The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_turnstile.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. Redistributions in binary form must reproduce the above copyright
   10  *    notice, this list of conditions and the following disclaimer in the
   11  *    documentation and/or other materials provided with the distribution.
   12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
   13  *    promote products derived from this software without specific prior
   14  *    written permission.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  *
   28  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
   29  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
   30  */
   31 
   32 /*
   33  * Implementation of turnstiles used to hold queue of threads blocked on
   34  * non-sleepable locks.  Sleepable locks use condition variables to
   35  * implement their queues.  Turnstiles differ from a sleep queue in that
   36  * turnstile queue's are assigned to a lock held by an owning thread.  Thus,
   37  * when one thread is enqueued onto a turnstile, it can lend its priority
   38  * to the owning thread.
   39  *
   40  * We wish to avoid bloating locks with an embedded turnstile and we do not
   41  * want to use back-pointers in the locks for the same reason.  Thus, we
   42  * use a similar approach to that of Solaris 7 as described in Solaris
   43  * Internals by Jim Mauro and Richard McDougall.  Turnstiles are looked up
   44  * in a hash table based on the address of the lock.  Each entry in the
   45  * hash table is a linked-lists of turnstiles and is called a turnstile
   46  * chain.  Each chain contains a spin mutex that protects all of the
   47  * turnstiles in the chain.
   48  *
   49  * Each time a thread is created, a turnstile is allocated from a UMA zone
   50  * and attached to that thread.  When a thread blocks on a lock, if it is the
   51  * first thread to block, it lends its turnstile to the lock.  If the lock
   52  * already has a turnstile, then it gives its turnstile to the lock's
   53  * turnstile's free list.  When a thread is woken up, it takes a turnstile from
   54  * the free list if there are any other waiters.  If it is the only thread
   55  * blocked on the lock, then it reclaims the turnstile associated with the lock
   56  * and removes it from the hash table.
   57  */
   58 
   59 #include <sys/cdefs.h>
   60 __FBSDID("$FreeBSD$");
   61 
   62 #include "opt_ddb.h"
   63 #include "opt_turnstile_profiling.h"
   64 #include "opt_sched.h"
   65 
   66 #include <sys/param.h>
   67 #include <sys/systm.h>
   68 #include <sys/kdb.h>
   69 #include <sys/kernel.h>
   70 #include <sys/ktr.h>
   71 #include <sys/lock.h>
   72 #include <sys/mutex.h>
   73 #include <sys/proc.h>
   74 #include <sys/queue.h>
   75 #include <sys/sched.h>
   76 #include <sys/sdt.h>
   77 #include <sys/sysctl.h>
   78 #include <sys/turnstile.h>
   79 
   80 #include <vm/uma.h>
   81 
   82 #ifdef DDB
   83 #include <ddb/ddb.h>
   84 #include <sys/lockmgr.h>
   85 #include <sys/sx.h>
   86 #endif
   87 
   88 /*
   89  * Constants for the hash table of turnstile chains.  TC_SHIFT is a magic
   90  * number chosen because the sleep queue's use the same value for the
   91  * shift.  Basically, we ignore the lower 8 bits of the address.
   92  * TC_TABLESIZE must be a power of two for TC_MASK to work properly.
   93  */
   94 #define TC_TABLESIZE    128                     /* Must be power of 2. */
   95 #define TC_MASK         (TC_TABLESIZE - 1)
   96 #define TC_SHIFT        8
   97 #define TC_HASH(lock)   (((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK)
   98 #define TC_LOOKUP(lock) &turnstile_chains[TC_HASH(lock)]
   99 
  100 /*
  101  * There are three different lists of turnstiles as follows.  The list
  102  * connected by ts_link entries is a per-thread list of all the turnstiles
  103  * attached to locks that we own.  This is used to fixup our priority when
  104  * a lock is released.  The other two lists use the ts_hash entries.  The
  105  * first of these two is the turnstile chain list that a turnstile is on
  106  * when it is attached to a lock.  The second list to use ts_hash is the
  107  * free list hung off of a turnstile that is attached to a lock.
  108  *
  109  * Each turnstile contains three lists of threads.  The two ts_blocked lists
  110  * are linked list of threads blocked on the turnstile's lock.  One list is
  111  * for exclusive waiters, and the other is for shared waiters.  The
  112  * ts_pending list is a linked list of threads previously awakened by
  113  * turnstile_signal() or turnstile_wait() that are waiting to be put on
  114  * the run queue.
  115  *
  116  * Locking key:
  117  *  c - turnstile chain lock
  118  *  q - td_contested lock
  119  */
  120 struct turnstile {
  121         struct mtx ts_lock;                     /* Spin lock for self. */
  122         struct threadqueue ts_blocked[2];       /* (c + q) Blocked threads. */
  123         struct threadqueue ts_pending;          /* (c) Pending threads. */
  124         LIST_ENTRY(turnstile) ts_hash;          /* (c) Chain and free list. */
  125         LIST_ENTRY(turnstile) ts_link;          /* (q) Contested locks. */
  126         LIST_HEAD(, turnstile) ts_free;         /* (c) Free turnstiles. */
  127         struct lock_object *ts_lockobj;         /* (c) Lock we reference. */
  128         struct thread *ts_owner;                /* (c + q) Who owns the lock. */
  129 };
  130 
  131 struct turnstile_chain {
  132         LIST_HEAD(, turnstile) tc_turnstiles;   /* List of turnstiles. */
  133         struct mtx tc_lock;                     /* Spin lock for this chain. */
  134 #ifdef TURNSTILE_PROFILING
  135         u_int   tc_depth;                       /* Length of tc_queues. */
  136         u_int   tc_max_depth;                   /* Max length of tc_queues. */
  137 #endif
  138 };
  139 
  140 #ifdef TURNSTILE_PROFILING
  141 u_int turnstile_max_depth;
  142 static SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD, 0,
  143     "turnstile profiling");
  144 static SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, CTLFLAG_RD, 0,
  145     "turnstile chain stats");
  146 SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD,
  147     &turnstile_max_depth, 0, "maximum depth achieved of a single chain");
  148 #endif
  149 static struct mtx td_contested_lock;
  150 static struct turnstile_chain turnstile_chains[TC_TABLESIZE];
  151 static uma_zone_t turnstile_zone;
  152 
  153 /*
  154  * Prototypes for non-exported routines.
  155  */
  156 static void     init_turnstile0(void *dummy);
  157 #ifdef TURNSTILE_PROFILING
  158 static void     init_turnstile_profiling(void *arg);
  159 #endif
  160 static void     propagate_priority(struct thread *td);
  161 static int      turnstile_adjust_thread(struct turnstile *ts,
  162                     struct thread *td);
  163 static struct thread *turnstile_first_waiter(struct turnstile *ts);
  164 static void     turnstile_setowner(struct turnstile *ts, struct thread *owner);
  165 #ifdef INVARIANTS
  166 static void     turnstile_dtor(void *mem, int size, void *arg);
  167 #endif
  168 static int      turnstile_init(void *mem, int size, int flags);
  169 static void     turnstile_fini(void *mem, int size);
  170 
  171 SDT_PROVIDER_DECLARE(sched);
  172 SDT_PROBE_DEFINE(sched, , , sleep);
  173 SDT_PROBE_DEFINE2(sched, , , wakeup, "struct thread *", 
  174     "struct proc *");
  175 
  176 /*
  177  * Walks the chain of turnstiles and their owners to propagate the priority
  178  * of the thread being blocked to all the threads holding locks that have to
  179  * release their locks before this thread can run again.
  180  */
  181 static void
  182 propagate_priority(struct thread *td)
  183 {
  184         struct turnstile *ts;
  185         int pri;
  186 
  187         THREAD_LOCK_ASSERT(td, MA_OWNED);
  188         pri = td->td_priority;
  189         ts = td->td_blocked;
  190         THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
  191         /*
  192          * Grab a recursive lock on this turnstile chain so it stays locked
  193          * for the whole operation.  The caller expects us to return with
  194          * the original lock held.  We only ever lock down the chain so
  195          * the lock order is constant.
  196          */
  197         mtx_lock_spin(&ts->ts_lock);
  198         for (;;) {
  199                 td = ts->ts_owner;
  200 
  201                 if (td == NULL) {
  202                         /*
  203                          * This might be a read lock with no owner.  There's
  204                          * not much we can do, so just bail.
  205                          */
  206                         mtx_unlock_spin(&ts->ts_lock);
  207                         return;
  208                 }
  209 
  210                 thread_lock_flags(td, MTX_DUPOK);
  211                 mtx_unlock_spin(&ts->ts_lock);
  212                 MPASS(td->td_proc != NULL);
  213                 MPASS(td->td_proc->p_magic == P_MAGIC);
  214 
  215                 /*
  216                  * If the thread is asleep, then we are probably about
  217                  * to deadlock.  To make debugging this easier, show
  218                  * backtrace of misbehaving thread and panic to not
  219                  * leave the kernel deadlocked.
  220                  */
  221                 if (TD_IS_SLEEPING(td)) {
  222                         printf(
  223                 "Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n",
  224                             td->td_tid, td->td_proc->p_pid);
  225                         kdb_backtrace_thread(td);
  226                         panic("sleeping thread");
  227                 }
  228 
  229                 /*
  230                  * If this thread already has higher priority than the
  231                  * thread that is being blocked, we are finished.
  232                  */
  233                 if (td->td_priority <= pri) {
  234                         thread_unlock(td);
  235                         return;
  236                 }
  237 
  238                 /*
  239                  * Bump this thread's priority.
  240                  */
  241                 sched_lend_prio(td, pri);
  242 
  243                 /*
  244                  * If lock holder is actually running or on the run queue
  245                  * then we are done.
  246                  */
  247                 if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) {
  248                         MPASS(td->td_blocked == NULL);
  249                         thread_unlock(td);
  250                         return;
  251                 }
  252 
  253 #ifndef SMP
  254                 /*
  255                  * For UP, we check to see if td is curthread (this shouldn't
  256                  * ever happen however as it would mean we are in a deadlock.)
  257                  */
  258                 KASSERT(td != curthread, ("Deadlock detected"));
  259 #endif
  260 
  261                 /*
  262                  * If we aren't blocked on a lock, we should be.
  263                  */
  264                 KASSERT(TD_ON_LOCK(td), (
  265                     "thread %d(%s):%d holds %s but isn't blocked on a lock\n",
  266                     td->td_tid, td->td_name, td->td_state,
  267                     ts->ts_lockobj->lo_name));
  268 
  269                 /*
  270                  * Pick up the lock that td is blocked on.
  271                  */
  272                 ts = td->td_blocked;
  273                 MPASS(ts != NULL);
  274                 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
  275                 /* Resort td on the list if needed. */
  276                 if (!turnstile_adjust_thread(ts, td)) {
  277                         mtx_unlock_spin(&ts->ts_lock);
  278                         return;
  279                 }
  280                 /* The thread lock is released as ts lock above. */
  281         }
  282 }
  283 
  284 /*
  285  * Adjust the thread's position on a turnstile after its priority has been
  286  * changed.
  287  */
  288 static int
  289 turnstile_adjust_thread(struct turnstile *ts, struct thread *td)
  290 {
  291         struct thread *td1, *td2;
  292         int queue;
  293 
  294         THREAD_LOCK_ASSERT(td, MA_OWNED);
  295         MPASS(TD_ON_LOCK(td));
  296 
  297         /*
  298          * This thread may not be blocked on this turnstile anymore
  299          * but instead might already be woken up on another CPU
  300          * that is waiting on the thread lock in turnstile_unpend() to
  301          * finish waking this thread up.  We can detect this case
  302          * by checking to see if this thread has been given a
  303          * turnstile by either turnstile_signal() or
  304          * turnstile_broadcast().  In this case, treat the thread as
  305          * if it was already running.
  306          */
  307         if (td->td_turnstile != NULL)
  308                 return (0);
  309 
  310         /*
  311          * Check if the thread needs to be moved on the blocked chain.
  312          * It needs to be moved if either its priority is lower than
  313          * the previous thread or higher than the next thread.
  314          */
  315         THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
  316         td1 = TAILQ_PREV(td, threadqueue, td_lockq);
  317         td2 = TAILQ_NEXT(td, td_lockq);
  318         if ((td1 != NULL && td->td_priority < td1->td_priority) ||
  319             (td2 != NULL && td->td_priority > td2->td_priority)) {
  320 
  321                 /*
  322                  * Remove thread from blocked chain and determine where
  323                  * it should be moved to.
  324                  */
  325                 queue = td->td_tsqueue;
  326                 MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE);
  327                 mtx_lock_spin(&td_contested_lock);
  328                 TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
  329                 TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) {
  330                         MPASS(td1->td_proc->p_magic == P_MAGIC);
  331                         if (td1->td_priority > td->td_priority)
  332                                 break;
  333                 }
  334 
  335                 if (td1 == NULL)
  336                         TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
  337                 else
  338                         TAILQ_INSERT_BEFORE(td1, td, td_lockq);
  339                 mtx_unlock_spin(&td_contested_lock);
  340                 if (td1 == NULL)
  341                         CTR3(KTR_LOCK,
  342                     "turnstile_adjust_thread: td %d put at tail on [%p] %s",
  343                             td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name);
  344                 else
  345                         CTR4(KTR_LOCK,
  346                     "turnstile_adjust_thread: td %d moved before %d on [%p] %s",
  347                             td->td_tid, td1->td_tid, ts->ts_lockobj,
  348                             ts->ts_lockobj->lo_name);
  349         }
  350         return (1);
  351 }
  352 
  353 /*
  354  * Early initialization of turnstiles.  This is not done via a SYSINIT()
  355  * since this needs to be initialized very early when mutexes are first
  356  * initialized.
  357  */
  358 void
  359 init_turnstiles(void)
  360 {
  361         int i;
  362 
  363         for (i = 0; i < TC_TABLESIZE; i++) {
  364                 LIST_INIT(&turnstile_chains[i].tc_turnstiles);
  365                 mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain",
  366                     NULL, MTX_SPIN);
  367         }
  368         mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN);
  369         LIST_INIT(&thread0.td_contested);
  370         thread0.td_turnstile = NULL;
  371 }
  372 
  373 #ifdef TURNSTILE_PROFILING
  374 static void
  375 init_turnstile_profiling(void *arg)
  376 {
  377         struct sysctl_oid *chain_oid;
  378         char chain_name[10];
  379         int i;
  380 
  381         for (i = 0; i < TC_TABLESIZE; i++) {
  382                 snprintf(chain_name, sizeof(chain_name), "%d", i);
  383                 chain_oid = SYSCTL_ADD_NODE(NULL, 
  384                     SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO,
  385                     chain_name, CTLFLAG_RD, NULL, "turnstile chain stats");
  386                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  387                     "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0,
  388                     NULL);
  389                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  390                     "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth,
  391                     0, NULL);
  392         }
  393 }
  394 SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
  395     init_turnstile_profiling, NULL);
  396 #endif
  397 
  398 static void
  399 init_turnstile0(void *dummy)
  400 {
  401 
  402         turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile),
  403             NULL,
  404 #ifdef INVARIANTS
  405             turnstile_dtor,
  406 #else
  407             NULL,
  408 #endif
  409             turnstile_init, turnstile_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
  410         thread0.td_turnstile = turnstile_alloc();
  411 }
  412 SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL);
  413 
  414 /*
  415  * Update a thread on the turnstile list after it's priority has been changed.
  416  * The old priority is passed in as an argument.
  417  */
  418 void
  419 turnstile_adjust(struct thread *td, u_char oldpri)
  420 {
  421         struct turnstile *ts;
  422 
  423         MPASS(TD_ON_LOCK(td));
  424 
  425         /*
  426          * Pick up the lock that td is blocked on.
  427          */
  428         ts = td->td_blocked;
  429         MPASS(ts != NULL);
  430         THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
  431         mtx_assert(&ts->ts_lock, MA_OWNED);
  432 
  433         /* Resort the turnstile on the list. */
  434         if (!turnstile_adjust_thread(ts, td))
  435                 return;
  436         /*
  437          * If our priority was lowered and we are at the head of the
  438          * turnstile, then propagate our new priority up the chain.
  439          * Note that we currently don't try to revoke lent priorities
  440          * when our priority goes up.
  441          */
  442         MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE ||
  443             td->td_tsqueue == TS_SHARED_QUEUE);
  444         if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) &&
  445             td->td_priority < oldpri) {
  446                 propagate_priority(td);
  447         }
  448 }
  449 
  450 /*
  451  * Set the owner of the lock this turnstile is attached to.
  452  */
  453 static void
  454 turnstile_setowner(struct turnstile *ts, struct thread *owner)
  455 {
  456 
  457         mtx_assert(&td_contested_lock, MA_OWNED);
  458         MPASS(ts->ts_owner == NULL);
  459 
  460         /* A shared lock might not have an owner. */
  461         if (owner == NULL)
  462                 return;
  463 
  464         MPASS(owner->td_proc->p_magic == P_MAGIC);
  465         ts->ts_owner = owner;
  466         LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link);
  467 }
  468 
  469 #ifdef INVARIANTS
  470 /*
  471  * UMA zone item deallocator.
  472  */
  473 static void
  474 turnstile_dtor(void *mem, int size, void *arg)
  475 {
  476         struct turnstile *ts;
  477 
  478         ts = mem;
  479         MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]));
  480         MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
  481         MPASS(TAILQ_EMPTY(&ts->ts_pending));
  482 }
  483 #endif
  484 
  485 /*
  486  * UMA zone item initializer.
  487  */
  488 static int
  489 turnstile_init(void *mem, int size, int flags)
  490 {
  491         struct turnstile *ts;
  492 
  493         bzero(mem, size);
  494         ts = mem;
  495         TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
  496         TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]);
  497         TAILQ_INIT(&ts->ts_pending);
  498         LIST_INIT(&ts->ts_free);
  499         mtx_init(&ts->ts_lock, "turnstile lock", NULL, MTX_SPIN | MTX_RECURSE);
  500         return (0);
  501 }
  502 
  503 static void
  504 turnstile_fini(void *mem, int size)
  505 {
  506         struct turnstile *ts;
  507 
  508         ts = mem;
  509         mtx_destroy(&ts->ts_lock);
  510 }
  511 
  512 /*
  513  * Get a turnstile for a new thread.
  514  */
  515 struct turnstile *
  516 turnstile_alloc(void)
  517 {
  518 
  519         return (uma_zalloc(turnstile_zone, M_WAITOK));
  520 }
  521 
  522 /*
  523  * Free a turnstile when a thread is destroyed.
  524  */
  525 void
  526 turnstile_free(struct turnstile *ts)
  527 {
  528 
  529         uma_zfree(turnstile_zone, ts);
  530 }
  531 
  532 /*
  533  * Lock the turnstile chain associated with the specified lock.
  534  */
  535 void
  536 turnstile_chain_lock(struct lock_object *lock)
  537 {
  538         struct turnstile_chain *tc;
  539 
  540         tc = TC_LOOKUP(lock);
  541         mtx_lock_spin(&tc->tc_lock);
  542 }
  543 
  544 struct turnstile *
  545 turnstile_trywait(struct lock_object *lock)
  546 {
  547         struct turnstile_chain *tc;
  548         struct turnstile *ts;
  549 
  550         tc = TC_LOOKUP(lock);
  551         mtx_lock_spin(&tc->tc_lock);
  552         LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
  553                 if (ts->ts_lockobj == lock) {
  554                         mtx_lock_spin(&ts->ts_lock);
  555                         return (ts);
  556                 }
  557 
  558         ts = curthread->td_turnstile;
  559         MPASS(ts != NULL);
  560         mtx_lock_spin(&ts->ts_lock);
  561         KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer"));
  562         ts->ts_lockobj = lock;
  563 
  564         return (ts);
  565 }
  566 
  567 void
  568 turnstile_cancel(struct turnstile *ts)
  569 {
  570         struct turnstile_chain *tc;
  571         struct lock_object *lock;
  572 
  573         mtx_assert(&ts->ts_lock, MA_OWNED);
  574 
  575         mtx_unlock_spin(&ts->ts_lock);
  576         lock = ts->ts_lockobj;
  577         if (ts == curthread->td_turnstile)
  578                 ts->ts_lockobj = NULL;
  579         tc = TC_LOOKUP(lock);
  580         mtx_unlock_spin(&tc->tc_lock);
  581 }
  582 
  583 /*
  584  * Look up the turnstile for a lock in the hash table locking the associated
  585  * turnstile chain along the way.  If no turnstile is found in the hash
  586  * table, NULL is returned.
  587  */
  588 struct turnstile *
  589 turnstile_lookup(struct lock_object *lock)
  590 {
  591         struct turnstile_chain *tc;
  592         struct turnstile *ts;
  593 
  594         tc = TC_LOOKUP(lock);
  595         mtx_assert(&tc->tc_lock, MA_OWNED);
  596         LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
  597                 if (ts->ts_lockobj == lock) {
  598                         mtx_lock_spin(&ts->ts_lock);
  599                         return (ts);
  600                 }
  601         return (NULL);
  602 }
  603 
  604 /*
  605  * Unlock the turnstile chain associated with a given lock.
  606  */
  607 void
  608 turnstile_chain_unlock(struct lock_object *lock)
  609 {
  610         struct turnstile_chain *tc;
  611 
  612         tc = TC_LOOKUP(lock);
  613         mtx_unlock_spin(&tc->tc_lock);
  614 }
  615 
  616 /*
  617  * Return a pointer to the thread waiting on this turnstile with the
  618  * most important priority or NULL if the turnstile has no waiters.
  619  */
  620 static struct thread *
  621 turnstile_first_waiter(struct turnstile *ts)
  622 {
  623         struct thread *std, *xtd;
  624 
  625         std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]);
  626         xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
  627         if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority))
  628                 return (std);
  629         return (xtd);
  630 }
  631 
  632 /*
  633  * Take ownership of a turnstile and adjust the priority of the new
  634  * owner appropriately.
  635  */
  636 void
  637 turnstile_claim(struct turnstile *ts)
  638 {
  639         struct thread *td, *owner;
  640         struct turnstile_chain *tc;
  641 
  642         mtx_assert(&ts->ts_lock, MA_OWNED);
  643         MPASS(ts != curthread->td_turnstile);
  644 
  645         owner = curthread;
  646         mtx_lock_spin(&td_contested_lock);
  647         turnstile_setowner(ts, owner);
  648         mtx_unlock_spin(&td_contested_lock);
  649 
  650         td = turnstile_first_waiter(ts);
  651         MPASS(td != NULL);
  652         MPASS(td->td_proc->p_magic == P_MAGIC);
  653         THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
  654 
  655         /*
  656          * Update the priority of the new owner if needed.
  657          */
  658         thread_lock(owner);
  659         if (td->td_priority < owner->td_priority)
  660                 sched_lend_prio(owner, td->td_priority);
  661         thread_unlock(owner);
  662         tc = TC_LOOKUP(ts->ts_lockobj);
  663         mtx_unlock_spin(&ts->ts_lock);
  664         mtx_unlock_spin(&tc->tc_lock);
  665 }
  666 
  667 /*
  668  * Block the current thread on the turnstile assicated with 'lock'.  This
  669  * function will context switch and not return until this thread has been
  670  * woken back up.  This function must be called with the appropriate
  671  * turnstile chain locked and will return with it unlocked.
  672  */
  673 void
  674 turnstile_wait(struct turnstile *ts, struct thread *owner, int queue)
  675 {
  676         struct turnstile_chain *tc;
  677         struct thread *td, *td1;
  678         struct lock_object *lock;
  679 
  680         td = curthread;
  681         mtx_assert(&ts->ts_lock, MA_OWNED);
  682         if (owner)
  683                 MPASS(owner->td_proc->p_magic == P_MAGIC);
  684         MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
  685 
  686         /*
  687          * If the lock does not already have a turnstile, use this thread's
  688          * turnstile.  Otherwise insert the current thread into the
  689          * turnstile already in use by this lock.
  690          */
  691         tc = TC_LOOKUP(ts->ts_lockobj);
  692         mtx_assert(&tc->tc_lock, MA_OWNED);
  693         if (ts == td->td_turnstile) {
  694 #ifdef TURNSTILE_PROFILING
  695                 tc->tc_depth++;
  696                 if (tc->tc_depth > tc->tc_max_depth) {
  697                         tc->tc_max_depth = tc->tc_depth;
  698                         if (tc->tc_max_depth > turnstile_max_depth)
  699                                 turnstile_max_depth = tc->tc_max_depth;
  700                 }
  701 #endif
  702                 LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash);
  703                 KASSERT(TAILQ_EMPTY(&ts->ts_pending),
  704                     ("thread's turnstile has pending threads"));
  705                 KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]),
  706                     ("thread's turnstile has exclusive waiters"));
  707                 KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]),
  708                     ("thread's turnstile has shared waiters"));
  709                 KASSERT(LIST_EMPTY(&ts->ts_free),
  710                     ("thread's turnstile has a non-empty free list"));
  711                 MPASS(ts->ts_lockobj != NULL);
  712                 mtx_lock_spin(&td_contested_lock);
  713                 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
  714                 turnstile_setowner(ts, owner);
  715                 mtx_unlock_spin(&td_contested_lock);
  716         } else {
  717                 TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq)
  718                         if (td1->td_priority > td->td_priority)
  719                                 break;
  720                 mtx_lock_spin(&td_contested_lock);
  721                 if (td1 != NULL)
  722                         TAILQ_INSERT_BEFORE(td1, td, td_lockq);
  723                 else
  724                         TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
  725                 MPASS(owner == ts->ts_owner);
  726                 mtx_unlock_spin(&td_contested_lock);
  727                 MPASS(td->td_turnstile != NULL);
  728                 LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash);
  729         }
  730         thread_lock(td);
  731         thread_lock_set(td, &ts->ts_lock);
  732         td->td_turnstile = NULL;
  733 
  734         /* Save who we are blocked on and switch. */
  735         lock = ts->ts_lockobj;
  736         td->td_tsqueue = queue;
  737         td->td_blocked = ts;
  738         td->td_lockname = lock->lo_name;
  739         td->td_blktick = ticks;
  740         TD_SET_LOCK(td);
  741         mtx_unlock_spin(&tc->tc_lock);
  742         propagate_priority(td);
  743 
  744         if (LOCK_LOG_TEST(lock, 0))
  745                 CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__,
  746                     td->td_tid, lock, lock->lo_name);
  747 
  748         SDT_PROBE0(sched, , , sleep);
  749 
  750         THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
  751         mi_switch(SW_VOL | SWT_TURNSTILE, NULL);
  752 
  753         if (LOCK_LOG_TEST(lock, 0))
  754                 CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s",
  755                     __func__, td->td_tid, lock, lock->lo_name);
  756         thread_unlock(td);
  757 }
  758 
  759 /*
  760  * Pick the highest priority thread on this turnstile and put it on the
  761  * pending list.  This must be called with the turnstile chain locked.
  762  */
  763 int
  764 turnstile_signal(struct turnstile *ts, int queue)
  765 {
  766         struct turnstile_chain *tc;
  767         struct thread *td;
  768         int empty;
  769 
  770         MPASS(ts != NULL);
  771         mtx_assert(&ts->ts_lock, MA_OWNED);
  772         MPASS(curthread->td_proc->p_magic == P_MAGIC);
  773         MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
  774         MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
  775 
  776         /*
  777          * Pick the highest priority thread blocked on this lock and
  778          * move it to the pending list.
  779          */
  780         td = TAILQ_FIRST(&ts->ts_blocked[queue]);
  781         MPASS(td->td_proc->p_magic == P_MAGIC);
  782         mtx_lock_spin(&td_contested_lock);
  783         TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
  784         mtx_unlock_spin(&td_contested_lock);
  785         TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq);
  786 
  787         /*
  788          * If the turnstile is now empty, remove it from its chain and
  789          * give it to the about-to-be-woken thread.  Otherwise take a
  790          * turnstile from the free list and give it to the thread.
  791          */
  792         empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
  793             TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]);
  794         if (empty) {
  795                 tc = TC_LOOKUP(ts->ts_lockobj);
  796                 mtx_assert(&tc->tc_lock, MA_OWNED);
  797                 MPASS(LIST_EMPTY(&ts->ts_free));
  798 #ifdef TURNSTILE_PROFILING
  799                 tc->tc_depth--;
  800 #endif
  801         } else
  802                 ts = LIST_FIRST(&ts->ts_free);
  803         MPASS(ts != NULL);
  804         LIST_REMOVE(ts, ts_hash);
  805         td->td_turnstile = ts;
  806 
  807         return (empty);
  808 }
  809         
  810 /*
  811  * Put all blocked threads on the pending list.  This must be called with
  812  * the turnstile chain locked.
  813  */
  814 void
  815 turnstile_broadcast(struct turnstile *ts, int queue)
  816 {
  817         struct turnstile_chain *tc;
  818         struct turnstile *ts1;
  819         struct thread *td;
  820 
  821         MPASS(ts != NULL);
  822         mtx_assert(&ts->ts_lock, MA_OWNED);
  823         MPASS(curthread->td_proc->p_magic == P_MAGIC);
  824         MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
  825         /*
  826          * We must have the chain locked so that we can remove the empty
  827          * turnstile from the hash queue.
  828          */
  829         tc = TC_LOOKUP(ts->ts_lockobj);
  830         mtx_assert(&tc->tc_lock, MA_OWNED);
  831         MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
  832 
  833         /*
  834          * Transfer the blocked list to the pending list.
  835          */
  836         mtx_lock_spin(&td_contested_lock);
  837         TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq);
  838         mtx_unlock_spin(&td_contested_lock);
  839 
  840         /*
  841          * Give a turnstile to each thread.  The last thread gets
  842          * this turnstile if the turnstile is empty.
  843          */
  844         TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) {
  845                 if (LIST_EMPTY(&ts->ts_free)) {
  846                         MPASS(TAILQ_NEXT(td, td_lockq) == NULL);
  847                         ts1 = ts;
  848 #ifdef TURNSTILE_PROFILING
  849                         tc->tc_depth--;
  850 #endif
  851                 } else
  852                         ts1 = LIST_FIRST(&ts->ts_free);
  853                 MPASS(ts1 != NULL);
  854                 LIST_REMOVE(ts1, ts_hash);
  855                 td->td_turnstile = ts1;
  856         }
  857 }
  858 
  859 /*
  860  * Wakeup all threads on the pending list and adjust the priority of the
  861  * current thread appropriately.  This must be called with the turnstile
  862  * chain locked.
  863  */
  864 void
  865 turnstile_unpend(struct turnstile *ts, int owner_type)
  866 {
  867         TAILQ_HEAD( ,thread) pending_threads;
  868         struct turnstile *nts;
  869         struct thread *td;
  870         u_char cp, pri;
  871 
  872         MPASS(ts != NULL);
  873         mtx_assert(&ts->ts_lock, MA_OWNED);
  874         MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
  875         MPASS(!TAILQ_EMPTY(&ts->ts_pending));
  876 
  877         /*
  878          * Move the list of pending threads out of the turnstile and
  879          * into a local variable.
  880          */
  881         TAILQ_INIT(&pending_threads);
  882         TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq);
  883 #ifdef INVARIANTS
  884         if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
  885             TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]))
  886                 ts->ts_lockobj = NULL;
  887 #endif
  888         /*
  889          * Adjust the priority of curthread based on other contested
  890          * locks it owns.  Don't lower the priority below the base
  891          * priority however.
  892          */
  893         td = curthread;
  894         pri = PRI_MAX;
  895         thread_lock(td);
  896         mtx_lock_spin(&td_contested_lock);
  897         /*
  898          * Remove the turnstile from this thread's list of contested locks
  899          * since this thread doesn't own it anymore.  New threads will
  900          * not be blocking on the turnstile until it is claimed by a new
  901          * owner.  There might not be a current owner if this is a shared
  902          * lock.
  903          */
  904         if (ts->ts_owner != NULL) {
  905                 ts->ts_owner = NULL;
  906                 LIST_REMOVE(ts, ts_link);
  907         }
  908         LIST_FOREACH(nts, &td->td_contested, ts_link) {
  909                 cp = turnstile_first_waiter(nts)->td_priority;
  910                 if (cp < pri)
  911                         pri = cp;
  912         }
  913         mtx_unlock_spin(&td_contested_lock);
  914         sched_unlend_prio(td, pri);
  915         thread_unlock(td);
  916         /*
  917          * Wake up all the pending threads.  If a thread is not blocked
  918          * on a lock, then it is currently executing on another CPU in
  919          * turnstile_wait() or sitting on a run queue waiting to resume
  920          * in turnstile_wait().  Set a flag to force it to try to acquire
  921          * the lock again instead of blocking.
  922          */
  923         while (!TAILQ_EMPTY(&pending_threads)) {
  924                 td = TAILQ_FIRST(&pending_threads);
  925                 TAILQ_REMOVE(&pending_threads, td, td_lockq);
  926                 SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
  927                 thread_lock(td);
  928                 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
  929                 MPASS(td->td_proc->p_magic == P_MAGIC);
  930                 MPASS(TD_ON_LOCK(td));
  931                 TD_CLR_LOCK(td);
  932                 MPASS(TD_CAN_RUN(td));
  933                 td->td_blocked = NULL;
  934                 td->td_lockname = NULL;
  935                 td->td_blktick = 0;
  936 #ifdef INVARIANTS
  937                 td->td_tsqueue = 0xff;
  938 #endif
  939                 sched_add(td, SRQ_BORING);
  940                 thread_unlock(td);
  941         }
  942         mtx_unlock_spin(&ts->ts_lock);
  943 }
  944 
  945 /*
  946  * Give up ownership of a turnstile.  This must be called with the
  947  * turnstile chain locked.
  948  */
  949 void
  950 turnstile_disown(struct turnstile *ts)
  951 {
  952         struct thread *td;
  953         u_char cp, pri;
  954 
  955         MPASS(ts != NULL);
  956         mtx_assert(&ts->ts_lock, MA_OWNED);
  957         MPASS(ts->ts_owner == curthread);
  958         MPASS(TAILQ_EMPTY(&ts->ts_pending));
  959         MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) ||
  960             !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
  961 
  962         /*
  963          * Remove the turnstile from this thread's list of contested locks
  964          * since this thread doesn't own it anymore.  New threads will
  965          * not be blocking on the turnstile until it is claimed by a new
  966          * owner.
  967          */
  968         mtx_lock_spin(&td_contested_lock);
  969         ts->ts_owner = NULL;
  970         LIST_REMOVE(ts, ts_link);
  971         mtx_unlock_spin(&td_contested_lock);
  972 
  973         /*
  974          * Adjust the priority of curthread based on other contested
  975          * locks it owns.  Don't lower the priority below the base
  976          * priority however.
  977          */
  978         td = curthread;
  979         pri = PRI_MAX;
  980         thread_lock(td);
  981         mtx_unlock_spin(&ts->ts_lock);
  982         mtx_lock_spin(&td_contested_lock);
  983         LIST_FOREACH(ts, &td->td_contested, ts_link) {
  984                 cp = turnstile_first_waiter(ts)->td_priority;
  985                 if (cp < pri)
  986                         pri = cp;
  987         }
  988         mtx_unlock_spin(&td_contested_lock);
  989         sched_unlend_prio(td, pri);
  990         thread_unlock(td);
  991 }
  992 
  993 /*
  994  * Return the first thread in a turnstile.
  995  */
  996 struct thread *
  997 turnstile_head(struct turnstile *ts, int queue)
  998 {
  999 #ifdef INVARIANTS
 1000 
 1001         MPASS(ts != NULL);
 1002         MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
 1003         mtx_assert(&ts->ts_lock, MA_OWNED);
 1004 #endif
 1005         return (TAILQ_FIRST(&ts->ts_blocked[queue]));
 1006 }
 1007 
 1008 /*
 1009  * Returns true if a sub-queue of a turnstile is empty.
 1010  */
 1011 int
 1012 turnstile_empty(struct turnstile *ts, int queue)
 1013 {
 1014 #ifdef INVARIANTS
 1015 
 1016         MPASS(ts != NULL);
 1017         MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
 1018         mtx_assert(&ts->ts_lock, MA_OWNED);
 1019 #endif
 1020         return (TAILQ_EMPTY(&ts->ts_blocked[queue]));
 1021 }
 1022 
 1023 #ifdef DDB
 1024 static void
 1025 print_thread(struct thread *td, const char *prefix)
 1026 {
 1027 
 1028         db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid,
 1029             td->td_proc->p_pid, td->td_name);
 1030 }
 1031 
 1032 static void
 1033 print_queue(struct threadqueue *queue, const char *header, const char *prefix)
 1034 {
 1035         struct thread *td;
 1036 
 1037         db_printf("%s:\n", header);
 1038         if (TAILQ_EMPTY(queue)) {
 1039                 db_printf("%sempty\n", prefix);
 1040                 return;
 1041         }
 1042         TAILQ_FOREACH(td, queue, td_lockq) {
 1043                 print_thread(td, prefix);
 1044         }
 1045 }
 1046 
 1047 DB_SHOW_COMMAND(turnstile, db_show_turnstile)
 1048 {
 1049         struct turnstile_chain *tc;
 1050         struct turnstile *ts;
 1051         struct lock_object *lock;
 1052         int i;
 1053 
 1054         if (!have_addr)
 1055                 return;
 1056 
 1057         /*
 1058          * First, see if there is an active turnstile for the lock indicated
 1059          * by the address.
 1060          */
 1061         lock = (struct lock_object *)addr;
 1062         tc = TC_LOOKUP(lock);
 1063         LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
 1064                 if (ts->ts_lockobj == lock)
 1065                         goto found;
 1066 
 1067         /*
 1068          * Second, see if there is an active turnstile at the address
 1069          * indicated.
 1070          */
 1071         for (i = 0; i < TC_TABLESIZE; i++)
 1072                 LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) {
 1073                         if (ts == (struct turnstile *)addr)
 1074                                 goto found;
 1075                 }
 1076 
 1077         db_printf("Unable to locate a turnstile via %p\n", (void *)addr);
 1078         return;
 1079 found:
 1080         lock = ts->ts_lockobj;
 1081         db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name,
 1082             lock->lo_name);
 1083         if (ts->ts_owner)
 1084                 print_thread(ts->ts_owner, "Lock Owner: ");
 1085         else
 1086                 db_printf("Lock Owner: none\n");
 1087         print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t");
 1088         print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters",
 1089             "\t");
 1090         print_queue(&ts->ts_pending, "Pending Threads", "\t");
 1091         
 1092 }
 1093 
 1094 /*
 1095  * Show all the threads a particular thread is waiting on based on
 1096  * non-sleepable and non-spin locks.
 1097  */
 1098 static void
 1099 print_lockchain(struct thread *td, const char *prefix)
 1100 {
 1101         struct lock_object *lock;
 1102         struct lock_class *class;
 1103         struct turnstile *ts;
 1104 
 1105         /*
 1106          * Follow the chain.  We keep walking as long as the thread is
 1107          * blocked on a turnstile that has an owner.
 1108          */
 1109         while (!db_pager_quit) {
 1110                 db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
 1111                     td->td_proc->p_pid, td->td_name);
 1112                 switch (td->td_state) {
 1113                 case TDS_INACTIVE:
 1114                         db_printf("is inactive\n");
 1115                         return;
 1116                 case TDS_CAN_RUN:
 1117                         db_printf("can run\n");
 1118                         return;
 1119                 case TDS_RUNQ:
 1120                         db_printf("is on a run queue\n");
 1121                         return;
 1122                 case TDS_RUNNING:
 1123                         db_printf("running on CPU %d\n", td->td_oncpu);
 1124                         return;
 1125                 case TDS_INHIBITED:
 1126                         if (TD_ON_LOCK(td)) {
 1127                                 ts = td->td_blocked;
 1128                                 lock = ts->ts_lockobj;
 1129                                 class = LOCK_CLASS(lock);
 1130                                 db_printf("blocked on lock %p (%s) \"%s\"\n",
 1131                                     lock, class->lc_name, lock->lo_name);
 1132                                 if (ts->ts_owner == NULL)
 1133                                         return;
 1134                                 td = ts->ts_owner;
 1135                                 break;
 1136                         }
 1137                         db_printf("inhibited\n");
 1138                         return;
 1139                 default:
 1140                         db_printf("??? (%#x)\n", td->td_state);
 1141                         return;
 1142                 }
 1143         }
 1144 }
 1145 
 1146 DB_SHOW_COMMAND(lockchain, db_show_lockchain)
 1147 {
 1148         struct thread *td;
 1149 
 1150         /* Figure out which thread to start with. */
 1151         if (have_addr)
 1152                 td = db_lookup_thread(addr, true);
 1153         else
 1154                 td = kdb_thread;
 1155 
 1156         print_lockchain(td, "");
 1157 }
 1158 
 1159 DB_SHOW_ALL_COMMAND(chains, db_show_allchains)
 1160 {
 1161         struct thread *td;
 1162         struct proc *p;
 1163         int i;
 1164 
 1165         i = 1;
 1166         FOREACH_PROC_IN_SYSTEM(p) {
 1167                 FOREACH_THREAD_IN_PROC(p, td) {
 1168                         if (TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested)) {
 1169                                 db_printf("chain %d:\n", i++);
 1170                                 print_lockchain(td, " ");
 1171                         }
 1172                         if (db_pager_quit)
 1173                                 return;
 1174                 }
 1175         }
 1176 }
 1177 DB_SHOW_ALIAS(allchains, db_show_allchains)
 1178 
 1179 /*
 1180  * Show all the threads a particular thread is waiting on based on
 1181  * sleepable locks.
 1182  */
 1183 static void
 1184 print_sleepchain(struct thread *td, const char *prefix)
 1185 {
 1186         struct thread *owner;
 1187 
 1188         /*
 1189          * Follow the chain.  We keep walking as long as the thread is
 1190          * blocked on a sleep lock that has an owner.
 1191          */
 1192         while (!db_pager_quit) {
 1193                 db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
 1194                     td->td_proc->p_pid, td->td_name);
 1195                 switch (td->td_state) {
 1196                 case TDS_INACTIVE:
 1197                         db_printf("is inactive\n");
 1198                         return;
 1199                 case TDS_CAN_RUN:
 1200                         db_printf("can run\n");
 1201                         return;
 1202                 case TDS_RUNQ:
 1203                         db_printf("is on a run queue\n");
 1204                         return;
 1205                 case TDS_RUNNING:
 1206                         db_printf("running on CPU %d\n", td->td_oncpu);
 1207                         return;
 1208                 case TDS_INHIBITED:
 1209                         if (TD_ON_SLEEPQ(td)) {
 1210                                 if (lockmgr_chain(td, &owner) ||
 1211                                     sx_chain(td, &owner)) {
 1212                                         if (owner == NULL)
 1213                                                 return;
 1214                                         td = owner;
 1215                                         break;
 1216                                 }
 1217                                 db_printf("sleeping on %p \"%s\"\n",
 1218                                     td->td_wchan, td->td_wmesg);
 1219                                 return;
 1220                         }
 1221                         db_printf("inhibited\n");
 1222                         return;
 1223                 default:
 1224                         db_printf("??? (%#x)\n", td->td_state);
 1225                         return;
 1226                 }
 1227         }
 1228 }
 1229 
 1230 DB_SHOW_COMMAND(sleepchain, db_show_sleepchain)
 1231 {
 1232         struct thread *td;
 1233 
 1234         /* Figure out which thread to start with. */
 1235         if (have_addr)
 1236                 td = db_lookup_thread(addr, true);
 1237         else
 1238                 td = kdb_thread;
 1239 
 1240         print_sleepchain(td, "");
 1241 }
 1242 
 1243 static void     print_waiters(struct turnstile *ts, int indent);
 1244         
 1245 static void
 1246 print_waiter(struct thread *td, int indent)
 1247 {
 1248         struct turnstile *ts;
 1249         int i;
 1250 
 1251         if (db_pager_quit)
 1252                 return;
 1253         for (i = 0; i < indent; i++)
 1254                 db_printf(" ");
 1255         print_thread(td, "thread ");
 1256         LIST_FOREACH(ts, &td->td_contested, ts_link)
 1257                 print_waiters(ts, indent + 1);
 1258 }
 1259 
 1260 static void
 1261 print_waiters(struct turnstile *ts, int indent)
 1262 {
 1263         struct lock_object *lock;
 1264         struct lock_class *class;
 1265         struct thread *td;
 1266         int i;
 1267 
 1268         if (db_pager_quit)
 1269                 return;
 1270         lock = ts->ts_lockobj;
 1271         class = LOCK_CLASS(lock);
 1272         for (i = 0; i < indent; i++)
 1273                 db_printf(" ");
 1274         db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name);
 1275         TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq)
 1276                 print_waiter(td, indent + 1);
 1277         TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq)
 1278                 print_waiter(td, indent + 1);
 1279         TAILQ_FOREACH(td, &ts->ts_pending, td_lockq)
 1280                 print_waiter(td, indent + 1);
 1281 }
 1282 
 1283 DB_SHOW_COMMAND(locktree, db_show_locktree)
 1284 {
 1285         struct lock_object *lock;
 1286         struct lock_class *class;
 1287         struct turnstile_chain *tc;
 1288         struct turnstile *ts;
 1289 
 1290         if (!have_addr)
 1291                 return;
 1292         lock = (struct lock_object *)addr;
 1293         tc = TC_LOOKUP(lock);
 1294         LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
 1295                 if (ts->ts_lockobj == lock)
 1296                         break;
 1297         if (ts == NULL) {
 1298                 class = LOCK_CLASS(lock);
 1299                 db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name,
 1300                     lock->lo_name);
 1301         } else
 1302                 print_waiters(ts, 0);
 1303 }
 1304 #endif

Cache object: 307b52fb9df1f70e0fff916e26ca69f5


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.