The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_smp.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 /*
   29  * This module holds the global variables and machine independent functions
   30  * used for the kernel SMP support.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD$");
   35 
   36 #include <sys/param.h>
   37 #include <sys/systm.h>
   38 #include <sys/kernel.h>
   39 #include <sys/ktr.h>
   40 #include <sys/proc.h>
   41 #include <sys/bus.h>
   42 #include <sys/lock.h>
   43 #include <sys/malloc.h>
   44 #include <sys/mutex.h>
   45 #include <sys/pcpu.h>
   46 #include <sys/sched.h>
   47 #include <sys/smp.h>
   48 #include <sys/sysctl.h>
   49 
   50 #include <machine/cpu.h>
   51 #include <machine/smp.h>
   52 
   53 #include "opt_sched.h"
   54 
   55 #ifdef SMP
   56 MALLOC_DEFINE(M_TOPO, "toponodes", "SMP topology data");
   57 
   58 volatile cpuset_t stopped_cpus;
   59 volatile cpuset_t started_cpus;
   60 volatile cpuset_t suspended_cpus;
   61 cpuset_t hlt_cpus_mask;
   62 cpuset_t logical_cpus_mask;
   63 
   64 void (*cpustop_restartfunc)(void);
   65 #endif
   66 
   67 static int sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS);
   68 
   69 /* This is used in modules that need to work in both SMP and UP. */
   70 cpuset_t all_cpus;
   71 
   72 int mp_ncpus;
   73 /* export this for libkvm consumers. */
   74 int mp_maxcpus = MAXCPU;
   75 
   76 volatile int smp_started;
   77 u_int mp_maxid;
   78 
   79 static SYSCTL_NODE(_kern, OID_AUTO, smp,
   80     CTLFLAG_RD | CTLFLAG_CAPRD | CTLFLAG_MPSAFE, NULL,
   81     "Kernel SMP");
   82 
   83 SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxid, 0,
   84     "Max CPU ID.");
   85 
   86 SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxcpus,
   87     0, "Max number of CPUs that the system was compiled for.");
   88 
   89 SYSCTL_PROC(_kern_smp, OID_AUTO, active, CTLFLAG_RD|CTLTYPE_INT|CTLFLAG_MPSAFE,
   90     NULL, 0, sysctl_kern_smp_active, "I",
   91     "Indicates system is running in SMP mode");
   92 
   93 int smp_disabled = 0;   /* has smp been disabled? */
   94 SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN|CTLFLAG_CAPRD,
   95     &smp_disabled, 0, "SMP has been disabled from the loader");
   96 
   97 int smp_cpus = 1;       /* how many cpu's running */
   98 SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD|CTLFLAG_CAPRD, &smp_cpus, 0,
   99     "Number of CPUs online");
  100 
  101 int smp_threads_per_core = 1;   /* how many SMT threads are running per core */
  102 SYSCTL_INT(_kern_smp, OID_AUTO, threads_per_core, CTLFLAG_RD|CTLFLAG_CAPRD,
  103     &smp_threads_per_core, 0, "Number of SMT threads online per core");
  104 
  105 int mp_ncores = -1;     /* how many physical cores running */
  106 SYSCTL_INT(_kern_smp, OID_AUTO, cores, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_ncores, 0,
  107     "Number of physical cores online");
  108 
  109 int smp_topology = 0;   /* Which topology we're using. */
  110 SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RDTUN, &smp_topology, 0,
  111     "Topology override setting; 0 is default provided by hardware.");
  112 
  113 #ifdef SMP
  114 /* Enable forwarding of a signal to a process running on a different CPU */
  115 static int forward_signal_enabled = 1;
  116 SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
  117            &forward_signal_enabled, 0,
  118            "Forwarding of a signal to a process on a different CPU");
  119 
  120 /* Variables needed for SMP rendezvous. */
  121 static volatile int smp_rv_ncpus;
  122 static void (*volatile smp_rv_setup_func)(void *arg);
  123 static void (*volatile smp_rv_action_func)(void *arg);
  124 static void (*volatile smp_rv_teardown_func)(void *arg);
  125 static void *volatile smp_rv_func_arg;
  126 static volatile int smp_rv_waiters[4];
  127 
  128 /* 
  129  * Shared mutex to restrict busywaits between smp_rendezvous() and
  130  * smp(_targeted)_tlb_shootdown().  A deadlock occurs if both of these
  131  * functions trigger at once and cause multiple CPUs to busywait with
  132  * interrupts disabled. 
  133  */
  134 struct mtx smp_ipi_mtx;
  135 
  136 /*
  137  * Let the MD SMP code initialize mp_maxid very early if it can.
  138  */
  139 static void
  140 mp_setmaxid(void *dummy)
  141 {
  142 
  143         cpu_mp_setmaxid();
  144 
  145         KASSERT(mp_ncpus >= 1, ("%s: CPU count < 1", __func__));
  146         KASSERT(mp_ncpus > 1 || mp_maxid == 0,
  147             ("%s: one CPU but mp_maxid is not zero", __func__));
  148         KASSERT(mp_maxid >= mp_ncpus - 1,
  149             ("%s: counters out of sync: max %d, count %d", __func__,
  150                 mp_maxid, mp_ncpus));
  151 }
  152 SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL);
  153 
  154 /*
  155  * Call the MD SMP initialization code.
  156  */
  157 static void
  158 mp_start(void *dummy)
  159 {
  160 
  161         mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN);
  162 
  163         /* Probe for MP hardware. */
  164         if (smp_disabled != 0 || cpu_mp_probe() == 0) {
  165                 mp_ncores = 1;
  166                 mp_ncpus = 1;
  167                 CPU_SETOF(PCPU_GET(cpuid), &all_cpus);
  168                 return;
  169         }
  170 
  171         cpu_mp_start();
  172         printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n",
  173             mp_ncpus);
  174 
  175         /* Provide a default for most architectures that don't have SMT/HTT. */
  176         if (mp_ncores < 0)
  177                 mp_ncores = mp_ncpus;
  178 
  179         cpu_mp_announce();
  180 }
  181 SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL);
  182 
  183 void
  184 forward_signal(struct thread *td)
  185 {
  186         int id;
  187 
  188         /*
  189          * signotify() has already set TDF_ASTPENDING and TDF_NEEDSIGCHECK on
  190          * this thread, so all we need to do is poke it if it is currently
  191          * executing so that it executes ast().
  192          */
  193         THREAD_LOCK_ASSERT(td, MA_OWNED);
  194         KASSERT(TD_IS_RUNNING(td),
  195             ("forward_signal: thread is not TDS_RUNNING"));
  196 
  197         CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc);
  198 
  199         if (!smp_started || cold || KERNEL_PANICKED())
  200                 return;
  201         if (!forward_signal_enabled)
  202                 return;
  203 
  204         /* No need to IPI ourself. */
  205         if (td == curthread)
  206                 return;
  207 
  208         id = td->td_oncpu;
  209         if (id == NOCPU)
  210                 return;
  211         ipi_cpu(id, IPI_AST);
  212 }
  213 
  214 /*
  215  * When called the executing CPU will send an IPI to all other CPUs
  216  *  requesting that they halt execution.
  217  *
  218  * Usually (but not necessarily) called with 'other_cpus' as its arg.
  219  *
  220  *  - Signals all CPUs in map to stop.
  221  *  - Waits for each to stop.
  222  *
  223  * Returns:
  224  *  -1: error
  225  *   0: NA
  226  *   1: ok
  227  *
  228  */
  229 #if defined(__amd64__) || defined(__i386__)
  230 #define X86     1
  231 #else
  232 #define X86     0
  233 #endif
  234 static int
  235 generic_stop_cpus(cpuset_t map, u_int type)
  236 {
  237 #ifdef KTR
  238         char cpusetbuf[CPUSETBUFSIZ];
  239 #endif
  240         static volatile u_int stopping_cpu = NOCPU;
  241         int i;
  242         volatile cpuset_t *cpus;
  243 
  244         KASSERT(
  245             type == IPI_STOP || type == IPI_STOP_HARD
  246 #if X86
  247             || type == IPI_SUSPEND
  248 #endif
  249             , ("%s: invalid stop type", __func__));
  250 
  251         if (!smp_started)
  252                 return (0);
  253 
  254         CTR2(KTR_SMP, "stop_cpus(%s) with %u type",
  255             cpusetobj_strprint(cpusetbuf, &map), type);
  256 
  257 #if X86
  258         /*
  259          * When suspending, ensure there are are no IPIs in progress.
  260          * IPIs that have been issued, but not yet delivered (e.g.
  261          * not pending on a vCPU when running under virtualization)
  262          * will be lost, violating FreeBSD's assumption of reliable
  263          * IPI delivery.
  264          */
  265         if (type == IPI_SUSPEND)
  266                 mtx_lock_spin(&smp_ipi_mtx);
  267 #endif
  268 
  269 #if X86
  270         if (!nmi_is_broadcast || nmi_kdb_lock == 0) {
  271 #endif
  272         if (stopping_cpu != PCPU_GET(cpuid))
  273                 while (atomic_cmpset_int(&stopping_cpu, NOCPU,
  274                     PCPU_GET(cpuid)) == 0)
  275                         while (stopping_cpu != NOCPU)
  276                                 cpu_spinwait(); /* spin */
  277 
  278         /* send the stop IPI to all CPUs in map */
  279         ipi_selected(map, type);
  280 #if X86
  281         }
  282 #endif
  283 
  284 #if X86
  285         if (type == IPI_SUSPEND)
  286                 cpus = &suspended_cpus;
  287         else
  288 #endif
  289                 cpus = &stopped_cpus;
  290 
  291         i = 0;
  292         while (!CPU_SUBSET(cpus, &map)) {
  293                 /* spin */
  294                 cpu_spinwait();
  295                 i++;
  296                 if (i == 100000000) {
  297                         printf("timeout stopping cpus\n");
  298                         break;
  299                 }
  300         }
  301 
  302 #if X86
  303         if (type == IPI_SUSPEND)
  304                 mtx_unlock_spin(&smp_ipi_mtx);
  305 #endif
  306 
  307         stopping_cpu = NOCPU;
  308         return (1);
  309 }
  310 
  311 int
  312 stop_cpus(cpuset_t map)
  313 {
  314 
  315         return (generic_stop_cpus(map, IPI_STOP));
  316 }
  317 
  318 int
  319 stop_cpus_hard(cpuset_t map)
  320 {
  321 
  322         return (generic_stop_cpus(map, IPI_STOP_HARD));
  323 }
  324 
  325 #if X86
  326 int
  327 suspend_cpus(cpuset_t map)
  328 {
  329 
  330         return (generic_stop_cpus(map, IPI_SUSPEND));
  331 }
  332 #endif
  333 
  334 /*
  335  * Called by a CPU to restart stopped CPUs. 
  336  *
  337  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
  338  *
  339  *  - Signals all CPUs in map to restart.
  340  *  - Waits for each to restart.
  341  *
  342  * Returns:
  343  *  -1: error
  344  *   0: NA
  345  *   1: ok
  346  */
  347 static int
  348 generic_restart_cpus(cpuset_t map, u_int type)
  349 {
  350 #ifdef KTR
  351         char cpusetbuf[CPUSETBUFSIZ];
  352 #endif
  353         volatile cpuset_t *cpus;
  354 
  355 #if X86
  356         KASSERT(type == IPI_STOP || type == IPI_STOP_HARD
  357             || type == IPI_SUSPEND, ("%s: invalid stop type", __func__));
  358 
  359         if (!smp_started)
  360                 return (0);
  361 
  362         CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
  363 
  364         if (type == IPI_SUSPEND)
  365                 cpus = &resuming_cpus;
  366         else
  367                 cpus = &stopped_cpus;
  368 
  369         /* signal other cpus to restart */
  370         if (type == IPI_SUSPEND)
  371                 CPU_COPY_STORE_REL(&map, &toresume_cpus);
  372         else
  373                 CPU_COPY_STORE_REL(&map, &started_cpus);
  374 
  375         /*
  376          * Wake up any CPUs stopped with MWAIT.  From MI code we can't tell if
  377          * MONITOR/MWAIT is enabled, but the potentially redundant writes are
  378          * relatively inexpensive.
  379          */
  380         if (type == IPI_STOP) {
  381                 struct monitorbuf *mb;
  382                 u_int id;
  383 
  384                 CPU_FOREACH(id) {
  385                         if (!CPU_ISSET(id, &map))
  386                                 continue;
  387 
  388                         mb = &pcpu_find(id)->pc_monitorbuf;
  389                         atomic_store_int(&mb->stop_state,
  390                             MONITOR_STOPSTATE_RUNNING);
  391                 }
  392         }
  393 
  394         if (!nmi_is_broadcast || nmi_kdb_lock == 0) {
  395                 /* wait for each to clear its bit */
  396                 while (CPU_OVERLAP(cpus, &map))
  397                         cpu_spinwait();
  398         }
  399 #else /* !X86 */
  400         KASSERT(type == IPI_STOP || type == IPI_STOP_HARD,
  401             ("%s: invalid stop type", __func__));
  402 
  403         if (!smp_started)
  404                 return (0);
  405 
  406         CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
  407 
  408         cpus = &stopped_cpus;
  409 
  410         /* signal other cpus to restart */
  411         CPU_COPY_STORE_REL(&map, &started_cpus);
  412 
  413         /* wait for each to clear its bit */
  414         while (CPU_OVERLAP(cpus, &map))
  415                 cpu_spinwait();
  416 #endif
  417         return (1);
  418 }
  419 
  420 int
  421 restart_cpus(cpuset_t map)
  422 {
  423 
  424         return (generic_restart_cpus(map, IPI_STOP));
  425 }
  426 
  427 #if X86
  428 int
  429 resume_cpus(cpuset_t map)
  430 {
  431 
  432         return (generic_restart_cpus(map, IPI_SUSPEND));
  433 }
  434 #endif
  435 #undef X86
  436 
  437 /*
  438  * All-CPU rendezvous.  CPUs are signalled, all execute the setup function 
  439  * (if specified), rendezvous, execute the action function (if specified),
  440  * rendezvous again, execute the teardown function (if specified), and then
  441  * resume.
  442  *
  443  * Note that the supplied external functions _must_ be reentrant and aware
  444  * that they are running in parallel and in an unknown lock context.
  445  */
  446 void
  447 smp_rendezvous_action(void)
  448 {
  449         struct thread *td;
  450         void *local_func_arg;
  451         void (*local_setup_func)(void*);
  452         void (*local_action_func)(void*);
  453         void (*local_teardown_func)(void*);
  454 #ifdef INVARIANTS
  455         int owepreempt;
  456 #endif
  457 
  458         /* Ensure we have up-to-date values. */
  459         atomic_add_acq_int(&smp_rv_waiters[0], 1);
  460         while (smp_rv_waiters[0] < smp_rv_ncpus)
  461                 cpu_spinwait();
  462 
  463         /* Fetch rendezvous parameters after acquire barrier. */
  464         local_func_arg = smp_rv_func_arg;
  465         local_setup_func = smp_rv_setup_func;
  466         local_action_func = smp_rv_action_func;
  467         local_teardown_func = smp_rv_teardown_func;
  468 
  469         /*
  470          * Use a nested critical section to prevent any preemptions
  471          * from occurring during a rendezvous action routine.
  472          * Specifically, if a rendezvous handler is invoked via an IPI
  473          * and the interrupted thread was in the critical_exit()
  474          * function after setting td_critnest to 0 but before
  475          * performing a deferred preemption, this routine can be
  476          * invoked with td_critnest set to 0 and td_owepreempt true.
  477          * In that case, a critical_exit() during the rendezvous
  478          * action would trigger a preemption which is not permitted in
  479          * a rendezvous action.  To fix this, wrap all of the
  480          * rendezvous action handlers in a critical section.  We
  481          * cannot use a regular critical section however as having
  482          * critical_exit() preempt from this routine would also be
  483          * problematic (the preemption must not occur before the IPI
  484          * has been acknowledged via an EOI).  Instead, we
  485          * intentionally ignore td_owepreempt when leaving the
  486          * critical section.  This should be harmless because we do
  487          * not permit rendezvous action routines to schedule threads,
  488          * and thus td_owepreempt should never transition from 0 to 1
  489          * during this routine.
  490          */
  491         td = curthread;
  492         td->td_critnest++;
  493 #ifdef INVARIANTS
  494         owepreempt = td->td_owepreempt;
  495 #endif
  496 
  497         /*
  498          * If requested, run a setup function before the main action
  499          * function.  Ensure all CPUs have completed the setup
  500          * function before moving on to the action function.
  501          */
  502         if (local_setup_func != smp_no_rendezvous_barrier) {
  503                 if (smp_rv_setup_func != NULL)
  504                         smp_rv_setup_func(smp_rv_func_arg);
  505                 atomic_add_int(&smp_rv_waiters[1], 1);
  506                 while (smp_rv_waiters[1] < smp_rv_ncpus)
  507                         cpu_spinwait();
  508         }
  509 
  510         if (local_action_func != NULL)
  511                 local_action_func(local_func_arg);
  512 
  513         if (local_teardown_func != smp_no_rendezvous_barrier) {
  514                 /*
  515                  * Signal that the main action has been completed.  If a
  516                  * full exit rendezvous is requested, then all CPUs will
  517                  * wait here until all CPUs have finished the main action.
  518                  */
  519                 atomic_add_int(&smp_rv_waiters[2], 1);
  520                 while (smp_rv_waiters[2] < smp_rv_ncpus)
  521                         cpu_spinwait();
  522 
  523                 if (local_teardown_func != NULL)
  524                         local_teardown_func(local_func_arg);
  525         }
  526 
  527         /*
  528          * Signal that the rendezvous is fully completed by this CPU.
  529          * This means that no member of smp_rv_* pseudo-structure will be
  530          * accessed by this target CPU after this point; in particular,
  531          * memory pointed by smp_rv_func_arg.
  532          *
  533          * The release semantic ensures that all accesses performed by
  534          * the current CPU are visible when smp_rendezvous_cpus()
  535          * returns, by synchronizing with the
  536          * atomic_load_acq_int(&smp_rv_waiters[3]).
  537          */
  538         atomic_add_rel_int(&smp_rv_waiters[3], 1);
  539 
  540         td->td_critnest--;
  541         KASSERT(owepreempt == td->td_owepreempt,
  542             ("rendezvous action changed td_owepreempt"));
  543 }
  544 
  545 void
  546 smp_rendezvous_cpus(cpuset_t map,
  547         void (* setup_func)(void *), 
  548         void (* action_func)(void *),
  549         void (* teardown_func)(void *),
  550         void *arg)
  551 {
  552         int curcpumap, i, ncpus = 0;
  553 
  554         /* See comments in the !SMP case. */
  555         if (!smp_started) {
  556                 spinlock_enter();
  557                 if (setup_func != NULL)
  558                         setup_func(arg);
  559                 if (action_func != NULL)
  560                         action_func(arg);
  561                 if (teardown_func != NULL)
  562                         teardown_func(arg);
  563                 spinlock_exit();
  564                 return;
  565         }
  566 
  567         /*
  568          * Make sure we come here with interrupts enabled.  Otherwise we
  569          * livelock if smp_ipi_mtx is owned by a thread which sent us an IPI.
  570          */
  571         MPASS(curthread->td_md.md_spinlock_count == 0);
  572 
  573         CPU_FOREACH(i) {
  574                 if (CPU_ISSET(i, &map))
  575                         ncpus++;
  576         }
  577         if (ncpus == 0)
  578                 panic("ncpus is 0 with non-zero map");
  579 
  580         mtx_lock_spin(&smp_ipi_mtx);
  581 
  582         /* Pass rendezvous parameters via global variables. */
  583         smp_rv_ncpus = ncpus;
  584         smp_rv_setup_func = setup_func;
  585         smp_rv_action_func = action_func;
  586         smp_rv_teardown_func = teardown_func;
  587         smp_rv_func_arg = arg;
  588         smp_rv_waiters[1] = 0;
  589         smp_rv_waiters[2] = 0;
  590         smp_rv_waiters[3] = 0;
  591         atomic_store_rel_int(&smp_rv_waiters[0], 0);
  592 
  593         /*
  594          * Signal other processors, which will enter the IPI with
  595          * interrupts off.
  596          */
  597         curcpumap = CPU_ISSET(curcpu, &map);
  598         CPU_CLR(curcpu, &map);
  599         ipi_selected(map, IPI_RENDEZVOUS);
  600 
  601         /* Check if the current CPU is in the map */
  602         if (curcpumap != 0)
  603                 smp_rendezvous_action();
  604 
  605         /*
  606          * Ensure that the master CPU waits for all the other
  607          * CPUs to finish the rendezvous, so that smp_rv_*
  608          * pseudo-structure and the arg are guaranteed to not
  609          * be in use.
  610          *
  611          * Load acquire synchronizes with the release add in
  612          * smp_rendezvous_action(), which ensures that our caller sees
  613          * all memory actions done by the called functions on other
  614          * CPUs.
  615          */
  616         while (atomic_load_acq_int(&smp_rv_waiters[3]) < ncpus)
  617                 cpu_spinwait();
  618 
  619         mtx_unlock_spin(&smp_ipi_mtx);
  620 }
  621 
  622 void
  623 smp_rendezvous(void (* setup_func)(void *), 
  624                void (* action_func)(void *),
  625                void (* teardown_func)(void *),
  626                void *arg)
  627 {
  628         smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg);
  629 }
  630 
  631 static struct cpu_group group[MAXCPU * MAX_CACHE_LEVELS + 1];
  632 
  633 struct cpu_group *
  634 smp_topo(void)
  635 {
  636         char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
  637         struct cpu_group *top;
  638 
  639         /*
  640          * Check for a fake topology request for debugging purposes.
  641          */
  642         switch (smp_topology) {
  643         case 1:
  644                 /* Dual core with no sharing.  */
  645                 top = smp_topo_1level(CG_SHARE_NONE, 2, 0);
  646                 break;
  647         case 2:
  648                 /* No topology, all cpus are equal. */
  649                 top = smp_topo_none();
  650                 break;
  651         case 3:
  652                 /* Dual core with shared L2.  */
  653                 top = smp_topo_1level(CG_SHARE_L2, 2, 0);
  654                 break;
  655         case 4:
  656                 /* quad core, shared l3 among each package, private l2.  */
  657                 top = smp_topo_1level(CG_SHARE_L3, 4, 0);
  658                 break;
  659         case 5:
  660                 /* quad core,  2 dualcore parts on each package share l2.  */
  661                 top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0);
  662                 break;
  663         case 6:
  664                 /* Single-core 2xHTT */
  665                 top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT);
  666                 break;
  667         case 7:
  668                 /* quad core with a shared l3, 8 threads sharing L2.  */
  669                 top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8,
  670                     CG_FLAG_SMT);
  671                 break;
  672         default:
  673                 /* Default, ask the system what it wants. */
  674                 top = cpu_topo();
  675                 break;
  676         }
  677         /*
  678          * Verify the returned topology.
  679          */
  680         if (top->cg_count != mp_ncpus)
  681                 panic("Built bad topology at %p.  CPU count %d != %d",
  682                     top, top->cg_count, mp_ncpus);
  683         if (CPU_CMP(&top->cg_mask, &all_cpus))
  684                 panic("Built bad topology at %p.  CPU mask (%s) != (%s)",
  685                     top, cpusetobj_strprint(cpusetbuf, &top->cg_mask),
  686                     cpusetobj_strprint(cpusetbuf2, &all_cpus));
  687 
  688         /*
  689          * Collapse nonsense levels that may be created out of convenience by
  690          * the MD layers.  They cause extra work in the search functions.
  691          */
  692         while (top->cg_children == 1) {
  693                 top = &top->cg_child[0];
  694                 top->cg_parent = NULL;
  695         }
  696         return (top);
  697 }
  698 
  699 struct cpu_group *
  700 smp_topo_alloc(u_int count)
  701 {
  702         static u_int index;
  703         u_int curr;
  704 
  705         curr = index;
  706         index += count;
  707         return (&group[curr]);
  708 }
  709 
  710 struct cpu_group *
  711 smp_topo_none(void)
  712 {
  713         struct cpu_group *top;
  714 
  715         top = &group[0];
  716         top->cg_parent = NULL;
  717         top->cg_child = NULL;
  718         top->cg_mask = all_cpus;
  719         top->cg_count = mp_ncpus;
  720         top->cg_children = 0;
  721         top->cg_level = CG_SHARE_NONE;
  722         top->cg_flags = 0;
  723 
  724         return (top);
  725 }
  726 
  727 static int
  728 smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share,
  729     int count, int flags, int start)
  730 {
  731         char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
  732         cpuset_t mask;
  733         int i;
  734 
  735         CPU_ZERO(&mask);
  736         for (i = 0; i < count; i++, start++)
  737                 CPU_SET(start, &mask);
  738         child->cg_parent = parent;
  739         child->cg_child = NULL;
  740         child->cg_children = 0;
  741         child->cg_level = share;
  742         child->cg_count = count;
  743         child->cg_flags = flags;
  744         child->cg_mask = mask;
  745         parent->cg_children++;
  746         for (; parent != NULL; parent = parent->cg_parent) {
  747                 if (CPU_OVERLAP(&parent->cg_mask, &child->cg_mask))
  748                         panic("Duplicate children in %p.  mask (%s) child (%s)",
  749                             parent,
  750                             cpusetobj_strprint(cpusetbuf, &parent->cg_mask),
  751                             cpusetobj_strprint(cpusetbuf2, &child->cg_mask));
  752                 CPU_OR(&parent->cg_mask, &child->cg_mask);
  753                 parent->cg_count += child->cg_count;
  754         }
  755 
  756         return (start);
  757 }
  758 
  759 struct cpu_group *
  760 smp_topo_1level(int share, int count, int flags)
  761 {
  762         struct cpu_group *child;
  763         struct cpu_group *top;
  764         int packages;
  765         int cpu;
  766         int i;
  767 
  768         cpu = 0;
  769         top = &group[0];
  770         packages = mp_ncpus / count;
  771         top->cg_child = child = &group[1];
  772         top->cg_level = CG_SHARE_NONE;
  773         for (i = 0; i < packages; i++, child++)
  774                 cpu = smp_topo_addleaf(top, child, share, count, flags, cpu);
  775         return (top);
  776 }
  777 
  778 struct cpu_group *
  779 smp_topo_2level(int l2share, int l2count, int l1share, int l1count,
  780     int l1flags)
  781 {
  782         struct cpu_group *top;
  783         struct cpu_group *l1g;
  784         struct cpu_group *l2g;
  785         int cpu;
  786         int i;
  787         int j;
  788 
  789         cpu = 0;
  790         top = &group[0];
  791         l2g = &group[1];
  792         top->cg_child = l2g;
  793         top->cg_level = CG_SHARE_NONE;
  794         top->cg_children = mp_ncpus / (l2count * l1count);
  795         l1g = l2g + top->cg_children;
  796         for (i = 0; i < top->cg_children; i++, l2g++) {
  797                 l2g->cg_parent = top;
  798                 l2g->cg_child = l1g;
  799                 l2g->cg_level = l2share;
  800                 for (j = 0; j < l2count; j++, l1g++)
  801                         cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count,
  802                             l1flags, cpu);
  803         }
  804         return (top);
  805 }
  806 
  807 struct cpu_group *
  808 smp_topo_find(struct cpu_group *top, int cpu)
  809 {
  810         struct cpu_group *cg;
  811         cpuset_t mask;
  812         int children;
  813         int i;
  814 
  815         CPU_SETOF(cpu, &mask);
  816         cg = top;
  817         for (;;) {
  818                 if (!CPU_OVERLAP(&cg->cg_mask, &mask))
  819                         return (NULL);
  820                 if (cg->cg_children == 0)
  821                         return (cg);
  822                 children = cg->cg_children;
  823                 for (i = 0, cg = cg->cg_child; i < children; cg++, i++)
  824                         if (CPU_OVERLAP(&cg->cg_mask, &mask))
  825                                 break;
  826         }
  827         return (NULL);
  828 }
  829 #else /* !SMP */
  830 
  831 void
  832 smp_rendezvous_cpus(cpuset_t map,
  833         void (*setup_func)(void *), 
  834         void (*action_func)(void *),
  835         void (*teardown_func)(void *),
  836         void *arg)
  837 {
  838         /*
  839          * In the !SMP case we just need to ensure the same initial conditions
  840          * as the SMP case.
  841          */
  842         spinlock_enter();
  843         if (setup_func != NULL)
  844                 setup_func(arg);
  845         if (action_func != NULL)
  846                 action_func(arg);
  847         if (teardown_func != NULL)
  848                 teardown_func(arg);
  849         spinlock_exit();
  850 }
  851 
  852 void
  853 smp_rendezvous(void (*setup_func)(void *), 
  854                void (*action_func)(void *),
  855                void (*teardown_func)(void *),
  856                void *arg)
  857 {
  858 
  859         smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func,
  860             arg);
  861 }
  862 
  863 /*
  864  * Provide dummy SMP support for UP kernels.  Modules that need to use SMP
  865  * APIs will still work using this dummy support.
  866  */
  867 static void
  868 mp_setvariables_for_up(void *dummy)
  869 {
  870         mp_ncpus = 1;
  871         mp_ncores = 1;
  872         mp_maxid = PCPU_GET(cpuid);
  873         CPU_SETOF(mp_maxid, &all_cpus);
  874         KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero"));
  875 }
  876 SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST,
  877     mp_setvariables_for_up, NULL);
  878 #endif /* SMP */
  879 
  880 void
  881 smp_no_rendezvous_barrier(void *dummy)
  882 {
  883 #ifdef SMP
  884         KASSERT((!smp_started),("smp_no_rendezvous called and smp is started"));
  885 #endif
  886 }
  887 
  888 void
  889 smp_rendezvous_cpus_retry(cpuset_t map,
  890         void (* setup_func)(void *),
  891         void (* action_func)(void *),
  892         void (* teardown_func)(void *),
  893         void (* wait_func)(void *, int),
  894         struct smp_rendezvous_cpus_retry_arg *arg)
  895 {
  896         int cpu;
  897 
  898         /*
  899          * Only one CPU to execute on.
  900          */
  901         if (!smp_started) {
  902                 spinlock_enter();
  903                 if (setup_func != NULL)
  904                         setup_func(arg);
  905                 if (action_func != NULL)
  906                         action_func(arg);
  907                 if (teardown_func != NULL)
  908                         teardown_func(arg);
  909                 spinlock_exit();
  910                 return;
  911         }
  912 
  913         /*
  914          * Execute an action on all specified CPUs while retrying until they
  915          * all acknowledge completion.
  916          */
  917         CPU_COPY(&map, &arg->cpus);
  918         for (;;) {
  919                 smp_rendezvous_cpus(
  920                     arg->cpus,
  921                     setup_func,
  922                     action_func,
  923                     teardown_func,
  924                     arg);
  925 
  926                 if (CPU_EMPTY(&arg->cpus))
  927                         break;
  928 
  929                 CPU_FOREACH(cpu) {
  930                         if (!CPU_ISSET(cpu, &arg->cpus))
  931                                 continue;
  932                         wait_func(arg, cpu);
  933                 }
  934         }
  935 }
  936 
  937 void
  938 smp_rendezvous_cpus_done(struct smp_rendezvous_cpus_retry_arg *arg)
  939 {
  940 
  941         CPU_CLR_ATOMIC(curcpu, &arg->cpus);
  942 }
  943 
  944 /*
  945  * Wait for specified idle threads to switch once.  This ensures that even
  946  * preempted threads have cycled through the switch function once,
  947  * exiting their codepaths.  This allows us to change global pointers
  948  * with no other synchronization.
  949  */
  950 int
  951 quiesce_cpus(cpuset_t map, const char *wmesg, int prio)
  952 {
  953         struct pcpu *pcpu;
  954         u_int gen[MAXCPU];
  955         int error;
  956         int cpu;
  957 
  958         error = 0;
  959         for (cpu = 0; cpu <= mp_maxid; cpu++) {
  960                 if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
  961                         continue;
  962                 pcpu = pcpu_find(cpu);
  963                 gen[cpu] = pcpu->pc_idlethread->td_generation;
  964         }
  965         for (cpu = 0; cpu <= mp_maxid; cpu++) {
  966                 if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
  967                         continue;
  968                 pcpu = pcpu_find(cpu);
  969                 thread_lock(curthread);
  970                 sched_bind(curthread, cpu);
  971                 thread_unlock(curthread);
  972                 while (gen[cpu] == pcpu->pc_idlethread->td_generation) {
  973                         error = tsleep(quiesce_cpus, prio, wmesg, 1);
  974                         if (error != EWOULDBLOCK)
  975                                 goto out;
  976                         error = 0;
  977                 }
  978         }
  979 out:
  980         thread_lock(curthread);
  981         sched_unbind(curthread);
  982         thread_unlock(curthread);
  983 
  984         return (error);
  985 }
  986 
  987 int
  988 quiesce_all_cpus(const char *wmesg, int prio)
  989 {
  990 
  991         return quiesce_cpus(all_cpus, wmesg, prio);
  992 }
  993 
  994 /*
  995  * Observe all CPUs not executing in critical section.
  996  * We are not in one so the check for us is safe. If the found
  997  * thread changes to something else we know the section was
  998  * exited as well.
  999  */
 1000 void
 1001 quiesce_all_critical(void)
 1002 {
 1003         struct thread *td, *newtd;
 1004         struct pcpu *pcpu;
 1005         int cpu;
 1006 
 1007         MPASS(curthread->td_critnest == 0);
 1008 
 1009         CPU_FOREACH(cpu) {
 1010                 pcpu = cpuid_to_pcpu[cpu];
 1011                 td = pcpu->pc_curthread;
 1012                 for (;;) {
 1013                         if (td->td_critnest == 0)
 1014                                 break;
 1015                         cpu_spinwait();
 1016                         newtd = (struct thread *)
 1017                             atomic_load_acq_ptr((void *)pcpu->pc_curthread);
 1018                         if (td != newtd)
 1019                                 break;
 1020                 }
 1021         }
 1022 }
 1023 
 1024 static void
 1025 cpus_fence_seq_cst_issue(void *arg __unused)
 1026 {
 1027 
 1028         atomic_thread_fence_seq_cst();
 1029 }
 1030 
 1031 /*
 1032  * Send an IPI forcing a sequentially consistent fence.
 1033  *
 1034  * Allows replacement of an explicitly fence with a compiler barrier.
 1035  * Trades speed up during normal execution for a significant slowdown when
 1036  * the barrier is needed.
 1037  */
 1038 void
 1039 cpus_fence_seq_cst(void)
 1040 {
 1041 
 1042 #ifdef SMP
 1043         smp_rendezvous(
 1044             smp_no_rendezvous_barrier,
 1045             cpus_fence_seq_cst_issue,
 1046             smp_no_rendezvous_barrier,
 1047             NULL
 1048         );
 1049 #else
 1050         cpus_fence_seq_cst_issue(NULL);
 1051 #endif
 1052 }
 1053 
 1054 /* Extra care is taken with this sysctl because the data type is volatile */
 1055 static int
 1056 sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS)
 1057 {
 1058         int error, active;
 1059 
 1060         active = smp_started;
 1061         error = SYSCTL_OUT(req, &active, sizeof(active));
 1062         return (error);
 1063 }
 1064 
 1065 #ifdef SMP
 1066 void
 1067 topo_init_node(struct topo_node *node)
 1068 {
 1069 
 1070         bzero(node, sizeof(*node));
 1071         TAILQ_INIT(&node->children);
 1072 }
 1073 
 1074 void
 1075 topo_init_root(struct topo_node *root)
 1076 {
 1077 
 1078         topo_init_node(root);
 1079         root->type = TOPO_TYPE_SYSTEM;
 1080 }
 1081 
 1082 /*
 1083  * Add a child node with the given ID under the given parent.
 1084  * Do nothing if there is already a child with that ID.
 1085  */
 1086 struct topo_node *
 1087 topo_add_node_by_hwid(struct topo_node *parent, int hwid,
 1088     topo_node_type type, uintptr_t subtype)
 1089 {
 1090         struct topo_node *node;
 1091 
 1092         TAILQ_FOREACH_REVERSE(node, &parent->children,
 1093             topo_children, siblings) {
 1094                 if (node->hwid == hwid
 1095                     && node->type == type && node->subtype == subtype) {
 1096                         return (node);
 1097                 }
 1098         }
 1099 
 1100         node = malloc(sizeof(*node), M_TOPO, M_WAITOK);
 1101         topo_init_node(node);
 1102         node->parent = parent;
 1103         node->hwid = hwid;
 1104         node->type = type;
 1105         node->subtype = subtype;
 1106         TAILQ_INSERT_TAIL(&parent->children, node, siblings);
 1107         parent->nchildren++;
 1108 
 1109         return (node);
 1110 }
 1111 
 1112 /*
 1113  * Find a child node with the given ID under the given parent.
 1114  */
 1115 struct topo_node *
 1116 topo_find_node_by_hwid(struct topo_node *parent, int hwid,
 1117     topo_node_type type, uintptr_t subtype)
 1118 {
 1119 
 1120         struct topo_node *node;
 1121 
 1122         TAILQ_FOREACH(node, &parent->children, siblings) {
 1123                 if (node->hwid == hwid
 1124                     && node->type == type && node->subtype == subtype) {
 1125                         return (node);
 1126                 }
 1127         }
 1128 
 1129         return (NULL);
 1130 }
 1131 
 1132 /*
 1133  * Given a node change the order of its parent's child nodes such
 1134  * that the node becomes the firt child while preserving the cyclic
 1135  * order of the children.  In other words, the given node is promoted
 1136  * by rotation.
 1137  */
 1138 void
 1139 topo_promote_child(struct topo_node *child)
 1140 {
 1141         struct topo_node *next;
 1142         struct topo_node *node;
 1143         struct topo_node *parent;
 1144 
 1145         parent = child->parent;
 1146         next = TAILQ_NEXT(child, siblings);
 1147         TAILQ_REMOVE(&parent->children, child, siblings);
 1148         TAILQ_INSERT_HEAD(&parent->children, child, siblings);
 1149 
 1150         while (next != NULL) {
 1151                 node = next;
 1152                 next = TAILQ_NEXT(node, siblings);
 1153                 TAILQ_REMOVE(&parent->children, node, siblings);
 1154                 TAILQ_INSERT_AFTER(&parent->children, child, node, siblings);
 1155                 child = node;
 1156         }
 1157 }
 1158 
 1159 /*
 1160  * Iterate to the next node in the depth-first search (traversal) of
 1161  * the topology tree.
 1162  */
 1163 struct topo_node *
 1164 topo_next_node(struct topo_node *top, struct topo_node *node)
 1165 {
 1166         struct topo_node *next;
 1167 
 1168         if ((next = TAILQ_FIRST(&node->children)) != NULL)
 1169                 return (next);
 1170 
 1171         if ((next = TAILQ_NEXT(node, siblings)) != NULL)
 1172                 return (next);
 1173 
 1174         while (node != top && (node = node->parent) != top)
 1175                 if ((next = TAILQ_NEXT(node, siblings)) != NULL)
 1176                         return (next);
 1177 
 1178         return (NULL);
 1179 }
 1180 
 1181 /*
 1182  * Iterate to the next node in the depth-first search of the topology tree,
 1183  * but without descending below the current node.
 1184  */
 1185 struct topo_node *
 1186 topo_next_nonchild_node(struct topo_node *top, struct topo_node *node)
 1187 {
 1188         struct topo_node *next;
 1189 
 1190         if ((next = TAILQ_NEXT(node, siblings)) != NULL)
 1191                 return (next);
 1192 
 1193         while (node != top && (node = node->parent) != top)
 1194                 if ((next = TAILQ_NEXT(node, siblings)) != NULL)
 1195                         return (next);
 1196 
 1197         return (NULL);
 1198 }
 1199 
 1200 /*
 1201  * Assign the given ID to the given topology node that represents a logical
 1202  * processor.
 1203  */
 1204 void
 1205 topo_set_pu_id(struct topo_node *node, cpuid_t id)
 1206 {
 1207 
 1208         KASSERT(node->type == TOPO_TYPE_PU,
 1209             ("topo_set_pu_id: wrong node type: %u", node->type));
 1210         KASSERT(CPU_EMPTY(&node->cpuset) && node->cpu_count == 0,
 1211             ("topo_set_pu_id: cpuset already not empty"));
 1212         node->id = id;
 1213         CPU_SET(id, &node->cpuset);
 1214         node->cpu_count = 1;
 1215         node->subtype = 1;
 1216 
 1217         while ((node = node->parent) != NULL) {
 1218                 KASSERT(!CPU_ISSET(id, &node->cpuset),
 1219                     ("logical ID %u is already set in node %p", id, node));
 1220                 CPU_SET(id, &node->cpuset);
 1221                 node->cpu_count++;
 1222         }
 1223 }
 1224 
 1225 static struct topology_spec {
 1226         topo_node_type  type;
 1227         bool            match_subtype;
 1228         uintptr_t       subtype;
 1229 } topology_level_table[TOPO_LEVEL_COUNT] = {
 1230         [TOPO_LEVEL_PKG] = { .type = TOPO_TYPE_PKG, },
 1231         [TOPO_LEVEL_GROUP] = { .type = TOPO_TYPE_GROUP, },
 1232         [TOPO_LEVEL_CACHEGROUP] = {
 1233                 .type = TOPO_TYPE_CACHE,
 1234                 .match_subtype = true,
 1235                 .subtype = CG_SHARE_L3,
 1236         },
 1237         [TOPO_LEVEL_CORE] = { .type = TOPO_TYPE_CORE, },
 1238         [TOPO_LEVEL_THREAD] = { .type = TOPO_TYPE_PU, },
 1239 };
 1240 
 1241 static bool
 1242 topo_analyze_table(struct topo_node *root, int all, enum topo_level level,
 1243     struct topo_analysis *results)
 1244 {
 1245         struct topology_spec *spec;
 1246         struct topo_node *node;
 1247         int count;
 1248 
 1249         if (level >= TOPO_LEVEL_COUNT)
 1250                 return (true);
 1251 
 1252         spec = &topology_level_table[level];
 1253         count = 0;
 1254         node = topo_next_node(root, root);
 1255 
 1256         while (node != NULL) {
 1257                 if (node->type != spec->type ||
 1258                     (spec->match_subtype && node->subtype != spec->subtype)) {
 1259                         node = topo_next_node(root, node);
 1260                         continue;
 1261                 }
 1262                 if (!all && CPU_EMPTY(&node->cpuset)) {
 1263                         node = topo_next_nonchild_node(root, node);
 1264                         continue;
 1265                 }
 1266 
 1267                 count++;
 1268 
 1269                 if (!topo_analyze_table(node, all, level + 1, results))
 1270                         return (false);
 1271 
 1272                 node = topo_next_nonchild_node(root, node);
 1273         }
 1274 
 1275         /* No explicit subgroups is essentially one subgroup. */
 1276         if (count == 0) {
 1277                 count = 1;
 1278 
 1279                 if (!topo_analyze_table(root, all, level + 1, results))
 1280                         return (false);
 1281         }
 1282 
 1283         if (results->entities[level] == -1)
 1284                 results->entities[level] = count;
 1285         else if (results->entities[level] != count)
 1286                 return (false);
 1287 
 1288         return (true);
 1289 }
 1290 
 1291 /*
 1292  * Check if the topology is uniform, that is, each package has the same number
 1293  * of cores in it and each core has the same number of threads (logical
 1294  * processors) in it.  If so, calculate the number of packages, the number of
 1295  * groups per package, the number of cachegroups per group, and the number of
 1296  * logical processors per cachegroup.  'all' parameter tells whether to include
 1297  * administratively disabled logical processors into the analysis.
 1298  */
 1299 int
 1300 topo_analyze(struct topo_node *topo_root, int all,
 1301     struct topo_analysis *results)
 1302 {
 1303 
 1304         results->entities[TOPO_LEVEL_PKG] = -1;
 1305         results->entities[TOPO_LEVEL_CORE] = -1;
 1306         results->entities[TOPO_LEVEL_THREAD] = -1;
 1307         results->entities[TOPO_LEVEL_GROUP] = -1;
 1308         results->entities[TOPO_LEVEL_CACHEGROUP] = -1;
 1309 
 1310         if (!topo_analyze_table(topo_root, all, TOPO_LEVEL_PKG, results))
 1311                 return (0);
 1312 
 1313         KASSERT(results->entities[TOPO_LEVEL_PKG] > 0,
 1314                 ("bug in topology or analysis"));
 1315 
 1316         return (1);
 1317 }
 1318 
 1319 #endif /* SMP */

Cache object: a1c94b514c71dbfa87fa77fe88aadead


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.