The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_turnstile.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. Redistributions in binary form must reproduce the above copyright
   10  *    notice, this list of conditions and the following disclaimer in the
   11  *    documentation and/or other materials provided with the distribution.
   12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
   13  *    promote products derived from this software without specific prior
   14  *    written permission.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  *
   28  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
   29  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
   30  */
   31 
   32 /*
   33  * Implementation of turnstiles used to hold queue of threads blocked on
   34  * non-sleepable locks.  Sleepable locks use condition variables to
   35  * implement their queues.  Turnstiles differ from a sleep queue in that
   36  * turnstile queue's are assigned to a lock held by an owning thread.  Thus,
   37  * when one thread is enqueued onto a turnstile, it can lend its priority
   38  * to the owning thread.
   39  *
   40  * We wish to avoid bloating locks with an embedded turnstile and we do not
   41  * want to use back-pointers in the locks for the same reason.  Thus, we
   42  * use a similar approach to that of Solaris 7 as described in Solaris
   43  * Internals by Jim Mauro and Richard McDougall.  Turnstiles are looked up
   44  * in a hash table based on the address of the lock.  Each entry in the
   45  * hash table is a linked-lists of turnstiles and is called a turnstile
   46  * chain.  Each chain contains a spin mutex that protects all of the
   47  * turnstiles in the chain.
   48  *
   49  * Each time a thread is created, a turnstile is allocated from a UMA zone
   50  * and attached to that thread.  When a thread blocks on a lock, if it is the
   51  * first thread to block, it lends its turnstile to the lock.  If the lock
   52  * already has a turnstile, then it gives its turnstile to the lock's
   53  * turnstile's free list.  When a thread is woken up, it takes a turnstile from
   54  * the free list if there are any other waiters.  If it is the only thread
   55  * blocked on the lock, then it reclaims the turnstile associated with the lock
   56  * and removes it from the hash table.
   57  */
   58 
   59 #include <sys/cdefs.h>
   60 __FBSDID("$FreeBSD$");
   61 
   62 #include "opt_ddb.h"
   63 #include "opt_turnstile_profiling.h"
   64 
   65 #include <sys/param.h>
   66 #include <sys/systm.h>
   67 #include <sys/kernel.h>
   68 #include <sys/ktr.h>
   69 #include <sys/lock.h>
   70 #include <sys/mutex.h>
   71 #include <sys/proc.h>
   72 #include <sys/queue.h>
   73 #include <sys/sched.h>
   74 #include <sys/sysctl.h>
   75 #include <sys/turnstile.h>
   76 
   77 #include <vm/uma.h>
   78 
   79 #ifdef DDB
   80 #include <sys/kdb.h>
   81 #include <ddb/ddb.h>
   82 #include <sys/lockmgr.h>
   83 #include <sys/sx.h>
   84 #endif
   85 
   86 /*
   87  * Constants for the hash table of turnstile chains.  TC_SHIFT is a magic
   88  * number chosen because the sleep queue's use the same value for the
   89  * shift.  Basically, we ignore the lower 8 bits of the address.
   90  * TC_TABLESIZE must be a power of two for TC_MASK to work properly.
   91  */
   92 #define TC_TABLESIZE    128                     /* Must be power of 2. */
   93 #define TC_MASK         (TC_TABLESIZE - 1)
   94 #define TC_SHIFT        8
   95 #define TC_HASH(lock)   (((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK)
   96 #define TC_LOOKUP(lock) &turnstile_chains[TC_HASH(lock)]
   97 
   98 /*
   99  * There are three different lists of turnstiles as follows.  The list
  100  * connected by ts_link entries is a per-thread list of all the turnstiles
  101  * attached to locks that we own.  This is used to fixup our priority when
  102  * a lock is released.  The other two lists use the ts_hash entries.  The
  103  * first of these two is the turnstile chain list that a turnstile is on
  104  * when it is attached to a lock.  The second list to use ts_hash is the
  105  * free list hung off of a turnstile that is attached to a lock.
  106  *
  107  * Each turnstile contains three lists of threads.  The two ts_blocked lists
  108  * are linked list of threads blocked on the turnstile's lock.  One list is
  109  * for exclusive waiters, and the other is for shared waiters.  The
  110  * ts_pending list is a linked list of threads previously awakened by
  111  * turnstile_signal() or turnstile_wait() that are waiting to be put on
  112  * the run queue.
  113  *
  114  * Locking key:
  115  *  c - turnstile chain lock
  116  *  q - td_contested lock
  117  */
  118 struct turnstile {
  119         struct threadqueue ts_blocked[2];       /* (c + q) Blocked threads. */
  120         struct threadqueue ts_pending;          /* (c) Pending threads. */
  121         LIST_ENTRY(turnstile) ts_hash;          /* (c) Chain and free list. */
  122         LIST_ENTRY(turnstile) ts_link;          /* (q) Contested locks. */
  123         LIST_HEAD(, turnstile) ts_free;         /* (c) Free turnstiles. */
  124         struct lock_object *ts_lockobj;         /* (c) Lock we reference. */
  125         struct thread *ts_owner;                /* (c + q) Who owns the lock. */
  126 };
  127 
  128 struct turnstile_chain {
  129         LIST_HEAD(, turnstile) tc_turnstiles;   /* List of turnstiles. */
  130         struct mtx tc_lock;                     /* Spin lock for this chain. */
  131 #ifdef TURNSTILE_PROFILING
  132         u_int   tc_depth;                       /* Length of tc_queues. */
  133         u_int   tc_max_depth;                   /* Max length of tc_queues. */
  134 #endif
  135 };
  136 
  137 #ifdef TURNSTILE_PROFILING
  138 u_int turnstile_max_depth;
  139 SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD, 0, "turnstile profiling");
  140 SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, CTLFLAG_RD, 0,
  141     "turnstile chain stats");
  142 SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD,
  143     &turnstile_max_depth, 0, "maxmimum depth achieved of a single chain");
  144 #endif
  145 static struct mtx td_contested_lock;
  146 static struct turnstile_chain turnstile_chains[TC_TABLESIZE];
  147 static uma_zone_t turnstile_zone;
  148 
  149 /*
  150  * Prototypes for non-exported routines.
  151  */
  152 static void     init_turnstile0(void *dummy);
  153 #ifdef TURNSTILE_PROFILING
  154 static void     init_turnstile_profiling(void *arg);
  155 #endif
  156 static void     propagate_priority(struct thread *td);
  157 static int      turnstile_adjust_thread(struct turnstile *ts,
  158                     struct thread *td);
  159 static struct thread *turnstile_first_waiter(struct turnstile *ts);
  160 static void     turnstile_setowner(struct turnstile *ts, struct thread *owner);
  161 #ifdef INVARIANTS
  162 static void     turnstile_dtor(void *mem, int size, void *arg);
  163 #endif
  164 static int      turnstile_init(void *mem, int size, int flags);
  165 
  166 /*
  167  * Walks the chain of turnstiles and their owners to propagate the priority
  168  * of the thread being blocked to all the threads holding locks that have to
  169  * release their locks before this thread can run again.
  170  */
  171 static void
  172 propagate_priority(struct thread *td)
  173 {
  174         struct turnstile_chain *tc;
  175         struct turnstile *ts;
  176         int pri;
  177 
  178         mtx_assert(&sched_lock, MA_OWNED);
  179         pri = td->td_priority;
  180         ts = td->td_blocked;
  181         for (;;) {
  182                 td = ts->ts_owner;
  183 
  184                 if (td == NULL) {
  185                         /*
  186                          * This might be a read lock with no owner.  There's
  187                          * not much we can do, so just bail.
  188                          */
  189                         return;
  190                 }
  191 
  192                 MPASS(td->td_proc != NULL);
  193                 MPASS(td->td_proc->p_magic == P_MAGIC);
  194 
  195                 /*
  196                  * If the thread is asleep, then we are probably about
  197                  * to deadlock.  To make debugging this easier, just
  198                  * panic and tell the user which thread misbehaved so
  199                  * they can hopefully get a stack trace from the truly
  200                  * misbehaving thread.
  201                  */
  202                 if (TD_IS_SLEEPING(td)) {
  203                         printf(
  204                 "Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n",
  205                             td->td_tid, td->td_proc->p_pid);
  206 #ifdef DDB
  207                         db_trace_thread(td, -1);
  208 #endif
  209                         panic("sleeping thread");
  210                 }
  211 
  212                 /*
  213                  * If this thread already has higher priority than the
  214                  * thread that is being blocked, we are finished.
  215                  */
  216                 if (td->td_priority <= pri)
  217                         return;
  218 
  219                 /*
  220                  * Bump this thread's priority.
  221                  */
  222                 sched_lend_prio(td, pri);
  223 
  224                 /*
  225                  * If lock holder is actually running or on the run queue
  226                  * then we are done.
  227                  */
  228                 if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) {
  229                         MPASS(td->td_blocked == NULL);
  230                         return;
  231                 }
  232 
  233 #ifndef SMP
  234                 /*
  235                  * For UP, we check to see if td is curthread (this shouldn't
  236                  * ever happen however as it would mean we are in a deadlock.)
  237                  */
  238                 KASSERT(td != curthread, ("Deadlock detected"));
  239 #endif
  240 
  241                 /*
  242                  * If we aren't blocked on a lock, we should be.
  243                  */
  244                 KASSERT(TD_ON_LOCK(td), (
  245                     "thread %d(%s):%d holds %s but isn't blocked on a lock\n",
  246                     td->td_tid, td->td_proc->p_comm, td->td_state,
  247                     ts->ts_lockobj->lo_name));
  248 
  249                 /*
  250                  * Pick up the lock that td is blocked on.
  251                  */
  252                 ts = td->td_blocked;
  253                 MPASS(ts != NULL);
  254                 tc = TC_LOOKUP(ts->ts_lockobj);
  255                 mtx_lock_spin(&tc->tc_lock);
  256 
  257                 /* Resort td on the list if needed. */
  258                 if (!turnstile_adjust_thread(ts, td)) {
  259                         mtx_unlock_spin(&tc->tc_lock);
  260                         return;
  261                 }
  262                 mtx_unlock_spin(&tc->tc_lock);
  263         }
  264 }
  265 
  266 /*
  267  * Adjust the thread's position on a turnstile after its priority has been
  268  * changed.
  269  */
  270 static int
  271 turnstile_adjust_thread(struct turnstile *ts, struct thread *td)
  272 {
  273         struct turnstile_chain *tc;
  274         struct thread *td1, *td2;
  275         int queue;
  276 
  277         mtx_assert(&sched_lock, MA_OWNED);
  278         MPASS(TD_ON_LOCK(td));
  279 
  280         /*
  281          * This thread may not be blocked on this turnstile anymore
  282          * but instead might already be woken up on another CPU
  283          * that is waiting on sched_lock in turnstile_unpend() to
  284          * finish waking this thread up.  We can detect this case
  285          * by checking to see if this thread has been given a
  286          * turnstile by either turnstile_signal() or
  287          * turnstile_broadcast().  In this case, treat the thread as
  288          * if it was already running.
  289          */
  290         if (td->td_turnstile != NULL)
  291                 return (0);
  292 
  293         /*
  294          * Check if the thread needs to be moved on the blocked chain.
  295          * It needs to be moved if either its priority is lower than
  296          * the previous thread or higher than the next thread.
  297          */
  298         tc = TC_LOOKUP(ts->ts_lockobj);
  299         mtx_assert(&tc->tc_lock, MA_OWNED);
  300         td1 = TAILQ_PREV(td, threadqueue, td_lockq);
  301         td2 = TAILQ_NEXT(td, td_lockq);
  302         if ((td1 != NULL && td->td_priority < td1->td_priority) ||
  303             (td2 != NULL && td->td_priority > td2->td_priority)) {
  304 
  305                 /*
  306                  * Remove thread from blocked chain and determine where
  307                  * it should be moved to.
  308                  */
  309                 queue = td->td_tsqueue;
  310                 MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE);
  311                 mtx_lock_spin(&td_contested_lock);
  312                 TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
  313                 TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) {
  314                         MPASS(td1->td_proc->p_magic == P_MAGIC);
  315                         if (td1->td_priority > td->td_priority)
  316                                 break;
  317                 }
  318 
  319                 if (td1 == NULL)
  320                         TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
  321                 else
  322                         TAILQ_INSERT_BEFORE(td1, td, td_lockq);
  323                 mtx_unlock_spin(&td_contested_lock);
  324                 if (td1 == NULL)
  325                         CTR3(KTR_LOCK,
  326                     "turnstile_adjust_thread: td %d put at tail on [%p] %s",
  327                             td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name);
  328                 else
  329                         CTR4(KTR_LOCK,
  330                     "turnstile_adjust_thread: td %d moved before %d on [%p] %s",
  331                             td->td_tid, td1->td_tid, ts->ts_lockobj,
  332                             ts->ts_lockobj->lo_name);
  333         }
  334         return (1);
  335 }
  336 
  337 /*
  338  * Early initialization of turnstiles.  This is not done via a SYSINIT()
  339  * since this needs to be initialized very early when mutexes are first
  340  * initialized.
  341  */
  342 void
  343 init_turnstiles(void)
  344 {
  345         int i;
  346 
  347         for (i = 0; i < TC_TABLESIZE; i++) {
  348                 LIST_INIT(&turnstile_chains[i].tc_turnstiles);
  349                 mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain",
  350                     NULL, MTX_SPIN);
  351         }
  352         mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN);
  353         LIST_INIT(&thread0.td_contested);
  354         thread0.td_turnstile = NULL;
  355 }
  356 
  357 #ifdef TURNSTILE_PROFILING
  358 static void
  359 init_turnstile_profiling(void *arg)
  360 {
  361         struct sysctl_oid *chain_oid;
  362         char chain_name[10];
  363         int i;
  364 
  365         for (i = 0; i < TC_TABLESIZE; i++) {
  366                 snprintf(chain_name, sizeof(chain_name), "%d", i);
  367                 chain_oid = SYSCTL_ADD_NODE(NULL, 
  368                     SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO,
  369                     chain_name, CTLFLAG_RD, NULL, "turnstile chain stats");
  370                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  371                     "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0,
  372                     NULL);
  373                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  374                     "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth,
  375                     0, NULL);
  376         }
  377 }
  378 SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
  379     init_turnstile_profiling, NULL);
  380 #endif
  381 
  382 static void
  383 init_turnstile0(void *dummy)
  384 {
  385 
  386         turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile),
  387 #ifdef INVARIANTS
  388             NULL, turnstile_dtor, turnstile_init, NULL, UMA_ALIGN_CACHE, 0);
  389 #else
  390             NULL, NULL, turnstile_init, NULL, UMA_ALIGN_CACHE, 0);
  391 #endif
  392         thread0.td_turnstile = turnstile_alloc();
  393 }
  394 SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL);
  395 
  396 /*
  397  * Update a thread on the turnstile list after it's priority has been changed.
  398  * The old priority is passed in as an argument.
  399  */
  400 void
  401 turnstile_adjust(struct thread *td, u_char oldpri)
  402 {
  403         struct turnstile_chain *tc;
  404         struct turnstile *ts;
  405 
  406         mtx_assert(&sched_lock, MA_OWNED);
  407         MPASS(TD_ON_LOCK(td));
  408 
  409         /*
  410          * Pick up the lock that td is blocked on.
  411          */
  412         ts = td->td_blocked;
  413         MPASS(ts != NULL);
  414         tc = TC_LOOKUP(ts->ts_lockobj);
  415         mtx_lock_spin(&tc->tc_lock);
  416 
  417         /* Resort the turnstile on the list. */
  418         if (!turnstile_adjust_thread(ts, td)) {
  419                 mtx_unlock_spin(&tc->tc_lock);
  420                 return;
  421         }
  422 
  423         /*
  424          * If our priority was lowered and we are at the head of the
  425          * turnstile, then propagate our new priority up the chain.
  426          * Note that we currently don't try to revoke lent priorities
  427          * when our priority goes up.
  428          */
  429         MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE ||
  430             td->td_tsqueue == TS_SHARED_QUEUE);
  431         if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) &&
  432             td->td_priority < oldpri) {
  433                 mtx_unlock_spin(&tc->tc_lock);
  434                 critical_enter();
  435                 propagate_priority(td);
  436                 critical_exit();
  437         } else
  438                 mtx_unlock_spin(&tc->tc_lock);
  439 }
  440 
  441 /*
  442  * Set the owner of the lock this turnstile is attached to.
  443  */
  444 static void
  445 turnstile_setowner(struct turnstile *ts, struct thread *owner)
  446 {
  447 
  448         mtx_assert(&td_contested_lock, MA_OWNED);
  449         MPASS(ts->ts_owner == NULL);
  450 
  451         /* A shared lock might not have an owner. */
  452         if (owner == NULL)
  453                 return;
  454 
  455         MPASS(owner->td_proc->p_magic == P_MAGIC);
  456         ts->ts_owner = owner;
  457         LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link);
  458 }
  459 
  460 #ifdef INVARIANTS
  461 /*
  462  * UMA zone item deallocator.
  463  */
  464 static void
  465 turnstile_dtor(void *mem, int size, void *arg)
  466 {
  467         struct turnstile *ts;
  468 
  469         ts = mem;
  470         MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]));
  471         MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
  472         MPASS(TAILQ_EMPTY(&ts->ts_pending));
  473 }
  474 #endif
  475 
  476 /*
  477  * UMA zone item initializer.
  478  */
  479 static int
  480 turnstile_init(void *mem, int size, int flags)
  481 {
  482         struct turnstile *ts;
  483 
  484         bzero(mem, size);
  485         ts = mem;
  486         TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
  487         TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]);
  488         TAILQ_INIT(&ts->ts_pending);
  489         LIST_INIT(&ts->ts_free);
  490         return (0);
  491 }
  492 
  493 /*
  494  * Get a turnstile for a new thread.
  495  */
  496 struct turnstile *
  497 turnstile_alloc(void)
  498 {
  499 
  500         return (uma_zalloc(turnstile_zone, M_WAITOK));
  501 }
  502 
  503 /*
  504  * Free a turnstile when a thread is destroyed.
  505  */
  506 void
  507 turnstile_free(struct turnstile *ts)
  508 {
  509 
  510         uma_zfree(turnstile_zone, ts);
  511 }
  512 
  513 /*
  514  * Lock the turnstile chain associated with the specified lock.
  515  */
  516 void
  517 turnstile_lock(struct lock_object *lock)
  518 {
  519         struct turnstile_chain *tc;
  520 
  521         tc = TC_LOOKUP(lock);
  522         mtx_lock_spin(&tc->tc_lock);
  523 }
  524 
  525 /*
  526  * Look up the turnstile for a lock in the hash table locking the associated
  527  * turnstile chain along the way.  If no turnstile is found in the hash
  528  * table, NULL is returned.
  529  */
  530 struct turnstile *
  531 turnstile_lookup(struct lock_object *lock)
  532 {
  533         struct turnstile_chain *tc;
  534         struct turnstile *ts;
  535 
  536         tc = TC_LOOKUP(lock);
  537         mtx_assert(&tc->tc_lock, MA_OWNED);
  538         LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
  539                 if (ts->ts_lockobj == lock)
  540                         return (ts);
  541         return (NULL);
  542 }
  543 
  544 /*
  545  * Unlock the turnstile chain associated with a given lock.
  546  */
  547 void
  548 turnstile_release(struct lock_object *lock)
  549 {
  550         struct turnstile_chain *tc;
  551 
  552         tc = TC_LOOKUP(lock);
  553         mtx_unlock_spin(&tc->tc_lock);
  554 }
  555 
  556 /*
  557  * Return a pointer to the thread waiting on this turnstile with the
  558  * most important priority or NULL if the turnstile has no waiters.
  559  */
  560 static struct thread *
  561 turnstile_first_waiter(struct turnstile *ts)
  562 {
  563         struct thread *std, *xtd;
  564 
  565         std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]);
  566         xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
  567         if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority))
  568                 return (std);
  569         return (xtd);
  570 }
  571 
  572 /*
  573  * Take ownership of a turnstile and adjust the priority of the new
  574  * owner appropriately.
  575  */
  576 void
  577 turnstile_claim(struct lock_object *lock)
  578 {
  579         struct turnstile_chain *tc;
  580         struct turnstile *ts;
  581         struct thread *td, *owner;
  582 
  583         tc = TC_LOOKUP(lock);
  584         mtx_assert(&tc->tc_lock, MA_OWNED);
  585         ts = turnstile_lookup(lock);
  586         MPASS(ts != NULL);
  587 
  588         owner = curthread;
  589         mtx_lock_spin(&td_contested_lock);
  590         turnstile_setowner(ts, owner);
  591         mtx_unlock_spin(&td_contested_lock);
  592 
  593         td = turnstile_first_waiter(ts);
  594         MPASS(td != NULL);
  595         MPASS(td->td_proc->p_magic == P_MAGIC);
  596         mtx_unlock_spin(&tc->tc_lock);
  597 
  598         /*
  599          * Update the priority of the new owner if needed.
  600          */
  601         mtx_lock_spin(&sched_lock);
  602         if (td->td_priority < owner->td_priority)
  603                 sched_lend_prio(owner, td->td_priority);
  604         mtx_unlock_spin(&sched_lock);
  605 }
  606 
  607 /*
  608  * Block the current thread on the turnstile assicated with 'lock'.  This
  609  * function will context switch and not return until this thread has been
  610  * woken back up.  This function must be called with the appropriate
  611  * turnstile chain locked and will return with it unlocked.
  612  */
  613 void
  614 turnstile_wait(struct lock_object *lock, struct thread *owner, int queue)
  615 {
  616         struct turnstile_chain *tc;
  617         struct turnstile *ts;
  618         struct thread *td, *td1;
  619 
  620         td = curthread;
  621         tc = TC_LOOKUP(lock);
  622         mtx_assert(&tc->tc_lock, MA_OWNED);
  623         MPASS(td->td_turnstile != NULL);
  624         if (queue == TS_SHARED_QUEUE)
  625                 MPASS(owner != NULL);
  626         if (owner)
  627                 MPASS(owner->td_proc->p_magic == P_MAGIC);
  628         MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
  629 
  630         /* Look up the turnstile associated with the lock 'lock'. */
  631         ts = turnstile_lookup(lock);
  632 
  633         /*
  634          * If the lock does not already have a turnstile, use this thread's
  635          * turnstile.  Otherwise insert the current thread into the
  636          * turnstile already in use by this lock.
  637          */
  638         if (ts == NULL) {
  639 #ifdef TURNSTILE_PROFILING
  640                 tc->tc_depth++;
  641                 if (tc->tc_depth > tc->tc_max_depth) {
  642                         tc->tc_max_depth = tc->tc_depth;
  643                         if (tc->tc_max_depth > turnstile_max_depth)
  644                                 turnstile_max_depth = tc->tc_max_depth;
  645                 }
  646 #endif
  647                 ts = td->td_turnstile;
  648                 LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash);
  649                 KASSERT(TAILQ_EMPTY(&ts->ts_pending),
  650                     ("thread's turnstile has pending threads"));
  651                 KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]),
  652                     ("thread's turnstile has exclusive waiters"));
  653                 KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]),
  654                     ("thread's turnstile has shared waiters"));
  655                 KASSERT(LIST_EMPTY(&ts->ts_free),
  656                     ("thread's turnstile has a non-empty free list"));
  657                 KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer"));
  658                 ts->ts_lockobj = lock;
  659                 mtx_lock_spin(&td_contested_lock);
  660                 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
  661                 turnstile_setowner(ts, owner);
  662                 mtx_unlock_spin(&td_contested_lock);
  663         } else {
  664                 TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq)
  665                         if (td1->td_priority > td->td_priority)
  666                                 break;
  667                 mtx_lock_spin(&td_contested_lock);
  668                 if (td1 != NULL)
  669                         TAILQ_INSERT_BEFORE(td1, td, td_lockq);
  670                 else
  671                         TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
  672                 MPASS(owner == ts->ts_owner);
  673                 mtx_unlock_spin(&td_contested_lock);
  674                 MPASS(td->td_turnstile != NULL);
  675                 LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash);
  676         }
  677         td->td_turnstile = NULL;
  678         mtx_unlock_spin(&tc->tc_lock);
  679 
  680         mtx_lock_spin(&sched_lock);
  681         /*
  682          * Handle race condition where a thread on another CPU that owns
  683          * lock 'lock' could have woken us in between us dropping the
  684          * turnstile chain lock and acquiring the sched_lock.
  685          */
  686         if (td->td_flags & TDF_TSNOBLOCK) {
  687                 td->td_flags &= ~TDF_TSNOBLOCK;
  688                 mtx_unlock_spin(&sched_lock);
  689                 return;
  690         }
  691                 
  692 #ifdef notyet
  693         /*
  694          * If we're borrowing an interrupted thread's VM context, we
  695          * must clean up before going to sleep.
  696          */
  697         if (td->td_ithd != NULL) {
  698                 struct ithd *it = td->td_ithd;
  699 
  700                 if (it->it_interrupted) {
  701                         if (LOCK_LOG_TEST(lock, 0))
  702                                 CTR3(KTR_LOCK, "%s: %p interrupted %p",
  703                                     __func__, it, it->it_interrupted);
  704                         intr_thd_fixup(it);
  705                 }
  706         }
  707 #endif
  708 
  709         /* Save who we are blocked on and switch. */
  710         td->td_tsqueue = queue;
  711         td->td_blocked = ts;
  712         td->td_lockname = lock->lo_name;
  713         TD_SET_LOCK(td);
  714         critical_enter();
  715         propagate_priority(td);
  716         critical_exit();
  717 
  718         if (LOCK_LOG_TEST(lock, 0))
  719                 CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__,
  720                     td->td_tid, lock, lock->lo_name);
  721 
  722         mi_switch(SW_VOL, NULL);
  723 
  724         if (LOCK_LOG_TEST(lock, 0))
  725                 CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s",
  726                     __func__, td->td_tid, lock, lock->lo_name);
  727 
  728         mtx_unlock_spin(&sched_lock);
  729 }
  730 
  731 /*
  732  * Pick the highest priority thread on this turnstile and put it on the
  733  * pending list.  This must be called with the turnstile chain locked.
  734  */
  735 int
  736 turnstile_signal(struct turnstile *ts, int queue)
  737 {
  738         struct turnstile_chain *tc;
  739         struct thread *td;
  740         int empty;
  741 
  742         MPASS(ts != NULL);
  743         MPASS(curthread->td_proc->p_magic == P_MAGIC);
  744         MPASS(ts->ts_owner == curthread ||
  745             (queue == TS_EXCLUSIVE_QUEUE && ts->ts_owner == NULL));
  746         tc = TC_LOOKUP(ts->ts_lockobj);
  747         mtx_assert(&tc->tc_lock, MA_OWNED);
  748         MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
  749 
  750         /*
  751          * Pick the highest priority thread blocked on this lock and
  752          * move it to the pending list.
  753          */
  754         td = TAILQ_FIRST(&ts->ts_blocked[queue]);
  755         MPASS(td->td_proc->p_magic == P_MAGIC);
  756         mtx_lock_spin(&td_contested_lock);
  757         TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
  758         mtx_unlock_spin(&td_contested_lock);
  759         TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq);
  760 
  761         /*
  762          * If the turnstile is now empty, remove it from its chain and
  763          * give it to the about-to-be-woken thread.  Otherwise take a
  764          * turnstile from the free list and give it to the thread.
  765          */
  766         empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
  767             TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]);
  768         if (empty) {
  769                 MPASS(LIST_EMPTY(&ts->ts_free));
  770 #ifdef TURNSTILE_PROFILING
  771                 tc->tc_depth--;
  772 #endif
  773         } else
  774                 ts = LIST_FIRST(&ts->ts_free);
  775         MPASS(ts != NULL);
  776         LIST_REMOVE(ts, ts_hash);
  777         td->td_turnstile = ts;
  778 
  779         return (empty);
  780 }
  781         
  782 /*
  783  * Put all blocked threads on the pending list.  This must be called with
  784  * the turnstile chain locked.
  785  */
  786 void
  787 turnstile_broadcast(struct turnstile *ts, int queue)
  788 {
  789         struct turnstile_chain *tc;
  790         struct turnstile *ts1;
  791         struct thread *td;
  792 
  793         MPASS(ts != NULL);
  794         MPASS(curthread->td_proc->p_magic == P_MAGIC);
  795         MPASS(ts->ts_owner == curthread ||
  796             (queue == TS_EXCLUSIVE_QUEUE && ts->ts_owner == NULL));
  797         tc = TC_LOOKUP(ts->ts_lockobj);
  798         mtx_assert(&tc->tc_lock, MA_OWNED);
  799         MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
  800 
  801         /*
  802          * Transfer the blocked list to the pending list.
  803          */
  804         mtx_lock_spin(&td_contested_lock);
  805         TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq);
  806         mtx_unlock_spin(&td_contested_lock);
  807 
  808         /*
  809          * Give a turnstile to each thread.  The last thread gets
  810          * this turnstile if the turnstile is empty.
  811          */
  812         TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) {
  813                 if (LIST_EMPTY(&ts->ts_free)) {
  814                         MPASS(TAILQ_NEXT(td, td_lockq) == NULL);
  815                         ts1 = ts;
  816 #ifdef TURNSTILE_PROFILING
  817                         tc->tc_depth--;
  818 #endif
  819                 } else
  820                         ts1 = LIST_FIRST(&ts->ts_free);
  821                 MPASS(ts1 != NULL);
  822                 LIST_REMOVE(ts1, ts_hash);
  823                 td->td_turnstile = ts1;
  824         }
  825 }
  826 
  827 /*
  828  * Wakeup all threads on the pending list and adjust the priority of the
  829  * current thread appropriately.  This must be called with the turnstile
  830  * chain locked.
  831  */
  832 void
  833 turnstile_unpend(struct turnstile *ts, int owner_type)
  834 {
  835         TAILQ_HEAD( ,thread) pending_threads;
  836         struct turnstile_chain *tc;
  837         struct thread *td;
  838         u_char cp, pri;
  839 
  840         MPASS(ts != NULL);
  841         MPASS(ts->ts_owner == curthread ||
  842             (owner_type == TS_SHARED_LOCK && ts->ts_owner == NULL));
  843         tc = TC_LOOKUP(ts->ts_lockobj);
  844         mtx_assert(&tc->tc_lock, MA_OWNED);
  845         MPASS(!TAILQ_EMPTY(&ts->ts_pending));
  846 
  847         /*
  848          * Move the list of pending threads out of the turnstile and
  849          * into a local variable.
  850          */
  851         TAILQ_INIT(&pending_threads);
  852         TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq);
  853 #ifdef INVARIANTS
  854         if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
  855             TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]))
  856                 ts->ts_lockobj = NULL;
  857 #endif
  858 
  859         /*
  860          * Remove the turnstile from this thread's list of contested locks
  861          * since this thread doesn't own it anymore.  New threads will
  862          * not be blocking on the turnstile until it is claimed by a new
  863          * owner.  There might not be a current owner if this is a shared
  864          * lock.
  865          */
  866         if (ts->ts_owner != NULL) {
  867                 mtx_lock_spin(&td_contested_lock);
  868                 ts->ts_owner = NULL;
  869                 LIST_REMOVE(ts, ts_link);
  870                 mtx_unlock_spin(&td_contested_lock);
  871         }
  872         critical_enter();
  873         mtx_unlock_spin(&tc->tc_lock);
  874 
  875         /*
  876          * Adjust the priority of curthread based on other contested
  877          * locks it owns.  Don't lower the priority below the base
  878          * priority however.
  879          */
  880         td = curthread;
  881         pri = PRI_MAX;
  882         mtx_lock_spin(&sched_lock);
  883         mtx_lock_spin(&td_contested_lock);
  884         LIST_FOREACH(ts, &td->td_contested, ts_link) {
  885                 cp = turnstile_first_waiter(ts)->td_priority;
  886                 if (cp < pri)
  887                         pri = cp;
  888         }
  889         mtx_unlock_spin(&td_contested_lock);
  890         sched_unlend_prio(td, pri);
  891 
  892         /*
  893          * Wake up all the pending threads.  If a thread is not blocked
  894          * on a lock, then it is currently executing on another CPU in
  895          * turnstile_wait() or sitting on a run queue waiting to resume
  896          * in turnstile_wait().  Set a flag to force it to try to acquire
  897          * the lock again instead of blocking.
  898          */
  899         while (!TAILQ_EMPTY(&pending_threads)) {
  900                 td = TAILQ_FIRST(&pending_threads);
  901                 TAILQ_REMOVE(&pending_threads, td, td_lockq);
  902                 MPASS(td->td_proc->p_magic == P_MAGIC);
  903                 if (TD_ON_LOCK(td)) {
  904                         td->td_blocked = NULL;
  905                         td->td_lockname = NULL;
  906 #ifdef INVARIANTS
  907                         td->td_tsqueue = 0xff;
  908 #endif
  909                         TD_CLR_LOCK(td);
  910                         MPASS(TD_CAN_RUN(td));
  911                         setrunqueue(td, SRQ_BORING);
  912                 } else {
  913                         td->td_flags |= TDF_TSNOBLOCK;
  914                         MPASS(TD_IS_RUNNING(td) || TD_ON_RUNQ(td));
  915                 }
  916         }
  917         critical_exit();
  918         mtx_unlock_spin(&sched_lock);
  919 }
  920 
  921 /*
  922  * Give up ownership of a turnstile.  This must be called with the
  923  * turnstile chain locked.
  924  */
  925 void
  926 turnstile_disown(struct turnstile *ts)
  927 {
  928         struct turnstile_chain *tc;
  929         struct thread *td;
  930         u_char cp, pri;
  931 
  932         MPASS(ts != NULL);
  933         MPASS(ts->ts_owner == curthread);
  934         tc = TC_LOOKUP(ts->ts_lockobj);
  935         mtx_assert(&tc->tc_lock, MA_OWNED);
  936         MPASS(TAILQ_EMPTY(&ts->ts_pending));
  937         MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) ||
  938             !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
  939 
  940         /*
  941          * Remove the turnstile from this thread's list of contested locks
  942          * since this thread doesn't own it anymore.  New threads will
  943          * not be blocking on the turnstile until it is claimed by a new
  944          * owner.
  945          */
  946         mtx_lock_spin(&td_contested_lock);
  947         ts->ts_owner = NULL;
  948         LIST_REMOVE(ts, ts_link);
  949         mtx_unlock_spin(&td_contested_lock);
  950 
  951         /*
  952          * Adjust the priority of curthread based on other contested
  953          * locks it owns.  Don't lower the priority below the base
  954          * priority however.
  955          */
  956         td = curthread;
  957         pri = PRI_MAX;
  958         mtx_lock_spin(&sched_lock);
  959         mtx_lock_spin(&td_contested_lock);
  960         LIST_FOREACH(ts, &td->td_contested, ts_link) {
  961                 cp = turnstile_first_waiter(ts)->td_priority;
  962                 if (cp < pri)
  963                         pri = cp;
  964         }
  965         mtx_unlock_spin(&td_contested_lock);
  966         sched_unlend_prio(td, pri);
  967         mtx_unlock_spin(&sched_lock);
  968 }
  969 
  970 /*
  971  * Return the first thread in a turnstile.
  972  */
  973 struct thread *
  974 turnstile_head(struct turnstile *ts, int queue)
  975 {
  976 #ifdef INVARIANTS
  977         struct turnstile_chain *tc;
  978 
  979         MPASS(ts != NULL);
  980         MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
  981         tc = TC_LOOKUP(ts->ts_lockobj);
  982         mtx_assert(&tc->tc_lock, MA_OWNED);
  983 #endif
  984         return (TAILQ_FIRST(&ts->ts_blocked[queue]));
  985 }
  986 
  987 /*
  988  * Returns true if a sub-queue of a turnstile is empty.
  989  */
  990 int
  991 turnstile_empty(struct turnstile *ts, int queue)
  992 {
  993 #ifdef INVARIANTS
  994         struct turnstile_chain *tc;
  995 
  996         MPASS(ts != NULL);
  997         MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
  998         tc = TC_LOOKUP(ts->ts_lockobj);
  999         mtx_assert(&tc->tc_lock, MA_OWNED);
 1000 #endif
 1001         return (TAILQ_EMPTY(&ts->ts_blocked[queue]));
 1002 }
 1003 
 1004 #ifdef DDB
 1005 static int db_pager_quit;
 1006 
 1007 static void
 1008 print_thread(struct thread *td, const char *prefix)
 1009 {
 1010 
 1011         db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid,
 1012             td->td_proc->p_pid, td->td_proc->p_comm);
 1013 }
 1014 
 1015 static void
 1016 print_queue(struct threadqueue *queue, const char *header, const char *prefix)
 1017 {
 1018         struct thread *td;
 1019 
 1020         db_printf("%s:\n", header);
 1021         if (TAILQ_EMPTY(queue)) {
 1022                 db_printf("%sempty\n", prefix);
 1023                 return;
 1024         }
 1025         TAILQ_FOREACH(td, queue, td_lockq) {
 1026                 print_thread(td, prefix);
 1027         }
 1028 }
 1029 
 1030 DB_SHOW_COMMAND(turnstile, db_show_turnstile)
 1031 {
 1032         struct turnstile_chain *tc;
 1033         struct turnstile *ts;
 1034         struct lock_object *lock;
 1035         int i;
 1036 
 1037         if (!have_addr)
 1038                 return;
 1039 
 1040         /*
 1041          * First, see if there is an active turnstile for the lock indicated
 1042          * by the address.
 1043          */
 1044         lock = (struct lock_object *)addr;
 1045         tc = TC_LOOKUP(lock);
 1046         LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
 1047                 if (ts->ts_lockobj == lock)
 1048                         goto found;
 1049 
 1050         /*
 1051          * Second, see if there is an active turnstile at the address
 1052          * indicated.
 1053          */
 1054         for (i = 0; i < TC_TABLESIZE; i++)
 1055                 LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) {
 1056                         if (ts == (struct turnstile *)addr)
 1057                                 goto found;
 1058                 }
 1059 
 1060         db_printf("Unable to locate a turnstile via %p\n", (void *)addr);
 1061         return;
 1062 found:
 1063         db_pager_quit = 0;
 1064         db_setup_paging(db_simple_pager, &db_pager_quit, db_lines_per_page);
 1065         lock = ts->ts_lockobj;
 1066         db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name,
 1067             lock->lo_name);
 1068         if (ts->ts_owner)
 1069                 print_thread(ts->ts_owner, "Lock Owner: ");
 1070         else
 1071                 db_printf("Lock Owner: none\n");
 1072         print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t");
 1073         print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters",
 1074             "\t");
 1075         print_queue(&ts->ts_pending, "Pending Threads", "\t");
 1076         
 1077 }
 1078 
 1079 /*
 1080  * Show all the threads a particular thread is waiting on based on
 1081  * non-sleepable and non-spin locks.
 1082  */
 1083 static void
 1084 print_lockchain(struct thread *td, const char *prefix)
 1085 {
 1086         struct lock_object *lock;
 1087         struct lock_class *class;
 1088         struct turnstile *ts;
 1089 
 1090         /*
 1091          * Follow the chain.  We keep walking as long as the thread is
 1092          * blocked on a turnstile that has an owner.
 1093          */
 1094         while (!db_pager_quit) {
 1095                 db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
 1096                     td->td_proc->p_pid, td->td_proc->p_comm);
 1097                 switch (td->td_state) {
 1098                 case TDS_INACTIVE:
 1099                         db_printf("is inactive\n");
 1100                         return;
 1101                 case TDS_CAN_RUN:
 1102                         db_printf("can run\n");
 1103                         return;
 1104                 case TDS_RUNQ:
 1105                         db_printf("is on a run queue\n");
 1106                         return;
 1107                 case TDS_RUNNING:
 1108                         db_printf("running on CPU %d\n", td->td_oncpu);
 1109                         return;
 1110                 case TDS_INHIBITED:
 1111                         if (TD_ON_LOCK(td)) {
 1112                                 ts = td->td_blocked;
 1113                                 lock = ts->ts_lockobj;
 1114                                 class = LOCK_CLASS(lock);
 1115                                 db_printf("blocked on lock %p (%s) \"%s\"\n",
 1116                                     lock, class->lc_name, lock->lo_name);
 1117                                 if (ts->ts_owner == NULL)
 1118                                         return;
 1119                                 td = ts->ts_owner;
 1120                                 break;
 1121                         }
 1122                         db_printf("inhibited\n");
 1123                         return;
 1124                 default:
 1125                         db_printf("??? (%#x)\n", td->td_state);
 1126                         return;
 1127                 }
 1128         }
 1129 }
 1130 
 1131 DB_SHOW_COMMAND(lockchain, db_show_lockchain)
 1132 {
 1133         struct thread *td;
 1134 
 1135         /* Figure out which thread to start with. */
 1136         if (have_addr)
 1137                 td = db_lookup_thread(addr, TRUE);
 1138         else
 1139                 td = kdb_thread;
 1140 
 1141         db_pager_quit = 0;
 1142         db_setup_paging(db_simple_pager, &db_pager_quit, db_lines_per_page);
 1143         print_lockchain(td, "");
 1144 }
 1145 
 1146 DB_SHOW_COMMAND(allchains, db_show_allchains)
 1147 {
 1148         struct thread *td;
 1149         struct proc *p;
 1150         int i;
 1151 
 1152         i = 1;
 1153         db_pager_quit = 0;
 1154         db_setup_paging(db_simple_pager, &db_pager_quit, db_lines_per_page);
 1155         LIST_FOREACH(p, &allproc, p_list) {
 1156                 FOREACH_THREAD_IN_PROC(p, td) {
 1157                         if (TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested)) {
 1158                                 db_printf("chain %d:\n", i++);
 1159                                 print_lockchain(td, " ");
 1160                         }
 1161                         if (db_pager_quit)
 1162                                 return;
 1163                 }
 1164         }
 1165 }
 1166 
 1167 /*
 1168  * Show all the threads a particular thread is waiting on based on
 1169  * sleepable locks.
 1170  */
 1171 static void
 1172 print_sleepchain(struct thread *td, const char *prefix)
 1173 {
 1174         struct thread *owner;
 1175 
 1176         /*
 1177          * Follow the chain.  We keep walking as long as the thread is
 1178          * blocked on a sleep lock that has an owner.
 1179          */
 1180         while (!db_pager_quit) {
 1181                 db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
 1182                     td->td_proc->p_pid, td->td_proc->p_comm);
 1183                 switch (td->td_state) {
 1184                 case TDS_INACTIVE:
 1185                         db_printf("is inactive\n");
 1186                         return;
 1187                 case TDS_CAN_RUN:
 1188                         db_printf("can run\n");
 1189                         return;
 1190                 case TDS_RUNQ:
 1191                         db_printf("is on a run queue\n");
 1192                         return;
 1193                 case TDS_RUNNING:
 1194                         db_printf("running on CPU %d\n", td->td_oncpu);
 1195                         return;
 1196                 case TDS_INHIBITED:
 1197                         if (TD_ON_SLEEPQ(td)) {
 1198                                 if (lockmgr_chain(td, &owner) ||
 1199                                     sx_chain(td, &owner)) {
 1200                                         if (owner == NULL)
 1201                                                 return;
 1202                                         td = owner;
 1203                                         break;
 1204                                 }
 1205                                 db_printf("sleeping on %p \"%s\"\n",
 1206                                     td->td_wchan, td->td_wmesg);
 1207                                 return;
 1208                         }
 1209                         db_printf("inhibited\n");
 1210                         return;
 1211                 default:
 1212                         db_printf("??? (%#x)\n", td->td_state);
 1213                         return;
 1214                 }
 1215         }
 1216 }
 1217 
 1218 DB_SHOW_COMMAND(sleepchain, db_show_sleepchain)
 1219 {
 1220         struct thread *td;
 1221 
 1222         /* Figure out which thread to start with. */
 1223         if (have_addr)
 1224                 td = db_lookup_thread(addr, TRUE);
 1225         else
 1226                 td = kdb_thread;
 1227 
 1228         db_pager_quit = 0;
 1229         db_setup_paging(db_simple_pager, &db_pager_quit, db_lines_per_page);
 1230         print_sleepchain(td, "");
 1231 }
 1232 
 1233 static void     print_waiters(struct turnstile *ts, int indent);
 1234         
 1235 static void
 1236 print_waiter(struct thread *td, int indent)
 1237 {
 1238         struct turnstile *ts;
 1239         int i;
 1240 
 1241         if (db_pager_quit)
 1242                 return;
 1243         for (i = 0; i < indent; i++)
 1244                 db_printf(" ");
 1245         print_thread(td, "thread ");
 1246         LIST_FOREACH(ts, &td->td_contested, ts_link)
 1247                 print_waiters(ts, indent + 1);
 1248 }
 1249 
 1250 static void
 1251 print_waiters(struct turnstile *ts, int indent)
 1252 {
 1253         struct lock_object *lock;
 1254         struct lock_class *class;
 1255         struct thread *td;
 1256         int i;
 1257 
 1258         if (db_pager_quit)
 1259                 return;
 1260         lock = ts->ts_lockobj;
 1261         class = LOCK_CLASS(lock);
 1262         for (i = 0; i < indent; i++)
 1263                 db_printf(" ");
 1264         db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name);
 1265 
 1266         TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq)
 1267                 print_waiter(td, indent + 1);
 1268         TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq)
 1269                 print_waiter(td, indent + 1);
 1270         TAILQ_FOREACH(td, &ts->ts_pending, td_lockq)
 1271                 print_waiter(td, indent + 1);
 1272 }
 1273 
 1274 DB_SHOW_COMMAND(locktree, db_show_locktree)
 1275 {
 1276         struct lock_object *lock;
 1277         struct lock_class *class;
 1278         struct turnstile_chain *tc;
 1279         struct turnstile *ts;
 1280 
 1281         if (!have_addr)
 1282                 return;
 1283         db_pager_quit = 0;
 1284         db_setup_paging(db_simple_pager, &db_pager_quit, db_lines_per_page);
 1285         lock = (struct lock_object *)addr;
 1286         tc = TC_LOOKUP(lock);
 1287         LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
 1288                 if (ts->ts_lockobj == lock)
 1289                         break;
 1290         if (ts == NULL) {
 1291                 class = LOCK_CLASS(lock);
 1292                 db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name,
 1293                     lock->lo_name);
 1294         } else
 1295                 print_waiters(ts, 0);
 1296 }
 1297 #endif

Cache object: 8ce84329ae79f98040b666a4a28df282


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.