq = sleepq_lookup(wchan);
  470                 if (sleepq_resume_thread(sq, td, 0)) {
  471 #ifdef INVARIANTS
  472                         /*
  473                          * This thread hasn't gone to sleep yet, so it
  474                          * should not be swapped out.
  475                          */
  476                         panic("not waking up swapper");
  477 #endif
  478                 }
  479         }
  480         mtx_unlock_spin(&sc->sc_lock);
  481         MPASS(td->td_lock != &sc->sc_lock);
  482         return (ret);
  483 }
  484 
  485 /*
  486  * Switches to another thread if we are still asleep on a sleep queue.
  487  * Returns with thread lock.
  488  */
  489 static void
  490 sleepq_switch(void *wchan, int pri)
  491 {
  492         struct sleepqueue_chain *sc;
  493         struct sleepqueue *sq;
  494         struct thread *td;
  495 
  496         td = curthread;
  497         sc = SC_LOOKUP(wchan);
  498         mtx_assert(&sc->sc_lock, MA_OWNED);
  499         THREAD_LOCK_ASSERT(td, MA_OWNED);
  500 
  501         /* 
  502          * If we have a sleep queue, then we've already been woken up, so
  503          * just return.
  504          */
  505         if (td->td_sleepqueue != NULL) {
  506                 mtx_unlock_spin(&sc->sc_lock);
  507                 return;
  508         }
  509 
  510         /*
  511          * If TDF_TIMEOUT is set, then our sleep has been timed out
  512          * already but we are still on the sleep queue, so dequeue the
  513          * thread and return.
  514          */
  515         if (td->td_flags & TDF_TIMEOUT) {
  516                 MPASS(TD_ON_SLEEPQ(td));
  517                 sq = sleepq_lookup(wchan);
  518                 if (sleepq_resume_thread(sq, td, 0)) {
  519 #ifdef INVARIANTS
  520                         /*
  521                          * This thread hasn't gone to sleep yet, so it
  522                          * should not be swapped out.
  523                          */
  524                         panic("not waking up swapper");
  525 #endif
  526                 }
  527                 mtx_unlock_spin(&sc->sc_lock);
  528                 return;         
  529         }
  530 #ifdef SLEEPQUEUE_PROFILING
  531         if (prof_enabled)
  532                 sleepq_profile(td->td_wmesg);
  533 #endif
  534         MPASS(td->td_sleepqueue == NULL);
  535         sched_sleep(td, pri);
  536         thread_lock_set(td, &sc->sc_lock);
  537         SDT_PROBE0(sched, , , sleep);
  538         TD_SET_SLEEPING(td);
  539         mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
  540         KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
  541         CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
  542             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
  543 }
  544 
  545 /*
  546  * Check to see if we timed out.
  547  */
  548 static int
  549 sleepq_check_timeout(void)
  550 {
  551         struct thread *td;
  552 
  553         td = curthread;
  554         THREAD_LOCK_ASSERT(td, MA_OWNED);
  555 
  556         /*
  557          * If TDF_TIMEOUT is set, we timed out.
  558          */
  559         if (td->td_flags & TDF_TIMEOUT) {
  560                 td->td_flags &= ~TDF_TIMEOUT;
  561                 return (EWOULDBLOCK);
  562         }
  563 
  564         /*
  565          * If TDF_TIMOFAIL is set, the timeout ran after we had
  566          * already been woken up.
  567          */
  568         if (td->td_flags & TDF_TIMOFAIL)
  569                 td->td_flags &= ~TDF_TIMOFAIL;
  570 
  571         /*
  572          * If callout_stop() fails, then the timeout is running on
  573          * another CPU, so synchronize with it to avoid having it
  574          * accidentally wake up a subsequent sleep.
  575          */
  576         else if (callout_stop(&td->td_slpcallout) == 0) {
  577                 td->td_flags |= TDF_TIMEOUT;
  578                 TD_SET_SLEEPING(td);
  579                 mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
  580         }
  581         return (0);
  582 }
  583 
  584 /*
  585  * Check to see if we were awoken by a signal.
  586  */
  587 static int
  588 sleepq_check_signals(void)
  589 {
  590         struct thread *td;
  591 
  592         td = curthread;
  593         THREAD_LOCK_ASSERT(td, MA_OWNED);
  594 
  595         /* We are no longer in an interruptible sleep. */
  596         if (td->td_flags & TDF_SINTR)
  597                 td->td_flags &= ~TDF_SINTR;
  598 
  599         if (td->td_flags & TDF_SLEEPABORT) {
  600                 td->td_flags &= ~TDF_SLEEPABORT;
  601                 return (td->td_intrval);
  602         }
  603 
  604         return (0);
  605 }
  606 
  607 /*
  608  * Block the current thread until it is awakened from its sleep queue.
  609  */
  610 void
  611 sleepq_wait(void *wchan, int pri)
  612 {
  613         struct thread *td;
  614 
  615         td = curthread;
  616         MPASS(!(td->td_flags & TDF_SINTR));
  617         thread_lock(td);
  618         sleepq_switch(wchan, pri);
  619         thread_unlock(td);
  620 }
  621 
  622 /*
  623  * Block the current thread until it is awakened from its sleep queue
  624  * or it is interrupted by a signal.
  625  */
  626 int
  627 sleepq_wait_sig(void *wchan, int pri)
  628 {
  629         int rcatch;
  630         int rval;
  631 
  632         rcatch = sleepq_catch_signals(wchan, pri);
  633         rval = sleepq_check_signals();
  634         thread_unlock(curthread);
  635         if (rcatch)
  636                 return (rcatch);
  637         return (rval);
  638 }
  639 
  640 /*
  641  * Block the current thread until it is awakened from its sleep queue
  642  * or it times out while waiting.
  643  */
  644 int
  645 sleepq_timedwait(void *wchan, int pri)
  646 {
  647         struct thread *td;
  648         int rval;
  649 
  650         td = curthread;
  651         MPASS(!(td->td_flags & TDF_SINTR));
  652         thread_lock(td);
  653         sleepq_switch(wchan, pri);
  654         rval = sleepq_check_timeout();
  655         thread_unlock(td);
  656 
  657         return (rval);
  658 }
  659 
  660 /*
  661  * Block the current thread until it is awakened from its sleep queue,
  662  * it is interrupted by a signal, or it times out waiting to be awakened.
  663  */
  664 int
  665 sleepq_timedwait_sig(void *wchan, int pri)
  666 {
  667         int rcatch, rvalt, rvals;
  668 
  669         rcatch = sleepq_catch_signals(wchan, pri);
  670         rvalt = sleepq_check_timeout();
  671         rvals = sleepq_check_signals();
  672         thread_unlock(curthread);
  673         if (rcatch)
  674                 return (rcatch);
  675         if (rvals)
  676                 return (rvals);
  677         return (rvalt);
  678 }
  679 
  680 /*
  681  * Returns the type of sleepqueue given a waitchannel.
  682  */
  683 int
  684 sleepq_type(void *wchan)
  685 {
  686         struct sleepqueue *sq;
  687         int type;
  688 
  689         MPASS(wchan != NULL);
  690 
  691         sleepq_lock(wchan);
  692         sq = sleepq_lookup(wchan);
  693         if (sq == NULL) {
  694                 sleepq_release(wchan);
  695                 return (-1);
  696         }
  697         type = sq->sq_type;
  698         sleepq_release(wchan);
  699         return (type);
  700 }
  701 
  702 /*
  703  * Removes a thread from a sleep queue and makes it
  704  * runnable.
  705  */
  706 static int
  707 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
  708 {
  709         struct sleepqueue_chain *sc;
  710 
  711         MPASS(td != NULL);
  712         MPASS(sq->sq_wchan != NULL);
  713         MPASS(td->td_wchan == sq->sq_wchan);
  714         MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
  715         THREAD_LOCK_ASSERT(td, MA_OWNED);
  716         sc = SC_LOOKUP(sq->sq_wchan);
  717         mtx_assert(&sc->sc_lock, MA_OWNED);
  718 
  719         SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
  720 
  721         /* Remove the thread from the queue. */
  722         sq->sq_blockedcnt[td->td_sqqueue]--;
  723         TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
  724 
  725         /*
  726          * Get a sleep queue for this thread.  If this is the last waiter,
  727          * use the queue itself and take it out of the chain, otherwise,
  728          * remove a queue from the free list.
  729          */
  730         if (LIST_EMPTY(&sq->sq_free)) {
  731                 td->td_sleepqueue = sq;
  732 #ifdef INVARIANTS
  733                 sq->sq_wchan = NULL;
  734 #endif
  735 #ifdef SLEEPQUEUE_PROFILING
  736                 sc->sc_depth--;
  737 #endif
  738         } else
  739                 td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
  740         LIST_REMOVE(td->td_sleepqueue, sq_hash);
  741 
  742         td->td_wmesg = NULL;
  743         td->td_wchan = NULL;
  744         td->td_flags &= ~TDF_SINTR;
  745 
  746         CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
  747             (void *)td, (long)td->td_proc->p_pid, td->td_name);
  748 
  749         /* Adjust priority if requested. */
  750         MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
  751         if (pri != 0 && td->td_priority > pri &&
  752             PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
  753                 sched_prio(td, pri);
  754 
  755         /*
  756          * Note that thread td might not be sleeping if it is running
  757          * sleepq_catch_signals() on another CPU or is blocked on its
  758          * proc lock to check signals.  There's no need to mark the
  759          * thread runnable in that case.
  760          */
  761         if (TD_IS_SLEEPING(td)) {
  762                 TD_CLR_SLEEPING(td);
  763                 return (setrunnable(td));
  764         }
  765         return (0);
  766 }
  767 
  768 #ifdef INVARIANTS
  769 /*
  770  * UMA zone item deallocator.
  771  */
  772 static void
  773 sleepq_dtor(void *mem, int size, void *arg)
  774 {
  775         struct sleepqueue *sq;
  776         int i;
  777 
  778         sq = mem;
  779         for (i = 0; i < NR_SLEEPQS; i++) {
  780                 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
  781                 MPASS(sq->sq_blockedcnt[i] == 0);
  782         }
  783 }
  784 #endif
  785 
  786 /*
  787  * UMA zone item initializer.
  788  */
  789 static int
  790 sleepq_init(void *mem, int size, int flags)
  791 {
  792         struct sleepqueue *sq;
  793         int i;
  794 
  795         bzero(mem, size);
  796         sq = mem;
  797         for (i = 0; i < NR_SLEEPQS; i++) {
  798                 TAILQ_INIT(&sq->sq_blocked[i]);
  799                 sq->sq_blockedcnt[i] = 0;
  800         }
  801         LIST_INIT(&sq->sq_free);
  802         return (0);
  803 }
  804 
  805 /*
  806  * Find the highest priority thread sleeping on a wait channel and resume it.
  807  */
  808 int
  809 sleepq_signal(void *wchan, int flags, int pri, int queue)
  810 {
  811         struct sleepqueue *sq;
  812         struct thread *td, *besttd;
  813         int wakeup_swapper;
  814 
  815         CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
  816         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  817         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  818         sq = sleepq_lookup(wchan);
  819         if (sq == NULL)
  820                 return (0);
  821         KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
  822             ("%s: mismatch between sleep/wakeup and cv_*", __func__));
  823 
  824         /*
  825          * Find the highest priority thread on the queue.  If there is a
  826          * tie, use the thread that first appears in the queue as it has
  827          * been sleeping the longest since threads are always added to
  828          * the tail of sleep queues.
  829          */
  830         besttd = NULL;
  831         TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
  832                 if (besttd == NULL || td->td_priority < besttd->td_priority)
  833                         besttd = td;
  834         }
  835         MPASS(besttd != NULL);
  836         thread_lock(besttd);
  837         wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
  838         thread_unlock(besttd);
  839         return (wakeup_swapper);
  840 }
  841 
  842 /*
  843  * Resume all threads sleeping on a specified wait channel.
  844  */
  845 int
  846 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
  847 {
  848         struct sleepqueue *sq;
  849         struct thread *td, *tdn;
  850         int wakeup_swapper;
  851 
  852         CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
  853         KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
  854         MPASS((queue >= 0) && (queue < NR_SLEEPQS));
  855         sq = sleepq_lookup(wchan);
  856         if (sq == NULL)
  857                 return (0);
  858         KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
  859             ("%s: mismatch between sleep/wakeup and cv_*", __func__));
  860 
  861         /* Resume all blocked threads on the sleep queue. */
  862         wakeup_swapper = 0;
  863         TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
  864                 thread_lock(td);
  865                 if (sleepq_resume_thread(sq, td, pri))
  866                         wakeup_swapper = 1;
  867                 thread_unlock(td);
  868         }
  869         return (wakeup_swapper);
  870 }
  871 
  872 /*
  873  * Time sleeping threads out.  When the timeout expires, the thread is
  874  * removed from the sleep queue and made runnable if it is still asleep.
  875  */
  876 static void
  877 sleepq_timeout(void *arg)
  878 {
  879         struct sleepqueue_chain *sc;
  880         struct sleepqueue *sq;
  881         struct thread *td;
  882         void *wchan;
  883         int wakeup_swapper;
  884 
  885         td = arg;
  886         wakeup_swapper = 0;
  887         CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
  888             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
  889 
  890         /*
  891          * First, see if the thread is asleep and get the wait channel if
  892          * it is.
  893          */
  894         thread_lock(td);
  895         if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
  896                 wchan = td->td_wchan;
  897                 sc = SC_LOOKUP(wchan);
  898                 THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
  899                 sq = sleepq_lookup(wchan);
  900                 MPASS(sq != NULL);
  901                 td->td_flags |= TDF_TIMEOUT;
  902                 wakeup_swapper = sleepq_resume_thread(sq, td, 0);
  903                 thread_unlock(td);
  904                 if (wakeup_swapper)
  905                         kick_proc0();
  906                 return;
  907         }
  908 
  909         /*
  910          * If the thread is on the SLEEPQ but isn't sleeping yet, it
  911          * can either be on another CPU in between sleepq_add() and
  912          * one of the sleepq_*wait*() routines or it can be in
  913          * sleepq_catch_signals().
  914          */
  915         if (TD_ON_SLEEPQ(td)) {
  916                 td->td_flags |= TDF_TIMEOUT;
  917                 thread_unlock(td);
  918                 return;
  919         }
  920 
  921         /*
  922          * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
  923          * then the other thread has already yielded to us, so clear
  924          * the flag and resume it.  If TDF_TIMEOUT is not set, then the
  925          * we know that the other thread is not on a sleep queue, but it
  926          * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
  927          * to let it know that the timeout has already run and doesn't
  928          * need to be canceled.
  929          */
  930         if (td->td_flags & TDF_TIMEOUT) {
  931                 MPASS(TD_IS_SLEEPING(td));
  932                 td->td_flags &= ~TDF_TIMEOUT;
  933                 TD_CLR_SLEEPING(td);
  934                 wakeup_swapper = setrunnable(td);
  935         } else
  936                 td->td_flags |= TDF_TIMOFAIL;
  937         thread_unlock(td);
  938         if (wakeup_swapper)
  939                 kick_proc0();
  940 }
  941 
  942 /*
  943  * Resumes a specific thread from the sleep queue associated with a specific
  944  * wait channel if it is on that queue.
  945  */
  946 void
  947 sleepq_remove(struct thread *td, void *wchan)
  948 {
  949         struct sleepqueue *sq;
  950         int wakeup_swapper;
  951 
  952         /*
  953          * Look up the sleep queue for this wait channel, then re-check
  954          * that the thread is asleep on that channel, if it is not, then
  955          * bail.
  956          */
  957         MPASS(wchan != NULL);
  958         sleepq_lock(wchan);
  959         sq = sleepq_lookup(wchan);
  960         /*
  961          * We can not lock the thread here as it may be sleeping on a
  962          * different sleepq.  However, holding the sleepq lock for this
  963          * wchan can guarantee that we do not miss a wakeup for this
  964          * channel.  The asserts below will catch any false positives.
  965          */
  966         if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
  967                 sleepq_release(wchan);
  968                 return;
  969         }
  970         /* Thread is asleep on sleep queue sq, so wake it up. */
  971         thread_lock(td);
  972         MPASS(sq != NULL);
  973         MPASS(td->td_wchan == wchan);
  974         wakeup_swapper = sleepq_resume_thread(sq, td, 0);
  975         thread_unlock(td);
  976         sleepq_release(wchan);
  977         if (wakeup_swapper)
  978                 kick_proc0();
  979 }
  980 
  981 /*
  982  * Abort a thread as if an interrupt had occurred.  Only abort
  983  * interruptible waits (unfortunately it isn't safe to abort others).
  984  */
  985 int
  986 sleepq_abort(struct thread *td, int intrval)
  987 {
  988         struct sleepqueue *sq;
  989         void *wchan;
  990 
  991         THREAD_LOCK_ASSERT(td, MA_OWNED);
  992         MPASS(TD_ON_SLEEPQ(td));
  993         MPASS(td->td_flags & TDF_SINTR);
  994         MPASS(intrval == EINTR || intrval == ERESTART);
  995 
  996         /*
  997          * If the TDF_TIMEOUT flag is set, just leave. A
  998          * timeout is scheduled anyhow.
  999          */
 1000         if (td->td_flags & TDF_TIMEOUT)
 1001                 return (0);
 1002 
 1003         CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
 1004             (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
 1005         td->td_intrval = intrval;
 1006         td->td_flags |= TDF_SLEEPABORT;
 1007         /*
 1008          * If the thread has not slept yet it will find the signal in
 1009          * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
 1010          * we have to do it here.
 1011          */
 1012         if (!TD_IS_SLEEPING(td))
 1013                 return (0);
 1014         wchan = td->td_wchan;
 1015         MPASS(wchan != NULL);
 1016         sq = sleepq_lookup(wchan);
 1017         MPASS(sq != NULL);
 1018 
 1019         /* Thread is asleep on sleep queue sq, so wake it up. */
 1020         return (sleepq_resume_thread(sq, td, 0));
 1021 }
 1022 
 1023 #ifdef SLEEPQUEUE_PROFILING
 1024 #define SLEEPQ_PROF_LOCATIONS   1024
 1025 #define SLEEPQ_SBUFSIZE         512
 1026 struct sleepq_prof {
 1027         LIST_ENTRY(sleepq_prof) sp_link;
 1028         const char      *sp_wmesg;
 1029         long            sp_count;
 1030 };
 1031 
 1032 LIST_HEAD(sqphead, sleepq_prof);
 1033 
 1034 struct sqphead sleepq_prof_free;
 1035 struct sqphead sleepq_hash[SC_TABLESIZE];
 1036 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
 1037 static struct mtx sleepq_prof_lock;
 1038 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
 1039 
 1040 static void
 1041 sleepq_profile(const char *wmesg)
 1042 {
 1043         struct sleepq_prof *sp;
 1044 
 1045         mtx_lock_spin(&sleepq_prof_lock);
 1046         if (prof_enabled == 0)
 1047                 goto unlock;
 1048         LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
 1049                 if (sp->sp_wmesg == wmesg)
 1050                         goto done;
 1051         sp = LIST_FIRST(&sleepq_prof_free);
 1052         if (sp == NULL)
 1053                 goto unlock;
 1054         sp->sp_wmesg = wmesg;
 1055         LIST_REMOVE(sp, sp_link);
 1056         LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
 1057 done:
 1058         sp->sp_count++;
 1059 unlock:
 1060         mtx_unlock_spin(&sleepq_prof_lock);
 1061         return;
 1062 }
 1063 
 1064 static void
 1065 sleepq_prof_reset(void)
 1066 {
 1067         struct sleepq_prof *sp;
 1068         int enabled;
 1069         int i;
 1070 
 1071         mtx_lock_spin(&sleepq_prof_lock);
 1072         enabled = prof_enabled;
 1073         prof_enabled = 0;
 1074         for (i = 0; i < SC_TABLESIZE; i++)
 1075                 LIST_INIT(&sleepq_hash[i]);
 1076         LIST_INIT(&sleepq_prof_free);
 1077         for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
 1078                 sp = &sleepq_profent[i];
 1079                 sp->sp_wmesg = NULL;
 1080                 sp->sp_count = 0;
 1081                 LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
 1082         }
 1083         prof_enabled = enabled;
 1084         mtx_unlock_spin(&sleepq_prof_lock);
 1085 }
 1086 
 1087 static int
 1088 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
 1089 {
 1090         int error, v;
 1091 
 1092         v = prof_enabled;
 1093         error = sysctl_handle_int(oidp, &v, v, req);
 1094         if (error)
 1095                 return (error);
 1096         if (req->newptr == NULL)
 1097                 return (error);
 1098         if (v == prof_enabled)
 1099                 return (0);
 1100         if (v == 1)
 1101                 sleepq_prof_reset();
 1102         mtx_lock_spin(&sleepq_prof_lock);
 1103         prof_enabled = !!v;
 1104         mtx_unlock_spin(&sleepq_prof_lock);
 1105 
 1106         return (0);
 1107 }
 1108 
 1109 static int
 1110 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
 1111 {
 1112         int error, v;
 1113 
 1114         v = 0;
 1115         error = sysctl_handle_int(oidp, &v, 0, req);
 1116         if (error)
 1117                 return (error);
 1118         if (req->newptr == NULL)
 1119                 return (error);
 1120         if (v == 0)
 1121                 return (0);
 1122         sleepq_prof_reset();
 1123 
 1124         return (0);
 1125 }
 1126 
 1127 static int
 1128 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
 1129 {
 1130         struct sleepq_prof *sp;
 1131         struct sbuf *sb;
 1132         int enabled;
 1133         int error;
 1134         int i;
 1135 
 1136         error = sysctl_wire_old_buffer(req, 0);
 1137         if (error != 0)
 1138                 return (error);
 1139         sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
 1140         sbuf_printf(sb, "\nwmesg\tcount\n");
 1141         enabled = prof_enabled;
 1142         mtx_lock_spin(&sleepq_prof_lock);
 1143         prof_enabled = 0;
 1144         mtx_unlock_spin(&sleepq_prof_lock);
 1145         for (i = 0; i < SC_TABLESIZE; i++) {
 1146                 LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
 1147                         sbuf_printf(sb, "%s\t%ld\n",
 1148                             sp->sp_wmesg, sp->sp_count);
 1149                 }
 1150         }
 1151         mtx_lock_spin(&sleepq_prof_lock);
 1152         prof_enabled = enabled;
 1153         mtx_unlock_spin(&sleepq_prof_lock);
 1154 
 1155         error = sbuf_finish(sb);
 1156         sbuf_delete(sb);
 1157         return (error);
 1158 }
 1159 
 1160 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
 1161     NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
 1162 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
 1163     NULL, 0, reset_sleepq_prof_stats, "I",
 1164     "Reset sleepqueue profiling statistics");
 1165 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
 1166     NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
 1167 #endif
 1168 
 1169 #ifdef DDB
 1170 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
 1171 {
 1172         struct sleepqueue_chain *sc;
 1173         struct sleepqueue *sq;
 1174 #ifdef INVARIANTS
 1175         struct lock_object *lock;
 1176 #endif
 1177         struct thread *td;
 1178         void *wchan;
 1179         int i;
 1180 
 1181         if (!have_addr)
 1182                 return;
 1183 
 1184         /*
 1185          * First, see if there is an active sleep queue for the wait channel
 1186          * indicated by the address.
 1187          */
 1188         wchan = (void *)addr;
 1189         sc = SC_LOOKUP(wchan);
 1190         LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
 1191                 if (sq->sq_wchan == wchan)
 1192                         goto found;
 1193 
 1194         /*
 1195          * Second, see if there is an active sleep queue at the address
 1196          * indicated.
 1197          */
 1198         for (i = 0; i < SC_TABLESIZE; i++)
 1199                 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
 1200                         if (sq == (struct sleepqueue *)addr)
 1201                                 goto found;
 1202                 }
 1203 
 1204         db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
 1205         return;
 1206 found:
 1207         db_printf("Wait channel: %p\n", sq->sq_wchan);
 1208         db_printf("Queue type: %d\n", sq->sq_type);
 1209 #ifdef INVARIANTS
 1210         if (sq->sq_lock) {
 1211                 lock = sq->sq_lock;
 1212                 db_printf("Associated Interlock: %p - (%s) %s\n", lock,
 1213                     LOCK_CLASS(lock)->lc_name, lock->lo_name);
 1214         }
 1215 #endif
 1216         db_printf("Blocked threads:\n");
 1217         for (i = 0; i < NR_SLEEPQS; i++) {
 1218                 db_printf("\nQueue[%d]:\n", i);
 1219                 if (TAILQ_EMPTY(&sq->sq_blocked[i]))
 1220                         db_printf("\tempty\n");
 1221                 else
 1222                         TAILQ_FOREACH(td, &sq->sq_blocked[i],
 1223                                       td_slpq) {
 1224                                 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
 1225                                           td->td_tid, td->td_proc->p_pid,
 1226                                           td->td_name);
 1227                         }
 1228                 db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
 1229         }
 1230 }
 1231 
 1232 /* Alias 'show sleepqueue' to 'show sleepq'. */
 1233 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
 1234 #endif

Cache object: f97a2d3a0dcd11dcb9ab03174db25a19


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.