The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_smp.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>.
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. Neither the name of the author nor the names of any co-contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 /*
   31  * This module holds the global variables and machine independent functions
   32  * used for the kernel SMP support.
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD: releng/8.2/sys/kern/subr_smp.c 215938 2010-11-27 12:26:40Z jchandra $");
   37 
   38 #include <sys/param.h>
   39 #include <sys/systm.h>
   40 #include <sys/kernel.h>
   41 #include <sys/ktr.h>
   42 #include <sys/proc.h>
   43 #include <sys/bus.h>
   44 #include <sys/lock.h>
   45 #include <sys/mutex.h>
   46 #include <sys/pcpu.h>
   47 #include <sys/smp.h>
   48 #include <sys/sysctl.h>
   49 
   50 #include <machine/cpu.h>
   51 #include <machine/smp.h>
   52 
   53 #include "opt_sched.h"
   54 
   55 #ifdef SMP
   56 volatile cpumask_t stopped_cpus;
   57 volatile cpumask_t started_cpus;
   58 cpumask_t idle_cpus_mask;
   59 cpumask_t hlt_cpus_mask;
   60 cpumask_t logical_cpus_mask;
   61 
   62 void (*cpustop_restartfunc)(void);
   63 #endif
   64 /* This is used in modules that need to work in both SMP and UP. */
   65 cpumask_t all_cpus;
   66 
   67 int mp_ncpus;
   68 /* export this for libkvm consumers. */
   69 int mp_maxcpus = MAXCPU;
   70 
   71 volatile int smp_started;
   72 u_int mp_maxid;
   73 
   74 SYSCTL_NODE(_kern, OID_AUTO, smp, CTLFLAG_RD, NULL, "Kernel SMP");
   75 
   76 SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD, &mp_maxid, 0,
   77     "Max CPU ID.");
   78 
   79 SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD, &mp_maxcpus, 0,
   80     "Max number of CPUs that the system was compiled for.");
   81 
   82 int smp_active = 0;     /* are the APs allowed to run? */
   83 SYSCTL_INT(_kern_smp, OID_AUTO, active, CTLFLAG_RW, &smp_active, 0,
   84     "Number of Auxillary Processors (APs) that were successfully started");
   85 
   86 int smp_disabled = 0;   /* has smp been disabled? */
   87 SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN, &smp_disabled, 0,
   88     "SMP has been disabled from the loader");
   89 TUNABLE_INT("kern.smp.disabled", &smp_disabled);
   90 
   91 int smp_cpus = 1;       /* how many cpu's running */
   92 SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD, &smp_cpus, 0,
   93     "Number of CPUs online");
   94 
   95 int smp_topology = 0;   /* Which topology we're using. */
   96 SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RD, &smp_topology, 0,
   97     "Topology override setting; 0 is default provided by hardware.");
   98 TUNABLE_INT("kern.smp.topology", &smp_topology);
   99 
  100 #ifdef SMP
  101 /* Enable forwarding of a signal to a process running on a different CPU */
  102 static int forward_signal_enabled = 1;
  103 SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
  104            &forward_signal_enabled, 0,
  105            "Forwarding of a signal to a process on a different CPU");
  106 
  107 /* Variables needed for SMP rendezvous. */
  108 static volatile int smp_rv_ncpus;
  109 static void (*volatile smp_rv_setup_func)(void *arg);
  110 static void (*volatile smp_rv_action_func)(void *arg);
  111 static void (*volatile smp_rv_teardown_func)(void *arg);
  112 static void *volatile smp_rv_func_arg;
  113 static volatile int smp_rv_waiters[3];
  114 
  115 /* 
  116  * Shared mutex to restrict busywaits between smp_rendezvous() and
  117  * smp(_targeted)_tlb_shootdown().  A deadlock occurs if both of these
  118  * functions trigger at once and cause multiple CPUs to busywait with
  119  * interrupts disabled. 
  120  */
  121 struct mtx smp_ipi_mtx;
  122 
  123 /*
  124  * Let the MD SMP code initialize mp_maxid very early if it can.
  125  */
  126 static void
  127 mp_setmaxid(void *dummy)
  128 {
  129         cpu_mp_setmaxid();
  130 }
  131 SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL);
  132 
  133 /*
  134  * Call the MD SMP initialization code.
  135  */
  136 static void
  137 mp_start(void *dummy)
  138 {
  139 
  140         mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN);
  141 
  142         /* Probe for MP hardware. */
  143         if (smp_disabled != 0 || cpu_mp_probe() == 0) {
  144                 mp_ncpus = 1;
  145                 all_cpus = PCPU_GET(cpumask);
  146                 return;
  147         }
  148 
  149         cpu_mp_start();
  150         printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n",
  151             mp_ncpus);
  152         cpu_mp_announce();
  153 }
  154 SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL);
  155 
  156 void
  157 forward_signal(struct thread *td)
  158 {
  159         int id;
  160 
  161         /*
  162          * signotify() has already set TDF_ASTPENDING and TDF_NEEDSIGCHECK on
  163          * this thread, so all we need to do is poke it if it is currently
  164          * executing so that it executes ast().
  165          */
  166         THREAD_LOCK_ASSERT(td, MA_OWNED);
  167         KASSERT(TD_IS_RUNNING(td),
  168             ("forward_signal: thread is not TDS_RUNNING"));
  169 
  170         CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc);
  171 
  172         if (!smp_started || cold || panicstr)
  173                 return;
  174         if (!forward_signal_enabled)
  175                 return;
  176 
  177         /* No need to IPI ourself. */
  178         if (td == curthread)
  179                 return;
  180 
  181         id = td->td_oncpu;
  182         if (id == NOCPU)
  183                 return;
  184         ipi_cpu(id, IPI_AST);
  185 }
  186 
  187 /*
  188  * When called the executing CPU will send an IPI to all other CPUs
  189  *  requesting that they halt execution.
  190  *
  191  * Usually (but not necessarily) called with 'other_cpus' as its arg.
  192  *
  193  *  - Signals all CPUs in map to stop.
  194  *  - Waits for each to stop.
  195  *
  196  * Returns:
  197  *  -1: error
  198  *   0: NA
  199  *   1: ok
  200  *
  201  * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
  202  *            from executing at same time.
  203  */
  204 static int
  205 generic_stop_cpus(cpumask_t map, u_int type)
  206 {
  207         int i;
  208 
  209         KASSERT(type == IPI_STOP || type == IPI_STOP_HARD,
  210             ("%s: invalid stop type", __func__));
  211 
  212         if (!smp_started)
  213                 return 0;
  214 
  215         CTR2(KTR_SMP, "stop_cpus(%x) with %u type", map, type);
  216 
  217         /* send the stop IPI to all CPUs in map */
  218         ipi_selected(map, type);
  219 
  220         i = 0;
  221         while ((stopped_cpus & map) != map) {
  222                 /* spin */
  223                 cpu_spinwait();
  224                 i++;
  225 #ifdef DIAGNOSTIC
  226                 if (i == 100000) {
  227                         printf("timeout stopping cpus\n");
  228                         break;
  229                 }
  230 #endif
  231         }
  232 
  233         return 1;
  234 }
  235 
  236 int
  237 stop_cpus(cpumask_t map)
  238 {
  239 
  240         return (generic_stop_cpus(map, IPI_STOP));
  241 }
  242 
  243 int
  244 stop_cpus_hard(cpumask_t map)
  245 {
  246 
  247         return (generic_stop_cpus(map, IPI_STOP_HARD));
  248 }
  249 
  250 #if defined(__amd64__)
  251 /*
  252  * When called the executing CPU will send an IPI to all other CPUs
  253  *  requesting that they halt execution.
  254  *
  255  * Usually (but not necessarily) called with 'other_cpus' as its arg.
  256  *
  257  *  - Signals all CPUs in map to suspend.
  258  *  - Waits for each to suspend.
  259  *
  260  * Returns:
  261  *  -1: error
  262  *   0: NA
  263  *   1: ok
  264  *
  265  * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
  266  *            from executing at same time.
  267  */
  268 int
  269 suspend_cpus(cpumask_t map)
  270 {
  271         int i;
  272 
  273         if (!smp_started)
  274                 return (0);
  275 
  276         CTR1(KTR_SMP, "suspend_cpus(%x)", map);
  277 
  278         /* send the suspend IPI to all CPUs in map */
  279         ipi_selected(map, IPI_SUSPEND);
  280 
  281         i = 0;
  282         while ((stopped_cpus & map) != map) {
  283                 /* spin */
  284                 cpu_spinwait();
  285                 i++;
  286 #ifdef DIAGNOSTIC
  287                 if (i == 100000) {
  288                         printf("timeout suspending cpus\n");
  289                         break;
  290                 }
  291 #endif
  292         }
  293 
  294         return (1);
  295 }
  296 #endif
  297 
  298 /*
  299  * Called by a CPU to restart stopped CPUs. 
  300  *
  301  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
  302  *
  303  *  - Signals all CPUs in map to restart.
  304  *  - Waits for each to restart.
  305  *
  306  * Returns:
  307  *  -1: error
  308  *   0: NA
  309  *   1: ok
  310  */
  311 int
  312 restart_cpus(cpumask_t map)
  313 {
  314 
  315         if (!smp_started)
  316                 return 0;
  317 
  318         CTR1(KTR_SMP, "restart_cpus(%x)", map);
  319 
  320         /* signal other cpus to restart */
  321         atomic_store_rel_int(&started_cpus, map);
  322 
  323         /* wait for each to clear its bit */
  324         while ((stopped_cpus & map) != 0)
  325                 cpu_spinwait();
  326 
  327         return 1;
  328 }
  329 
  330 /*
  331  * All-CPU rendezvous.  CPUs are signalled, all execute the setup function 
  332  * (if specified), rendezvous, execute the action function (if specified),
  333  * rendezvous again, execute the teardown function (if specified), and then
  334  * resume.
  335  *
  336  * Note that the supplied external functions _must_ be reentrant and aware
  337  * that they are running in parallel and in an unknown lock context.
  338  */
  339 void
  340 smp_rendezvous_action(void)
  341 {
  342         void* local_func_arg = smp_rv_func_arg;
  343         void (*local_setup_func)(void*)   = smp_rv_setup_func;
  344         void (*local_action_func)(void*)   = smp_rv_action_func;
  345         void (*local_teardown_func)(void*) = smp_rv_teardown_func;
  346 
  347         /* Ensure we have up-to-date values. */
  348         atomic_add_acq_int(&smp_rv_waiters[0], 1);
  349         while (smp_rv_waiters[0] < smp_rv_ncpus)
  350                 cpu_spinwait();
  351 
  352         /* setup function */
  353         if (local_setup_func != smp_no_rendevous_barrier) {
  354                 if (smp_rv_setup_func != NULL)
  355                         smp_rv_setup_func(smp_rv_func_arg);
  356 
  357                 /* spin on entry rendezvous */
  358                 atomic_add_int(&smp_rv_waiters[1], 1);
  359                 while (smp_rv_waiters[1] < smp_rv_ncpus)
  360                         cpu_spinwait();
  361         }
  362 
  363         /* action function */
  364         if (local_action_func != NULL)
  365                 local_action_func(local_func_arg);
  366 
  367         /* spin on exit rendezvous */
  368         atomic_add_int(&smp_rv_waiters[2], 1);
  369         if (local_teardown_func == smp_no_rendevous_barrier)
  370                 return;
  371         while (smp_rv_waiters[2] < smp_rv_ncpus)
  372                 cpu_spinwait();
  373 
  374         /* teardown function */
  375         if (local_teardown_func != NULL)
  376                 local_teardown_func(local_func_arg);
  377 }
  378 
  379 void
  380 smp_rendezvous_cpus(cpumask_t map,
  381         void (* setup_func)(void *), 
  382         void (* action_func)(void *),
  383         void (* teardown_func)(void *),
  384         void *arg)
  385 {
  386         int i, ncpus = 0;
  387 
  388         if (!smp_started) {
  389                 if (setup_func != NULL)
  390                         setup_func(arg);
  391                 if (action_func != NULL)
  392                         action_func(arg);
  393                 if (teardown_func != NULL)
  394                         teardown_func(arg);
  395                 return;
  396         }
  397 
  398         for (i = 0; i <= mp_maxid; i++)
  399                 if (((1 << i) & map) != 0 && !CPU_ABSENT(i))
  400                         ncpus++;
  401         if (ncpus == 0)
  402                 panic("ncpus is 0 with map=0x%x", map);
  403 
  404         /* obtain rendezvous lock */
  405         mtx_lock_spin(&smp_ipi_mtx);
  406 
  407         /* set static function pointers */
  408         smp_rv_ncpus = ncpus;
  409         smp_rv_setup_func = setup_func;
  410         smp_rv_action_func = action_func;
  411         smp_rv_teardown_func = teardown_func;
  412         smp_rv_func_arg = arg;
  413         smp_rv_waiters[1] = 0;
  414         smp_rv_waiters[2] = 0;
  415         atomic_store_rel_int(&smp_rv_waiters[0], 0);
  416 
  417         /* signal other processors, which will enter the IPI with interrupts off */
  418         ipi_selected(map & ~(1 << curcpu), IPI_RENDEZVOUS);
  419 
  420         /* Check if the current CPU is in the map */
  421         if ((map & (1 << curcpu)) != 0)
  422                 smp_rendezvous_action();
  423 
  424         if (teardown_func == smp_no_rendevous_barrier)
  425                 while (atomic_load_acq_int(&smp_rv_waiters[2]) < ncpus)
  426                         cpu_spinwait();
  427 
  428         /* release lock */
  429         mtx_unlock_spin(&smp_ipi_mtx);
  430 }
  431 
  432 void
  433 smp_rendezvous(void (* setup_func)(void *), 
  434                void (* action_func)(void *),
  435                void (* teardown_func)(void *),
  436                void *arg)
  437 {
  438         smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg);
  439 }
  440 
  441 static struct cpu_group group[MAXCPU];
  442 
  443 struct cpu_group *
  444 smp_topo(void)
  445 {
  446         struct cpu_group *top;
  447 
  448         /*
  449          * Check for a fake topology request for debugging purposes.
  450          */
  451         switch (smp_topology) {
  452         case 1:
  453                 /* Dual core with no sharing.  */
  454                 top = smp_topo_1level(CG_SHARE_NONE, 2, 0);
  455                 break;
  456         case 2:
  457                 /* No topology, all cpus are equal. */
  458                 top = smp_topo_none();
  459                 break;
  460         case 3:
  461                 /* Dual core with shared L2.  */
  462                 top = smp_topo_1level(CG_SHARE_L2, 2, 0);
  463                 break;
  464         case 4:
  465                 /* quad core, shared l3 among each package, private l2.  */
  466                 top = smp_topo_1level(CG_SHARE_L3, 4, 0);
  467                 break;
  468         case 5:
  469                 /* quad core,  2 dualcore parts on each package share l2.  */
  470                 top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0);
  471                 break;
  472         case 6:
  473                 /* Single-core 2xHTT */
  474                 top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT);
  475                 break;
  476         case 7:
  477                 /* quad core with a shared l3, 8 threads sharing L2.  */
  478                 top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8,
  479                     CG_FLAG_SMT);
  480                 break;
  481         default:
  482                 /* Default, ask the system what it wants. */
  483                 top = cpu_topo();
  484                 break;
  485         }
  486         /*
  487          * Verify the returned topology.
  488          */
  489         if (top->cg_count != mp_ncpus)
  490                 panic("Built bad topology at %p.  CPU count %d != %d",
  491                     top, top->cg_count, mp_ncpus);
  492         if (top->cg_mask != all_cpus)
  493                 panic("Built bad topology at %p.  CPU mask 0x%X != 0x%X",
  494                     top, top->cg_mask, all_cpus);
  495         return (top);
  496 }
  497 
  498 struct cpu_group *
  499 smp_topo_none(void)
  500 {
  501         struct cpu_group *top;
  502 
  503         top = &group[0];
  504         top->cg_parent = NULL;
  505         top->cg_child = NULL;
  506         top->cg_mask = ~0U >> (32 - mp_ncpus);
  507         top->cg_count = mp_ncpus;
  508         top->cg_children = 0;
  509         top->cg_level = CG_SHARE_NONE;
  510         top->cg_flags = 0;
  511         
  512         return (top);
  513 }
  514 
  515 static int
  516 smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share,
  517     int count, int flags, int start)
  518 {
  519         cpumask_t mask;
  520         int i;
  521 
  522         for (mask = 0, i = 0; i < count; i++, start++)
  523                 mask |= (1 << start);
  524         child->cg_parent = parent;
  525         child->cg_child = NULL;
  526         child->cg_children = 0;
  527         child->cg_level = share;
  528         child->cg_count = count;
  529         child->cg_flags = flags;
  530         child->cg_mask = mask;
  531         parent->cg_children++;
  532         for (; parent != NULL; parent = parent->cg_parent) {
  533                 if ((parent->cg_mask & child->cg_mask) != 0)
  534                         panic("Duplicate children in %p.  mask 0x%X child 0x%X",
  535                             parent, parent->cg_mask, child->cg_mask);
  536                 parent->cg_mask |= child->cg_mask;
  537                 parent->cg_count += child->cg_count;
  538         }
  539 
  540         return (start);
  541 }
  542 
  543 struct cpu_group *
  544 smp_topo_1level(int share, int count, int flags)
  545 {
  546         struct cpu_group *child;
  547         struct cpu_group *top;
  548         int packages;
  549         int cpu;
  550         int i;
  551 
  552         cpu = 0;
  553         top = &group[0];
  554         packages = mp_ncpus / count;
  555         top->cg_child = child = &group[1];
  556         top->cg_level = CG_SHARE_NONE;
  557         for (i = 0; i < packages; i++, child++)
  558                 cpu = smp_topo_addleaf(top, child, share, count, flags, cpu);
  559         return (top);
  560 }
  561 
  562 struct cpu_group *
  563 smp_topo_2level(int l2share, int l2count, int l1share, int l1count,
  564     int l1flags)
  565 {
  566         struct cpu_group *top;
  567         struct cpu_group *l1g;
  568         struct cpu_group *l2g;
  569         int cpu;
  570         int i;
  571         int j;
  572 
  573         cpu = 0;
  574         top = &group[0];
  575         l2g = &group[1];
  576         top->cg_child = l2g;
  577         top->cg_level = CG_SHARE_NONE;
  578         top->cg_children = mp_ncpus / (l2count * l1count);
  579         l1g = l2g + top->cg_children;
  580         for (i = 0; i < top->cg_children; i++, l2g++) {
  581                 l2g->cg_parent = top;
  582                 l2g->cg_child = l1g;
  583                 l2g->cg_level = l2share;
  584                 for (j = 0; j < l2count; j++, l1g++)
  585                         cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count,
  586                             l1flags, cpu);
  587         }
  588         return (top);
  589 }
  590 
  591 
  592 struct cpu_group *
  593 smp_topo_find(struct cpu_group *top, int cpu)
  594 {
  595         struct cpu_group *cg;
  596         cpumask_t mask;
  597         int children;
  598         int i;
  599 
  600         mask = (1 << cpu);
  601         cg = top;
  602         for (;;) {
  603                 if ((cg->cg_mask & mask) == 0)
  604                         return (NULL);
  605                 if (cg->cg_children == 0)
  606                         return (cg);
  607                 children = cg->cg_children;
  608                 for (i = 0, cg = cg->cg_child; i < children; cg++, i++)
  609                         if ((cg->cg_mask & mask) != 0)
  610                                 break;
  611         }
  612         return (NULL);
  613 }
  614 #else /* !SMP */
  615 
  616 void
  617 smp_rendezvous_cpus(cpumask_t map,
  618         void (*setup_func)(void *), 
  619         void (*action_func)(void *),
  620         void (*teardown_func)(void *),
  621         void *arg)
  622 {
  623         if (setup_func != NULL)
  624                 setup_func(arg);
  625         if (action_func != NULL)
  626                 action_func(arg);
  627         if (teardown_func != NULL)
  628                 teardown_func(arg);
  629 }
  630 
  631 void
  632 smp_rendezvous(void (*setup_func)(void *), 
  633                void (*action_func)(void *),
  634                void (*teardown_func)(void *),
  635                void *arg)
  636 {
  637 
  638         if (setup_func != NULL)
  639                 setup_func(arg);
  640         if (action_func != NULL)
  641                 action_func(arg);
  642         if (teardown_func != NULL)
  643                 teardown_func(arg);
  644 }
  645 
  646 /*
  647  * Provide dummy SMP support for UP kernels.  Modules that need to use SMP
  648  * APIs will still work using this dummy support.
  649  */
  650 static void
  651 mp_setvariables_for_up(void *dummy)
  652 {
  653         mp_ncpus = 1;
  654         mp_maxid = PCPU_GET(cpuid);
  655         all_cpus = PCPU_GET(cpumask);
  656         KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero"));
  657 }
  658 SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST,
  659     mp_setvariables_for_up, NULL);
  660 #endif /* SMP */
  661 
  662 void
  663 smp_no_rendevous_barrier(void *dummy)
  664 {
  665 #ifdef SMP
  666         KASSERT((!smp_started),("smp_no_rendevous called and smp is started"));
  667 #endif
  668 }

Cache object: ad1f437dd013797d2528294ba1f5c525


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.