The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_vmem.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
    3  * Copyright (c) 2013 EMC Corp.
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 /*
   29  * From:
   30  *      $NetBSD: vmem_impl.h,v 1.2 2013/01/29 21:26:24 para Exp $
   31  *      $NetBSD: subr_vmem.c,v 1.83 2013/03/06 11:20:10 yamt Exp $
   32  */
   33 
   34 /*
   35  * reference:
   36  * -    Magazines and Vmem: Extending the Slab Allocator
   37  *      to Many CPUs and Arbitrary Resources
   38  *      http://www.usenix.org/event/usenix01/bonwick.html
   39  */
   40 
   41 #include <sys/cdefs.h>
   42 __FBSDID("$FreeBSD: releng/10.2/sys/kern/subr_vmem.c 282361 2015-05-03 07:13:14Z mav $");
   43 
   44 #include "opt_ddb.h"
   45 
   46 #include <sys/param.h>
   47 #include <sys/systm.h>
   48 #include <sys/kernel.h>
   49 #include <sys/queue.h>
   50 #include <sys/callout.h>
   51 #include <sys/hash.h>
   52 #include <sys/lock.h>
   53 #include <sys/malloc.h>
   54 #include <sys/mutex.h>
   55 #include <sys/smp.h>
   56 #include <sys/condvar.h>
   57 #include <sys/sysctl.h>
   58 #include <sys/taskqueue.h>
   59 #include <sys/vmem.h>
   60 
   61 #include "opt_vm.h"
   62 
   63 #include <vm/uma.h>
   64 #include <vm/vm.h>
   65 #include <vm/pmap.h>
   66 #include <vm/vm_map.h>
   67 #include <vm/vm_object.h>
   68 #include <vm/vm_kern.h>
   69 #include <vm/vm_extern.h>
   70 #include <vm/vm_param.h>
   71 #include <vm/vm_pageout.h>
   72 
   73 #define VMEM_OPTORDER           5
   74 #define VMEM_OPTVALUE           (1 << VMEM_OPTORDER)
   75 #define VMEM_MAXORDER                                           \
   76     (VMEM_OPTVALUE - 1 + sizeof(vmem_size_t) * NBBY - VMEM_OPTORDER)
   77 
   78 #define VMEM_HASHSIZE_MIN       16
   79 #define VMEM_HASHSIZE_MAX       131072
   80 
   81 #define VMEM_QCACHE_IDX_MAX     16
   82 
   83 #define VMEM_FITMASK    (M_BESTFIT | M_FIRSTFIT)
   84 
   85 #define VMEM_FLAGS                                              \
   86     (M_NOWAIT | M_WAITOK | M_USE_RESERVE | M_NOVM | M_BESTFIT | M_FIRSTFIT)
   87 
   88 #define BT_FLAGS        (M_NOWAIT | M_WAITOK | M_USE_RESERVE | M_NOVM)
   89 
   90 #define QC_NAME_MAX     16
   91 
   92 /*
   93  * Data structures private to vmem.
   94  */
   95 MALLOC_DEFINE(M_VMEM, "vmem", "vmem internal structures");
   96 
   97 typedef struct vmem_btag bt_t;
   98 
   99 TAILQ_HEAD(vmem_seglist, vmem_btag);
  100 LIST_HEAD(vmem_freelist, vmem_btag);
  101 LIST_HEAD(vmem_hashlist, vmem_btag);
  102 
  103 struct qcache {
  104         uma_zone_t      qc_cache;
  105         vmem_t          *qc_vmem;
  106         vmem_size_t     qc_size;
  107         char            qc_name[QC_NAME_MAX];
  108 };
  109 typedef struct qcache qcache_t;
  110 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
  111 
  112 #define VMEM_NAME_MAX   16
  113 
  114 /* vmem arena */
  115 struct vmem {
  116         struct mtx_padalign     vm_lock;
  117         struct cv               vm_cv;
  118         char                    vm_name[VMEM_NAME_MAX+1];
  119         LIST_ENTRY(vmem)        vm_alllist;
  120         struct vmem_hashlist    vm_hash0[VMEM_HASHSIZE_MIN];
  121         struct vmem_freelist    vm_freelist[VMEM_MAXORDER];
  122         struct vmem_seglist     vm_seglist;
  123         struct vmem_hashlist    *vm_hashlist;
  124         vmem_size_t             vm_hashsize;
  125 
  126         /* Constant after init */
  127         vmem_size_t             vm_qcache_max;
  128         vmem_size_t             vm_quantum_mask;
  129         vmem_size_t             vm_import_quantum;
  130         int                     vm_quantum_shift;
  131 
  132         /* Written on alloc/free */
  133         LIST_HEAD(, vmem_btag)  vm_freetags;
  134         int                     vm_nfreetags;
  135         int                     vm_nbusytag;
  136         vmem_size_t             vm_inuse;
  137         vmem_size_t             vm_size;
  138 
  139         /* Used on import. */
  140         vmem_import_t           *vm_importfn;
  141         vmem_release_t          *vm_releasefn;
  142         void                    *vm_arg;
  143 
  144         /* Space exhaustion callback. */
  145         vmem_reclaim_t          *vm_reclaimfn;
  146 
  147         /* quantum cache */
  148         qcache_t                vm_qcache[VMEM_QCACHE_IDX_MAX];
  149 };
  150 
  151 /* boundary tag */
  152 struct vmem_btag {
  153         TAILQ_ENTRY(vmem_btag) bt_seglist;
  154         union {
  155                 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
  156                 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
  157         } bt_u;
  158 #define bt_hashlist     bt_u.u_hashlist
  159 #define bt_freelist     bt_u.u_freelist
  160         vmem_addr_t     bt_start;
  161         vmem_size_t     bt_size;
  162         int             bt_type;
  163 };
  164 
  165 #define BT_TYPE_SPAN            1       /* Allocated from importfn */
  166 #define BT_TYPE_SPAN_STATIC     2       /* vmem_add() or create. */
  167 #define BT_TYPE_FREE            3       /* Available space. */
  168 #define BT_TYPE_BUSY            4       /* Used space. */
  169 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
  170 
  171 #define BT_END(bt)      ((bt)->bt_start + (bt)->bt_size - 1)
  172 
  173 #if defined(DIAGNOSTIC)
  174 static int enable_vmem_check = 1;
  175 SYSCTL_INT(_debug, OID_AUTO, vmem_check, CTLFLAG_RWTUN,
  176     &enable_vmem_check, 0, "Enable vmem check");
  177 static void vmem_check(vmem_t *);
  178 #endif
  179 
  180 static struct callout   vmem_periodic_ch;
  181 static int              vmem_periodic_interval;
  182 static struct task      vmem_periodic_wk;
  183 
  184 static struct mtx_padalign vmem_list_lock;
  185 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
  186 
  187 /* ---- misc */
  188 #define VMEM_CONDVAR_INIT(vm, wchan)    cv_init(&vm->vm_cv, wchan)
  189 #define VMEM_CONDVAR_DESTROY(vm)        cv_destroy(&vm->vm_cv)
  190 #define VMEM_CONDVAR_WAIT(vm)           cv_wait(&vm->vm_cv, &vm->vm_lock)
  191 #define VMEM_CONDVAR_BROADCAST(vm)      cv_broadcast(&vm->vm_cv)
  192 
  193 
  194 #define VMEM_LOCK(vm)           mtx_lock(&vm->vm_lock)
  195 #define VMEM_TRYLOCK(vm)        mtx_trylock(&vm->vm_lock)
  196 #define VMEM_UNLOCK(vm)         mtx_unlock(&vm->vm_lock)
  197 #define VMEM_LOCK_INIT(vm, name) mtx_init(&vm->vm_lock, (name), NULL, MTX_DEF)
  198 #define VMEM_LOCK_DESTROY(vm)   mtx_destroy(&vm->vm_lock)
  199 #define VMEM_ASSERT_LOCKED(vm)  mtx_assert(&vm->vm_lock, MA_OWNED);
  200 
  201 #define VMEM_ALIGNUP(addr, align)       (-(-(addr) & -(align)))
  202 
  203 #define VMEM_CROSS_P(addr1, addr2, boundary) \
  204         ((((addr1) ^ (addr2)) & -(boundary)) != 0)
  205 
  206 #define ORDER2SIZE(order)       ((order) < VMEM_OPTVALUE ? ((order) + 1) : \
  207     (vmem_size_t)1 << ((order) - (VMEM_OPTVALUE - VMEM_OPTORDER - 1)))
  208 #define SIZE2ORDER(size)        ((size) <= VMEM_OPTVALUE ? ((size) - 1) : \
  209     (flsl(size) + (VMEM_OPTVALUE - VMEM_OPTORDER - 2)))
  210 
  211 /*
  212  * Maximum number of boundary tags that may be required to satisfy an
  213  * allocation.  Two may be required to import.  Another two may be
  214  * required to clip edges.
  215  */
  216 #define BT_MAXALLOC     4
  217 
  218 /*
  219  * Max free limits the number of locally cached boundary tags.  We
  220  * just want to avoid hitting the zone allocator for every call.
  221  */
  222 #define BT_MAXFREE      (BT_MAXALLOC * 8)
  223 
  224 /* Allocator for boundary tags. */
  225 static uma_zone_t vmem_bt_zone;
  226 
  227 /* boot time arena storage. */
  228 static struct vmem kernel_arena_storage;
  229 static struct vmem kmem_arena_storage;
  230 static struct vmem buffer_arena_storage;
  231 static struct vmem transient_arena_storage;
  232 vmem_t *kernel_arena = &kernel_arena_storage;
  233 vmem_t *kmem_arena = &kmem_arena_storage;
  234 vmem_t *buffer_arena = &buffer_arena_storage;
  235 vmem_t *transient_arena = &transient_arena_storage;
  236 
  237 #ifdef DEBUG_MEMGUARD
  238 static struct vmem memguard_arena_storage;
  239 vmem_t *memguard_arena = &memguard_arena_storage;
  240 #endif
  241 
  242 /*
  243  * Fill the vmem's boundary tag cache.  We guarantee that boundary tag
  244  * allocation will not fail once bt_fill() passes.  To do so we cache
  245  * at least the maximum possible tag allocations in the arena.
  246  */
  247 static int
  248 bt_fill(vmem_t *vm, int flags)
  249 {
  250         bt_t *bt;
  251 
  252         VMEM_ASSERT_LOCKED(vm);
  253 
  254         /*
  255          * Only allow the kmem arena to dip into reserve tags.  It is the
  256          * vmem where new tags come from.
  257          */
  258         flags &= BT_FLAGS;
  259         if (vm != kmem_arena)
  260                 flags &= ~M_USE_RESERVE;
  261 
  262         /*
  263          * Loop until we meet the reserve.  To minimize the lock shuffle
  264          * and prevent simultaneous fills we first try a NOWAIT regardless
  265          * of the caller's flags.  Specify M_NOVM so we don't recurse while
  266          * holding a vmem lock.
  267          */
  268         while (vm->vm_nfreetags < BT_MAXALLOC) {
  269                 bt = uma_zalloc(vmem_bt_zone,
  270                     (flags & M_USE_RESERVE) | M_NOWAIT | M_NOVM);
  271                 if (bt == NULL) {
  272                         VMEM_UNLOCK(vm);
  273                         bt = uma_zalloc(vmem_bt_zone, flags);
  274                         VMEM_LOCK(vm);
  275                         if (bt == NULL && (flags & M_NOWAIT) != 0)
  276                                 break;
  277                 }
  278                 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
  279                 vm->vm_nfreetags++;
  280         }
  281 
  282         if (vm->vm_nfreetags < BT_MAXALLOC)
  283                 return ENOMEM;
  284 
  285         return 0;
  286 }
  287 
  288 /*
  289  * Pop a tag off of the freetag stack.
  290  */
  291 static bt_t *
  292 bt_alloc(vmem_t *vm)
  293 {
  294         bt_t *bt;
  295 
  296         VMEM_ASSERT_LOCKED(vm);
  297         bt = LIST_FIRST(&vm->vm_freetags);
  298         MPASS(bt != NULL);
  299         LIST_REMOVE(bt, bt_freelist);
  300         vm->vm_nfreetags--;
  301 
  302         return bt;
  303 }
  304 
  305 /*
  306  * Trim the per-vmem free list.  Returns with the lock released to
  307  * avoid allocator recursions.
  308  */
  309 static void
  310 bt_freetrim(vmem_t *vm, int freelimit)
  311 {
  312         LIST_HEAD(, vmem_btag) freetags;
  313         bt_t *bt;
  314 
  315         LIST_INIT(&freetags);
  316         VMEM_ASSERT_LOCKED(vm);
  317         while (vm->vm_nfreetags > freelimit) {
  318                 bt = LIST_FIRST(&vm->vm_freetags);
  319                 LIST_REMOVE(bt, bt_freelist);
  320                 vm->vm_nfreetags--;
  321                 LIST_INSERT_HEAD(&freetags, bt, bt_freelist);
  322         }
  323         VMEM_UNLOCK(vm);
  324         while ((bt = LIST_FIRST(&freetags)) != NULL) {
  325                 LIST_REMOVE(bt, bt_freelist);
  326                 uma_zfree(vmem_bt_zone, bt);
  327         }
  328 }
  329 
  330 static inline void
  331 bt_free(vmem_t *vm, bt_t *bt)
  332 {
  333 
  334         VMEM_ASSERT_LOCKED(vm);
  335         MPASS(LIST_FIRST(&vm->vm_freetags) != bt);
  336         LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
  337         vm->vm_nfreetags++;
  338 }
  339 
  340 /*
  341  * freelist[0] ... [1, 1]
  342  * freelist[1] ... [2, 2]
  343  *  :
  344  * freelist[29] ... [30, 30]
  345  * freelist[30] ... [31, 31]
  346  * freelist[31] ... [32, 63]
  347  * freelist[33] ... [64, 127]
  348  *  :
  349  * freelist[n] ... [(1 << (n - 26)), (1 << (n - 25)) - 1]
  350  *  :
  351  */
  352 
  353 static struct vmem_freelist *
  354 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
  355 {
  356         const vmem_size_t qsize = size >> vm->vm_quantum_shift;
  357         const int idx = SIZE2ORDER(qsize);
  358 
  359         MPASS(size != 0 && qsize != 0);
  360         MPASS((size & vm->vm_quantum_mask) == 0);
  361         MPASS(idx >= 0);
  362         MPASS(idx < VMEM_MAXORDER);
  363 
  364         return &vm->vm_freelist[idx];
  365 }
  366 
  367 /*
  368  * bt_freehead_toalloc: return the freelist for the given size and allocation
  369  * strategy.
  370  *
  371  * For M_FIRSTFIT, return the list in which any blocks are large enough
  372  * for the requested size.  otherwise, return the list which can have blocks
  373  * large enough for the requested size.
  374  */
  375 static struct vmem_freelist *
  376 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, int strat)
  377 {
  378         const vmem_size_t qsize = size >> vm->vm_quantum_shift;
  379         int idx = SIZE2ORDER(qsize);
  380 
  381         MPASS(size != 0 && qsize != 0);
  382         MPASS((size & vm->vm_quantum_mask) == 0);
  383 
  384         if (strat == M_FIRSTFIT && ORDER2SIZE(idx) != qsize) {
  385                 idx++;
  386                 /* check too large request? */
  387         }
  388         MPASS(idx >= 0);
  389         MPASS(idx < VMEM_MAXORDER);
  390 
  391         return &vm->vm_freelist[idx];
  392 }
  393 
  394 /* ---- boundary tag hash */
  395 
  396 static struct vmem_hashlist *
  397 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
  398 {
  399         struct vmem_hashlist *list;
  400         unsigned int hash;
  401 
  402         hash = hash32_buf(&addr, sizeof(addr), 0);
  403         list = &vm->vm_hashlist[hash % vm->vm_hashsize];
  404 
  405         return list;
  406 }
  407 
  408 static bt_t *
  409 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
  410 {
  411         struct vmem_hashlist *list;
  412         bt_t *bt;
  413 
  414         VMEM_ASSERT_LOCKED(vm);
  415         list = bt_hashhead(vm, addr); 
  416         LIST_FOREACH(bt, list, bt_hashlist) {
  417                 if (bt->bt_start == addr) {
  418                         break;
  419                 }
  420         }
  421 
  422         return bt;
  423 }
  424 
  425 static void
  426 bt_rembusy(vmem_t *vm, bt_t *bt)
  427 {
  428 
  429         VMEM_ASSERT_LOCKED(vm);
  430         MPASS(vm->vm_nbusytag > 0);
  431         vm->vm_inuse -= bt->bt_size;
  432         vm->vm_nbusytag--;
  433         LIST_REMOVE(bt, bt_hashlist);
  434 }
  435 
  436 static void
  437 bt_insbusy(vmem_t *vm, bt_t *bt)
  438 {
  439         struct vmem_hashlist *list;
  440 
  441         VMEM_ASSERT_LOCKED(vm);
  442         MPASS(bt->bt_type == BT_TYPE_BUSY);
  443 
  444         list = bt_hashhead(vm, bt->bt_start);
  445         LIST_INSERT_HEAD(list, bt, bt_hashlist);
  446         vm->vm_nbusytag++;
  447         vm->vm_inuse += bt->bt_size;
  448 }
  449 
  450 /* ---- boundary tag list */
  451 
  452 static void
  453 bt_remseg(vmem_t *vm, bt_t *bt)
  454 {
  455 
  456         TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
  457         bt_free(vm, bt);
  458 }
  459 
  460 static void
  461 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
  462 {
  463 
  464         TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
  465 }
  466 
  467 static void
  468 bt_insseg_tail(vmem_t *vm, bt_t *bt)
  469 {
  470 
  471         TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
  472 }
  473 
  474 static void
  475 bt_remfree(vmem_t *vm, bt_t *bt)
  476 {
  477 
  478         MPASS(bt->bt_type == BT_TYPE_FREE);
  479 
  480         LIST_REMOVE(bt, bt_freelist);
  481 }
  482 
  483 static void
  484 bt_insfree(vmem_t *vm, bt_t *bt)
  485 {
  486         struct vmem_freelist *list;
  487 
  488         list = bt_freehead_tofree(vm, bt->bt_size);
  489         LIST_INSERT_HEAD(list, bt, bt_freelist);
  490 }
  491 
  492 /* ---- vmem internal functions */
  493 
  494 /*
  495  * Import from the arena into the quantum cache in UMA.
  496  */
  497 static int
  498 qc_import(void *arg, void **store, int cnt, int flags)
  499 {
  500         qcache_t *qc;
  501         vmem_addr_t addr;
  502         int i;
  503 
  504         qc = arg;
  505         flags |= M_BESTFIT;
  506         for (i = 0; i < cnt; i++) {
  507                 if (vmem_xalloc(qc->qc_vmem, qc->qc_size, 0, 0, 0,
  508                     VMEM_ADDR_MIN, VMEM_ADDR_MAX, flags, &addr) != 0)
  509                         break;
  510                 store[i] = (void *)addr;
  511                 /* Only guarantee one allocation. */
  512                 flags &= ~M_WAITOK;
  513                 flags |= M_NOWAIT;
  514         }
  515         return i;
  516 }
  517 
  518 /*
  519  * Release memory from the UMA cache to the arena.
  520  */
  521 static void
  522 qc_release(void *arg, void **store, int cnt)
  523 {
  524         qcache_t *qc;
  525         int i;
  526 
  527         qc = arg;
  528         for (i = 0; i < cnt; i++)
  529                 vmem_xfree(qc->qc_vmem, (vmem_addr_t)store[i], qc->qc_size);
  530 }
  531 
  532 static void
  533 qc_init(vmem_t *vm, vmem_size_t qcache_max)
  534 {
  535         qcache_t *qc;
  536         vmem_size_t size;
  537         int qcache_idx_max;
  538         int i;
  539 
  540         MPASS((qcache_max & vm->vm_quantum_mask) == 0);
  541         qcache_idx_max = MIN(qcache_max >> vm->vm_quantum_shift,
  542             VMEM_QCACHE_IDX_MAX);
  543         vm->vm_qcache_max = qcache_idx_max << vm->vm_quantum_shift;
  544         for (i = 0; i < qcache_idx_max; i++) {
  545                 qc = &vm->vm_qcache[i];
  546                 size = (i + 1) << vm->vm_quantum_shift;
  547                 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
  548                     vm->vm_name, size);
  549                 qc->qc_vmem = vm;
  550                 qc->qc_size = size;
  551                 qc->qc_cache = uma_zcache_create(qc->qc_name, size,
  552                     NULL, NULL, NULL, NULL, qc_import, qc_release, qc,
  553                     UMA_ZONE_VM);
  554                 MPASS(qc->qc_cache);
  555         }
  556 }
  557 
  558 static void
  559 qc_destroy(vmem_t *vm)
  560 {
  561         int qcache_idx_max;
  562         int i;
  563 
  564         qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
  565         for (i = 0; i < qcache_idx_max; i++)
  566                 uma_zdestroy(vm->vm_qcache[i].qc_cache);
  567 }
  568 
  569 static void
  570 qc_drain(vmem_t *vm)
  571 {
  572         int qcache_idx_max;
  573         int i;
  574 
  575         qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
  576         for (i = 0; i < qcache_idx_max; i++)
  577                 zone_drain(vm->vm_qcache[i].qc_cache);
  578 }
  579 
  580 #ifndef UMA_MD_SMALL_ALLOC
  581 
  582 static struct mtx_padalign vmem_bt_lock;
  583 
  584 /*
  585  * vmem_bt_alloc:  Allocate a new page of boundary tags.
  586  *
  587  * On architectures with uma_small_alloc there is no recursion; no address
  588  * space need be allocated to allocate boundary tags.  For the others, we
  589  * must handle recursion.  Boundary tags are necessary to allocate new
  590  * boundary tags.
  591  *
  592  * UMA guarantees that enough tags are held in reserve to allocate a new
  593  * page of kva.  We dip into this reserve by specifying M_USE_RESERVE only
  594  * when allocating the page to hold new boundary tags.  In this way the
  595  * reserve is automatically filled by the allocation that uses the reserve.
  596  * 
  597  * We still have to guarantee that the new tags are allocated atomically since
  598  * many threads may try concurrently.  The bt_lock provides this guarantee.
  599  * We convert WAITOK allocations to NOWAIT and then handle the blocking here
  600  * on failure.  It's ok to return NULL for a WAITOK allocation as UMA will
  601  * loop again after checking to see if we lost the race to allocate.
  602  *
  603  * There is a small race between vmem_bt_alloc() returning the page and the
  604  * zone lock being acquired to add the page to the zone.  For WAITOK
  605  * allocations we just pause briefly.  NOWAIT may experience a transient
  606  * failure.  To alleviate this we permit a small number of simultaneous
  607  * fills to proceed concurrently so NOWAIT is less likely to fail unless
  608  * we are really out of KVA.
  609  */
  610 static void *
  611 vmem_bt_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait)
  612 {
  613         vmem_addr_t addr;
  614 
  615         *pflag = UMA_SLAB_KMEM;
  616 
  617         /*
  618          * Single thread boundary tag allocation so that the address space
  619          * and memory are added in one atomic operation.
  620          */
  621         mtx_lock(&vmem_bt_lock);
  622         if (vmem_xalloc(kmem_arena, bytes, 0, 0, 0, VMEM_ADDR_MIN,
  623             VMEM_ADDR_MAX, M_NOWAIT | M_NOVM | M_USE_RESERVE | M_BESTFIT,
  624             &addr) == 0) {
  625                 if (kmem_back(kmem_object, addr, bytes,
  626                     M_NOWAIT | M_USE_RESERVE) == 0) {
  627                         mtx_unlock(&vmem_bt_lock);
  628                         return ((void *)addr);
  629                 }
  630                 vmem_xfree(kmem_arena, addr, bytes);
  631                 mtx_unlock(&vmem_bt_lock);
  632                 /*
  633                  * Out of memory, not address space.  This may not even be
  634                  * possible due to M_USE_RESERVE page allocation.
  635                  */
  636                 if (wait & M_WAITOK)
  637                         VM_WAIT;
  638                 return (NULL);
  639         }
  640         mtx_unlock(&vmem_bt_lock);
  641         /*
  642          * We're either out of address space or lost a fill race.
  643          */
  644         if (wait & M_WAITOK)
  645                 pause("btalloc", 1);
  646 
  647         return (NULL);
  648 }
  649 #endif
  650 
  651 void
  652 vmem_startup(void)
  653 {
  654 
  655         mtx_init(&vmem_list_lock, "vmem list lock", NULL, MTX_DEF);
  656         vmem_bt_zone = uma_zcreate("vmem btag",
  657             sizeof(struct vmem_btag), NULL, NULL, NULL, NULL,
  658             UMA_ALIGN_PTR, UMA_ZONE_VM);
  659 #ifndef UMA_MD_SMALL_ALLOC
  660         mtx_init(&vmem_bt_lock, "btag lock", NULL, MTX_DEF);
  661         uma_prealloc(vmem_bt_zone, BT_MAXALLOC);
  662         /*
  663          * Reserve enough tags to allocate new tags.  We allow multiple
  664          * CPUs to attempt to allocate new tags concurrently to limit
  665          * false restarts in UMA.
  666          */
  667         uma_zone_reserve(vmem_bt_zone, BT_MAXALLOC * (mp_ncpus + 1) / 2);
  668         uma_zone_set_allocf(vmem_bt_zone, vmem_bt_alloc);
  669 #endif
  670 }
  671 
  672 /* ---- rehash */
  673 
  674 static int
  675 vmem_rehash(vmem_t *vm, vmem_size_t newhashsize)
  676 {
  677         bt_t *bt;
  678         int i;
  679         struct vmem_hashlist *newhashlist;
  680         struct vmem_hashlist *oldhashlist;
  681         vmem_size_t oldhashsize;
  682 
  683         MPASS(newhashsize > 0);
  684 
  685         newhashlist = malloc(sizeof(struct vmem_hashlist) * newhashsize,
  686             M_VMEM, M_NOWAIT);
  687         if (newhashlist == NULL)
  688                 return ENOMEM;
  689         for (i = 0; i < newhashsize; i++) {
  690                 LIST_INIT(&newhashlist[i]);
  691         }
  692 
  693         VMEM_LOCK(vm);
  694         oldhashlist = vm->vm_hashlist;
  695         oldhashsize = vm->vm_hashsize;
  696         vm->vm_hashlist = newhashlist;
  697         vm->vm_hashsize = newhashsize;
  698         if (oldhashlist == NULL) {
  699                 VMEM_UNLOCK(vm);
  700                 return 0;
  701         }
  702         for (i = 0; i < oldhashsize; i++) {
  703                 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
  704                         bt_rembusy(vm, bt);
  705                         bt_insbusy(vm, bt);
  706                 }
  707         }
  708         VMEM_UNLOCK(vm);
  709 
  710         if (oldhashlist != vm->vm_hash0) {
  711                 free(oldhashlist, M_VMEM);
  712         }
  713 
  714         return 0;
  715 }
  716 
  717 static void
  718 vmem_periodic_kick(void *dummy)
  719 {
  720 
  721         taskqueue_enqueue(taskqueue_thread, &vmem_periodic_wk);
  722 }
  723 
  724 static void
  725 vmem_periodic(void *unused, int pending)
  726 {
  727         vmem_t *vm;
  728         vmem_size_t desired;
  729         vmem_size_t current;
  730 
  731         mtx_lock(&vmem_list_lock);
  732         LIST_FOREACH(vm, &vmem_list, vm_alllist) {
  733 #ifdef DIAGNOSTIC
  734                 /* Convenient time to verify vmem state. */
  735                 if (enable_vmem_check == 1) {
  736                         VMEM_LOCK(vm);
  737                         vmem_check(vm);
  738                         VMEM_UNLOCK(vm);
  739                 }
  740 #endif
  741                 desired = 1 << flsl(vm->vm_nbusytag);
  742                 desired = MIN(MAX(desired, VMEM_HASHSIZE_MIN),
  743                     VMEM_HASHSIZE_MAX);
  744                 current = vm->vm_hashsize;
  745 
  746                 /* Grow in powers of two.  Shrink less aggressively. */
  747                 if (desired >= current * 2 || desired * 4 <= current)
  748                         vmem_rehash(vm, desired);
  749 
  750                 /*
  751                  * Periodically wake up threads waiting for resources,
  752                  * so they could ask for reclamation again.
  753                  */
  754                 VMEM_CONDVAR_BROADCAST(vm);
  755         }
  756         mtx_unlock(&vmem_list_lock);
  757 
  758         callout_reset(&vmem_periodic_ch, vmem_periodic_interval,
  759             vmem_periodic_kick, NULL);
  760 }
  761 
  762 static void
  763 vmem_start_callout(void *unused)
  764 {
  765 
  766         TASK_INIT(&vmem_periodic_wk, 0, vmem_periodic, NULL);
  767         vmem_periodic_interval = hz * 10;
  768         callout_init(&vmem_periodic_ch, CALLOUT_MPSAFE);
  769         callout_reset(&vmem_periodic_ch, vmem_periodic_interval,
  770             vmem_periodic_kick, NULL);
  771 }
  772 SYSINIT(vfs, SI_SUB_CONFIGURE, SI_ORDER_ANY, vmem_start_callout, NULL);
  773 
  774 static void
  775 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, int type)
  776 {
  777         bt_t *btspan;
  778         bt_t *btfree;
  779 
  780         MPASS(type == BT_TYPE_SPAN || type == BT_TYPE_SPAN_STATIC);
  781         MPASS((size & vm->vm_quantum_mask) == 0);
  782 
  783         btspan = bt_alloc(vm);
  784         btspan->bt_type = type;
  785         btspan->bt_start = addr;
  786         btspan->bt_size = size;
  787         bt_insseg_tail(vm, btspan);
  788 
  789         btfree = bt_alloc(vm);
  790         btfree->bt_type = BT_TYPE_FREE;
  791         btfree->bt_start = addr;
  792         btfree->bt_size = size;
  793         bt_insseg(vm, btfree, btspan);
  794         bt_insfree(vm, btfree);
  795 
  796         vm->vm_size += size;
  797 }
  798 
  799 static void
  800 vmem_destroy1(vmem_t *vm)
  801 {
  802         bt_t *bt;
  803 
  804         /*
  805          * Drain per-cpu quantum caches.
  806          */
  807         qc_destroy(vm);
  808 
  809         /*
  810          * The vmem should now only contain empty segments.
  811          */
  812         VMEM_LOCK(vm);
  813         MPASS(vm->vm_nbusytag == 0);
  814 
  815         while ((bt = TAILQ_FIRST(&vm->vm_seglist)) != NULL)
  816                 bt_remseg(vm, bt);
  817 
  818         if (vm->vm_hashlist != NULL && vm->vm_hashlist != vm->vm_hash0)
  819                 free(vm->vm_hashlist, M_VMEM);
  820 
  821         bt_freetrim(vm, 0);
  822 
  823         VMEM_CONDVAR_DESTROY(vm);
  824         VMEM_LOCK_DESTROY(vm);
  825         free(vm, M_VMEM);
  826 }
  827 
  828 static int
  829 vmem_import(vmem_t *vm, vmem_size_t size, vmem_size_t align, int flags)
  830 {
  831         vmem_addr_t addr;
  832         int error;
  833 
  834         if (vm->vm_importfn == NULL)
  835                 return EINVAL;
  836 
  837         /*
  838          * To make sure we get a span that meets the alignment we double it
  839          * and add the size to the tail.  This slightly overestimates.
  840          */
  841         if (align != vm->vm_quantum_mask + 1)
  842                 size = (align * 2) + size;
  843         size = roundup(size, vm->vm_import_quantum);
  844 
  845         /*
  846          * Hide MAXALLOC tags so we're guaranteed to be able to add this
  847          * span and the tag we want to allocate from it.
  848          */
  849         MPASS(vm->vm_nfreetags >= BT_MAXALLOC);
  850         vm->vm_nfreetags -= BT_MAXALLOC;
  851         VMEM_UNLOCK(vm);
  852         error = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
  853         VMEM_LOCK(vm);
  854         vm->vm_nfreetags += BT_MAXALLOC;
  855         if (error)
  856                 return ENOMEM;
  857 
  858         vmem_add1(vm, addr, size, BT_TYPE_SPAN);
  859 
  860         return 0;
  861 }
  862 
  863 /*
  864  * vmem_fit: check if a bt can satisfy the given restrictions.
  865  *
  866  * it's a caller's responsibility to ensure the region is big enough
  867  * before calling us.
  868  */
  869 static int
  870 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
  871     vmem_size_t phase, vmem_size_t nocross, vmem_addr_t minaddr,
  872     vmem_addr_t maxaddr, vmem_addr_t *addrp)
  873 {
  874         vmem_addr_t start;
  875         vmem_addr_t end;
  876 
  877         MPASS(size > 0);
  878         MPASS(bt->bt_size >= size); /* caller's responsibility */
  879 
  880         /*
  881          * XXX assumption: vmem_addr_t and vmem_size_t are
  882          * unsigned integer of the same size.
  883          */
  884 
  885         start = bt->bt_start;
  886         if (start < minaddr) {
  887                 start = minaddr;
  888         }
  889         end = BT_END(bt);
  890         if (end > maxaddr)
  891                 end = maxaddr;
  892         if (start > end) 
  893                 return (ENOMEM);
  894 
  895         start = VMEM_ALIGNUP(start - phase, align) + phase;
  896         if (start < bt->bt_start)
  897                 start += align;
  898         if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
  899                 MPASS(align < nocross);
  900                 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
  901         }
  902         if (start <= end && end - start >= size - 1) {
  903                 MPASS((start & (align - 1)) == phase);
  904                 MPASS(!VMEM_CROSS_P(start, start + size - 1, nocross));
  905                 MPASS(minaddr <= start);
  906                 MPASS(maxaddr == 0 || start + size - 1 <= maxaddr);
  907                 MPASS(bt->bt_start <= start);
  908                 MPASS(BT_END(bt) - start >= size - 1);
  909                 *addrp = start;
  910 
  911                 return (0);
  912         }
  913         return (ENOMEM);
  914 }
  915 
  916 /*
  917  * vmem_clip:  Trim the boundary tag edges to the requested start and size.
  918  */
  919 static void
  920 vmem_clip(vmem_t *vm, bt_t *bt, vmem_addr_t start, vmem_size_t size)
  921 {
  922         bt_t *btnew;
  923         bt_t *btprev;
  924 
  925         VMEM_ASSERT_LOCKED(vm);
  926         MPASS(bt->bt_type == BT_TYPE_FREE);
  927         MPASS(bt->bt_size >= size);
  928         bt_remfree(vm, bt);
  929         if (bt->bt_start != start) {
  930                 btprev = bt_alloc(vm);
  931                 btprev->bt_type = BT_TYPE_FREE;
  932                 btprev->bt_start = bt->bt_start;
  933                 btprev->bt_size = start - bt->bt_start;
  934                 bt->bt_start = start;
  935                 bt->bt_size -= btprev->bt_size;
  936                 bt_insfree(vm, btprev);
  937                 bt_insseg(vm, btprev,
  938                     TAILQ_PREV(bt, vmem_seglist, bt_seglist));
  939         }
  940         MPASS(bt->bt_start == start);
  941         if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
  942                 /* split */
  943                 btnew = bt_alloc(vm);
  944                 btnew->bt_type = BT_TYPE_BUSY;
  945                 btnew->bt_start = bt->bt_start;
  946                 btnew->bt_size = size;
  947                 bt->bt_start = bt->bt_start + size;
  948                 bt->bt_size -= size;
  949                 bt_insfree(vm, bt);
  950                 bt_insseg(vm, btnew,
  951                     TAILQ_PREV(bt, vmem_seglist, bt_seglist));
  952                 bt_insbusy(vm, btnew);
  953                 bt = btnew;
  954         } else {
  955                 bt->bt_type = BT_TYPE_BUSY;
  956                 bt_insbusy(vm, bt);
  957         }
  958         MPASS(bt->bt_size >= size);
  959         bt->bt_type = BT_TYPE_BUSY;
  960 }
  961 
  962 /* ---- vmem API */
  963 
  964 void
  965 vmem_set_import(vmem_t *vm, vmem_import_t *importfn,
  966      vmem_release_t *releasefn, void *arg, vmem_size_t import_quantum)
  967 {
  968 
  969         VMEM_LOCK(vm);
  970         vm->vm_importfn = importfn;
  971         vm->vm_releasefn = releasefn;
  972         vm->vm_arg = arg;
  973         vm->vm_import_quantum = import_quantum;
  974         VMEM_UNLOCK(vm);
  975 }
  976 
  977 void
  978 vmem_set_reclaim(vmem_t *vm, vmem_reclaim_t *reclaimfn)
  979 {
  980 
  981         VMEM_LOCK(vm);
  982         vm->vm_reclaimfn = reclaimfn;
  983         VMEM_UNLOCK(vm);
  984 }
  985 
  986 /*
  987  * vmem_init: Initializes vmem arena.
  988  */
  989 vmem_t *
  990 vmem_init(vmem_t *vm, const char *name, vmem_addr_t base, vmem_size_t size,
  991     vmem_size_t quantum, vmem_size_t qcache_max, int flags)
  992 {
  993         int i;
  994 
  995         MPASS(quantum > 0);
  996         MPASS((quantum & (quantum - 1)) == 0);
  997 
  998         bzero(vm, sizeof(*vm));
  999 
 1000         VMEM_CONDVAR_INIT(vm, name);
 1001         VMEM_LOCK_INIT(vm, name);
 1002         vm->vm_nfreetags = 0;
 1003         LIST_INIT(&vm->vm_freetags);
 1004         strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
 1005         vm->vm_quantum_mask = quantum - 1;
 1006         vm->vm_quantum_shift = flsl(quantum) - 1;
 1007         vm->vm_nbusytag = 0;
 1008         vm->vm_size = 0;
 1009         vm->vm_inuse = 0;
 1010         qc_init(vm, qcache_max);
 1011 
 1012         TAILQ_INIT(&vm->vm_seglist);
 1013         for (i = 0; i < VMEM_MAXORDER; i++) {
 1014                 LIST_INIT(&vm->vm_freelist[i]);
 1015         }
 1016         memset(&vm->vm_hash0, 0, sizeof(vm->vm_hash0));
 1017         vm->vm_hashsize = VMEM_HASHSIZE_MIN;
 1018         vm->vm_hashlist = vm->vm_hash0;
 1019 
 1020         if (size != 0) {
 1021                 if (vmem_add(vm, base, size, flags) != 0) {
 1022                         vmem_destroy1(vm);
 1023                         return NULL;
 1024                 }
 1025         }
 1026 
 1027         mtx_lock(&vmem_list_lock);
 1028         LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
 1029         mtx_unlock(&vmem_list_lock);
 1030 
 1031         return vm;
 1032 }
 1033 
 1034 /*
 1035  * vmem_create: create an arena.
 1036  */
 1037 vmem_t *
 1038 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
 1039     vmem_size_t quantum, vmem_size_t qcache_max, int flags)
 1040 {
 1041 
 1042         vmem_t *vm;
 1043 
 1044         vm = malloc(sizeof(*vm), M_VMEM, flags & (M_WAITOK|M_NOWAIT));
 1045         if (vm == NULL)
 1046                 return (NULL);
 1047         if (vmem_init(vm, name, base, size, quantum, qcache_max,
 1048             flags) == NULL) {
 1049                 free(vm, M_VMEM);
 1050                 return (NULL);
 1051         }
 1052         return (vm);
 1053 }
 1054 
 1055 void
 1056 vmem_destroy(vmem_t *vm)
 1057 {
 1058 
 1059         mtx_lock(&vmem_list_lock);
 1060         LIST_REMOVE(vm, vm_alllist);
 1061         mtx_unlock(&vmem_list_lock);
 1062 
 1063         vmem_destroy1(vm);
 1064 }
 1065 
 1066 vmem_size_t
 1067 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
 1068 {
 1069 
 1070         return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
 1071 }
 1072 
 1073 /*
 1074  * vmem_alloc: allocate resource from the arena.
 1075  */
 1076 int
 1077 vmem_alloc(vmem_t *vm, vmem_size_t size, int flags, vmem_addr_t *addrp)
 1078 {
 1079         const int strat __unused = flags & VMEM_FITMASK;
 1080         qcache_t *qc;
 1081 
 1082         flags &= VMEM_FLAGS;
 1083         MPASS(size > 0);
 1084         MPASS(strat == M_BESTFIT || strat == M_FIRSTFIT);
 1085         if ((flags & M_NOWAIT) == 0)
 1086                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmem_alloc");
 1087 
 1088         if (size <= vm->vm_qcache_max) {
 1089                 qc = &vm->vm_qcache[(size - 1) >> vm->vm_quantum_shift];
 1090                 *addrp = (vmem_addr_t)uma_zalloc(qc->qc_cache, flags);
 1091                 if (*addrp == 0)
 1092                         return (ENOMEM);
 1093                 return (0);
 1094         }
 1095 
 1096         return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
 1097             flags, addrp);
 1098 }
 1099 
 1100 int
 1101 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
 1102     const vmem_size_t phase, const vmem_size_t nocross,
 1103     const vmem_addr_t minaddr, const vmem_addr_t maxaddr, int flags,
 1104     vmem_addr_t *addrp)
 1105 {
 1106         const vmem_size_t size = vmem_roundup_size(vm, size0);
 1107         struct vmem_freelist *list;
 1108         struct vmem_freelist *first;
 1109         struct vmem_freelist *end;
 1110         vmem_size_t avail;
 1111         bt_t *bt;
 1112         int error;
 1113         int strat;
 1114 
 1115         flags &= VMEM_FLAGS;
 1116         strat = flags & VMEM_FITMASK;
 1117         MPASS(size0 > 0);
 1118         MPASS(size > 0);
 1119         MPASS(strat == M_BESTFIT || strat == M_FIRSTFIT);
 1120         MPASS((flags & (M_NOWAIT|M_WAITOK)) != (M_NOWAIT|M_WAITOK));
 1121         if ((flags & M_NOWAIT) == 0)
 1122                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmem_xalloc");
 1123         MPASS((align & vm->vm_quantum_mask) == 0);
 1124         MPASS((align & (align - 1)) == 0);
 1125         MPASS((phase & vm->vm_quantum_mask) == 0);
 1126         MPASS((nocross & vm->vm_quantum_mask) == 0);
 1127         MPASS((nocross & (nocross - 1)) == 0);
 1128         MPASS((align == 0 && phase == 0) || phase < align);
 1129         MPASS(nocross == 0 || nocross >= size);
 1130         MPASS(minaddr <= maxaddr);
 1131         MPASS(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
 1132 
 1133         if (align == 0)
 1134                 align = vm->vm_quantum_mask + 1;
 1135 
 1136         *addrp = 0;
 1137         end = &vm->vm_freelist[VMEM_MAXORDER];
 1138         /*
 1139          * choose a free block from which we allocate.
 1140          */
 1141         first = bt_freehead_toalloc(vm, size, strat);
 1142         VMEM_LOCK(vm);
 1143         for (;;) {
 1144                 /*
 1145                  * Make sure we have enough tags to complete the
 1146                  * operation.
 1147                  */
 1148                 if (vm->vm_nfreetags < BT_MAXALLOC &&
 1149                     bt_fill(vm, flags) != 0) {
 1150                         error = ENOMEM;
 1151                         break;
 1152                 }
 1153                 /*
 1154                  * Scan freelists looking for a tag that satisfies the
 1155                  * allocation.  If we're doing BESTFIT we may encounter
 1156                  * sizes below the request.  If we're doing FIRSTFIT we
 1157                  * inspect only the first element from each list.
 1158                  */
 1159                 for (list = first; list < end; list++) {
 1160                         LIST_FOREACH(bt, list, bt_freelist) {
 1161                                 if (bt->bt_size >= size) {
 1162                                         error = vmem_fit(bt, size, align, phase,
 1163                                             nocross, minaddr, maxaddr, addrp);
 1164                                         if (error == 0) {
 1165                                                 vmem_clip(vm, bt, *addrp, size);
 1166                                                 goto out;
 1167                                         }
 1168                                 }
 1169                                 /* FIRST skips to the next list. */
 1170                                 if (strat == M_FIRSTFIT)
 1171                                         break;
 1172                         }
 1173                 }
 1174                 /*
 1175                  * Retry if the fast algorithm failed.
 1176                  */
 1177                 if (strat == M_FIRSTFIT) {
 1178                         strat = M_BESTFIT;
 1179                         first = bt_freehead_toalloc(vm, size, strat);
 1180                         continue;
 1181                 }
 1182                 /*
 1183                  * XXX it is possible to fail to meet restrictions with the
 1184                  * imported region.  It is up to the user to specify the
 1185                  * import quantum such that it can satisfy any allocation.
 1186                  */
 1187                 if (vmem_import(vm, size, align, flags) == 0)
 1188                         continue;
 1189 
 1190                 /*
 1191                  * Try to free some space from the quantum cache or reclaim
 1192                  * functions if available.
 1193                  */
 1194                 if (vm->vm_qcache_max != 0 || vm->vm_reclaimfn != NULL) {
 1195                         avail = vm->vm_size - vm->vm_inuse;
 1196                         VMEM_UNLOCK(vm);
 1197                         if (vm->vm_qcache_max != 0)
 1198                                 qc_drain(vm);
 1199                         if (vm->vm_reclaimfn != NULL)
 1200                                 vm->vm_reclaimfn(vm, flags);
 1201                         VMEM_LOCK(vm);
 1202                         /* If we were successful retry even NOWAIT. */
 1203                         if (vm->vm_size - vm->vm_inuse > avail)
 1204                                 continue;
 1205                 }
 1206                 if ((flags & M_NOWAIT) != 0) {
 1207                         error = ENOMEM;
 1208                         break;
 1209                 }
 1210                 VMEM_CONDVAR_WAIT(vm);
 1211         }
 1212 out:
 1213         VMEM_UNLOCK(vm);
 1214         if (error != 0 && (flags & M_NOWAIT) == 0)
 1215                 panic("failed to allocate waiting allocation\n");
 1216 
 1217         return (error);
 1218 }
 1219 
 1220 /*
 1221  * vmem_free: free the resource to the arena.
 1222  */
 1223 void
 1224 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
 1225 {
 1226         qcache_t *qc;
 1227         MPASS(size > 0);
 1228 
 1229         if (size <= vm->vm_qcache_max) {
 1230                 qc = &vm->vm_qcache[(size - 1) >> vm->vm_quantum_shift];
 1231                 uma_zfree(qc->qc_cache, (void *)addr);
 1232         } else
 1233                 vmem_xfree(vm, addr, size);
 1234 }
 1235 
 1236 void
 1237 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
 1238 {
 1239         bt_t *bt;
 1240         bt_t *t;
 1241 
 1242         MPASS(size > 0);
 1243 
 1244         VMEM_LOCK(vm);
 1245         bt = bt_lookupbusy(vm, addr);
 1246         MPASS(bt != NULL);
 1247         MPASS(bt->bt_start == addr);
 1248         MPASS(bt->bt_size == vmem_roundup_size(vm, size) ||
 1249             bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
 1250         MPASS(bt->bt_type == BT_TYPE_BUSY);
 1251         bt_rembusy(vm, bt);
 1252         bt->bt_type = BT_TYPE_FREE;
 1253 
 1254         /* coalesce */
 1255         t = TAILQ_NEXT(bt, bt_seglist);
 1256         if (t != NULL && t->bt_type == BT_TYPE_FREE) {
 1257                 MPASS(BT_END(bt) < t->bt_start);        /* YYY */
 1258                 bt->bt_size += t->bt_size;
 1259                 bt_remfree(vm, t);
 1260                 bt_remseg(vm, t);
 1261         }
 1262         t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
 1263         if (t != NULL && t->bt_type == BT_TYPE_FREE) {
 1264                 MPASS(BT_END(t) < bt->bt_start);        /* YYY */
 1265                 bt->bt_size += t->bt_size;
 1266                 bt->bt_start = t->bt_start;
 1267                 bt_remfree(vm, t);
 1268                 bt_remseg(vm, t);
 1269         }
 1270 
 1271         t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
 1272         MPASS(t != NULL);
 1273         MPASS(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
 1274         if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
 1275             t->bt_size == bt->bt_size) {
 1276                 vmem_addr_t spanaddr;
 1277                 vmem_size_t spansize;
 1278 
 1279                 MPASS(t->bt_start == bt->bt_start);
 1280                 spanaddr = bt->bt_start;
 1281                 spansize = bt->bt_size;
 1282                 bt_remseg(vm, bt);
 1283                 bt_remseg(vm, t);
 1284                 vm->vm_size -= spansize;
 1285                 VMEM_CONDVAR_BROADCAST(vm);
 1286                 bt_freetrim(vm, BT_MAXFREE);
 1287                 (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
 1288         } else {
 1289                 bt_insfree(vm, bt);
 1290                 VMEM_CONDVAR_BROADCAST(vm);
 1291                 bt_freetrim(vm, BT_MAXFREE);
 1292         }
 1293 }
 1294 
 1295 /*
 1296  * vmem_add:
 1297  *
 1298  */
 1299 int
 1300 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, int flags)
 1301 {
 1302         int error;
 1303 
 1304         error = 0;
 1305         flags &= VMEM_FLAGS;
 1306         VMEM_LOCK(vm);
 1307         if (vm->vm_nfreetags >= BT_MAXALLOC || bt_fill(vm, flags) == 0)
 1308                 vmem_add1(vm, addr, size, BT_TYPE_SPAN_STATIC);
 1309         else
 1310                 error = ENOMEM;
 1311         VMEM_UNLOCK(vm);
 1312 
 1313         return (error);
 1314 }
 1315 
 1316 /*
 1317  * vmem_size: information about arenas size
 1318  */
 1319 vmem_size_t
 1320 vmem_size(vmem_t *vm, int typemask)
 1321 {
 1322         int i;
 1323 
 1324         switch (typemask) {
 1325         case VMEM_ALLOC:
 1326                 return vm->vm_inuse;
 1327         case VMEM_FREE:
 1328                 return vm->vm_size - vm->vm_inuse;
 1329         case VMEM_FREE|VMEM_ALLOC:
 1330                 return vm->vm_size;
 1331         case VMEM_MAXFREE:
 1332                 VMEM_LOCK(vm);
 1333                 for (i = VMEM_MAXORDER - 1; i >= 0; i--) {
 1334                         if (LIST_EMPTY(&vm->vm_freelist[i]))
 1335                                 continue;
 1336                         VMEM_UNLOCK(vm);
 1337                         return ((vmem_size_t)ORDER2SIZE(i) <<
 1338                             vm->vm_quantum_shift);
 1339                 }
 1340                 VMEM_UNLOCK(vm);
 1341                 return (0);
 1342         default:
 1343                 panic("vmem_size");
 1344         }
 1345 }
 1346 
 1347 /* ---- debug */
 1348 
 1349 #if defined(DDB) || defined(DIAGNOSTIC)
 1350 
 1351 static void bt_dump(const bt_t *, int (*)(const char *, ...)
 1352     __printflike(1, 2));
 1353 
 1354 static const char *
 1355 bt_type_string(int type)
 1356 {
 1357 
 1358         switch (type) {
 1359         case BT_TYPE_BUSY:
 1360                 return "busy";
 1361         case BT_TYPE_FREE:
 1362                 return "free";
 1363         case BT_TYPE_SPAN:
 1364                 return "span";
 1365         case BT_TYPE_SPAN_STATIC:
 1366                 return "static span";
 1367         default:
 1368                 break;
 1369         }
 1370         return "BOGUS";
 1371 }
 1372 
 1373 static void
 1374 bt_dump(const bt_t *bt, int (*pr)(const char *, ...))
 1375 {
 1376 
 1377         (*pr)("\t%p: %jx %jx, %d(%s)\n",
 1378             bt, (intmax_t)bt->bt_start, (intmax_t)bt->bt_size,
 1379             bt->bt_type, bt_type_string(bt->bt_type));
 1380 }
 1381 
 1382 static void
 1383 vmem_dump(const vmem_t *vm , int (*pr)(const char *, ...) __printflike(1, 2))
 1384 {
 1385         const bt_t *bt;
 1386         int i;
 1387 
 1388         (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
 1389         TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
 1390                 bt_dump(bt, pr);
 1391         }
 1392 
 1393         for (i = 0; i < VMEM_MAXORDER; i++) {
 1394                 const struct vmem_freelist *fl = &vm->vm_freelist[i];
 1395 
 1396                 if (LIST_EMPTY(fl)) {
 1397                         continue;
 1398                 }
 1399 
 1400                 (*pr)("freelist[%d]\n", i);
 1401                 LIST_FOREACH(bt, fl, bt_freelist) {
 1402                         bt_dump(bt, pr);
 1403                 }
 1404         }
 1405 }
 1406 
 1407 #endif /* defined(DDB) || defined(DIAGNOSTIC) */
 1408 
 1409 #if defined(DDB)
 1410 static bt_t *
 1411 vmem_whatis_lookup(vmem_t *vm, vmem_addr_t addr)
 1412 {
 1413         bt_t *bt;
 1414 
 1415         TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
 1416                 if (BT_ISSPAN_P(bt)) {
 1417                         continue;
 1418                 }
 1419                 if (bt->bt_start <= addr && addr <= BT_END(bt)) {
 1420                         return bt;
 1421                 }
 1422         }
 1423 
 1424         return NULL;
 1425 }
 1426 
 1427 void
 1428 vmem_whatis(vmem_addr_t addr, int (*pr)(const char *, ...))
 1429 {
 1430         vmem_t *vm;
 1431 
 1432         LIST_FOREACH(vm, &vmem_list, vm_alllist) {
 1433                 bt_t *bt;
 1434 
 1435                 bt = vmem_whatis_lookup(vm, addr);
 1436                 if (bt == NULL) {
 1437                         continue;
 1438                 }
 1439                 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
 1440                     (void *)addr, (void *)bt->bt_start,
 1441                     (vmem_size_t)(addr - bt->bt_start), vm->vm_name,
 1442                     (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
 1443         }
 1444 }
 1445 
 1446 void
 1447 vmem_printall(const char *modif, int (*pr)(const char *, ...))
 1448 {
 1449         const vmem_t *vm;
 1450 
 1451         LIST_FOREACH(vm, &vmem_list, vm_alllist) {
 1452                 vmem_dump(vm, pr);
 1453         }
 1454 }
 1455 
 1456 void
 1457 vmem_print(vmem_addr_t addr, const char *modif, int (*pr)(const char *, ...))
 1458 {
 1459         const vmem_t *vm = (const void *)addr;
 1460 
 1461         vmem_dump(vm, pr);
 1462 }
 1463 #endif /* defined(DDB) */
 1464 
 1465 #define vmem_printf printf
 1466 
 1467 #if defined(DIAGNOSTIC)
 1468 
 1469 static bool
 1470 vmem_check_sanity(vmem_t *vm)
 1471 {
 1472         const bt_t *bt, *bt2;
 1473 
 1474         MPASS(vm != NULL);
 1475 
 1476         TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
 1477                 if (bt->bt_start > BT_END(bt)) {
 1478                         printf("corrupted tag\n");
 1479                         bt_dump(bt, vmem_printf);
 1480                         return false;
 1481                 }
 1482         }
 1483         TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
 1484                 TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
 1485                         if (bt == bt2) {
 1486                                 continue;
 1487                         }
 1488                         if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
 1489                                 continue;
 1490                         }
 1491                         if (bt->bt_start <= BT_END(bt2) &&
 1492                             bt2->bt_start <= BT_END(bt)) {
 1493                                 printf("overwrapped tags\n");
 1494                                 bt_dump(bt, vmem_printf);
 1495                                 bt_dump(bt2, vmem_printf);
 1496                                 return false;
 1497                         }
 1498                 }
 1499         }
 1500 
 1501         return true;
 1502 }
 1503 
 1504 static void
 1505 vmem_check(vmem_t *vm)
 1506 {
 1507 
 1508         if (!vmem_check_sanity(vm)) {
 1509                 panic("insanity vmem %p", vm);
 1510         }
 1511 }
 1512 
 1513 #endif /* defined(DIAGNOSTIC) */

Cache object: 5fc11601c9c6264a033d89e5b319344a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.