The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_vmem.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
    3  * Copyright (c) 2013 EMC Corp.
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 /*
   29  * From:
   30  *      $NetBSD: vmem_impl.h,v 1.2 2013/01/29 21:26:24 para Exp $
   31  *      $NetBSD: subr_vmem.c,v 1.83 2013/03/06 11:20:10 yamt Exp $
   32  */
   33 
   34 /*
   35  * reference:
   36  * -    Magazines and Vmem: Extending the Slab Allocator
   37  *      to Many CPUs and Arbitrary Resources
   38  *      http://www.usenix.org/event/usenix01/bonwick.html
   39  */
   40 
   41 #include <sys/cdefs.h>
   42 __FBSDID("$FreeBSD: releng/10.1/sys/kern/subr_vmem.c 260299 2014-01-04 23:31:34Z mav $");
   43 
   44 #include "opt_ddb.h"
   45 
   46 #include <sys/param.h>
   47 #include <sys/systm.h>
   48 #include <sys/kernel.h>
   49 #include <sys/queue.h>
   50 #include <sys/callout.h>
   51 #include <sys/hash.h>
   52 #include <sys/lock.h>
   53 #include <sys/malloc.h>
   54 #include <sys/mutex.h>
   55 #include <sys/smp.h>
   56 #include <sys/condvar.h>
   57 #include <sys/sysctl.h>
   58 #include <sys/taskqueue.h>
   59 #include <sys/vmem.h>
   60 
   61 #include "opt_vm.h"
   62 
   63 #include <vm/uma.h>
   64 #include <vm/vm.h>
   65 #include <vm/pmap.h>
   66 #include <vm/vm_map.h>
   67 #include <vm/vm_object.h>
   68 #include <vm/vm_kern.h>
   69 #include <vm/vm_extern.h>
   70 #include <vm/vm_param.h>
   71 #include <vm/vm_pageout.h>
   72 
   73 #define VMEM_OPTORDER           5
   74 #define VMEM_OPTVALUE           (1 << VMEM_OPTORDER)
   75 #define VMEM_MAXORDER                                           \
   76     (VMEM_OPTVALUE - 1 + sizeof(vmem_size_t) * NBBY - VMEM_OPTORDER)
   77 
   78 #define VMEM_HASHSIZE_MIN       16
   79 #define VMEM_HASHSIZE_MAX       131072
   80 
   81 #define VMEM_QCACHE_IDX_MAX     16
   82 
   83 #define VMEM_FITMASK    (M_BESTFIT | M_FIRSTFIT)
   84 
   85 #define VMEM_FLAGS                                              \
   86     (M_NOWAIT | M_WAITOK | M_USE_RESERVE | M_NOVM | M_BESTFIT | M_FIRSTFIT)
   87 
   88 #define BT_FLAGS        (M_NOWAIT | M_WAITOK | M_USE_RESERVE | M_NOVM)
   89 
   90 #define QC_NAME_MAX     16
   91 
   92 /*
   93  * Data structures private to vmem.
   94  */
   95 MALLOC_DEFINE(M_VMEM, "vmem", "vmem internal structures");
   96 
   97 typedef struct vmem_btag bt_t;
   98 
   99 TAILQ_HEAD(vmem_seglist, vmem_btag);
  100 LIST_HEAD(vmem_freelist, vmem_btag);
  101 LIST_HEAD(vmem_hashlist, vmem_btag);
  102 
  103 struct qcache {
  104         uma_zone_t      qc_cache;
  105         vmem_t          *qc_vmem;
  106         vmem_size_t     qc_size;
  107         char            qc_name[QC_NAME_MAX];
  108 };
  109 typedef struct qcache qcache_t;
  110 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
  111 
  112 #define VMEM_NAME_MAX   16
  113 
  114 /* vmem arena */
  115 struct vmem {
  116         struct mtx_padalign     vm_lock;
  117         struct cv               vm_cv;
  118         char                    vm_name[VMEM_NAME_MAX+1];
  119         LIST_ENTRY(vmem)        vm_alllist;
  120         struct vmem_hashlist    vm_hash0[VMEM_HASHSIZE_MIN];
  121         struct vmem_freelist    vm_freelist[VMEM_MAXORDER];
  122         struct vmem_seglist     vm_seglist;
  123         struct vmem_hashlist    *vm_hashlist;
  124         vmem_size_t             vm_hashsize;
  125 
  126         /* Constant after init */
  127         vmem_size_t             vm_qcache_max;
  128         vmem_size_t             vm_quantum_mask;
  129         vmem_size_t             vm_import_quantum;
  130         int                     vm_quantum_shift;
  131 
  132         /* Written on alloc/free */
  133         LIST_HEAD(, vmem_btag)  vm_freetags;
  134         int                     vm_nfreetags;
  135         int                     vm_nbusytag;
  136         vmem_size_t             vm_inuse;
  137         vmem_size_t             vm_size;
  138 
  139         /* Used on import. */
  140         vmem_import_t           *vm_importfn;
  141         vmem_release_t          *vm_releasefn;
  142         void                    *vm_arg;
  143 
  144         /* Space exhaustion callback. */
  145         vmem_reclaim_t          *vm_reclaimfn;
  146 
  147         /* quantum cache */
  148         qcache_t                vm_qcache[VMEM_QCACHE_IDX_MAX];
  149 };
  150 
  151 /* boundary tag */
  152 struct vmem_btag {
  153         TAILQ_ENTRY(vmem_btag) bt_seglist;
  154         union {
  155                 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
  156                 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
  157         } bt_u;
  158 #define bt_hashlist     bt_u.u_hashlist
  159 #define bt_freelist     bt_u.u_freelist
  160         vmem_addr_t     bt_start;
  161         vmem_size_t     bt_size;
  162         int             bt_type;
  163 };
  164 
  165 #define BT_TYPE_SPAN            1       /* Allocated from importfn */
  166 #define BT_TYPE_SPAN_STATIC     2       /* vmem_add() or create. */
  167 #define BT_TYPE_FREE            3       /* Available space. */
  168 #define BT_TYPE_BUSY            4       /* Used space. */
  169 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
  170 
  171 #define BT_END(bt)      ((bt)->bt_start + (bt)->bt_size - 1)
  172 
  173 #if defined(DIAGNOSTIC)
  174 static int enable_vmem_check = 1;
  175 SYSCTL_INT(_debug, OID_AUTO, vmem_check, CTLFLAG_RW,
  176     &enable_vmem_check, 0, "Enable vmem check");
  177 static void vmem_check(vmem_t *);
  178 #endif
  179 
  180 static struct callout   vmem_periodic_ch;
  181 static int              vmem_periodic_interval;
  182 static struct task      vmem_periodic_wk;
  183 
  184 static struct mtx_padalign vmem_list_lock;
  185 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
  186 
  187 /* ---- misc */
  188 #define VMEM_CONDVAR_INIT(vm, wchan)    cv_init(&vm->vm_cv, wchan)
  189 #define VMEM_CONDVAR_DESTROY(vm)        cv_destroy(&vm->vm_cv)
  190 #define VMEM_CONDVAR_WAIT(vm)           cv_wait(&vm->vm_cv, &vm->vm_lock)
  191 #define VMEM_CONDVAR_BROADCAST(vm)      cv_broadcast(&vm->vm_cv)
  192 
  193 
  194 #define VMEM_LOCK(vm)           mtx_lock(&vm->vm_lock)
  195 #define VMEM_TRYLOCK(vm)        mtx_trylock(&vm->vm_lock)
  196 #define VMEM_UNLOCK(vm)         mtx_unlock(&vm->vm_lock)
  197 #define VMEM_LOCK_INIT(vm, name) mtx_init(&vm->vm_lock, (name), NULL, MTX_DEF)
  198 #define VMEM_LOCK_DESTROY(vm)   mtx_destroy(&vm->vm_lock)
  199 #define VMEM_ASSERT_LOCKED(vm)  mtx_assert(&vm->vm_lock, MA_OWNED);
  200 
  201 #define VMEM_ALIGNUP(addr, align)       (-(-(addr) & -(align)))
  202 
  203 #define VMEM_CROSS_P(addr1, addr2, boundary) \
  204         ((((addr1) ^ (addr2)) & -(boundary)) != 0)
  205 
  206 #define ORDER2SIZE(order)       ((order) < VMEM_OPTVALUE ? ((order) + 1) : \
  207     (vmem_size_t)1 << ((order) - (VMEM_OPTVALUE - VMEM_OPTORDER - 1)))
  208 #define SIZE2ORDER(size)        ((size) <= VMEM_OPTVALUE ? ((size) - 1) : \
  209     (flsl(size) + (VMEM_OPTVALUE - VMEM_OPTORDER - 2)))
  210 
  211 /*
  212  * Maximum number of boundary tags that may be required to satisfy an
  213  * allocation.  Two may be required to import.  Another two may be
  214  * required to clip edges.
  215  */
  216 #define BT_MAXALLOC     4
  217 
  218 /*
  219  * Max free limits the number of locally cached boundary tags.  We
  220  * just want to avoid hitting the zone allocator for every call.
  221  */
  222 #define BT_MAXFREE      (BT_MAXALLOC * 8)
  223 
  224 /* Allocator for boundary tags. */
  225 static uma_zone_t vmem_bt_zone;
  226 
  227 /* boot time arena storage. */
  228 static struct vmem kernel_arena_storage;
  229 static struct vmem kmem_arena_storage;
  230 static struct vmem buffer_arena_storage;
  231 static struct vmem transient_arena_storage;
  232 vmem_t *kernel_arena = &kernel_arena_storage;
  233 vmem_t *kmem_arena = &kmem_arena_storage;
  234 vmem_t *buffer_arena = &buffer_arena_storage;
  235 vmem_t *transient_arena = &transient_arena_storage;
  236 
  237 #ifdef DEBUG_MEMGUARD
  238 static struct vmem memguard_arena_storage;
  239 vmem_t *memguard_arena = &memguard_arena_storage;
  240 #endif
  241 
  242 /*
  243  * Fill the vmem's boundary tag cache.  We guarantee that boundary tag
  244  * allocation will not fail once bt_fill() passes.  To do so we cache
  245  * at least the maximum possible tag allocations in the arena.
  246  */
  247 static int
  248 bt_fill(vmem_t *vm, int flags)
  249 {
  250         bt_t *bt;
  251 
  252         VMEM_ASSERT_LOCKED(vm);
  253 
  254         /*
  255          * Only allow the kmem arena to dip into reserve tags.  It is the
  256          * vmem where new tags come from.
  257          */
  258         flags &= BT_FLAGS;
  259         if (vm != kmem_arena)
  260                 flags &= ~M_USE_RESERVE;
  261 
  262         /*
  263          * Loop until we meet the reserve.  To minimize the lock shuffle
  264          * and prevent simultaneous fills we first try a NOWAIT regardless
  265          * of the caller's flags.  Specify M_NOVM so we don't recurse while
  266          * holding a vmem lock.
  267          */
  268         while (vm->vm_nfreetags < BT_MAXALLOC) {
  269                 bt = uma_zalloc(vmem_bt_zone,
  270                     (flags & M_USE_RESERVE) | M_NOWAIT | M_NOVM);
  271                 if (bt == NULL) {
  272                         VMEM_UNLOCK(vm);
  273                         bt = uma_zalloc(vmem_bt_zone, flags);
  274                         VMEM_LOCK(vm);
  275                         if (bt == NULL && (flags & M_NOWAIT) != 0)
  276                                 break;
  277                 }
  278                 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
  279                 vm->vm_nfreetags++;
  280         }
  281 
  282         if (vm->vm_nfreetags < BT_MAXALLOC)
  283                 return ENOMEM;
  284 
  285         return 0;
  286 }
  287 
  288 /*
  289  * Pop a tag off of the freetag stack.
  290  */
  291 static bt_t *
  292 bt_alloc(vmem_t *vm)
  293 {
  294         bt_t *bt;
  295 
  296         VMEM_ASSERT_LOCKED(vm);
  297         bt = LIST_FIRST(&vm->vm_freetags);
  298         MPASS(bt != NULL);
  299         LIST_REMOVE(bt, bt_freelist);
  300         vm->vm_nfreetags--;
  301 
  302         return bt;
  303 }
  304 
  305 /*
  306  * Trim the per-vmem free list.  Returns with the lock released to
  307  * avoid allocator recursions.
  308  */
  309 static void
  310 bt_freetrim(vmem_t *vm, int freelimit)
  311 {
  312         LIST_HEAD(, vmem_btag) freetags;
  313         bt_t *bt;
  314 
  315         LIST_INIT(&freetags);
  316         VMEM_ASSERT_LOCKED(vm);
  317         while (vm->vm_nfreetags > freelimit) {
  318                 bt = LIST_FIRST(&vm->vm_freetags);
  319                 LIST_REMOVE(bt, bt_freelist);
  320                 vm->vm_nfreetags--;
  321                 LIST_INSERT_HEAD(&freetags, bt, bt_freelist);
  322         }
  323         VMEM_UNLOCK(vm);
  324         while ((bt = LIST_FIRST(&freetags)) != NULL) {
  325                 LIST_REMOVE(bt, bt_freelist);
  326                 uma_zfree(vmem_bt_zone, bt);
  327         }
  328 }
  329 
  330 static inline void
  331 bt_free(vmem_t *vm, bt_t *bt)
  332 {
  333 
  334         VMEM_ASSERT_LOCKED(vm);
  335         MPASS(LIST_FIRST(&vm->vm_freetags) != bt);
  336         LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
  337         vm->vm_nfreetags++;
  338 }
  339 
  340 /*
  341  * freelist[0] ... [1, 1]
  342  * freelist[1] ... [2, 2]
  343  *  :
  344  * freelist[29] ... [30, 30]
  345  * freelist[30] ... [31, 31]
  346  * freelist[31] ... [32, 63]
  347  * freelist[33] ... [64, 127]
  348  *  :
  349  * freelist[n] ... [(1 << (n - 26)), (1 << (n - 25)) - 1]
  350  *  :
  351  */
  352 
  353 static struct vmem_freelist *
  354 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
  355 {
  356         const vmem_size_t qsize = size >> vm->vm_quantum_shift;
  357         const int idx = SIZE2ORDER(qsize);
  358 
  359         MPASS(size != 0 && qsize != 0);
  360         MPASS((size & vm->vm_quantum_mask) == 0);
  361         MPASS(idx >= 0);
  362         MPASS(idx < VMEM_MAXORDER);
  363 
  364         return &vm->vm_freelist[idx];
  365 }
  366 
  367 /*
  368  * bt_freehead_toalloc: return the freelist for the given size and allocation
  369  * strategy.
  370  *
  371  * For M_FIRSTFIT, return the list in which any blocks are large enough
  372  * for the requested size.  otherwise, return the list which can have blocks
  373  * large enough for the requested size.
  374  */
  375 static struct vmem_freelist *
  376 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, int strat)
  377 {
  378         const vmem_size_t qsize = size >> vm->vm_quantum_shift;
  379         int idx = SIZE2ORDER(qsize);
  380 
  381         MPASS(size != 0 && qsize != 0);
  382         MPASS((size & vm->vm_quantum_mask) == 0);
  383 
  384         if (strat == M_FIRSTFIT && ORDER2SIZE(idx) != qsize) {
  385                 idx++;
  386                 /* check too large request? */
  387         }
  388         MPASS(idx >= 0);
  389         MPASS(idx < VMEM_MAXORDER);
  390 
  391         return &vm->vm_freelist[idx];
  392 }
  393 
  394 /* ---- boundary tag hash */
  395 
  396 static struct vmem_hashlist *
  397 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
  398 {
  399         struct vmem_hashlist *list;
  400         unsigned int hash;
  401 
  402         hash = hash32_buf(&addr, sizeof(addr), 0);
  403         list = &vm->vm_hashlist[hash % vm->vm_hashsize];
  404 
  405         return list;
  406 }
  407 
  408 static bt_t *
  409 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
  410 {
  411         struct vmem_hashlist *list;
  412         bt_t *bt;
  413 
  414         VMEM_ASSERT_LOCKED(vm);
  415         list = bt_hashhead(vm, addr); 
  416         LIST_FOREACH(bt, list, bt_hashlist) {
  417                 if (bt->bt_start == addr) {
  418                         break;
  419                 }
  420         }
  421 
  422         return bt;
  423 }
  424 
  425 static void
  426 bt_rembusy(vmem_t *vm, bt_t *bt)
  427 {
  428 
  429         VMEM_ASSERT_LOCKED(vm);
  430         MPASS(vm->vm_nbusytag > 0);
  431         vm->vm_inuse -= bt->bt_size;
  432         vm->vm_nbusytag--;
  433         LIST_REMOVE(bt, bt_hashlist);
  434 }
  435 
  436 static void
  437 bt_insbusy(vmem_t *vm, bt_t *bt)
  438 {
  439         struct vmem_hashlist *list;
  440 
  441         VMEM_ASSERT_LOCKED(vm);
  442         MPASS(bt->bt_type == BT_TYPE_BUSY);
  443 
  444         list = bt_hashhead(vm, bt->bt_start);
  445         LIST_INSERT_HEAD(list, bt, bt_hashlist);
  446         vm->vm_nbusytag++;
  447         vm->vm_inuse += bt->bt_size;
  448 }
  449 
  450 /* ---- boundary tag list */
  451 
  452 static void
  453 bt_remseg(vmem_t *vm, bt_t *bt)
  454 {
  455 
  456         TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
  457         bt_free(vm, bt);
  458 }
  459 
  460 static void
  461 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
  462 {
  463 
  464         TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
  465 }
  466 
  467 static void
  468 bt_insseg_tail(vmem_t *vm, bt_t *bt)
  469 {
  470 
  471         TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
  472 }
  473 
  474 static void
  475 bt_remfree(vmem_t *vm, bt_t *bt)
  476 {
  477 
  478         MPASS(bt->bt_type == BT_TYPE_FREE);
  479 
  480         LIST_REMOVE(bt, bt_freelist);
  481 }
  482 
  483 static void
  484 bt_insfree(vmem_t *vm, bt_t *bt)
  485 {
  486         struct vmem_freelist *list;
  487 
  488         list = bt_freehead_tofree(vm, bt->bt_size);
  489         LIST_INSERT_HEAD(list, bt, bt_freelist);
  490 }
  491 
  492 /* ---- vmem internal functions */
  493 
  494 /*
  495  * Import from the arena into the quantum cache in UMA.
  496  */
  497 static int
  498 qc_import(void *arg, void **store, int cnt, int flags)
  499 {
  500         qcache_t *qc;
  501         vmem_addr_t addr;
  502         int i;
  503 
  504         qc = arg;
  505         flags |= M_BESTFIT;
  506         for (i = 0; i < cnt; i++) {
  507                 if (vmem_xalloc(qc->qc_vmem, qc->qc_size, 0, 0, 0,
  508                     VMEM_ADDR_MIN, VMEM_ADDR_MAX, flags, &addr) != 0)
  509                         break;
  510                 store[i] = (void *)addr;
  511                 /* Only guarantee one allocation. */
  512                 flags &= ~M_WAITOK;
  513                 flags |= M_NOWAIT;
  514         }
  515         return i;
  516 }
  517 
  518 /*
  519  * Release memory from the UMA cache to the arena.
  520  */
  521 static void
  522 qc_release(void *arg, void **store, int cnt)
  523 {
  524         qcache_t *qc;
  525         int i;
  526 
  527         qc = arg;
  528         for (i = 0; i < cnt; i++)
  529                 vmem_xfree(qc->qc_vmem, (vmem_addr_t)store[i], qc->qc_size);
  530 }
  531 
  532 static void
  533 qc_init(vmem_t *vm, vmem_size_t qcache_max)
  534 {
  535         qcache_t *qc;
  536         vmem_size_t size;
  537         int qcache_idx_max;
  538         int i;
  539 
  540         MPASS((qcache_max & vm->vm_quantum_mask) == 0);
  541         qcache_idx_max = MIN(qcache_max >> vm->vm_quantum_shift,
  542             VMEM_QCACHE_IDX_MAX);
  543         vm->vm_qcache_max = qcache_idx_max << vm->vm_quantum_shift;
  544         for (i = 0; i < qcache_idx_max; i++) {
  545                 qc = &vm->vm_qcache[i];
  546                 size = (i + 1) << vm->vm_quantum_shift;
  547                 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
  548                     vm->vm_name, size);
  549                 qc->qc_vmem = vm;
  550                 qc->qc_size = size;
  551                 qc->qc_cache = uma_zcache_create(qc->qc_name, size,
  552                     NULL, NULL, NULL, NULL, qc_import, qc_release, qc,
  553                     UMA_ZONE_VM);
  554                 MPASS(qc->qc_cache);
  555         }
  556 }
  557 
  558 static void
  559 qc_destroy(vmem_t *vm)
  560 {
  561         int qcache_idx_max;
  562         int i;
  563 
  564         qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
  565         for (i = 0; i < qcache_idx_max; i++)
  566                 uma_zdestroy(vm->vm_qcache[i].qc_cache);
  567 }
  568 
  569 static void
  570 qc_drain(vmem_t *vm)
  571 {
  572         int qcache_idx_max;
  573         int i;
  574 
  575         qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
  576         for (i = 0; i < qcache_idx_max; i++)
  577                 zone_drain(vm->vm_qcache[i].qc_cache);
  578 }
  579 
  580 #ifndef UMA_MD_SMALL_ALLOC
  581 
  582 static struct mtx_padalign vmem_bt_lock;
  583 
  584 /*
  585  * vmem_bt_alloc:  Allocate a new page of boundary tags.
  586  *
  587  * On architectures with uma_small_alloc there is no recursion; no address
  588  * space need be allocated to allocate boundary tags.  For the others, we
  589  * must handle recursion.  Boundary tags are necessary to allocate new
  590  * boundary tags.
  591  *
  592  * UMA guarantees that enough tags are held in reserve to allocate a new
  593  * page of kva.  We dip into this reserve by specifying M_USE_RESERVE only
  594  * when allocating the page to hold new boundary tags.  In this way the
  595  * reserve is automatically filled by the allocation that uses the reserve.
  596  * 
  597  * We still have to guarantee that the new tags are allocated atomically since
  598  * many threads may try concurrently.  The bt_lock provides this guarantee.
  599  * We convert WAITOK allocations to NOWAIT and then handle the blocking here
  600  * on failure.  It's ok to return NULL for a WAITOK allocation as UMA will
  601  * loop again after checking to see if we lost the race to allocate.
  602  *
  603  * There is a small race between vmem_bt_alloc() returning the page and the
  604  * zone lock being acquired to add the page to the zone.  For WAITOK
  605  * allocations we just pause briefly.  NOWAIT may experience a transient
  606  * failure.  To alleviate this we permit a small number of simultaneous
  607  * fills to proceed concurrently so NOWAIT is less likely to fail unless
  608  * we are really out of KVA.
  609  */
  610 static void *
  611 vmem_bt_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait)
  612 {
  613         vmem_addr_t addr;
  614 
  615         *pflag = UMA_SLAB_KMEM;
  616 
  617         /*
  618          * Single thread boundary tag allocation so that the address space
  619          * and memory are added in one atomic operation.
  620          */
  621         mtx_lock(&vmem_bt_lock);
  622         if (vmem_xalloc(kmem_arena, bytes, 0, 0, 0, VMEM_ADDR_MIN,
  623             VMEM_ADDR_MAX, M_NOWAIT | M_NOVM | M_USE_RESERVE | M_BESTFIT,
  624             &addr) == 0) {
  625                 if (kmem_back(kmem_object, addr, bytes,
  626                     M_NOWAIT | M_USE_RESERVE) == 0) {
  627                         mtx_unlock(&vmem_bt_lock);
  628                         return ((void *)addr);
  629                 }
  630                 vmem_xfree(kmem_arena, addr, bytes);
  631                 mtx_unlock(&vmem_bt_lock);
  632                 /*
  633                  * Out of memory, not address space.  This may not even be
  634                  * possible due to M_USE_RESERVE page allocation.
  635                  */
  636                 if (wait & M_WAITOK)
  637                         VM_WAIT;
  638                 return (NULL);
  639         }
  640         mtx_unlock(&vmem_bt_lock);
  641         /*
  642          * We're either out of address space or lost a fill race.
  643          */
  644         if (wait & M_WAITOK)
  645                 pause("btalloc", 1);
  646 
  647         return (NULL);
  648 }
  649 #endif
  650 
  651 void
  652 vmem_startup(void)
  653 {
  654 
  655         mtx_init(&vmem_list_lock, "vmem list lock", NULL, MTX_DEF);
  656         vmem_bt_zone = uma_zcreate("vmem btag",
  657             sizeof(struct vmem_btag), NULL, NULL, NULL, NULL,
  658             UMA_ALIGN_PTR, UMA_ZONE_VM);
  659 #ifndef UMA_MD_SMALL_ALLOC
  660         mtx_init(&vmem_bt_lock, "btag lock", NULL, MTX_DEF);
  661         uma_prealloc(vmem_bt_zone, BT_MAXALLOC);
  662         /*
  663          * Reserve enough tags to allocate new tags.  We allow multiple
  664          * CPUs to attempt to allocate new tags concurrently to limit
  665          * false restarts in UMA.
  666          */
  667         uma_zone_reserve(vmem_bt_zone, BT_MAXALLOC * (mp_ncpus + 1) / 2);
  668         uma_zone_set_allocf(vmem_bt_zone, vmem_bt_alloc);
  669 #endif
  670 }
  671 
  672 /* ---- rehash */
  673 
  674 static int
  675 vmem_rehash(vmem_t *vm, vmem_size_t newhashsize)
  676 {
  677         bt_t *bt;
  678         int i;
  679         struct vmem_hashlist *newhashlist;
  680         struct vmem_hashlist *oldhashlist;
  681         vmem_size_t oldhashsize;
  682 
  683         MPASS(newhashsize > 0);
  684 
  685         newhashlist = malloc(sizeof(struct vmem_hashlist) * newhashsize,
  686             M_VMEM, M_NOWAIT);
  687         if (newhashlist == NULL)
  688                 return ENOMEM;
  689         for (i = 0; i < newhashsize; i++) {
  690                 LIST_INIT(&newhashlist[i]);
  691         }
  692 
  693         VMEM_LOCK(vm);
  694         oldhashlist = vm->vm_hashlist;
  695         oldhashsize = vm->vm_hashsize;
  696         vm->vm_hashlist = newhashlist;
  697         vm->vm_hashsize = newhashsize;
  698         if (oldhashlist == NULL) {
  699                 VMEM_UNLOCK(vm);
  700                 return 0;
  701         }
  702         for (i = 0; i < oldhashsize; i++) {
  703                 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
  704                         bt_rembusy(vm, bt);
  705                         bt_insbusy(vm, bt);
  706                 }
  707         }
  708         VMEM_UNLOCK(vm);
  709 
  710         if (oldhashlist != vm->vm_hash0) {
  711                 free(oldhashlist, M_VMEM);
  712         }
  713 
  714         return 0;
  715 }
  716 
  717 static void
  718 vmem_periodic_kick(void *dummy)
  719 {
  720 
  721         taskqueue_enqueue(taskqueue_thread, &vmem_periodic_wk);
  722 }
  723 
  724 static void
  725 vmem_periodic(void *unused, int pending)
  726 {
  727         vmem_t *vm;
  728         vmem_size_t desired;
  729         vmem_size_t current;
  730 
  731         mtx_lock(&vmem_list_lock);
  732         LIST_FOREACH(vm, &vmem_list, vm_alllist) {
  733 #ifdef DIAGNOSTIC
  734                 /* Convenient time to verify vmem state. */
  735                 if (enable_vmem_check == 1) {
  736                         VMEM_LOCK(vm);
  737                         vmem_check(vm);
  738                         VMEM_UNLOCK(vm);
  739                 }
  740 #endif
  741                 desired = 1 << flsl(vm->vm_nbusytag);
  742                 desired = MIN(MAX(desired, VMEM_HASHSIZE_MIN),
  743                     VMEM_HASHSIZE_MAX);
  744                 current = vm->vm_hashsize;
  745 
  746                 /* Grow in powers of two.  Shrink less aggressively. */
  747                 if (desired >= current * 2 || desired * 4 <= current)
  748                         vmem_rehash(vm, desired);
  749         }
  750         mtx_unlock(&vmem_list_lock);
  751 
  752         callout_reset(&vmem_periodic_ch, vmem_periodic_interval,
  753             vmem_periodic_kick, NULL);
  754 }
  755 
  756 static void
  757 vmem_start_callout(void *unused)
  758 {
  759 
  760         TASK_INIT(&vmem_periodic_wk, 0, vmem_periodic, NULL);
  761         vmem_periodic_interval = hz * 10;
  762         callout_init(&vmem_periodic_ch, CALLOUT_MPSAFE);
  763         callout_reset(&vmem_periodic_ch, vmem_periodic_interval,
  764             vmem_periodic_kick, NULL);
  765 }
  766 SYSINIT(vfs, SI_SUB_CONFIGURE, SI_ORDER_ANY, vmem_start_callout, NULL);
  767 
  768 static void
  769 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, int type)
  770 {
  771         bt_t *btspan;
  772         bt_t *btfree;
  773 
  774         MPASS(type == BT_TYPE_SPAN || type == BT_TYPE_SPAN_STATIC);
  775         MPASS((size & vm->vm_quantum_mask) == 0);
  776 
  777         btspan = bt_alloc(vm);
  778         btspan->bt_type = type;
  779         btspan->bt_start = addr;
  780         btspan->bt_size = size;
  781         bt_insseg_tail(vm, btspan);
  782 
  783         btfree = bt_alloc(vm);
  784         btfree->bt_type = BT_TYPE_FREE;
  785         btfree->bt_start = addr;
  786         btfree->bt_size = size;
  787         bt_insseg(vm, btfree, btspan);
  788         bt_insfree(vm, btfree);
  789 
  790         vm->vm_size += size;
  791 }
  792 
  793 static void
  794 vmem_destroy1(vmem_t *vm)
  795 {
  796         bt_t *bt;
  797 
  798         /*
  799          * Drain per-cpu quantum caches.
  800          */
  801         qc_destroy(vm);
  802 
  803         /*
  804          * The vmem should now only contain empty segments.
  805          */
  806         VMEM_LOCK(vm);
  807         MPASS(vm->vm_nbusytag == 0);
  808 
  809         while ((bt = TAILQ_FIRST(&vm->vm_seglist)) != NULL)
  810                 bt_remseg(vm, bt);
  811 
  812         if (vm->vm_hashlist != NULL && vm->vm_hashlist != vm->vm_hash0)
  813                 free(vm->vm_hashlist, M_VMEM);
  814 
  815         bt_freetrim(vm, 0);
  816 
  817         VMEM_CONDVAR_DESTROY(vm);
  818         VMEM_LOCK_DESTROY(vm);
  819         free(vm, M_VMEM);
  820 }
  821 
  822 static int
  823 vmem_import(vmem_t *vm, vmem_size_t size, vmem_size_t align, int flags)
  824 {
  825         vmem_addr_t addr;
  826         int error;
  827 
  828         if (vm->vm_importfn == NULL)
  829                 return EINVAL;
  830 
  831         /*
  832          * To make sure we get a span that meets the alignment we double it
  833          * and add the size to the tail.  This slightly overestimates.
  834          */
  835         if (align != vm->vm_quantum_mask + 1)
  836                 size = (align * 2) + size;
  837         size = roundup(size, vm->vm_import_quantum);
  838 
  839         /*
  840          * Hide MAXALLOC tags so we're guaranteed to be able to add this
  841          * span and the tag we want to allocate from it.
  842          */
  843         MPASS(vm->vm_nfreetags >= BT_MAXALLOC);
  844         vm->vm_nfreetags -= BT_MAXALLOC;
  845         VMEM_UNLOCK(vm);
  846         error = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
  847         VMEM_LOCK(vm);
  848         vm->vm_nfreetags += BT_MAXALLOC;
  849         if (error)
  850                 return ENOMEM;
  851 
  852         vmem_add1(vm, addr, size, BT_TYPE_SPAN);
  853 
  854         return 0;
  855 }
  856 
  857 /*
  858  * vmem_fit: check if a bt can satisfy the given restrictions.
  859  *
  860  * it's a caller's responsibility to ensure the region is big enough
  861  * before calling us.
  862  */
  863 static int
  864 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
  865     vmem_size_t phase, vmem_size_t nocross, vmem_addr_t minaddr,
  866     vmem_addr_t maxaddr, vmem_addr_t *addrp)
  867 {
  868         vmem_addr_t start;
  869         vmem_addr_t end;
  870 
  871         MPASS(size > 0);
  872         MPASS(bt->bt_size >= size); /* caller's responsibility */
  873 
  874         /*
  875          * XXX assumption: vmem_addr_t and vmem_size_t are
  876          * unsigned integer of the same size.
  877          */
  878 
  879         start = bt->bt_start;
  880         if (start < minaddr) {
  881                 start = minaddr;
  882         }
  883         end = BT_END(bt);
  884         if (end > maxaddr)
  885                 end = maxaddr;
  886         if (start > end) 
  887                 return (ENOMEM);
  888 
  889         start = VMEM_ALIGNUP(start - phase, align) + phase;
  890         if (start < bt->bt_start)
  891                 start += align;
  892         if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
  893                 MPASS(align < nocross);
  894                 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
  895         }
  896         if (start <= end && end - start >= size - 1) {
  897                 MPASS((start & (align - 1)) == phase);
  898                 MPASS(!VMEM_CROSS_P(start, start + size - 1, nocross));
  899                 MPASS(minaddr <= start);
  900                 MPASS(maxaddr == 0 || start + size - 1 <= maxaddr);
  901                 MPASS(bt->bt_start <= start);
  902                 MPASS(BT_END(bt) - start >= size - 1);
  903                 *addrp = start;
  904 
  905                 return (0);
  906         }
  907         return (ENOMEM);
  908 }
  909 
  910 /*
  911  * vmem_clip:  Trim the boundary tag edges to the requested start and size.
  912  */
  913 static void
  914 vmem_clip(vmem_t *vm, bt_t *bt, vmem_addr_t start, vmem_size_t size)
  915 {
  916         bt_t *btnew;
  917         bt_t *btprev;
  918 
  919         VMEM_ASSERT_LOCKED(vm);
  920         MPASS(bt->bt_type == BT_TYPE_FREE);
  921         MPASS(bt->bt_size >= size);
  922         bt_remfree(vm, bt);
  923         if (bt->bt_start != start) {
  924                 btprev = bt_alloc(vm);
  925                 btprev->bt_type = BT_TYPE_FREE;
  926                 btprev->bt_start = bt->bt_start;
  927                 btprev->bt_size = start - bt->bt_start;
  928                 bt->bt_start = start;
  929                 bt->bt_size -= btprev->bt_size;
  930                 bt_insfree(vm, btprev);
  931                 bt_insseg(vm, btprev,
  932                     TAILQ_PREV(bt, vmem_seglist, bt_seglist));
  933         }
  934         MPASS(bt->bt_start == start);
  935         if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
  936                 /* split */
  937                 btnew = bt_alloc(vm);
  938                 btnew->bt_type = BT_TYPE_BUSY;
  939                 btnew->bt_start = bt->bt_start;
  940                 btnew->bt_size = size;
  941                 bt->bt_start = bt->bt_start + size;
  942                 bt->bt_size -= size;
  943                 bt_insfree(vm, bt);
  944                 bt_insseg(vm, btnew,
  945                     TAILQ_PREV(bt, vmem_seglist, bt_seglist));
  946                 bt_insbusy(vm, btnew);
  947                 bt = btnew;
  948         } else {
  949                 bt->bt_type = BT_TYPE_BUSY;
  950                 bt_insbusy(vm, bt);
  951         }
  952         MPASS(bt->bt_size >= size);
  953         bt->bt_type = BT_TYPE_BUSY;
  954 }
  955 
  956 /* ---- vmem API */
  957 
  958 void
  959 vmem_set_import(vmem_t *vm, vmem_import_t *importfn,
  960      vmem_release_t *releasefn, void *arg, vmem_size_t import_quantum)
  961 {
  962 
  963         VMEM_LOCK(vm);
  964         vm->vm_importfn = importfn;
  965         vm->vm_releasefn = releasefn;
  966         vm->vm_arg = arg;
  967         vm->vm_import_quantum = import_quantum;
  968         VMEM_UNLOCK(vm);
  969 }
  970 
  971 void
  972 vmem_set_reclaim(vmem_t *vm, vmem_reclaim_t *reclaimfn)
  973 {
  974 
  975         VMEM_LOCK(vm);
  976         vm->vm_reclaimfn = reclaimfn;
  977         VMEM_UNLOCK(vm);
  978 }
  979 
  980 /*
  981  * vmem_init: Initializes vmem arena.
  982  */
  983 vmem_t *
  984 vmem_init(vmem_t *vm, const char *name, vmem_addr_t base, vmem_size_t size,
  985     vmem_size_t quantum, vmem_size_t qcache_max, int flags)
  986 {
  987         int i;
  988 
  989         MPASS(quantum > 0);
  990         MPASS((quantum & (quantum - 1)) == 0);
  991 
  992         bzero(vm, sizeof(*vm));
  993 
  994         VMEM_CONDVAR_INIT(vm, name);
  995         VMEM_LOCK_INIT(vm, name);
  996         vm->vm_nfreetags = 0;
  997         LIST_INIT(&vm->vm_freetags);
  998         strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
  999         vm->vm_quantum_mask = quantum - 1;
 1000         vm->vm_quantum_shift = flsl(quantum) - 1;
 1001         vm->vm_nbusytag = 0;
 1002         vm->vm_size = 0;
 1003         vm->vm_inuse = 0;
 1004         qc_init(vm, qcache_max);
 1005 
 1006         TAILQ_INIT(&vm->vm_seglist);
 1007         for (i = 0; i < VMEM_MAXORDER; i++) {
 1008                 LIST_INIT(&vm->vm_freelist[i]);
 1009         }
 1010         memset(&vm->vm_hash0, 0, sizeof(vm->vm_hash0));
 1011         vm->vm_hashsize = VMEM_HASHSIZE_MIN;
 1012         vm->vm_hashlist = vm->vm_hash0;
 1013 
 1014         if (size != 0) {
 1015                 if (vmem_add(vm, base, size, flags) != 0) {
 1016                         vmem_destroy1(vm);
 1017                         return NULL;
 1018                 }
 1019         }
 1020 
 1021         mtx_lock(&vmem_list_lock);
 1022         LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
 1023         mtx_unlock(&vmem_list_lock);
 1024 
 1025         return vm;
 1026 }
 1027 
 1028 /*
 1029  * vmem_create: create an arena.
 1030  */
 1031 vmem_t *
 1032 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
 1033     vmem_size_t quantum, vmem_size_t qcache_max, int flags)
 1034 {
 1035 
 1036         vmem_t *vm;
 1037 
 1038         vm = malloc(sizeof(*vm), M_VMEM, flags & (M_WAITOK|M_NOWAIT));
 1039         if (vm == NULL)
 1040                 return (NULL);
 1041         if (vmem_init(vm, name, base, size, quantum, qcache_max,
 1042             flags) == NULL) {
 1043                 free(vm, M_VMEM);
 1044                 return (NULL);
 1045         }
 1046         return (vm);
 1047 }
 1048 
 1049 void
 1050 vmem_destroy(vmem_t *vm)
 1051 {
 1052 
 1053         mtx_lock(&vmem_list_lock);
 1054         LIST_REMOVE(vm, vm_alllist);
 1055         mtx_unlock(&vmem_list_lock);
 1056 
 1057         vmem_destroy1(vm);
 1058 }
 1059 
 1060 vmem_size_t
 1061 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
 1062 {
 1063 
 1064         return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
 1065 }
 1066 
 1067 /*
 1068  * vmem_alloc: allocate resource from the arena.
 1069  */
 1070 int
 1071 vmem_alloc(vmem_t *vm, vmem_size_t size, int flags, vmem_addr_t *addrp)
 1072 {
 1073         const int strat __unused = flags & VMEM_FITMASK;
 1074         qcache_t *qc;
 1075 
 1076         flags &= VMEM_FLAGS;
 1077         MPASS(size > 0);
 1078         MPASS(strat == M_BESTFIT || strat == M_FIRSTFIT);
 1079         if ((flags & M_NOWAIT) == 0)
 1080                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmem_alloc");
 1081 
 1082         if (size <= vm->vm_qcache_max) {
 1083                 qc = &vm->vm_qcache[(size - 1) >> vm->vm_quantum_shift];
 1084                 *addrp = (vmem_addr_t)uma_zalloc(qc->qc_cache, flags);
 1085                 if (*addrp == 0)
 1086                         return (ENOMEM);
 1087                 return (0);
 1088         }
 1089 
 1090         return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
 1091             flags, addrp);
 1092 }
 1093 
 1094 int
 1095 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
 1096     const vmem_size_t phase, const vmem_size_t nocross,
 1097     const vmem_addr_t minaddr, const vmem_addr_t maxaddr, int flags,
 1098     vmem_addr_t *addrp)
 1099 {
 1100         const vmem_size_t size = vmem_roundup_size(vm, size0);
 1101         struct vmem_freelist *list;
 1102         struct vmem_freelist *first;
 1103         struct vmem_freelist *end;
 1104         vmem_size_t avail;
 1105         bt_t *bt;
 1106         int error;
 1107         int strat;
 1108 
 1109         flags &= VMEM_FLAGS;
 1110         strat = flags & VMEM_FITMASK;
 1111         MPASS(size0 > 0);
 1112         MPASS(size > 0);
 1113         MPASS(strat == M_BESTFIT || strat == M_FIRSTFIT);
 1114         MPASS((flags & (M_NOWAIT|M_WAITOK)) != (M_NOWAIT|M_WAITOK));
 1115         if ((flags & M_NOWAIT) == 0)
 1116                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmem_xalloc");
 1117         MPASS((align & vm->vm_quantum_mask) == 0);
 1118         MPASS((align & (align - 1)) == 0);
 1119         MPASS((phase & vm->vm_quantum_mask) == 0);
 1120         MPASS((nocross & vm->vm_quantum_mask) == 0);
 1121         MPASS((nocross & (nocross - 1)) == 0);
 1122         MPASS((align == 0 && phase == 0) || phase < align);
 1123         MPASS(nocross == 0 || nocross >= size);
 1124         MPASS(minaddr <= maxaddr);
 1125         MPASS(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
 1126 
 1127         if (align == 0)
 1128                 align = vm->vm_quantum_mask + 1;
 1129 
 1130         *addrp = 0;
 1131         end = &vm->vm_freelist[VMEM_MAXORDER];
 1132         /*
 1133          * choose a free block from which we allocate.
 1134          */
 1135         first = bt_freehead_toalloc(vm, size, strat);
 1136         VMEM_LOCK(vm);
 1137         for (;;) {
 1138                 /*
 1139                  * Make sure we have enough tags to complete the
 1140                  * operation.
 1141                  */
 1142                 if (vm->vm_nfreetags < BT_MAXALLOC &&
 1143                     bt_fill(vm, flags) != 0) {
 1144                         error = ENOMEM;
 1145                         break;
 1146                 }
 1147                 /*
 1148                  * Scan freelists looking for a tag that satisfies the
 1149                  * allocation.  If we're doing BESTFIT we may encounter
 1150                  * sizes below the request.  If we're doing FIRSTFIT we
 1151                  * inspect only the first element from each list.
 1152                  */
 1153                 for (list = first; list < end; list++) {
 1154                         LIST_FOREACH(bt, list, bt_freelist) {
 1155                                 if (bt->bt_size >= size) {
 1156                                         error = vmem_fit(bt, size, align, phase,
 1157                                             nocross, minaddr, maxaddr, addrp);
 1158                                         if (error == 0) {
 1159                                                 vmem_clip(vm, bt, *addrp, size);
 1160                                                 goto out;
 1161                                         }
 1162                                 }
 1163                                 /* FIRST skips to the next list. */
 1164                                 if (strat == M_FIRSTFIT)
 1165                                         break;
 1166                         }
 1167                 }
 1168                 /*
 1169                  * Retry if the fast algorithm failed.
 1170                  */
 1171                 if (strat == M_FIRSTFIT) {
 1172                         strat = M_BESTFIT;
 1173                         first = bt_freehead_toalloc(vm, size, strat);
 1174                         continue;
 1175                 }
 1176                 /*
 1177                  * XXX it is possible to fail to meet restrictions with the
 1178                  * imported region.  It is up to the user to specify the
 1179                  * import quantum such that it can satisfy any allocation.
 1180                  */
 1181                 if (vmem_import(vm, size, align, flags) == 0)
 1182                         continue;
 1183 
 1184                 /*
 1185                  * Try to free some space from the quantum cache or reclaim
 1186                  * functions if available.
 1187                  */
 1188                 if (vm->vm_qcache_max != 0 || vm->vm_reclaimfn != NULL) {
 1189                         avail = vm->vm_size - vm->vm_inuse;
 1190                         VMEM_UNLOCK(vm);
 1191                         if (vm->vm_qcache_max != 0)
 1192                                 qc_drain(vm);
 1193                         if (vm->vm_reclaimfn != NULL)
 1194                                 vm->vm_reclaimfn(vm, flags);
 1195                         VMEM_LOCK(vm);
 1196                         /* If we were successful retry even NOWAIT. */
 1197                         if (vm->vm_size - vm->vm_inuse > avail)
 1198                                 continue;
 1199                 }
 1200                 if ((flags & M_NOWAIT) != 0) {
 1201                         error = ENOMEM;
 1202                         break;
 1203                 }
 1204                 VMEM_CONDVAR_WAIT(vm);
 1205         }
 1206 out:
 1207         VMEM_UNLOCK(vm);
 1208         if (error != 0 && (flags & M_NOWAIT) == 0)
 1209                 panic("failed to allocate waiting allocation\n");
 1210 
 1211         return (error);
 1212 }
 1213 
 1214 /*
 1215  * vmem_free: free the resource to the arena.
 1216  */
 1217 void
 1218 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
 1219 {
 1220         qcache_t *qc;
 1221         MPASS(size > 0);
 1222 
 1223         if (size <= vm->vm_qcache_max) {
 1224                 qc = &vm->vm_qcache[(size - 1) >> vm->vm_quantum_shift];
 1225                 uma_zfree(qc->qc_cache, (void *)addr);
 1226         } else
 1227                 vmem_xfree(vm, addr, size);
 1228 }
 1229 
 1230 void
 1231 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
 1232 {
 1233         bt_t *bt;
 1234         bt_t *t;
 1235 
 1236         MPASS(size > 0);
 1237 
 1238         VMEM_LOCK(vm);
 1239         bt = bt_lookupbusy(vm, addr);
 1240         MPASS(bt != NULL);
 1241         MPASS(bt->bt_start == addr);
 1242         MPASS(bt->bt_size == vmem_roundup_size(vm, size) ||
 1243             bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
 1244         MPASS(bt->bt_type == BT_TYPE_BUSY);
 1245         bt_rembusy(vm, bt);
 1246         bt->bt_type = BT_TYPE_FREE;
 1247 
 1248         /* coalesce */
 1249         t = TAILQ_NEXT(bt, bt_seglist);
 1250         if (t != NULL && t->bt_type == BT_TYPE_FREE) {
 1251                 MPASS(BT_END(bt) < t->bt_start);        /* YYY */
 1252                 bt->bt_size += t->bt_size;
 1253                 bt_remfree(vm, t);
 1254                 bt_remseg(vm, t);
 1255         }
 1256         t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
 1257         if (t != NULL && t->bt_type == BT_TYPE_FREE) {
 1258                 MPASS(BT_END(t) < bt->bt_start);        /* YYY */
 1259                 bt->bt_size += t->bt_size;
 1260                 bt->bt_start = t->bt_start;
 1261                 bt_remfree(vm, t);
 1262                 bt_remseg(vm, t);
 1263         }
 1264 
 1265         t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
 1266         MPASS(t != NULL);
 1267         MPASS(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
 1268         if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
 1269             t->bt_size == bt->bt_size) {
 1270                 vmem_addr_t spanaddr;
 1271                 vmem_size_t spansize;
 1272 
 1273                 MPASS(t->bt_start == bt->bt_start);
 1274                 spanaddr = bt->bt_start;
 1275                 spansize = bt->bt_size;
 1276                 bt_remseg(vm, bt);
 1277                 bt_remseg(vm, t);
 1278                 vm->vm_size -= spansize;
 1279                 VMEM_CONDVAR_BROADCAST(vm);
 1280                 bt_freetrim(vm, BT_MAXFREE);
 1281                 (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
 1282         } else {
 1283                 bt_insfree(vm, bt);
 1284                 VMEM_CONDVAR_BROADCAST(vm);
 1285                 bt_freetrim(vm, BT_MAXFREE);
 1286         }
 1287 }
 1288 
 1289 /*
 1290  * vmem_add:
 1291  *
 1292  */
 1293 int
 1294 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, int flags)
 1295 {
 1296         int error;
 1297 
 1298         error = 0;
 1299         flags &= VMEM_FLAGS;
 1300         VMEM_LOCK(vm);
 1301         if (vm->vm_nfreetags >= BT_MAXALLOC || bt_fill(vm, flags) == 0)
 1302                 vmem_add1(vm, addr, size, BT_TYPE_SPAN_STATIC);
 1303         else
 1304                 error = ENOMEM;
 1305         VMEM_UNLOCK(vm);
 1306 
 1307         return (error);
 1308 }
 1309 
 1310 /*
 1311  * vmem_size: information about arenas size
 1312  */
 1313 vmem_size_t
 1314 vmem_size(vmem_t *vm, int typemask)
 1315 {
 1316 
 1317         switch (typemask) {
 1318         case VMEM_ALLOC:
 1319                 return vm->vm_inuse;
 1320         case VMEM_FREE:
 1321                 return vm->vm_size - vm->vm_inuse;
 1322         case VMEM_FREE|VMEM_ALLOC:
 1323                 return vm->vm_size;
 1324         default:
 1325                 panic("vmem_size");
 1326         }
 1327 }
 1328 
 1329 /* ---- debug */
 1330 
 1331 #if defined(DDB) || defined(DIAGNOSTIC)
 1332 
 1333 static void bt_dump(const bt_t *, int (*)(const char *, ...)
 1334     __printflike(1, 2));
 1335 
 1336 static const char *
 1337 bt_type_string(int type)
 1338 {
 1339 
 1340         switch (type) {
 1341         case BT_TYPE_BUSY:
 1342                 return "busy";
 1343         case BT_TYPE_FREE:
 1344                 return "free";
 1345         case BT_TYPE_SPAN:
 1346                 return "span";
 1347         case BT_TYPE_SPAN_STATIC:
 1348                 return "static span";
 1349         default:
 1350                 break;
 1351         }
 1352         return "BOGUS";
 1353 }
 1354 
 1355 static void
 1356 bt_dump(const bt_t *bt, int (*pr)(const char *, ...))
 1357 {
 1358 
 1359         (*pr)("\t%p: %jx %jx, %d(%s)\n",
 1360             bt, (intmax_t)bt->bt_start, (intmax_t)bt->bt_size,
 1361             bt->bt_type, bt_type_string(bt->bt_type));
 1362 }
 1363 
 1364 static void
 1365 vmem_dump(const vmem_t *vm , int (*pr)(const char *, ...) __printflike(1, 2))
 1366 {
 1367         const bt_t *bt;
 1368         int i;
 1369 
 1370         (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
 1371         TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
 1372                 bt_dump(bt, pr);
 1373         }
 1374 
 1375         for (i = 0; i < VMEM_MAXORDER; i++) {
 1376                 const struct vmem_freelist *fl = &vm->vm_freelist[i];
 1377 
 1378                 if (LIST_EMPTY(fl)) {
 1379                         continue;
 1380                 }
 1381 
 1382                 (*pr)("freelist[%d]\n", i);
 1383                 LIST_FOREACH(bt, fl, bt_freelist) {
 1384                         bt_dump(bt, pr);
 1385                 }
 1386         }
 1387 }
 1388 
 1389 #endif /* defined(DDB) || defined(DIAGNOSTIC) */
 1390 
 1391 #if defined(DDB)
 1392 static bt_t *
 1393 vmem_whatis_lookup(vmem_t *vm, vmem_addr_t addr)
 1394 {
 1395         bt_t *bt;
 1396 
 1397         TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
 1398                 if (BT_ISSPAN_P(bt)) {
 1399                         continue;
 1400                 }
 1401                 if (bt->bt_start <= addr && addr <= BT_END(bt)) {
 1402                         return bt;
 1403                 }
 1404         }
 1405 
 1406         return NULL;
 1407 }
 1408 
 1409 void
 1410 vmem_whatis(vmem_addr_t addr, int (*pr)(const char *, ...))
 1411 {
 1412         vmem_t *vm;
 1413 
 1414         LIST_FOREACH(vm, &vmem_list, vm_alllist) {
 1415                 bt_t *bt;
 1416 
 1417                 bt = vmem_whatis_lookup(vm, addr);
 1418                 if (bt == NULL) {
 1419                         continue;
 1420                 }
 1421                 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
 1422                     (void *)addr, (void *)bt->bt_start,
 1423                     (vmem_size_t)(addr - bt->bt_start), vm->vm_name,
 1424                     (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
 1425         }
 1426 }
 1427 
 1428 void
 1429 vmem_printall(const char *modif, int (*pr)(const char *, ...))
 1430 {
 1431         const vmem_t *vm;
 1432 
 1433         LIST_FOREACH(vm, &vmem_list, vm_alllist) {
 1434                 vmem_dump(vm, pr);
 1435         }
 1436 }
 1437 
 1438 void
 1439 vmem_print(vmem_addr_t addr, const char *modif, int (*pr)(const char *, ...))
 1440 {
 1441         const vmem_t *vm = (const void *)addr;
 1442 
 1443         vmem_dump(vm, pr);
 1444 }
 1445 #endif /* defined(DDB) */
 1446 
 1447 #define vmem_printf printf
 1448 
 1449 #if defined(DIAGNOSTIC)
 1450 
 1451 static bool
 1452 vmem_check_sanity(vmem_t *vm)
 1453 {
 1454         const bt_t *bt, *bt2;
 1455 
 1456         MPASS(vm != NULL);
 1457 
 1458         TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
 1459                 if (bt->bt_start > BT_END(bt)) {
 1460                         printf("corrupted tag\n");
 1461                         bt_dump(bt, vmem_printf);
 1462                         return false;
 1463                 }
 1464         }
 1465         TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
 1466                 TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
 1467                         if (bt == bt2) {
 1468                                 continue;
 1469                         }
 1470                         if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
 1471                                 continue;
 1472                         }
 1473                         if (bt->bt_start <= BT_END(bt2) &&
 1474                             bt2->bt_start <= BT_END(bt)) {
 1475                                 printf("overwrapped tags\n");
 1476                                 bt_dump(bt, vmem_printf);
 1477                                 bt_dump(bt2, vmem_printf);
 1478                                 return false;
 1479                         }
 1480                 }
 1481         }
 1482 
 1483         return true;
 1484 }
 1485 
 1486 static void
 1487 vmem_check(vmem_t *vm)
 1488 {
 1489 
 1490         if (!vmem_check_sanity(vm)) {
 1491                 panic("insanity vmem %p", vm);
 1492         }
 1493 }
 1494 
 1495 #endif /* defined(DIAGNOSTIC) */

Cache object: f9c2611f02dd65a2d00d4c988426bca2


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.