The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_turnstile.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. Redistributions in binary form must reproduce the above copyright
   10  *    notice, this list of conditions and the following disclaimer in the
   11  *    documentation and/or other materials provided with the distribution.
   12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
   13  *    promote products derived from this software without specific prior
   14  *    written permission.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  *
   28  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
   29  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
   30  */
   31 
   32 /*
   33  * Implementation of turnstiles used to hold queue of threads blocked on
   34  * non-sleepable locks.  Sleepable locks use condition variables to
   35  * implement their queues.  Turnstiles differ from a sleep queue in that
   36  * turnstile queue's are assigned to a lock held by an owning thread.  Thus,
   37  * when one thread is enqueued onto a turnstile, it can lend its priority
   38  * to the owning thread.
   39  *
   40  * We wish to avoid bloating locks with an embedded turnstile and we do not
   41  * want to use back-pointers in the locks for the same reason.  Thus, we
   42  * use a similar approach to that of Solaris 7 as described in Solaris
   43  * Internals by Jim Mauro and Richard McDougall.  Turnstiles are looked up
   44  * in a hash table based on the address of the lock.  Each entry in the
   45  * hash table is a linked-lists of turnstiles and is called a turnstile
   46  * chain.  Each chain contains a spin mutex that protects all of the
   47  * turnstiles in the chain.
   48  *
   49  * Each time a thread is created, a turnstile is allocated from a UMA zone
   50  * and attached to that thread.  When a thread blocks on a lock, if it is the
   51  * first thread to block, it lends its turnstile to the lock.  If the lock
   52  * already has a turnstile, then it gives its turnstile to the lock's
   53  * turnstile's free list.  When a thread is woken up, it takes a turnstile from
   54  * the free list if there are any other waiters.  If it is the only thread
   55  * blocked on the lock, then it reclaims the turnstile associated with the lock
   56  * and removes it from the hash table.
   57  */
   58 
   59 #include <sys/cdefs.h>
   60 __FBSDID("$FreeBSD: releng/9.2/sys/kern/subr_turnstile.c 248085 2013-03-09 02:36:32Z marius $");
   61 
   62 #include "opt_ddb.h"
   63 #include "opt_kdtrace.h"
   64 #include "opt_turnstile_profiling.h"
   65 #include "opt_sched.h"
   66 
   67 #include <sys/param.h>
   68 #include <sys/systm.h>
   69 #include <sys/kdb.h>
   70 #include <sys/kernel.h>
   71 #include <sys/ktr.h>
   72 #include <sys/lock.h>
   73 #include <sys/mutex.h>
   74 #include <sys/proc.h>
   75 #include <sys/queue.h>
   76 #include <sys/sched.h>
   77 #include <sys/sdt.h>
   78 #include <sys/sysctl.h>
   79 #include <sys/turnstile.h>
   80 
   81 #include <vm/uma.h>
   82 
   83 #ifdef DDB
   84 #include <ddb/ddb.h>
   85 #include <sys/lockmgr.h>
   86 #include <sys/sx.h>
   87 #endif
   88 
   89 /*
   90  * Constants for the hash table of turnstile chains.  TC_SHIFT is a magic
   91  * number chosen because the sleep queue's use the same value for the
   92  * shift.  Basically, we ignore the lower 8 bits of the address.
   93  * TC_TABLESIZE must be a power of two for TC_MASK to work properly.
   94  */
   95 #define TC_TABLESIZE    128                     /* Must be power of 2. */
   96 #define TC_MASK         (TC_TABLESIZE - 1)
   97 #define TC_SHIFT        8
   98 #define TC_HASH(lock)   (((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK)
   99 #define TC_LOOKUP(lock) &turnstile_chains[TC_HASH(lock)]
  100 
  101 /*
  102  * There are three different lists of turnstiles as follows.  The list
  103  * connected by ts_link entries is a per-thread list of all the turnstiles
  104  * attached to locks that we own.  This is used to fixup our priority when
  105  * a lock is released.  The other two lists use the ts_hash entries.  The
  106  * first of these two is the turnstile chain list that a turnstile is on
  107  * when it is attached to a lock.  The second list to use ts_hash is the
  108  * free list hung off of a turnstile that is attached to a lock.
  109  *
  110  * Each turnstile contains three lists of threads.  The two ts_blocked lists
  111  * are linked list of threads blocked on the turnstile's lock.  One list is
  112  * for exclusive waiters, and the other is for shared waiters.  The
  113  * ts_pending list is a linked list of threads previously awakened by
  114  * turnstile_signal() or turnstile_wait() that are waiting to be put on
  115  * the run queue.
  116  *
  117  * Locking key:
  118  *  c - turnstile chain lock
  119  *  q - td_contested lock
  120  */
  121 struct turnstile {
  122         struct mtx ts_lock;                     /* Spin lock for self. */
  123         struct threadqueue ts_blocked[2];       /* (c + q) Blocked threads. */
  124         struct threadqueue ts_pending;          /* (c) Pending threads. */
  125         LIST_ENTRY(turnstile) ts_hash;          /* (c) Chain and free list. */
  126         LIST_ENTRY(turnstile) ts_link;          /* (q) Contested locks. */
  127         LIST_HEAD(, turnstile) ts_free;         /* (c) Free turnstiles. */
  128         struct lock_object *ts_lockobj;         /* (c) Lock we reference. */
  129         struct thread *ts_owner;                /* (c + q) Who owns the lock. */
  130 };
  131 
  132 struct turnstile_chain {
  133         LIST_HEAD(, turnstile) tc_turnstiles;   /* List of turnstiles. */
  134         struct mtx tc_lock;                     /* Spin lock for this chain. */
  135 #ifdef TURNSTILE_PROFILING
  136         u_int   tc_depth;                       /* Length of tc_queues. */
  137         u_int   tc_max_depth;                   /* Max length of tc_queues. */
  138 #endif
  139 };
  140 
  141 #ifdef TURNSTILE_PROFILING
  142 u_int turnstile_max_depth;
  143 static SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD, 0,
  144     "turnstile profiling");
  145 static SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, CTLFLAG_RD, 0,
  146     "turnstile chain stats");
  147 SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD,
  148     &turnstile_max_depth, 0, "maximum depth achieved of a single chain");
  149 #endif
  150 static struct mtx td_contested_lock;
  151 static struct turnstile_chain turnstile_chains[TC_TABLESIZE];
  152 static uma_zone_t turnstile_zone;
  153 
  154 /*
  155  * Prototypes for non-exported routines.
  156  */
  157 static void     init_turnstile0(void *dummy);
  158 #ifdef TURNSTILE_PROFILING
  159 static void     init_turnstile_profiling(void *arg);
  160 #endif
  161 static void     propagate_priority(struct thread *td);
  162 static int      turnstile_adjust_thread(struct turnstile *ts,
  163                     struct thread *td);
  164 static struct thread *turnstile_first_waiter(struct turnstile *ts);
  165 static void     turnstile_setowner(struct turnstile *ts, struct thread *owner);
  166 #ifdef INVARIANTS
  167 static void     turnstile_dtor(void *mem, int size, void *arg);
  168 #endif
  169 static int      turnstile_init(void *mem, int size, int flags);
  170 static void     turnstile_fini(void *mem, int size);
  171 
  172 SDT_PROVIDER_DECLARE(sched);
  173 SDT_PROBE_DEFINE(sched, , , sleep, sleep);
  174 SDT_PROBE_DEFINE2(sched, , , wakeup, wakeup, "struct thread *", 
  175     "struct proc *");
  176 
  177 /*
  178  * Walks the chain of turnstiles and their owners to propagate the priority
  179  * of the thread being blocked to all the threads holding locks that have to
  180  * release their locks before this thread can run again.
  181  */
  182 static void
  183 propagate_priority(struct thread *td)
  184 {
  185         struct turnstile *ts;
  186         int pri;
  187 
  188         THREAD_LOCK_ASSERT(td, MA_OWNED);
  189         pri = td->td_priority;
  190         ts = td->td_blocked;
  191         THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
  192         /*
  193          * Grab a recursive lock on this turnstile chain so it stays locked
  194          * for the whole operation.  The caller expects us to return with
  195          * the original lock held.  We only ever lock down the chain so
  196          * the lock order is constant.
  197          */
  198         mtx_lock_spin(&ts->ts_lock);
  199         for (;;) {
  200                 td = ts->ts_owner;
  201 
  202                 if (td == NULL) {
  203                         /*
  204                          * This might be a read lock with no owner.  There's
  205                          * not much we can do, so just bail.
  206                          */
  207                         mtx_unlock_spin(&ts->ts_lock);
  208                         return;
  209                 }
  210 
  211                 thread_lock_flags(td, MTX_DUPOK);
  212                 mtx_unlock_spin(&ts->ts_lock);
  213                 MPASS(td->td_proc != NULL);
  214                 MPASS(td->td_proc->p_magic == P_MAGIC);
  215 
  216                 /*
  217                  * If the thread is asleep, then we are probably about
  218                  * to deadlock.  To make debugging this easier, just
  219                  * panic and tell the user which thread misbehaved so
  220                  * they can hopefully get a stack trace from the truly
  221                  * misbehaving thread.
  222                  */
  223                 if (TD_IS_SLEEPING(td)) {
  224                         printf(
  225                 "Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n",
  226                             td->td_tid, td->td_proc->p_pid);
  227                         kdb_backtrace_thread(td);
  228                         panic("sleeping thread");
  229                 }
  230 
  231                 /*
  232                  * If this thread already has higher priority than the
  233                  * thread that is being blocked, we are finished.
  234                  */
  235                 if (td->td_priority <= pri) {
  236                         thread_unlock(td);
  237                         return;
  238                 }
  239 
  240                 /*
  241                  * Bump this thread's priority.
  242                  */
  243                 sched_lend_prio(td, pri);
  244 
  245                 /*
  246                  * If lock holder is actually running or on the run queue
  247                  * then we are done.
  248                  */
  249                 if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) {
  250                         MPASS(td->td_blocked == NULL);
  251                         thread_unlock(td);
  252                         return;
  253                 }
  254 
  255 #ifndef SMP
  256                 /*
  257                  * For UP, we check to see if td is curthread (this shouldn't
  258                  * ever happen however as it would mean we are in a deadlock.)
  259                  */
  260                 KASSERT(td != curthread, ("Deadlock detected"));
  261 #endif
  262 
  263                 /*
  264                  * If we aren't blocked on a lock, we should be.
  265                  */
  266                 KASSERT(TD_ON_LOCK(td), (
  267                     "thread %d(%s):%d holds %s but isn't blocked on a lock\n",
  268                     td->td_tid, td->td_name, td->td_state,
  269                     ts->ts_lockobj->lo_name));
  270 
  271                 /*
  272                  * Pick up the lock that td is blocked on.
  273                  */
  274                 ts = td->td_blocked;
  275                 MPASS(ts != NULL);
  276                 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
  277                 /* Resort td on the list if needed. */
  278                 if (!turnstile_adjust_thread(ts, td)) {
  279                         mtx_unlock_spin(&ts->ts_lock);
  280                         return;
  281                 }
  282                 /* The thread lock is released as ts lock above. */
  283         }
  284 }
  285 
  286 /*
  287  * Adjust the thread's position on a turnstile after its priority has been
  288  * changed.
  289  */
  290 static int
  291 turnstile_adjust_thread(struct turnstile *ts, struct thread *td)
  292 {
  293         struct thread *td1, *td2;
  294         int queue;
  295 
  296         THREAD_LOCK_ASSERT(td, MA_OWNED);
  297         MPASS(TD_ON_LOCK(td));
  298 
  299         /*
  300          * This thread may not be blocked on this turnstile anymore
  301          * but instead might already be woken up on another CPU
  302          * that is waiting on the thread lock in turnstile_unpend() to
  303          * finish waking this thread up.  We can detect this case
  304          * by checking to see if this thread has been given a
  305          * turnstile by either turnstile_signal() or
  306          * turnstile_broadcast().  In this case, treat the thread as
  307          * if it was already running.
  308          */
  309         if (td->td_turnstile != NULL)
  310                 return (0);
  311 
  312         /*
  313          * Check if the thread needs to be moved on the blocked chain.
  314          * It needs to be moved if either its priority is lower than
  315          * the previous thread or higher than the next thread.
  316          */
  317         THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
  318         td1 = TAILQ_PREV(td, threadqueue, td_lockq);
  319         td2 = TAILQ_NEXT(td, td_lockq);
  320         if ((td1 != NULL && td->td_priority < td1->td_priority) ||
  321             (td2 != NULL && td->td_priority > td2->td_priority)) {
  322 
  323                 /*
  324                  * Remove thread from blocked chain and determine where
  325                  * it should be moved to.
  326                  */
  327                 queue = td->td_tsqueue;
  328                 MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE);
  329                 mtx_lock_spin(&td_contested_lock);
  330                 TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
  331                 TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) {
  332                         MPASS(td1->td_proc->p_magic == P_MAGIC);
  333                         if (td1->td_priority > td->td_priority)
  334                                 break;
  335                 }
  336 
  337                 if (td1 == NULL)
  338                         TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
  339                 else
  340                         TAILQ_INSERT_BEFORE(td1, td, td_lockq);
  341                 mtx_unlock_spin(&td_contested_lock);
  342                 if (td1 == NULL)
  343                         CTR3(KTR_LOCK,
  344                     "turnstile_adjust_thread: td %d put at tail on [%p] %s",
  345                             td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name);
  346                 else
  347                         CTR4(KTR_LOCK,
  348                     "turnstile_adjust_thread: td %d moved before %d on [%p] %s",
  349                             td->td_tid, td1->td_tid, ts->ts_lockobj,
  350                             ts->ts_lockobj->lo_name);
  351         }
  352         return (1);
  353 }
  354 
  355 /*
  356  * Early initialization of turnstiles.  This is not done via a SYSINIT()
  357  * since this needs to be initialized very early when mutexes are first
  358  * initialized.
  359  */
  360 void
  361 init_turnstiles(void)
  362 {
  363         int i;
  364 
  365         for (i = 0; i < TC_TABLESIZE; i++) {
  366                 LIST_INIT(&turnstile_chains[i].tc_turnstiles);
  367                 mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain",
  368                     NULL, MTX_SPIN);
  369         }
  370         mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN);
  371         LIST_INIT(&thread0.td_contested);
  372         thread0.td_turnstile = NULL;
  373 }
  374 
  375 #ifdef TURNSTILE_PROFILING
  376 static void
  377 init_turnstile_profiling(void *arg)
  378 {
  379         struct sysctl_oid *chain_oid;
  380         char chain_name[10];
  381         int i;
  382 
  383         for (i = 0; i < TC_TABLESIZE; i++) {
  384                 snprintf(chain_name, sizeof(chain_name), "%d", i);
  385                 chain_oid = SYSCTL_ADD_NODE(NULL, 
  386                     SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO,
  387                     chain_name, CTLFLAG_RD, NULL, "turnstile chain stats");
  388                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  389                     "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0,
  390                     NULL);
  391                 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
  392                     "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth,
  393                     0, NULL);
  394         }
  395 }
  396 SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
  397     init_turnstile_profiling, NULL);
  398 #endif
  399 
  400 static void
  401 init_turnstile0(void *dummy)
  402 {
  403 
  404         turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile),
  405             NULL,
  406 #ifdef INVARIANTS
  407             turnstile_dtor,
  408 #else
  409             NULL,
  410 #endif
  411             turnstile_init, turnstile_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
  412         thread0.td_turnstile = turnstile_alloc();
  413 }
  414 SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL);
  415 
  416 /*
  417  * Update a thread on the turnstile list after it's priority has been changed.
  418  * The old priority is passed in as an argument.
  419  */
  420 void
  421 turnstile_adjust(struct thread *td, u_char oldpri)
  422 {
  423         struct turnstile *ts;
  424 
  425         MPASS(TD_ON_LOCK(td));
  426 
  427         /*
  428          * Pick up the lock that td is blocked on.
  429          */
  430         ts = td->td_blocked;
  431         MPASS(ts != NULL);
  432         THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
  433         mtx_assert(&ts->ts_lock, MA_OWNED);
  434 
  435         /* Resort the turnstile on the list. */
  436         if (!turnstile_adjust_thread(ts, td))
  437                 return;
  438         /*
  439          * If our priority was lowered and we are at the head of the
  440          * turnstile, then propagate our new priority up the chain.
  441          * Note that we currently don't try to revoke lent priorities
  442          * when our priority goes up.
  443          */
  444         MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE ||
  445             td->td_tsqueue == TS_SHARED_QUEUE);
  446         if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) &&
  447             td->td_priority < oldpri) {
  448                 propagate_priority(td);
  449         }
  450 }
  451 
  452 /*
  453  * Set the owner of the lock this turnstile is attached to.
  454  */
  455 static void
  456 turnstile_setowner(struct turnstile *ts, struct thread *owner)
  457 {
  458 
  459         mtx_assert(&td_contested_lock, MA_OWNED);
  460         MPASS(ts->ts_owner == NULL);
  461 
  462         /* A shared lock might not have an owner. */
  463         if (owner == NULL)
  464                 return;
  465 
  466         MPASS(owner->td_proc->p_magic == P_MAGIC);
  467         ts->ts_owner = owner;
  468         LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link);
  469 }
  470 
  471 #ifdef INVARIANTS
  472 /*
  473  * UMA zone item deallocator.
  474  */
  475 static void
  476 turnstile_dtor(void *mem, int size, void *arg)
  477 {
  478         struct turnstile *ts;
  479 
  480         ts = mem;
  481         MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]));
  482         MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
  483         MPASS(TAILQ_EMPTY(&ts->ts_pending));
  484 }
  485 #endif
  486 
  487 /*
  488  * UMA zone item initializer.
  489  */
  490 static int
  491 turnstile_init(void *mem, int size, int flags)
  492 {
  493         struct turnstile *ts;
  494 
  495         bzero(mem, size);
  496         ts = mem;
  497         TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
  498         TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]);
  499         TAILQ_INIT(&ts->ts_pending);
  500         LIST_INIT(&ts->ts_free);
  501         mtx_init(&ts->ts_lock, "turnstile lock", NULL, MTX_SPIN | MTX_RECURSE);
  502         return (0);
  503 }
  504 
  505 static void
  506 turnstile_fini(void *mem, int size)
  507 {
  508         struct turnstile *ts;
  509 
  510         ts = mem;
  511         mtx_destroy(&ts->ts_lock);
  512 }
  513 
  514 /*
  515  * Get a turnstile for a new thread.
  516  */
  517 struct turnstile *
  518 turnstile_alloc(void)
  519 {
  520 
  521         return (uma_zalloc(turnstile_zone, M_WAITOK));
  522 }
  523 
  524 /*
  525  * Free a turnstile when a thread is destroyed.
  526  */
  527 void
  528 turnstile_free(struct turnstile *ts)
  529 {
  530 
  531         uma_zfree(turnstile_zone, ts);
  532 }
  533 
  534 /*
  535  * Lock the turnstile chain associated with the specified lock.
  536  */
  537 void
  538 turnstile_chain_lock(struct lock_object *lock)
  539 {
  540         struct turnstile_chain *tc;
  541 
  542         tc = TC_LOOKUP(lock);
  543         mtx_lock_spin(&tc->tc_lock);
  544 }
  545 
  546 struct turnstile *
  547 turnstile_trywait(struct lock_object *lock)
  548 {
  549         struct turnstile_chain *tc;
  550         struct turnstile *ts;
  551 
  552         tc = TC_LOOKUP(lock);
  553         mtx_lock_spin(&tc->tc_lock);
  554         LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
  555                 if (ts->ts_lockobj == lock) {
  556                         mtx_lock_spin(&ts->ts_lock);
  557                         return (ts);
  558                 }
  559 
  560         ts = curthread->td_turnstile;
  561         MPASS(ts != NULL);
  562         mtx_lock_spin(&ts->ts_lock);
  563         KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer"));
  564         ts->ts_lockobj = lock;
  565 
  566         return (ts);
  567 }
  568 
  569 void
  570 turnstile_cancel(struct turnstile *ts)
  571 {
  572         struct turnstile_chain *tc;
  573         struct lock_object *lock;
  574 
  575         mtx_assert(&ts->ts_lock, MA_OWNED);
  576 
  577         mtx_unlock_spin(&ts->ts_lock);
  578         lock = ts->ts_lockobj;
  579         if (ts == curthread->td_turnstile)
  580                 ts->ts_lockobj = NULL;
  581         tc = TC_LOOKUP(lock);
  582         mtx_unlock_spin(&tc->tc_lock);
  583 }
  584 
  585 /*
  586  * Look up the turnstile for a lock in the hash table locking the associated
  587  * turnstile chain along the way.  If no turnstile is found in the hash
  588  * table, NULL is returned.
  589  */
  590 struct turnstile *
  591 turnstile_lookup(struct lock_object *lock)
  592 {
  593         struct turnstile_chain *tc;
  594         struct turnstile *ts;
  595 
  596         tc = TC_LOOKUP(lock);
  597         mtx_assert(&tc->tc_lock, MA_OWNED);
  598         LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
  599                 if (ts->ts_lockobj == lock) {
  600                         mtx_lock_spin(&ts->ts_lock);
  601                         return (ts);
  602                 }
  603         return (NULL);
  604 }
  605 
  606 /*
  607  * Unlock the turnstile chain associated with a given lock.
  608  */
  609 void
  610 turnstile_chain_unlock(struct lock_object *lock)
  611 {
  612         struct turnstile_chain *tc;
  613 
  614         tc = TC_LOOKUP(lock);
  615         mtx_unlock_spin(&tc->tc_lock);
  616 }
  617 
  618 /*
  619  * Return a pointer to the thread waiting on this turnstile with the
  620  * most important priority or NULL if the turnstile has no waiters.
  621  */
  622 static struct thread *
  623 turnstile_first_waiter(struct turnstile *ts)
  624 {
  625         struct thread *std, *xtd;
  626 
  627         std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]);
  628         xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
  629         if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority))
  630                 return (std);
  631         return (xtd);
  632 }
  633 
  634 /*
  635  * Take ownership of a turnstile and adjust the priority of the new
  636  * owner appropriately.
  637  */
  638 void
  639 turnstile_claim(struct turnstile *ts)
  640 {
  641         struct thread *td, *owner;
  642         struct turnstile_chain *tc;
  643 
  644         mtx_assert(&ts->ts_lock, MA_OWNED);
  645         MPASS(ts != curthread->td_turnstile);
  646 
  647         owner = curthread;
  648         mtx_lock_spin(&td_contested_lock);
  649         turnstile_setowner(ts, owner);
  650         mtx_unlock_spin(&td_contested_lock);
  651 
  652         td = turnstile_first_waiter(ts);
  653         MPASS(td != NULL);
  654         MPASS(td->td_proc->p_magic == P_MAGIC);
  655         THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
  656 
  657         /*
  658          * Update the priority of the new owner if needed.
  659          */
  660         thread_lock(owner);
  661         if (td->td_priority < owner->td_priority)
  662                 sched_lend_prio(owner, td->td_priority);
  663         thread_unlock(owner);
  664         tc = TC_LOOKUP(ts->ts_lockobj);
  665         mtx_unlock_spin(&ts->ts_lock);
  666         mtx_unlock_spin(&tc->tc_lock);
  667 }
  668 
  669 /*
  670  * Block the current thread on the turnstile assicated with 'lock'.  This
  671  * function will context switch and not return until this thread has been
  672  * woken back up.  This function must be called with the appropriate
  673  * turnstile chain locked and will return with it unlocked.
  674  */
  675 void
  676 turnstile_wait(struct turnstile *ts, struct thread *owner, int queue)
  677 {
  678         struct turnstile_chain *tc;
  679         struct thread *td, *td1;
  680         struct lock_object *lock;
  681 
  682         td = curthread;
  683         mtx_assert(&ts->ts_lock, MA_OWNED);
  684         if (owner)
  685                 MPASS(owner->td_proc->p_magic == P_MAGIC);
  686         MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
  687 
  688         /*
  689          * If the lock does not already have a turnstile, use this thread's
  690          * turnstile.  Otherwise insert the current thread into the
  691          * turnstile already in use by this lock.
  692          */
  693         tc = TC_LOOKUP(ts->ts_lockobj);
  694         mtx_assert(&tc->tc_lock, MA_OWNED);
  695         if (ts == td->td_turnstile) {
  696 #ifdef TURNSTILE_PROFILING
  697                 tc->tc_depth++;
  698                 if (tc->tc_depth > tc->tc_max_depth) {
  699                         tc->tc_max_depth = tc->tc_depth;
  700                         if (tc->tc_max_depth > turnstile_max_depth)
  701                                 turnstile_max_depth = tc->tc_max_depth;
  702                 }
  703 #endif
  704                 LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash);
  705                 KASSERT(TAILQ_EMPTY(&ts->ts_pending),
  706                     ("thread's turnstile has pending threads"));
  707                 KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]),
  708                     ("thread's turnstile has exclusive waiters"));
  709                 KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]),
  710                     ("thread's turnstile has shared waiters"));
  711                 KASSERT(LIST_EMPTY(&ts->ts_free),
  712                     ("thread's turnstile has a non-empty free list"));
  713                 MPASS(ts->ts_lockobj != NULL);
  714                 mtx_lock_spin(&td_contested_lock);
  715                 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
  716                 turnstile_setowner(ts, owner);
  717                 mtx_unlock_spin(&td_contested_lock);
  718         } else {
  719                 TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq)
  720                         if (td1->td_priority > td->td_priority)
  721                                 break;
  722                 mtx_lock_spin(&td_contested_lock);
  723                 if (td1 != NULL)
  724                         TAILQ_INSERT_BEFORE(td1, td, td_lockq);
  725                 else
  726                         TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
  727                 MPASS(owner == ts->ts_owner);
  728                 mtx_unlock_spin(&td_contested_lock);
  729                 MPASS(td->td_turnstile != NULL);
  730                 LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash);
  731         }
  732         thread_lock(td);
  733         thread_lock_set(td, &ts->ts_lock);
  734         td->td_turnstile = NULL;
  735 
  736         /* Save who we are blocked on and switch. */
  737         lock = ts->ts_lockobj;
  738         td->td_tsqueue = queue;
  739         td->td_blocked = ts;
  740         td->td_lockname = lock->lo_name;
  741         td->td_blktick = ticks;
  742         TD_SET_LOCK(td);
  743         mtx_unlock_spin(&tc->tc_lock);
  744         propagate_priority(td);
  745 
  746         if (LOCK_LOG_TEST(lock, 0))
  747                 CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__,
  748                     td->td_tid, lock, lock->lo_name);
  749 
  750         SDT_PROBE0(sched, , , sleep);
  751 
  752         THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
  753         mi_switch(SW_VOL | SWT_TURNSTILE, NULL);
  754 
  755         if (LOCK_LOG_TEST(lock, 0))
  756                 CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s",
  757                     __func__, td->td_tid, lock, lock->lo_name);
  758         thread_unlock(td);
  759 }
  760 
  761 /*
  762  * Pick the highest priority thread on this turnstile and put it on the
  763  * pending list.  This must be called with the turnstile chain locked.
  764  */
  765 int
  766 turnstile_signal(struct turnstile *ts, int queue)
  767 {
  768         struct turnstile_chain *tc;
  769         struct thread *td;
  770         int empty;
  771 
  772         MPASS(ts != NULL);
  773         mtx_assert(&ts->ts_lock, MA_OWNED);
  774         MPASS(curthread->td_proc->p_magic == P_MAGIC);
  775         MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
  776         MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
  777 
  778         /*
  779          * Pick the highest priority thread blocked on this lock and
  780          * move it to the pending list.
  781          */
  782         td = TAILQ_FIRST(&ts->ts_blocked[queue]);
  783         MPASS(td->td_proc->p_magic == P_MAGIC);
  784         mtx_lock_spin(&td_contested_lock);
  785         TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
  786         mtx_unlock_spin(&td_contested_lock);
  787         TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq);
  788 
  789         /*
  790          * If the turnstile is now empty, remove it from its chain and
  791          * give it to the about-to-be-woken thread.  Otherwise take a
  792          * turnstile from the free list and give it to the thread.
  793          */
  794         empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
  795             TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]);
  796         if (empty) {
  797                 tc = TC_LOOKUP(ts->ts_lockobj);
  798                 mtx_assert(&tc->tc_lock, MA_OWNED);
  799                 MPASS(LIST_EMPTY(&ts->ts_free));
  800 #ifdef TURNSTILE_PROFILING
  801                 tc->tc_depth--;
  802 #endif
  803         } else
  804                 ts = LIST_FIRST(&ts->ts_free);
  805         MPASS(ts != NULL);
  806         LIST_REMOVE(ts, ts_hash);
  807         td->td_turnstile = ts;
  808 
  809         return (empty);
  810 }
  811         
  812 /*
  813  * Put all blocked threads on the pending list.  This must be called with
  814  * the turnstile chain locked.
  815  */
  816 void
  817 turnstile_broadcast(struct turnstile *ts, int queue)
  818 {
  819         struct turnstile_chain *tc;
  820         struct turnstile *ts1;
  821         struct thread *td;
  822 
  823         MPASS(ts != NULL);
  824         mtx_assert(&ts->ts_lock, MA_OWNED);
  825         MPASS(curthread->td_proc->p_magic == P_MAGIC);
  826         MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
  827         /*
  828          * We must have the chain locked so that we can remove the empty
  829          * turnstile from the hash queue.
  830          */
  831         tc = TC_LOOKUP(ts->ts_lockobj);
  832         mtx_assert(&tc->tc_lock, MA_OWNED);
  833         MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
  834 
  835         /*
  836          * Transfer the blocked list to the pending list.
  837          */
  838         mtx_lock_spin(&td_contested_lock);
  839         TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq);
  840         mtx_unlock_spin(&td_contested_lock);
  841 
  842         /*
  843          * Give a turnstile to each thread.  The last thread gets
  844          * this turnstile if the turnstile is empty.
  845          */
  846         TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) {
  847                 if (LIST_EMPTY(&ts->ts_free)) {
  848                         MPASS(TAILQ_NEXT(td, td_lockq) == NULL);
  849                         ts1 = ts;
  850 #ifdef TURNSTILE_PROFILING
  851                         tc->tc_depth--;
  852 #endif
  853                 } else
  854                         ts1 = LIST_FIRST(&ts->ts_free);
  855                 MPASS(ts1 != NULL);
  856                 LIST_REMOVE(ts1, ts_hash);
  857                 td->td_turnstile = ts1;
  858         }
  859 }
  860 
  861 /*
  862  * Wakeup all threads on the pending list and adjust the priority of the
  863  * current thread appropriately.  This must be called with the turnstile
  864  * chain locked.
  865  */
  866 void
  867 turnstile_unpend(struct turnstile *ts, int owner_type)
  868 {
  869         TAILQ_HEAD( ,thread) pending_threads;
  870         struct turnstile *nts;
  871         struct thread *td;
  872         u_char cp, pri;
  873 
  874         MPASS(ts != NULL);
  875         mtx_assert(&ts->ts_lock, MA_OWNED);
  876         MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
  877         MPASS(!TAILQ_EMPTY(&ts->ts_pending));
  878 
  879         /*
  880          * Move the list of pending threads out of the turnstile and
  881          * into a local variable.
  882          */
  883         TAILQ_INIT(&pending_threads);
  884         TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq);
  885 #ifdef INVARIANTS
  886         if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
  887             TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]))
  888                 ts->ts_lockobj = NULL;
  889 #endif
  890         /*
  891          * Adjust the priority of curthread based on other contested
  892          * locks it owns.  Don't lower the priority below the base
  893          * priority however.
  894          */
  895         td = curthread;
  896         pri = PRI_MAX;
  897         thread_lock(td);
  898         mtx_lock_spin(&td_contested_lock);
  899         /*
  900          * Remove the turnstile from this thread's list of contested locks
  901          * since this thread doesn't own it anymore.  New threads will
  902          * not be blocking on the turnstile until it is claimed by a new
  903          * owner.  There might not be a current owner if this is a shared
  904          * lock.
  905          */
  906         if (ts->ts_owner != NULL) {
  907                 ts->ts_owner = NULL;
  908                 LIST_REMOVE(ts, ts_link);
  909         }
  910         LIST_FOREACH(nts, &td->td_contested, ts_link) {
  911                 cp = turnstile_first_waiter(nts)->td_priority;
  912                 if (cp < pri)
  913                         pri = cp;
  914         }
  915         mtx_unlock_spin(&td_contested_lock);
  916         sched_unlend_prio(td, pri);
  917         thread_unlock(td);
  918         /*
  919          * Wake up all the pending threads.  If a thread is not blocked
  920          * on a lock, then it is currently executing on another CPU in
  921          * turnstile_wait() or sitting on a run queue waiting to resume
  922          * in turnstile_wait().  Set a flag to force it to try to acquire
  923          * the lock again instead of blocking.
  924          */
  925         while (!TAILQ_EMPTY(&pending_threads)) {
  926                 td = TAILQ_FIRST(&pending_threads);
  927                 TAILQ_REMOVE(&pending_threads, td, td_lockq);
  928                 SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
  929                 thread_lock(td);
  930                 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
  931                 MPASS(td->td_proc->p_magic == P_MAGIC);
  932                 MPASS(TD_ON_LOCK(td));
  933                 TD_CLR_LOCK(td);
  934                 MPASS(TD_CAN_RUN(td));
  935                 td->td_blocked = NULL;
  936                 td->td_lockname = NULL;
  937                 td->td_blktick = 0;
  938 #ifdef INVARIANTS
  939                 td->td_tsqueue = 0xff;
  940 #endif
  941                 sched_add(td, SRQ_BORING);
  942                 thread_unlock(td);
  943         }
  944         mtx_unlock_spin(&ts->ts_lock);
  945 }
  946 
  947 /*
  948  * Give up ownership of a turnstile.  This must be called with the
  949  * turnstile chain locked.
  950  */
  951 void
  952 turnstile_disown(struct turnstile *ts)
  953 {
  954         struct thread *td;
  955         u_char cp, pri;
  956 
  957         MPASS(ts != NULL);
  958         mtx_assert(&ts->ts_lock, MA_OWNED);
  959         MPASS(ts->ts_owner == curthread);
  960         MPASS(TAILQ_EMPTY(&ts->ts_pending));
  961         MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) ||
  962             !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
  963 
  964         /*
  965          * Remove the turnstile from this thread's list of contested locks
  966          * since this thread doesn't own it anymore.  New threads will
  967          * not be blocking on the turnstile until it is claimed by a new
  968          * owner.
  969          */
  970         mtx_lock_spin(&td_contested_lock);
  971         ts->ts_owner = NULL;
  972         LIST_REMOVE(ts, ts_link);
  973         mtx_unlock_spin(&td_contested_lock);
  974 
  975         /*
  976          * Adjust the priority of curthread based on other contested
  977          * locks it owns.  Don't lower the priority below the base
  978          * priority however.
  979          */
  980         td = curthread;
  981         pri = PRI_MAX;
  982         thread_lock(td);
  983         mtx_unlock_spin(&ts->ts_lock);
  984         mtx_lock_spin(&td_contested_lock);
  985         LIST_FOREACH(ts, &td->td_contested, ts_link) {
  986                 cp = turnstile_first_waiter(ts)->td_priority;
  987                 if (cp < pri)
  988                         pri = cp;
  989         }
  990         mtx_unlock_spin(&td_contested_lock);
  991         sched_unlend_prio(td, pri);
  992         thread_unlock(td);
  993 }
  994 
  995 /*
  996  * Return the first thread in a turnstile.
  997  */
  998 struct thread *
  999 turnstile_head(struct turnstile *ts, int queue)
 1000 {
 1001 #ifdef INVARIANTS
 1002 
 1003         MPASS(ts != NULL);
 1004         MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
 1005         mtx_assert(&ts->ts_lock, MA_OWNED);
 1006 #endif
 1007         return (TAILQ_FIRST(&ts->ts_blocked[queue]));
 1008 }
 1009 
 1010 /*
 1011  * Returns true if a sub-queue of a turnstile is empty.
 1012  */
 1013 int
 1014 turnstile_empty(struct turnstile *ts, int queue)
 1015 {
 1016 #ifdef INVARIANTS
 1017 
 1018         MPASS(ts != NULL);
 1019         MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
 1020         mtx_assert(&ts->ts_lock, MA_OWNED);
 1021 #endif
 1022         return (TAILQ_EMPTY(&ts->ts_blocked[queue]));
 1023 }
 1024 
 1025 #ifdef DDB
 1026 static void
 1027 print_thread(struct thread *td, const char *prefix)
 1028 {
 1029 
 1030         db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid,
 1031             td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
 1032             td->td_name);
 1033 }
 1034 
 1035 static void
 1036 print_queue(struct threadqueue *queue, const char *header, const char *prefix)
 1037 {
 1038         struct thread *td;
 1039 
 1040         db_printf("%s:\n", header);
 1041         if (TAILQ_EMPTY(queue)) {
 1042                 db_printf("%sempty\n", prefix);
 1043                 return;
 1044         }
 1045         TAILQ_FOREACH(td, queue, td_lockq) {
 1046                 print_thread(td, prefix);
 1047         }
 1048 }
 1049 
 1050 DB_SHOW_COMMAND(turnstile, db_show_turnstile)
 1051 {
 1052         struct turnstile_chain *tc;
 1053         struct turnstile *ts;
 1054         struct lock_object *lock;
 1055         int i;
 1056 
 1057         if (!have_addr)
 1058                 return;
 1059 
 1060         /*
 1061          * First, see if there is an active turnstile for the lock indicated
 1062          * by the address.
 1063          */
 1064         lock = (struct lock_object *)addr;
 1065         tc = TC_LOOKUP(lock);
 1066         LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
 1067                 if (ts->ts_lockobj == lock)
 1068                         goto found;
 1069 
 1070         /*
 1071          * Second, see if there is an active turnstile at the address
 1072          * indicated.
 1073          */
 1074         for (i = 0; i < TC_TABLESIZE; i++)
 1075                 LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) {
 1076                         if (ts == (struct turnstile *)addr)
 1077                                 goto found;
 1078                 }
 1079 
 1080         db_printf("Unable to locate a turnstile via %p\n", (void *)addr);
 1081         return;
 1082 found:
 1083         lock = ts->ts_lockobj;
 1084         db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name,
 1085             lock->lo_name);
 1086         if (ts->ts_owner)
 1087                 print_thread(ts->ts_owner, "Lock Owner: ");
 1088         else
 1089                 db_printf("Lock Owner: none\n");
 1090         print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t");
 1091         print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters",
 1092             "\t");
 1093         print_queue(&ts->ts_pending, "Pending Threads", "\t");
 1094         
 1095 }
 1096 
 1097 /*
 1098  * Show all the threads a particular thread is waiting on based on
 1099  * non-sleepable and non-spin locks.
 1100  */
 1101 static void
 1102 print_lockchain(struct thread *td, const char *prefix)
 1103 {
 1104         struct lock_object *lock;
 1105         struct lock_class *class;
 1106         struct turnstile *ts;
 1107 
 1108         /*
 1109          * Follow the chain.  We keep walking as long as the thread is
 1110          * blocked on a turnstile that has an owner.
 1111          */
 1112         while (!db_pager_quit) {
 1113                 db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
 1114                     td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
 1115                     td->td_name);
 1116                 switch (td->td_state) {
 1117                 case TDS_INACTIVE:
 1118                         db_printf("is inactive\n");
 1119                         return;
 1120                 case TDS_CAN_RUN:
 1121                         db_printf("can run\n");
 1122                         return;
 1123                 case TDS_RUNQ:
 1124                         db_printf("is on a run queue\n");
 1125                         return;
 1126                 case TDS_RUNNING:
 1127                         db_printf("running on CPU %d\n", td->td_oncpu);
 1128                         return;
 1129                 case TDS_INHIBITED:
 1130                         if (TD_ON_LOCK(td)) {
 1131                                 ts = td->td_blocked;
 1132                                 lock = ts->ts_lockobj;
 1133                                 class = LOCK_CLASS(lock);
 1134                                 db_printf("blocked on lock %p (%s) \"%s\"\n",
 1135                                     lock, class->lc_name, lock->lo_name);
 1136                                 if (ts->ts_owner == NULL)
 1137                                         return;
 1138                                 td = ts->ts_owner;
 1139                                 break;
 1140                         }
 1141                         db_printf("inhibited\n");
 1142                         return;
 1143                 default:
 1144                         db_printf("??? (%#x)\n", td->td_state);
 1145                         return;
 1146                 }
 1147         }
 1148 }
 1149 
 1150 DB_SHOW_COMMAND(lockchain, db_show_lockchain)
 1151 {
 1152         struct thread *td;
 1153 
 1154         /* Figure out which thread to start with. */
 1155         if (have_addr)
 1156                 td = db_lookup_thread(addr, TRUE);
 1157         else
 1158                 td = kdb_thread;
 1159 
 1160         print_lockchain(td, "");
 1161 }
 1162 
 1163 DB_SHOW_ALL_COMMAND(chains, db_show_allchains)
 1164 {
 1165         struct thread *td;
 1166         struct proc *p;
 1167         int i;
 1168 
 1169         i = 1;
 1170         FOREACH_PROC_IN_SYSTEM(p) {
 1171                 FOREACH_THREAD_IN_PROC(p, td) {
 1172                         if (TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested)) {
 1173                                 db_printf("chain %d:\n", i++);
 1174                                 print_lockchain(td, " ");
 1175                         }
 1176                         if (db_pager_quit)
 1177                                 return;
 1178                 }
 1179         }
 1180 }
 1181 DB_SHOW_ALIAS(allchains, db_show_allchains)
 1182 
 1183 /*
 1184  * Show all the threads a particular thread is waiting on based on
 1185  * sleepable locks.
 1186  */
 1187 static void
 1188 print_sleepchain(struct thread *td, const char *prefix)
 1189 {
 1190         struct thread *owner;
 1191 
 1192         /*
 1193          * Follow the chain.  We keep walking as long as the thread is
 1194          * blocked on a sleep lock that has an owner.
 1195          */
 1196         while (!db_pager_quit) {
 1197                 db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
 1198                     td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
 1199                     td->td_name);
 1200                 switch (td->td_state) {
 1201                 case TDS_INACTIVE:
 1202                         db_printf("is inactive\n");
 1203                         return;
 1204                 case TDS_CAN_RUN:
 1205                         db_printf("can run\n");
 1206                         return;
 1207                 case TDS_RUNQ:
 1208                         db_printf("is on a run queue\n");
 1209                         return;
 1210                 case TDS_RUNNING:
 1211                         db_printf("running on CPU %d\n", td->td_oncpu);
 1212                         return;
 1213                 case TDS_INHIBITED:
 1214                         if (TD_ON_SLEEPQ(td)) {
 1215                                 if (lockmgr_chain(td, &owner) ||
 1216                                     sx_chain(td, &owner)) {
 1217                                         if (owner == NULL)
 1218                                                 return;
 1219                                         td = owner;
 1220                                         break;
 1221                                 }
 1222                                 db_printf("sleeping on %p \"%s\"\n",
 1223                                     td->td_wchan, td->td_wmesg);
 1224                                 return;
 1225                         }
 1226                         db_printf("inhibited\n");
 1227                         return;
 1228                 default:
 1229                         db_printf("??? (%#x)\n", td->td_state);
 1230                         return;
 1231                 }
 1232         }
 1233 }
 1234 
 1235 DB_SHOW_COMMAND(sleepchain, db_show_sleepchain)
 1236 {
 1237         struct thread *td;
 1238 
 1239         /* Figure out which thread to start with. */
 1240         if (have_addr)
 1241                 td = db_lookup_thread(addr, TRUE);
 1242         else
 1243                 td = kdb_thread;
 1244 
 1245         print_sleepchain(td, "");
 1246 }
 1247 
 1248 static void     print_waiters(struct turnstile *ts, int indent);
 1249         
 1250 static void
 1251 print_waiter(struct thread *td, int indent)
 1252 {
 1253         struct turnstile *ts;
 1254         int i;
 1255 
 1256         if (db_pager_quit)
 1257                 return;
 1258         for (i = 0; i < indent; i++)
 1259                 db_printf(" ");
 1260         print_thread(td, "thread ");
 1261         LIST_FOREACH(ts, &td->td_contested, ts_link)
 1262                 print_waiters(ts, indent + 1);
 1263 }
 1264 
 1265 static void
 1266 print_waiters(struct turnstile *ts, int indent)
 1267 {
 1268         struct lock_object *lock;
 1269         struct lock_class *class;
 1270         struct thread *td;
 1271         int i;
 1272 
 1273         if (db_pager_quit)
 1274                 return;
 1275         lock = ts->ts_lockobj;
 1276         class = LOCK_CLASS(lock);
 1277         for (i = 0; i < indent; i++)
 1278                 db_printf(" ");
 1279         db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name);
 1280         TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq)
 1281                 print_waiter(td, indent + 1);
 1282         TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq)
 1283                 print_waiter(td, indent + 1);
 1284         TAILQ_FOREACH(td, &ts->ts_pending, td_lockq)
 1285                 print_waiter(td, indent + 1);
 1286 }
 1287 
 1288 DB_SHOW_COMMAND(locktree, db_show_locktree)
 1289 {
 1290         struct lock_object *lock;
 1291         struct lock_class *class;
 1292         struct turnstile_chain *tc;
 1293         struct turnstile *ts;
 1294 
 1295         if (!have_addr)
 1296                 return;
 1297         lock = (struct lock_object *)addr;
 1298         tc = TC_LOOKUP(lock);
 1299         LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
 1300                 if (ts->ts_lockobj == lock)
 1301                         break;
 1302         if (ts == NULL) {
 1303                 class = LOCK_CLASS(lock);
 1304                 db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name,
 1305                     lock->lo_name);
 1306         } else
 1307                 print_waiters(ts, 0);
 1308 }
 1309 #endif

Cache object: 0293b1ed27c6ef277647e523e9b0d172


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.