The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_smp.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>.
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. Neither the name of the author nor the names of any co-contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 /*
   31  * This module holds the global variables and machine independent functions
   32  * used for the kernel SMP support.
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD: releng/9.2/sys/kern/subr_smp.c 248085 2013-03-09 02:36:32Z marius $");
   37 
   38 #include <sys/param.h>
   39 #include <sys/systm.h>
   40 #include <sys/kernel.h>
   41 #include <sys/ktr.h>
   42 #include <sys/proc.h>
   43 #include <sys/bus.h>
   44 #include <sys/lock.h>
   45 #include <sys/mutex.h>
   46 #include <sys/pcpu.h>
   47 #include <sys/smp.h>
   48 #include <sys/sysctl.h>
   49 
   50 #include <machine/cpu.h>
   51 #include <machine/smp.h>
   52 
   53 #include "opt_sched.h"
   54 
   55 #ifdef SMP
   56 volatile cpuset_t stopped_cpus;
   57 volatile cpuset_t started_cpus;
   58 cpuset_t hlt_cpus_mask;
   59 cpuset_t logical_cpus_mask;
   60 
   61 void (*cpustop_restartfunc)(void);
   62 #endif
   63 /* This is used in modules that need to work in both SMP and UP. */
   64 cpuset_t all_cpus;
   65 
   66 int mp_ncpus;
   67 /* export this for libkvm consumers. */
   68 int mp_maxcpus = MAXCPU;
   69 
   70 volatile int smp_started;
   71 u_int mp_maxid;
   72 
   73 static SYSCTL_NODE(_kern, OID_AUTO, smp, CTLFLAG_RD|CTLFLAG_CAPRD, NULL,
   74     "Kernel SMP");
   75 
   76 SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxid, 0,
   77     "Max CPU ID.");
   78 
   79 SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxcpus,
   80     0, "Max number of CPUs that the system was compiled for.");
   81 
   82 int smp_active = 0;     /* are the APs allowed to run? */
   83 SYSCTL_INT(_kern_smp, OID_AUTO, active, CTLFLAG_RW, &smp_active, 0,
   84     "Number of Auxillary Processors (APs) that were successfully started");
   85 
   86 int smp_disabled = 0;   /* has smp been disabled? */
   87 SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN|CTLFLAG_CAPRD,
   88     &smp_disabled, 0, "SMP has been disabled from the loader");
   89 TUNABLE_INT("kern.smp.disabled", &smp_disabled);
   90 
   91 int smp_cpus = 1;       /* how many cpu's running */
   92 SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD|CTLFLAG_CAPRD, &smp_cpus, 0,
   93     "Number of CPUs online");
   94 
   95 int smp_topology = 0;   /* Which topology we're using. */
   96 SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RD, &smp_topology, 0,
   97     "Topology override setting; 0 is default provided by hardware.");
   98 TUNABLE_INT("kern.smp.topology", &smp_topology);
   99 
  100 #ifdef SMP
  101 /* Enable forwarding of a signal to a process running on a different CPU */
  102 static int forward_signal_enabled = 1;
  103 SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
  104            &forward_signal_enabled, 0,
  105            "Forwarding of a signal to a process on a different CPU");
  106 
  107 /* Variables needed for SMP rendezvous. */
  108 static volatile int smp_rv_ncpus;
  109 static void (*volatile smp_rv_setup_func)(void *arg);
  110 static void (*volatile smp_rv_action_func)(void *arg);
  111 static void (*volatile smp_rv_teardown_func)(void *arg);
  112 static void *volatile smp_rv_func_arg;
  113 static volatile int smp_rv_waiters[4];
  114 
  115 /* 
  116  * Shared mutex to restrict busywaits between smp_rendezvous() and
  117  * smp(_targeted)_tlb_shootdown().  A deadlock occurs if both of these
  118  * functions trigger at once and cause multiple CPUs to busywait with
  119  * interrupts disabled. 
  120  */
  121 struct mtx smp_ipi_mtx;
  122 
  123 /*
  124  * Let the MD SMP code initialize mp_maxid very early if it can.
  125  */
  126 static void
  127 mp_setmaxid(void *dummy)
  128 {
  129         cpu_mp_setmaxid();
  130 }
  131 SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL);
  132 
  133 /*
  134  * Call the MD SMP initialization code.
  135  */
  136 static void
  137 mp_start(void *dummy)
  138 {
  139 
  140         mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN);
  141 
  142         /* Probe for MP hardware. */
  143         if (smp_disabled != 0 || cpu_mp_probe() == 0) {
  144                 mp_ncpus = 1;
  145                 CPU_SETOF(PCPU_GET(cpuid), &all_cpus);
  146                 return;
  147         }
  148 
  149         cpu_mp_start();
  150         printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n",
  151             mp_ncpus);
  152         cpu_mp_announce();
  153 }
  154 SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL);
  155 
  156 void
  157 forward_signal(struct thread *td)
  158 {
  159         int id;
  160 
  161         /*
  162          * signotify() has already set TDF_ASTPENDING and TDF_NEEDSIGCHECK on
  163          * this thread, so all we need to do is poke it if it is currently
  164          * executing so that it executes ast().
  165          */
  166         THREAD_LOCK_ASSERT(td, MA_OWNED);
  167         KASSERT(TD_IS_RUNNING(td),
  168             ("forward_signal: thread is not TDS_RUNNING"));
  169 
  170         CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc);
  171 
  172         if (!smp_started || cold || panicstr)
  173                 return;
  174         if (!forward_signal_enabled)
  175                 return;
  176 
  177         /* No need to IPI ourself. */
  178         if (td == curthread)
  179                 return;
  180 
  181         id = td->td_oncpu;
  182         if (id == NOCPU)
  183                 return;
  184         ipi_cpu(id, IPI_AST);
  185 }
  186 
  187 /*
  188  * When called the executing CPU will send an IPI to all other CPUs
  189  *  requesting that they halt execution.
  190  *
  191  * Usually (but not necessarily) called with 'other_cpus' as its arg.
  192  *
  193  *  - Signals all CPUs in map to stop.
  194  *  - Waits for each to stop.
  195  *
  196  * Returns:
  197  *  -1: error
  198  *   0: NA
  199  *   1: ok
  200  *
  201  */
  202 static int
  203 generic_stop_cpus(cpuset_t map, u_int type)
  204 {
  205 #ifdef KTR
  206         char cpusetbuf[CPUSETBUFSIZ];
  207 #endif
  208         static volatile u_int stopping_cpu = NOCPU;
  209         int i;
  210 
  211         KASSERT(
  212 #if defined(__amd64__) || defined(__i386__)
  213             type == IPI_STOP || type == IPI_STOP_HARD || type == IPI_SUSPEND,
  214 #else
  215             type == IPI_STOP || type == IPI_STOP_HARD,
  216 #endif
  217             ("%s: invalid stop type", __func__));
  218 
  219         if (!smp_started)
  220                 return (0);
  221 
  222         CTR2(KTR_SMP, "stop_cpus(%s) with %u type",
  223             cpusetobj_strprint(cpusetbuf, &map), type);
  224 
  225         if (stopping_cpu != PCPU_GET(cpuid))
  226                 while (atomic_cmpset_int(&stopping_cpu, NOCPU,
  227                     PCPU_GET(cpuid)) == 0)
  228                         while (stopping_cpu != NOCPU)
  229                                 cpu_spinwait(); /* spin */
  230 
  231         /* send the stop IPI to all CPUs in map */
  232         ipi_selected(map, type);
  233 
  234         i = 0;
  235         while (!CPU_SUBSET(&stopped_cpus, &map)) {
  236                 /* spin */
  237                 cpu_spinwait();
  238                 i++;
  239                 if (i == 100000000) {
  240                         printf("timeout stopping cpus\n");
  241                         break;
  242                 }
  243         }
  244 
  245         stopping_cpu = NOCPU;
  246         return (1);
  247 }
  248 
  249 int
  250 stop_cpus(cpuset_t map)
  251 {
  252 
  253         return (generic_stop_cpus(map, IPI_STOP));
  254 }
  255 
  256 int
  257 stop_cpus_hard(cpuset_t map)
  258 {
  259 
  260         return (generic_stop_cpus(map, IPI_STOP_HARD));
  261 }
  262 
  263 #if defined(__amd64__) || defined(__i386__)
  264 int
  265 suspend_cpus(cpuset_t map)
  266 {
  267 
  268         return (generic_stop_cpus(map, IPI_SUSPEND));
  269 }
  270 #endif
  271 
  272 /*
  273  * Called by a CPU to restart stopped CPUs. 
  274  *
  275  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
  276  *
  277  *  - Signals all CPUs in map to restart.
  278  *  - Waits for each to restart.
  279  *
  280  * Returns:
  281  *  -1: error
  282  *   0: NA
  283  *   1: ok
  284  */
  285 int
  286 restart_cpus(cpuset_t map)
  287 {
  288 #ifdef KTR
  289         char cpusetbuf[CPUSETBUFSIZ];
  290 #endif
  291 
  292         if (!smp_started)
  293                 return 0;
  294 
  295         CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
  296 
  297         /* signal other cpus to restart */
  298         CPU_COPY_STORE_REL(&map, &started_cpus);
  299 
  300         /* wait for each to clear its bit */
  301         while (CPU_OVERLAP(&stopped_cpus, &map))
  302                 cpu_spinwait();
  303 
  304         return 1;
  305 }
  306 
  307 /*
  308  * All-CPU rendezvous.  CPUs are signalled, all execute the setup function 
  309  * (if specified), rendezvous, execute the action function (if specified),
  310  * rendezvous again, execute the teardown function (if specified), and then
  311  * resume.
  312  *
  313  * Note that the supplied external functions _must_ be reentrant and aware
  314  * that they are running in parallel and in an unknown lock context.
  315  */
  316 void
  317 smp_rendezvous_action(void)
  318 {
  319         struct thread *td;
  320         void *local_func_arg;
  321         void (*local_setup_func)(void*);
  322         void (*local_action_func)(void*);
  323         void (*local_teardown_func)(void*);
  324 #ifdef INVARIANTS
  325         int owepreempt;
  326 #endif
  327 
  328         /* Ensure we have up-to-date values. */
  329         atomic_add_acq_int(&smp_rv_waiters[0], 1);
  330         while (smp_rv_waiters[0] < smp_rv_ncpus)
  331                 cpu_spinwait();
  332 
  333         /* Fetch rendezvous parameters after acquire barrier. */
  334         local_func_arg = smp_rv_func_arg;
  335         local_setup_func = smp_rv_setup_func;
  336         local_action_func = smp_rv_action_func;
  337         local_teardown_func = smp_rv_teardown_func;
  338 
  339         /*
  340          * Use a nested critical section to prevent any preemptions
  341          * from occurring during a rendezvous action routine.
  342          * Specifically, if a rendezvous handler is invoked via an IPI
  343          * and the interrupted thread was in the critical_exit()
  344          * function after setting td_critnest to 0 but before
  345          * performing a deferred preemption, this routine can be
  346          * invoked with td_critnest set to 0 and td_owepreempt true.
  347          * In that case, a critical_exit() during the rendezvous
  348          * action would trigger a preemption which is not permitted in
  349          * a rendezvous action.  To fix this, wrap all of the
  350          * rendezvous action handlers in a critical section.  We
  351          * cannot use a regular critical section however as having
  352          * critical_exit() preempt from this routine would also be
  353          * problematic (the preemption must not occur before the IPI
  354          * has been acknowledged via an EOI).  Instead, we
  355          * intentionally ignore td_owepreempt when leaving the
  356          * critical section.  This should be harmless because we do
  357          * not permit rendezvous action routines to schedule threads,
  358          * and thus td_owepreempt should never transition from 0 to 1
  359          * during this routine.
  360          */
  361         td = curthread;
  362         td->td_critnest++;
  363 #ifdef INVARIANTS
  364         owepreempt = td->td_owepreempt;
  365 #endif
  366         
  367         /*
  368          * If requested, run a setup function before the main action
  369          * function.  Ensure all CPUs have completed the setup
  370          * function before moving on to the action function.
  371          */
  372         if (local_setup_func != smp_no_rendevous_barrier) {
  373                 if (smp_rv_setup_func != NULL)
  374                         smp_rv_setup_func(smp_rv_func_arg);
  375                 atomic_add_int(&smp_rv_waiters[1], 1);
  376                 while (smp_rv_waiters[1] < smp_rv_ncpus)
  377                         cpu_spinwait();
  378         }
  379 
  380         if (local_action_func != NULL)
  381                 local_action_func(local_func_arg);
  382 
  383         if (local_teardown_func != smp_no_rendevous_barrier) {
  384                 /*
  385                  * Signal that the main action has been completed.  If a
  386                  * full exit rendezvous is requested, then all CPUs will
  387                  * wait here until all CPUs have finished the main action.
  388                  */
  389                 atomic_add_int(&smp_rv_waiters[2], 1);
  390                 while (smp_rv_waiters[2] < smp_rv_ncpus)
  391                         cpu_spinwait();
  392 
  393                 if (local_teardown_func != NULL)
  394                         local_teardown_func(local_func_arg);
  395         }
  396 
  397         /*
  398          * Signal that the rendezvous is fully completed by this CPU.
  399          * This means that no member of smp_rv_* pseudo-structure will be
  400          * accessed by this target CPU after this point; in particular,
  401          * memory pointed by smp_rv_func_arg.
  402          */
  403         atomic_add_int(&smp_rv_waiters[3], 1);
  404 
  405         td->td_critnest--;
  406         KASSERT(owepreempt == td->td_owepreempt,
  407             ("rendezvous action changed td_owepreempt"));
  408 }
  409 
  410 void
  411 smp_rendezvous_cpus(cpuset_t map,
  412         void (* setup_func)(void *), 
  413         void (* action_func)(void *),
  414         void (* teardown_func)(void *),
  415         void *arg)
  416 {
  417         int curcpumap, i, ncpus = 0;
  418 
  419         /* Look comments in the !SMP case. */
  420         if (!smp_started) {
  421                 spinlock_enter();
  422                 if (setup_func != NULL)
  423                         setup_func(arg);
  424                 if (action_func != NULL)
  425                         action_func(arg);
  426                 if (teardown_func != NULL)
  427                         teardown_func(arg);
  428                 spinlock_exit();
  429                 return;
  430         }
  431 
  432         CPU_FOREACH(i) {
  433                 if (CPU_ISSET(i, &map))
  434                         ncpus++;
  435         }
  436         if (ncpus == 0)
  437                 panic("ncpus is 0 with non-zero map");
  438 
  439         mtx_lock_spin(&smp_ipi_mtx);
  440 
  441         /* Pass rendezvous parameters via global variables. */
  442         smp_rv_ncpus = ncpus;
  443         smp_rv_setup_func = setup_func;
  444         smp_rv_action_func = action_func;
  445         smp_rv_teardown_func = teardown_func;
  446         smp_rv_func_arg = arg;
  447         smp_rv_waiters[1] = 0;
  448         smp_rv_waiters[2] = 0;
  449         smp_rv_waiters[3] = 0;
  450         atomic_store_rel_int(&smp_rv_waiters[0], 0);
  451 
  452         /*
  453          * Signal other processors, which will enter the IPI with
  454          * interrupts off.
  455          */
  456         curcpumap = CPU_ISSET(curcpu, &map);
  457         CPU_CLR(curcpu, &map);
  458         ipi_selected(map, IPI_RENDEZVOUS);
  459 
  460         /* Check if the current CPU is in the map */
  461         if (curcpumap != 0)
  462                 smp_rendezvous_action();
  463 
  464         /*
  465          * Ensure that the master CPU waits for all the other
  466          * CPUs to finish the rendezvous, so that smp_rv_*
  467          * pseudo-structure and the arg are guaranteed to not
  468          * be in use.
  469          */
  470         while (atomic_load_acq_int(&smp_rv_waiters[3]) < ncpus)
  471                 cpu_spinwait();
  472 
  473         mtx_unlock_spin(&smp_ipi_mtx);
  474 }
  475 
  476 void
  477 smp_rendezvous(void (* setup_func)(void *), 
  478                void (* action_func)(void *),
  479                void (* teardown_func)(void *),
  480                void *arg)
  481 {
  482         smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg);
  483 }
  484 
  485 static struct cpu_group group[MAXCPU];
  486 
  487 struct cpu_group *
  488 smp_topo(void)
  489 {
  490         char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
  491         struct cpu_group *top;
  492 
  493         /*
  494          * Check for a fake topology request for debugging purposes.
  495          */
  496         switch (smp_topology) {
  497         case 1:
  498                 /* Dual core with no sharing.  */
  499                 top = smp_topo_1level(CG_SHARE_NONE, 2, 0);
  500                 break;
  501         case 2:
  502                 /* No topology, all cpus are equal. */
  503                 top = smp_topo_none();
  504                 break;
  505         case 3:
  506                 /* Dual core with shared L2.  */
  507                 top = smp_topo_1level(CG_SHARE_L2, 2, 0);
  508                 break;
  509         case 4:
  510                 /* quad core, shared l3 among each package, private l2.  */
  511                 top = smp_topo_1level(CG_SHARE_L3, 4, 0);
  512                 break;
  513         case 5:
  514                 /* quad core,  2 dualcore parts on each package share l2.  */
  515                 top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0);
  516                 break;
  517         case 6:
  518                 /* Single-core 2xHTT */
  519                 top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT);
  520                 break;
  521         case 7:
  522                 /* quad core with a shared l3, 8 threads sharing L2.  */
  523                 top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8,
  524                     CG_FLAG_SMT);
  525                 break;
  526         default:
  527                 /* Default, ask the system what it wants. */
  528                 top = cpu_topo();
  529                 break;
  530         }
  531         /*
  532          * Verify the returned topology.
  533          */
  534         if (top->cg_count != mp_ncpus)
  535                 panic("Built bad topology at %p.  CPU count %d != %d",
  536                     top, top->cg_count, mp_ncpus);
  537         if (CPU_CMP(&top->cg_mask, &all_cpus))
  538                 panic("Built bad topology at %p.  CPU mask (%s) != (%s)",
  539                     top, cpusetobj_strprint(cpusetbuf, &top->cg_mask),
  540                     cpusetobj_strprint(cpusetbuf2, &all_cpus));
  541         return (top);
  542 }
  543 
  544 struct cpu_group *
  545 smp_topo_none(void)
  546 {
  547         struct cpu_group *top;
  548 
  549         top = &group[0];
  550         top->cg_parent = NULL;
  551         top->cg_child = NULL;
  552         top->cg_mask = all_cpus;
  553         top->cg_count = mp_ncpus;
  554         top->cg_children = 0;
  555         top->cg_level = CG_SHARE_NONE;
  556         top->cg_flags = 0;
  557         
  558         return (top);
  559 }
  560 
  561 static int
  562 smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share,
  563     int count, int flags, int start)
  564 {
  565         char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
  566         cpuset_t mask;
  567         int i;
  568 
  569         CPU_ZERO(&mask);
  570         for (i = 0; i < count; i++, start++)
  571                 CPU_SET(start, &mask);
  572         child->cg_parent = parent;
  573         child->cg_child = NULL;
  574         child->cg_children = 0;
  575         child->cg_level = share;
  576         child->cg_count = count;
  577         child->cg_flags = flags;
  578         child->cg_mask = mask;
  579         parent->cg_children++;
  580         for (; parent != NULL; parent = parent->cg_parent) {
  581                 if (CPU_OVERLAP(&parent->cg_mask, &child->cg_mask))
  582                         panic("Duplicate children in %p.  mask (%s) child (%s)",
  583                             parent,
  584                             cpusetobj_strprint(cpusetbuf, &parent->cg_mask),
  585                             cpusetobj_strprint(cpusetbuf2, &child->cg_mask));
  586                 CPU_OR(&parent->cg_mask, &child->cg_mask);
  587                 parent->cg_count += child->cg_count;
  588         }
  589 
  590         return (start);
  591 }
  592 
  593 struct cpu_group *
  594 smp_topo_1level(int share, int count, int flags)
  595 {
  596         struct cpu_group *child;
  597         struct cpu_group *top;
  598         int packages;
  599         int cpu;
  600         int i;
  601 
  602         cpu = 0;
  603         top = &group[0];
  604         packages = mp_ncpus / count;
  605         top->cg_child = child = &group[1];
  606         top->cg_level = CG_SHARE_NONE;
  607         for (i = 0; i < packages; i++, child++)
  608                 cpu = smp_topo_addleaf(top, child, share, count, flags, cpu);
  609         return (top);
  610 }
  611 
  612 struct cpu_group *
  613 smp_topo_2level(int l2share, int l2count, int l1share, int l1count,
  614     int l1flags)
  615 {
  616         struct cpu_group *top;
  617         struct cpu_group *l1g;
  618         struct cpu_group *l2g;
  619         int cpu;
  620         int i;
  621         int j;
  622 
  623         cpu = 0;
  624         top = &group[0];
  625         l2g = &group[1];
  626         top->cg_child = l2g;
  627         top->cg_level = CG_SHARE_NONE;
  628         top->cg_children = mp_ncpus / (l2count * l1count);
  629         l1g = l2g + top->cg_children;
  630         for (i = 0; i < top->cg_children; i++, l2g++) {
  631                 l2g->cg_parent = top;
  632                 l2g->cg_child = l1g;
  633                 l2g->cg_level = l2share;
  634                 for (j = 0; j < l2count; j++, l1g++)
  635                         cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count,
  636                             l1flags, cpu);
  637         }
  638         return (top);
  639 }
  640 
  641 
  642 struct cpu_group *
  643 smp_topo_find(struct cpu_group *top, int cpu)
  644 {
  645         struct cpu_group *cg;
  646         cpuset_t mask;
  647         int children;
  648         int i;
  649 
  650         CPU_SETOF(cpu, &mask);
  651         cg = top;
  652         for (;;) {
  653                 if (!CPU_OVERLAP(&cg->cg_mask, &mask))
  654                         return (NULL);
  655                 if (cg->cg_children == 0)
  656                         return (cg);
  657                 children = cg->cg_children;
  658                 for (i = 0, cg = cg->cg_child; i < children; cg++, i++)
  659                         if (CPU_OVERLAP(&cg->cg_mask, &mask))
  660                                 break;
  661         }
  662         return (NULL);
  663 }
  664 #else /* !SMP */
  665 
  666 void
  667 smp_rendezvous_cpus(cpuset_t map,
  668         void (*setup_func)(void *), 
  669         void (*action_func)(void *),
  670         void (*teardown_func)(void *),
  671         void *arg)
  672 {
  673         /*
  674          * In the !SMP case we just need to ensure the same initial conditions
  675          * as the SMP case.
  676          */
  677         spinlock_enter();
  678         if (setup_func != NULL)
  679                 setup_func(arg);
  680         if (action_func != NULL)
  681                 action_func(arg);
  682         if (teardown_func != NULL)
  683                 teardown_func(arg);
  684         spinlock_exit();
  685 }
  686 
  687 void
  688 smp_rendezvous(void (*setup_func)(void *), 
  689                void (*action_func)(void *),
  690                void (*teardown_func)(void *),
  691                void *arg)
  692 {
  693 
  694         /* Look comments in the smp_rendezvous_cpus() case. */
  695         spinlock_enter();
  696         if (setup_func != NULL)
  697                 setup_func(arg);
  698         if (action_func != NULL)
  699                 action_func(arg);
  700         if (teardown_func != NULL)
  701                 teardown_func(arg);
  702         spinlock_exit();
  703 }
  704 
  705 /*
  706  * Provide dummy SMP support for UP kernels.  Modules that need to use SMP
  707  * APIs will still work using this dummy support.
  708  */
  709 static void
  710 mp_setvariables_for_up(void *dummy)
  711 {
  712         mp_ncpus = 1;
  713         mp_maxid = PCPU_GET(cpuid);
  714         CPU_SETOF(mp_maxid, &all_cpus);
  715         KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero"));
  716 }
  717 SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST,
  718     mp_setvariables_for_up, NULL);
  719 #endif /* SMP */
  720 
  721 void
  722 smp_no_rendevous_barrier(void *dummy)
  723 {
  724 #ifdef SMP
  725         KASSERT((!smp_started),("smp_no_rendevous called and smp is started"));
  726 #endif
  727 }

Cache object: fd1c4c59581bd63822a541c65917e856


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.