The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_witness.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 2008 Isilon Systems, Inc.
    5  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
    6  * Copyright (c) 1998 Berkeley Software Design, Inc.
    7  * All rights reserved.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. Berkeley Software Design Inc's name may not be used to endorse or
   18  *    promote products derived from this software without specific prior
   19  *    written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  *
   33  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
   34  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
   35  */
   36 
   37 /*
   38  * Implementation of the `witness' lock verifier.  Originally implemented for
   39  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
   40  * classes in FreeBSD.
   41  */
   42 
   43 /*
   44  *      Main Entry: witness
   45  *      Pronunciation: 'wit-n&s
   46  *      Function: noun
   47  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
   48  *          testimony, witness, from 2wit
   49  *      Date: before 12th century
   50  *      1 : attestation of a fact or event : TESTIMONY
   51  *      2 : one that gives evidence; specifically : one who testifies in
   52  *          a cause or before a judicial tribunal
   53  *      3 : one asked to be present at a transaction so as to be able to
   54  *          testify to its having taken place
   55  *      4 : one who has personal knowledge of something
   56  *      5 a : something serving as evidence or proof : SIGN
   57  *        b : public affirmation by word or example of usually
   58  *            religious faith or conviction <the heroic witness to divine
   59  *            life -- Pilot>
   60  *      6 capitalized : a member of the Jehovah's Witnesses 
   61  */
   62 
   63 /*
   64  * Special rules concerning Giant and lock orders:
   65  *
   66  * 1) Giant must be acquired before any other mutexes.  Stated another way,
   67  *    no other mutex may be held when Giant is acquired.
   68  *
   69  * 2) Giant must be released when blocking on a sleepable lock.
   70  *
   71  * This rule is less obvious, but is a result of Giant providing the same
   72  * semantics as spl().  Basically, when a thread sleeps, it must release
   73  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
   74  * 2).
   75  *
   76  * 3) Giant may be acquired before or after sleepable locks.
   77  *
   78  * This rule is also not quite as obvious.  Giant may be acquired after
   79  * a sleepable lock because it is a non-sleepable lock and non-sleepable
   80  * locks may always be acquired while holding a sleepable lock.  The second
   81  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
   82  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
   83  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
   84  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
   85  * execute.  Thus, acquiring Giant both before and after a sleepable lock
   86  * will not result in a lock order reversal.
   87  */
   88 
   89 #include <sys/cdefs.h>
   90 __FBSDID("$FreeBSD$");
   91 
   92 #include "opt_ddb.h"
   93 #include "opt_hwpmc_hooks.h"
   94 #include "opt_stack.h"
   95 #include "opt_witness.h"
   96 
   97 #include <sys/param.h>
   98 #include <sys/bus.h>
   99 #include <sys/kdb.h>
  100 #include <sys/kernel.h>
  101 #include <sys/ktr.h>
  102 #include <sys/lock.h>
  103 #include <sys/malloc.h>
  104 #include <sys/mutex.h>
  105 #include <sys/priv.h>
  106 #include <sys/proc.h>
  107 #include <sys/sbuf.h>
  108 #include <sys/sched.h>
  109 #include <sys/stack.h>
  110 #include <sys/sysctl.h>
  111 #include <sys/syslog.h>
  112 #include <sys/systm.h>
  113 
  114 #ifdef DDB
  115 #include <ddb/ddb.h>
  116 #endif
  117 
  118 #include <machine/stdarg.h>
  119 
  120 #if !defined(DDB) && !defined(STACK)
  121 #error "DDB or STACK options are required for WITNESS"
  122 #endif
  123 
  124 /* Note that these traces do not work with KTR_ALQ. */
  125 #if 0
  126 #define KTR_WITNESS     KTR_SUBSYS
  127 #else
  128 #define KTR_WITNESS     0
  129 #endif
  130 
  131 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
  132 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
  133 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
  134 #define LI_SLEEPABLE    0x00040000      /* Lock may be held while sleeping. */
  135 
  136 #ifndef WITNESS_COUNT
  137 #define WITNESS_COUNT           1536
  138 #endif
  139 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
  140 #define WITNESS_PENDLIST        (512 + (MAXCPU * 4))
  141 
  142 /* Allocate 256 KB of stack data space */
  143 #define WITNESS_LO_DATA_COUNT   2048
  144 
  145 /* Prime, gives load factor of ~2 at full load */
  146 #define WITNESS_LO_HASH_SIZE    1021
  147 
  148 /*
  149  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
  150  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
  151  * probably be safe for the most part, but it's still a SWAG.
  152  */
  153 #define LOCK_NCHILDREN  5
  154 #define LOCK_CHILDCOUNT 2048
  155 
  156 #define MAX_W_NAME      64
  157 
  158 #define FULLGRAPH_SBUF_SIZE     512
  159 
  160 /*
  161  * These flags go in the witness relationship matrix and describe the
  162  * relationship between any two struct witness objects.
  163  */
  164 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
  165 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
  166 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
  167 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
  168 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
  169 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
  170 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
  171 #define WITNESS_RELATED_MASK                                            \
  172         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
  173 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
  174                                           * observed. */
  175 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
  176 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
  177 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
  178 
  179 /* Descendant to ancestor flags */
  180 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
  181 
  182 /* Ancestor to descendant flags */
  183 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
  184 
  185 #define WITNESS_INDEX_ASSERT(i)                                         \
  186         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
  187 
  188 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
  189 
  190 /*
  191  * Lock instances.  A lock instance is the data associated with a lock while
  192  * it is held by witness.  For example, a lock instance will hold the
  193  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
  194  * are held in a per-cpu list while sleep locks are held in per-thread list.
  195  */
  196 struct lock_instance {
  197         struct lock_object      *li_lock;
  198         const char              *li_file;
  199         int                     li_line;
  200         u_int                   li_flags;
  201 };
  202 
  203 /*
  204  * A simple list type used to build the list of locks held by a thread
  205  * or CPU.  We can't simply embed the list in struct lock_object since a
  206  * lock may be held by more than one thread if it is a shared lock.  Locks
  207  * are added to the head of the list, so we fill up each list entry from
  208  * "the back" logically.  To ease some of the arithmetic, we actually fill
  209  * in each list entry the normal way (children[0] then children[1], etc.) but
  210  * when we traverse the list we read children[count-1] as the first entry
  211  * down to children[0] as the final entry.
  212  */
  213 struct lock_list_entry {
  214         struct lock_list_entry  *ll_next;
  215         struct lock_instance    ll_children[LOCK_NCHILDREN];
  216         u_int                   ll_count;
  217 };
  218 
  219 /*
  220  * The main witness structure. One of these per named lock type in the system
  221  * (for example, "vnode interlock").
  222  */
  223 struct witness {
  224         char                    w_name[MAX_W_NAME];
  225         uint32_t                w_index;  /* Index in the relationship matrix */
  226         struct lock_class       *w_class;
  227         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
  228         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
  229         struct witness          *w_hash_next; /* Linked list in hash buckets. */
  230         const char              *w_file; /* File where last acquired */
  231         uint32_t                w_line; /* Line where last acquired */
  232         uint32_t                w_refcount;
  233         uint16_t                w_num_ancestors; /* direct/indirect
  234                                                   * ancestor count */
  235         uint16_t                w_num_descendants; /* direct/indirect
  236                                                     * descendant count */
  237         int16_t                 w_ddb_level;
  238         unsigned                w_displayed:1;
  239         unsigned                w_reversed:1;
  240 };
  241 
  242 STAILQ_HEAD(witness_list, witness);
  243 
  244 /*
  245  * The witness hash table. Keys are witness names (const char *), elements are
  246  * witness objects (struct witness *).
  247  */
  248 struct witness_hash {
  249         struct witness  *wh_array[WITNESS_HASH_SIZE];
  250         uint32_t        wh_size;
  251         uint32_t        wh_count;
  252 };
  253 
  254 /*
  255  * Key type for the lock order data hash table.
  256  */
  257 struct witness_lock_order_key {
  258         uint16_t        from;
  259         uint16_t        to;
  260 };
  261 
  262 struct witness_lock_order_data {
  263         struct stack                    wlod_stack;
  264         struct witness_lock_order_key   wlod_key;
  265         struct witness_lock_order_data  *wlod_next;
  266 };
  267 
  268 /*
  269  * The witness lock order data hash table. Keys are witness index tuples
  270  * (struct witness_lock_order_key), elements are lock order data objects
  271  * (struct witness_lock_order_data). 
  272  */
  273 struct witness_lock_order_hash {
  274         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
  275         u_int   wloh_size;
  276         u_int   wloh_count;
  277 };
  278 
  279 struct witness_blessed {
  280         const char      *b_lock1;
  281         const char      *b_lock2;
  282 };
  283 
  284 struct witness_pendhelp {
  285         const char              *wh_type;
  286         struct lock_object      *wh_lock;
  287 };
  288 
  289 struct witness_order_list_entry {
  290         const char              *w_name;
  291         struct lock_class       *w_class;
  292 };
  293 
  294 /*
  295  * Returns 0 if one of the locks is a spin lock and the other is not.
  296  * Returns 1 otherwise.
  297  */
  298 static __inline int
  299 witness_lock_type_equal(struct witness *w1, struct witness *w2)
  300 {
  301 
  302         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
  303                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
  304 }
  305 
  306 static __inline int
  307 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
  308     const struct witness_lock_order_key *b)
  309 {
  310 
  311         return (a->from == b->from && a->to == b->to);
  312 }
  313 
  314 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
  315                     const char *fname);
  316 static void     adopt(struct witness *parent, struct witness *child);
  317 static int      blessed(struct witness *, struct witness *);
  318 static void     depart(struct witness *w);
  319 static struct witness   *enroll(const char *description,
  320                             struct lock_class *lock_class);
  321 static struct lock_instance     *find_instance(struct lock_list_entry *list,
  322                                     const struct lock_object *lock);
  323 static int      isitmychild(struct witness *parent, struct witness *child);
  324 static int      isitmydescendant(struct witness *parent, struct witness *child);
  325 static void     itismychild(struct witness *parent, struct witness *child);
  326 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
  327 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
  328 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
  329 static int      sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
  330 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
  331 #ifdef DDB
  332 static void     witness_ddb_compute_levels(void);
  333 static void     witness_ddb_display(int(*)(const char *fmt, ...));
  334 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
  335                     struct witness *, int indent);
  336 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
  337                     struct witness_list *list);
  338 static void     witness_ddb_level_descendants(struct witness *parent, int l);
  339 static void     witness_ddb_list(struct thread *td);
  340 #endif
  341 static void     witness_enter_debugger(const char *msg);
  342 static void     witness_debugger(int cond, const char *msg);
  343 static void     witness_free(struct witness *m);
  344 static struct witness   *witness_get(void);
  345 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
  346 static struct witness   *witness_hash_get(const char *key);
  347 static void     witness_hash_put(struct witness *w);
  348 static void     witness_init_hash_tables(void);
  349 static void     witness_increment_graph_generation(void);
  350 static void     witness_lock_list_free(struct lock_list_entry *lle);
  351 static struct lock_list_entry   *witness_lock_list_get(void);
  352 static int      witness_lock_order_add(struct witness *parent,
  353                     struct witness *child);
  354 static int      witness_lock_order_check(struct witness *parent,
  355                     struct witness *child);
  356 static struct witness_lock_order_data   *witness_lock_order_get(
  357                                             struct witness *parent,
  358                                             struct witness *child);
  359 static void     witness_list_lock(struct lock_instance *instance,
  360                     int (*prnt)(const char *fmt, ...));
  361 static int      witness_output(const char *fmt, ...) __printflike(1, 2);
  362 static int      witness_output_drain(void *arg __unused, const char *data,
  363                     int len);
  364 static int      witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
  365 static void     witness_setflag(struct lock_object *lock, int flag, int set);
  366 
  367 FEATURE(witness, "kernel has witness(9) support");
  368 
  369 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
  370     "Witness Locking");
  371 
  372 /*
  373  * If set to 0, lock order checking is disabled.  If set to -1,
  374  * witness is completely disabled.  Otherwise witness performs full
  375  * lock order checking for all locks.  At runtime, lock order checking
  376  * may be toggled.  However, witness cannot be reenabled once it is
  377  * completely disabled.
  378  */
  379 static int witness_watch = 1;
  380 SYSCTL_PROC(_debug_witness, OID_AUTO, watch,
  381     CTLFLAG_RWTUN | CTLTYPE_INT | CTLFLAG_MPSAFE, NULL, 0,
  382     sysctl_debug_witness_watch, "I",
  383     "witness is watching lock operations");
  384 
  385 #ifdef KDB
  386 /*
  387  * When KDB is enabled and witness_kdb is 1, it will cause the system
  388  * to drop into kdebug() when:
  389  *      - a lock hierarchy violation occurs
  390  *      - locks are held when going to sleep.
  391  */
  392 #ifdef WITNESS_KDB
  393 int     witness_kdb = 1;
  394 #else
  395 int     witness_kdb = 0;
  396 #endif
  397 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
  398 #endif /* KDB */
  399 
  400 #if defined(DDB) || defined(KDB)
  401 /*
  402  * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
  403  * to print a stack trace:
  404  *      - a lock hierarchy violation occurs
  405  *      - locks are held when going to sleep.
  406  */
  407 int     witness_trace = 1;
  408 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
  409 #endif /* DDB || KDB */
  410 
  411 #ifdef WITNESS_SKIPSPIN
  412 int     witness_skipspin = 1;
  413 #else
  414 int     witness_skipspin = 0;
  415 #endif
  416 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
  417 
  418 int badstack_sbuf_size;
  419 
  420 int witness_count = WITNESS_COUNT;
  421 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN, 
  422     &witness_count, 0, "");
  423 
  424 /*
  425  * Output channel for witness messages.  By default we print to the console.
  426  */
  427 enum witness_channel {
  428         WITNESS_CONSOLE,
  429         WITNESS_LOG,
  430         WITNESS_NONE,
  431 };
  432 
  433 static enum witness_channel witness_channel = WITNESS_CONSOLE;
  434 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel,
  435     CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL, 0,
  436     sysctl_debug_witness_channel, "A",
  437     "Output channel for warnings");
  438 
  439 /*
  440  * Call this to print out the relations between locks.
  441  */
  442 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph,
  443     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
  444     sysctl_debug_witness_fullgraph, "A",
  445     "Show locks relation graphs");
  446 
  447 /*
  448  * Call this to print out the witness faulty stacks.
  449  */
  450 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks,
  451     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
  452     sysctl_debug_witness_badstacks, "A",
  453     "Show bad witness stacks");
  454 
  455 static struct mtx w_mtx;
  456 
  457 /* w_list */
  458 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
  459 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
  460 
  461 /* w_typelist */
  462 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
  463 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
  464 
  465 /* lock list */
  466 static struct lock_list_entry *w_lock_list_free = NULL;
  467 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
  468 static u_int pending_cnt;
  469 
  470 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
  471 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
  472 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
  473 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
  474     "");
  475 
  476 static struct witness *w_data;
  477 static uint8_t **w_rmatrix;
  478 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
  479 static struct witness_hash w_hash;      /* The witness hash table. */
  480 
  481 /* The lock order data hash */
  482 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
  483 static struct witness_lock_order_data *w_lofree = NULL;
  484 static struct witness_lock_order_hash w_lohash;
  485 static int w_max_used_index = 0;
  486 static unsigned int w_generation = 0;
  487 static const char w_notrunning[] = "Witness not running\n";
  488 static const char w_stillcold[] = "Witness is still cold\n";
  489 #ifdef __i386__
  490 static const char w_notallowed[] = "The sysctl is disabled on the arch\n";
  491 #endif
  492 
  493 static struct witness_order_list_entry order_lists[] = {
  494         /*
  495          * sx locks
  496          */
  497         { "proctree", &lock_class_sx },
  498         { "allproc", &lock_class_sx },
  499         { "allprison", &lock_class_sx },
  500         { NULL, NULL },
  501         /*
  502          * Various mutexes
  503          */
  504         { "Giant", &lock_class_mtx_sleep },
  505         { "pipe mutex", &lock_class_mtx_sleep },
  506         { "sigio lock", &lock_class_mtx_sleep },
  507         { "process group", &lock_class_mtx_sleep },
  508 #ifdef  HWPMC_HOOKS
  509         { "pmc-sleep", &lock_class_mtx_sleep },
  510 #endif
  511         { "process lock", &lock_class_mtx_sleep },
  512         { "session", &lock_class_mtx_sleep },
  513         { "uidinfo hash", &lock_class_rw },
  514         { "time lock", &lock_class_mtx_sleep },
  515         { NULL, NULL },
  516         /*
  517          * umtx
  518          */
  519         { "umtx lock", &lock_class_mtx_sleep },
  520         { NULL, NULL },
  521         /*
  522          * Sockets
  523          */
  524         { "accept", &lock_class_mtx_sleep },
  525         { "so_snd", &lock_class_mtx_sleep },
  526         { "so_rcv", &lock_class_mtx_sleep },
  527         { "sellck", &lock_class_mtx_sleep },
  528         { NULL, NULL },
  529         /*
  530          * Routing
  531          */
  532         { "so_rcv", &lock_class_mtx_sleep },
  533         { "radix node head", &lock_class_rm },
  534         { "ifaddr", &lock_class_mtx_sleep },
  535         { NULL, NULL },
  536         /*
  537          * IPv4 multicast:
  538          * protocol locks before interface locks, after UDP locks.
  539          */
  540         { "in_multi_sx", &lock_class_sx },
  541         { "udpinp", &lock_class_rw },
  542         { "in_multi_list_mtx", &lock_class_mtx_sleep },
  543         { "igmp_mtx", &lock_class_mtx_sleep },
  544         { "if_addr_lock", &lock_class_mtx_sleep },
  545         { NULL, NULL },
  546         /*
  547          * IPv6 multicast:
  548          * protocol locks before interface locks, after UDP locks.
  549          */
  550         { "in6_multi_sx", &lock_class_sx },
  551         { "udpinp", &lock_class_rw },
  552         { "in6_multi_list_mtx", &lock_class_mtx_sleep },
  553         { "mld_mtx", &lock_class_mtx_sleep },
  554         { "if_addr_lock", &lock_class_mtx_sleep },
  555         { NULL, NULL },
  556         /*
  557          * UNIX Domain Sockets
  558          */
  559         { "unp_link_rwlock", &lock_class_rw },
  560         { "unp_list_lock", &lock_class_mtx_sleep },
  561         { "unp", &lock_class_mtx_sleep },
  562         { "so_snd", &lock_class_mtx_sleep },
  563         { NULL, NULL },
  564         /*
  565          * UDP/IP
  566          */
  567         { "udpinp", &lock_class_rw },
  568         { "udp", &lock_class_mtx_sleep },
  569         { "so_snd", &lock_class_mtx_sleep },
  570         { NULL, NULL },
  571         /*
  572          * TCP/IP
  573          */
  574         { "tcpinp", &lock_class_rw },
  575         { "tcp", &lock_class_mtx_sleep },
  576         { "so_snd", &lock_class_mtx_sleep },
  577         { NULL, NULL },
  578         /*
  579          * BPF
  580          */
  581         { "bpf global lock", &lock_class_sx },
  582         { "bpf cdev lock", &lock_class_mtx_sleep },
  583         { NULL, NULL },
  584         /*
  585          * NFS server
  586          */
  587         { "nfsd_mtx", &lock_class_mtx_sleep },
  588         { "so_snd", &lock_class_mtx_sleep },
  589         { NULL, NULL },
  590 
  591         /*
  592          * IEEE 802.11
  593          */
  594         { "802.11 com lock", &lock_class_mtx_sleep},
  595         { NULL, NULL },
  596         /*
  597          * Network drivers
  598          */
  599         { "network driver", &lock_class_mtx_sleep},
  600         { NULL, NULL },
  601 
  602         /*
  603          * Netgraph
  604          */
  605         { "ng_node", &lock_class_mtx_sleep },
  606         { "ng_worklist", &lock_class_mtx_sleep },
  607         { NULL, NULL },
  608         /*
  609          * CDEV
  610          */
  611         { "vm map (system)", &lock_class_mtx_sleep },
  612         { "vnode interlock", &lock_class_mtx_sleep },
  613         { "cdev", &lock_class_mtx_sleep },
  614         { "devthrd", &lock_class_mtx_sleep },
  615         { NULL, NULL },
  616         /*
  617          * VM
  618          */
  619         { "vm map (user)", &lock_class_sx },
  620         { "vm object", &lock_class_rw },
  621         { "vm page", &lock_class_mtx_sleep },
  622         { "pmap pv global", &lock_class_rw },
  623         { "pmap", &lock_class_mtx_sleep },
  624         { "pmap pv list", &lock_class_rw },
  625         { "vm page free queue", &lock_class_mtx_sleep },
  626         { "vm pagequeue", &lock_class_mtx_sleep },
  627         { NULL, NULL },
  628         /*
  629          * kqueue/VFS interaction
  630          */
  631         { "kqueue", &lock_class_mtx_sleep },
  632         { "struct mount mtx", &lock_class_mtx_sleep },
  633         { "vnode interlock", &lock_class_mtx_sleep },
  634         { NULL, NULL },
  635         /*
  636          * VFS namecache
  637          */
  638         { "ncvn", &lock_class_mtx_sleep },
  639         { "ncbuc", &lock_class_mtx_sleep },
  640         { "vnode interlock", &lock_class_mtx_sleep },
  641         { "ncneg", &lock_class_mtx_sleep },
  642         { NULL, NULL },
  643         /*
  644          * ZFS locking
  645          */
  646         { "dn->dn_mtx", &lock_class_sx },
  647         { "dr->dt.di.dr_mtx", &lock_class_sx },
  648         { "db->db_mtx", &lock_class_sx },
  649         { NULL, NULL },
  650         /*
  651          * TCP log locks
  652          */
  653         { "TCP ID tree", &lock_class_rw },
  654         { "tcp log id bucket", &lock_class_mtx_sleep },
  655         { "tcpinp", &lock_class_rw },
  656         { "TCP log expireq", &lock_class_mtx_sleep },
  657         { NULL, NULL },
  658         /*
  659          * spin locks
  660          */
  661 #ifdef SMP
  662         { "ap boot", &lock_class_mtx_spin },
  663 #endif
  664         { "rm.mutex_mtx", &lock_class_mtx_spin },
  665 #ifdef __i386__
  666         { "cy", &lock_class_mtx_spin },
  667 #endif
  668         { "scc_hwmtx", &lock_class_mtx_spin },
  669         { "uart_hwmtx", &lock_class_mtx_spin },
  670         { "fast_taskqueue", &lock_class_mtx_spin },
  671         { "intr table", &lock_class_mtx_spin },
  672         { "process slock", &lock_class_mtx_spin },
  673         { "syscons video lock", &lock_class_mtx_spin },
  674         { "sleepq chain", &lock_class_mtx_spin },
  675         { "rm_spinlock", &lock_class_mtx_spin },
  676         { "turnstile chain", &lock_class_mtx_spin },
  677         { "turnstile lock", &lock_class_mtx_spin },
  678         { "sched lock", &lock_class_mtx_spin },
  679         { "td_contested", &lock_class_mtx_spin },
  680         { "callout", &lock_class_mtx_spin },
  681         { "entropy harvest mutex", &lock_class_mtx_spin },
  682 #ifdef SMP
  683         { "smp rendezvous", &lock_class_mtx_spin },
  684 #endif
  685 #ifdef __powerpc__
  686         { "tlb0", &lock_class_mtx_spin },
  687 #endif
  688         { NULL, NULL },
  689         { "sched lock", &lock_class_mtx_spin },
  690 #ifdef  HWPMC_HOOKS
  691         { "pmc-per-proc", &lock_class_mtx_spin },
  692 #endif
  693         { NULL, NULL },
  694         /*
  695          * leaf locks
  696          */
  697         { "intrcnt", &lock_class_mtx_spin },
  698         { "icu", &lock_class_mtx_spin },
  699 #ifdef __i386__
  700         { "allpmaps", &lock_class_mtx_spin },
  701         { "descriptor tables", &lock_class_mtx_spin },
  702 #endif
  703         { "clk", &lock_class_mtx_spin },
  704         { "cpuset", &lock_class_mtx_spin },
  705         { "mprof lock", &lock_class_mtx_spin },
  706         { "zombie lock", &lock_class_mtx_spin },
  707         { "ALD Queue", &lock_class_mtx_spin },
  708 #if defined(__i386__) || defined(__amd64__)
  709         { "pcicfg", &lock_class_mtx_spin },
  710         { "NDIS thread lock", &lock_class_mtx_spin },
  711 #endif
  712         { "tw_osl_io_lock", &lock_class_mtx_spin },
  713         { "tw_osl_q_lock", &lock_class_mtx_spin },
  714         { "tw_cl_io_lock", &lock_class_mtx_spin },
  715         { "tw_cl_intr_lock", &lock_class_mtx_spin },
  716         { "tw_cl_gen_lock", &lock_class_mtx_spin },
  717 #ifdef  HWPMC_HOOKS
  718         { "pmc-leaf", &lock_class_mtx_spin },
  719 #endif
  720         { "blocked lock", &lock_class_mtx_spin },
  721         { NULL, NULL },
  722         { NULL, NULL }
  723 };
  724 
  725 /*
  726  * Pairs of locks which have been blessed.  Witness does not complain about
  727  * order problems with blessed lock pairs.  Please do not add an entry to the
  728  * table without an explanatory comment.
  729  */
  730 static struct witness_blessed blessed_list[] = {
  731         /*
  732          * See the comment in ufs_dirhash.c.  Basically, a vnode lock serializes
  733          * both lock orders, so a deadlock cannot happen as a result of this
  734          * LOR.
  735          */
  736         { "dirhash",    "bufwait" },
  737 
  738         /*
  739          * A UFS vnode may be locked in vget() while a buffer belonging to the
  740          * parent directory vnode is locked.
  741          */
  742         { "ufs",        "bufwait" },
  743 };
  744 
  745 /*
  746  * This global is set to 0 once it becomes safe to use the witness code.
  747  */
  748 static int witness_cold = 1;
  749 
  750 /*
  751  * This global is set to 1 once the static lock orders have been enrolled
  752  * so that a warning can be issued for any spin locks enrolled later.
  753  */
  754 static int witness_spin_warn = 0;
  755 
  756 /* Trim useless garbage from filenames. */
  757 static const char *
  758 fixup_filename(const char *file)
  759 {
  760 
  761         if (file == NULL)
  762                 return (NULL);
  763         while (strncmp(file, "../", 3) == 0)
  764                 file += 3;
  765         return (file);
  766 }
  767 
  768 /*
  769  * Calculate the size of early witness structures.
  770  */
  771 int
  772 witness_startup_count(void)
  773 {
  774         int sz;
  775 
  776         sz = sizeof(struct witness) * witness_count;
  777         sz += sizeof(*w_rmatrix) * (witness_count + 1);
  778         sz += sizeof(*w_rmatrix[0]) * (witness_count + 1) *
  779             (witness_count + 1);
  780 
  781         return (sz);
  782 }
  783 
  784 /*
  785  * The WITNESS-enabled diagnostic code.  Note that the witness code does
  786  * assume that the early boot is single-threaded at least until after this
  787  * routine is completed.
  788  */
  789 void
  790 witness_startup(void *mem)
  791 {
  792         struct lock_object *lock;
  793         struct witness_order_list_entry *order;
  794         struct witness *w, *w1;
  795         uintptr_t p;
  796         int i;
  797 
  798         p = (uintptr_t)mem;
  799         w_data = (void *)p;
  800         p += sizeof(struct witness) * witness_count;
  801 
  802         w_rmatrix = (void *)p;
  803         p += sizeof(*w_rmatrix) * (witness_count + 1);
  804 
  805         for (i = 0; i < witness_count + 1; i++) {
  806                 w_rmatrix[i] = (void *)p;
  807                 p += sizeof(*w_rmatrix[i]) * (witness_count + 1);
  808         }
  809         badstack_sbuf_size = witness_count * 256;
  810 
  811         /*
  812          * We have to release Giant before initializing its witness
  813          * structure so that WITNESS doesn't get confused.
  814          */
  815         mtx_unlock(&Giant);
  816         mtx_assert(&Giant, MA_NOTOWNED);
  817 
  818         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
  819         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
  820             MTX_NOWITNESS | MTX_NOPROFILE);
  821         for (i = witness_count - 1; i >= 0; i--) {
  822                 w = &w_data[i];
  823                 memset(w, 0, sizeof(*w));
  824                 w_data[i].w_index = i;  /* Witness index never changes. */
  825                 witness_free(w);
  826         }
  827         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
  828             ("%s: Invalid list of free witness objects", __func__));
  829 
  830         /* Witness with index 0 is not used to aid in debugging. */
  831         STAILQ_REMOVE_HEAD(&w_free, w_list);
  832         w_free_cnt--;
  833 
  834         for (i = 0; i < witness_count; i++) {
  835                 memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) * 
  836                     (witness_count + 1));
  837         }
  838 
  839         for (i = 0; i < LOCK_CHILDCOUNT; i++)
  840                 witness_lock_list_free(&w_locklistdata[i]);
  841         witness_init_hash_tables();
  842 
  843         /* First add in all the specified order lists. */
  844         for (order = order_lists; order->w_name != NULL; order++) {
  845                 w = enroll(order->w_name, order->w_class);
  846                 if (w == NULL)
  847                         continue;
  848                 w->w_file = "order list";
  849                 for (order++; order->w_name != NULL; order++) {
  850                         w1 = enroll(order->w_name, order->w_class);
  851                         if (w1 == NULL)
  852                                 continue;
  853                         w1->w_file = "order list";
  854                         itismychild(w, w1);
  855                         w = w1;
  856                 }
  857         }
  858         witness_spin_warn = 1;
  859 
  860         /* Iterate through all locks and add them to witness. */
  861         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
  862                 lock = pending_locks[i].wh_lock;
  863                 KASSERT(lock->lo_flags & LO_WITNESS,
  864                     ("%s: lock %s is on pending list but not LO_WITNESS",
  865                     __func__, lock->lo_name));
  866                 lock->lo_witness = enroll(pending_locks[i].wh_type,
  867                     LOCK_CLASS(lock));
  868         }
  869 
  870         /* Mark the witness code as being ready for use. */
  871         witness_cold = 0;
  872 
  873         mtx_lock(&Giant);
  874 }
  875 
  876 void
  877 witness_init(struct lock_object *lock, const char *type)
  878 {
  879         struct lock_class *class;
  880 
  881         /* Various sanity checks. */
  882         class = LOCK_CLASS(lock);
  883         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
  884             (class->lc_flags & LC_RECURSABLE) == 0)
  885                 kassert_panic("%s: lock (%s) %s can not be recursable",
  886                     __func__, class->lc_name, lock->lo_name);
  887         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
  888             (class->lc_flags & LC_SLEEPABLE) == 0)
  889                 kassert_panic("%s: lock (%s) %s can not be sleepable",
  890                     __func__, class->lc_name, lock->lo_name);
  891         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
  892             (class->lc_flags & LC_UPGRADABLE) == 0)
  893                 kassert_panic("%s: lock (%s) %s can not be upgradable",
  894                     __func__, class->lc_name, lock->lo_name);
  895 
  896         /*
  897          * If we shouldn't watch this lock, then just clear lo_witness.
  898          * Otherwise, if witness_cold is set, then it is too early to
  899          * enroll this lock, so defer it to witness_initialize() by adding
  900          * it to the pending_locks list.  If it is not too early, then enroll
  901          * the lock now.
  902          */
  903         if (witness_watch < 1 || KERNEL_PANICKED() ||
  904             (lock->lo_flags & LO_WITNESS) == 0)
  905                 lock->lo_witness = NULL;
  906         else if (witness_cold) {
  907                 pending_locks[pending_cnt].wh_lock = lock;
  908                 pending_locks[pending_cnt++].wh_type = type;
  909                 if (pending_cnt > WITNESS_PENDLIST)
  910                         panic("%s: pending locks list is too small, "
  911                             "increase WITNESS_PENDLIST\n",
  912                             __func__);
  913         } else
  914                 lock->lo_witness = enroll(type, class);
  915 }
  916 
  917 void
  918 witness_destroy(struct lock_object *lock)
  919 {
  920         struct lock_class *class;
  921         struct witness *w;
  922 
  923         class = LOCK_CLASS(lock);
  924 
  925         if (witness_cold)
  926                 panic("lock (%s) %s destroyed while witness_cold",
  927                     class->lc_name, lock->lo_name);
  928 
  929         /* XXX: need to verify that no one holds the lock */
  930         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
  931                 return;
  932         w = lock->lo_witness;
  933 
  934         mtx_lock_spin(&w_mtx);
  935         MPASS(w->w_refcount > 0);
  936         w->w_refcount--;
  937 
  938         if (w->w_refcount == 0)
  939                 depart(w);
  940         mtx_unlock_spin(&w_mtx);
  941 }
  942 
  943 #ifdef DDB
  944 static void
  945 witness_ddb_compute_levels(void)
  946 {
  947         struct witness *w;
  948 
  949         /*
  950          * First clear all levels.
  951          */
  952         STAILQ_FOREACH(w, &w_all, w_list)
  953                 w->w_ddb_level = -1;
  954 
  955         /*
  956          * Look for locks with no parents and level all their descendants.
  957          */
  958         STAILQ_FOREACH(w, &w_all, w_list) {
  959                 /* If the witness has ancestors (is not a root), skip it. */
  960                 if (w->w_num_ancestors > 0)
  961                         continue;
  962                 witness_ddb_level_descendants(w, 0);
  963         }
  964 }
  965 
  966 static void
  967 witness_ddb_level_descendants(struct witness *w, int l)
  968 {
  969         int i;
  970 
  971         if (w->w_ddb_level >= l)
  972                 return;
  973 
  974         w->w_ddb_level = l;
  975         l++;
  976 
  977         for (i = 1; i <= w_max_used_index; i++) {
  978                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
  979                         witness_ddb_level_descendants(&w_data[i], l);
  980         }
  981 }
  982 
  983 static void
  984 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
  985     struct witness *w, int indent)
  986 {
  987         int i;
  988 
  989         for (i = 0; i < indent; i++)
  990                 prnt(" ");
  991         prnt("%s (type: %s, depth: %d, active refs: %d)",
  992              w->w_name, w->w_class->lc_name,
  993              w->w_ddb_level, w->w_refcount);
  994         if (w->w_displayed) {
  995                 prnt(" -- (already displayed)\n");
  996                 return;
  997         }
  998         w->w_displayed = 1;
  999         if (w->w_file != NULL && w->w_line != 0)
 1000                 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
 1001                     w->w_line);
 1002         else
 1003                 prnt(" -- never acquired\n");
 1004         indent++;
 1005         WITNESS_INDEX_ASSERT(w->w_index);
 1006         for (i = 1; i <= w_max_used_index; i++) {
 1007                 if (db_pager_quit)
 1008                         return;
 1009                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
 1010                         witness_ddb_display_descendants(prnt, &w_data[i],
 1011                             indent);
 1012         }
 1013 }
 1014 
 1015 static void
 1016 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
 1017     struct witness_list *list)
 1018 {
 1019         struct witness *w;
 1020 
 1021         STAILQ_FOREACH(w, list, w_typelist) {
 1022                 if (w->w_file == NULL || w->w_ddb_level > 0)
 1023                         continue;
 1024 
 1025                 /* This lock has no anscestors - display its descendants. */
 1026                 witness_ddb_display_descendants(prnt, w, 0);
 1027                 if (db_pager_quit)
 1028                         return;
 1029         }
 1030 }
 1031 
 1032 static void
 1033 witness_ddb_display(int(*prnt)(const char *fmt, ...))
 1034 {
 1035         struct witness *w;
 1036 
 1037         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 1038         witness_ddb_compute_levels();
 1039 
 1040         /* Clear all the displayed flags. */
 1041         STAILQ_FOREACH(w, &w_all, w_list)
 1042                 w->w_displayed = 0;
 1043 
 1044         /*
 1045          * First, handle sleep locks which have been acquired at least
 1046          * once.
 1047          */
 1048         prnt("Sleep locks:\n");
 1049         witness_ddb_display_list(prnt, &w_sleep);
 1050         if (db_pager_quit)
 1051                 return;
 1052 
 1053         /*
 1054          * Now do spin locks which have been acquired at least once.
 1055          */
 1056         prnt("\nSpin locks:\n");
 1057         witness_ddb_display_list(prnt, &w_spin);
 1058         if (db_pager_quit)
 1059                 return;
 1060 
 1061         /*
 1062          * Finally, any locks which have not been acquired yet.
 1063          */
 1064         prnt("\nLocks which were never acquired:\n");
 1065         STAILQ_FOREACH(w, &w_all, w_list) {
 1066                 if (w->w_file != NULL || w->w_refcount == 0)
 1067                         continue;
 1068                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
 1069                     w->w_class->lc_name, w->w_ddb_level);
 1070                 if (db_pager_quit)
 1071                         return;
 1072         }
 1073 }
 1074 #endif /* DDB */
 1075 
 1076 int
 1077 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
 1078 {
 1079 
 1080         if (witness_watch == -1 || KERNEL_PANICKED())
 1081                 return (0);
 1082 
 1083         /* Require locks that witness knows about. */
 1084         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
 1085             lock2->lo_witness == NULL)
 1086                 return (EINVAL);
 1087 
 1088         mtx_assert(&w_mtx, MA_NOTOWNED);
 1089         mtx_lock_spin(&w_mtx);
 1090 
 1091         /*
 1092          * If we already have either an explicit or implied lock order that
 1093          * is the other way around, then return an error.
 1094          */
 1095         if (witness_watch &&
 1096             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
 1097                 mtx_unlock_spin(&w_mtx);
 1098                 return (EDOOFUS);
 1099         }
 1100 
 1101         /* Try to add the new order. */
 1102         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
 1103             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
 1104         itismychild(lock1->lo_witness, lock2->lo_witness);
 1105         mtx_unlock_spin(&w_mtx);
 1106         return (0);
 1107 }
 1108 
 1109 void
 1110 witness_checkorder(struct lock_object *lock, int flags, const char *file,
 1111     int line, struct lock_object *interlock)
 1112 {
 1113         struct lock_list_entry *lock_list, *lle;
 1114         struct lock_instance *lock1, *lock2, *plock;
 1115         struct lock_class *class, *iclass;
 1116         struct witness *w, *w1;
 1117         struct thread *td;
 1118         int i, j;
 1119 
 1120         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
 1121             KERNEL_PANICKED())
 1122                 return;
 1123 
 1124         w = lock->lo_witness;
 1125         class = LOCK_CLASS(lock);
 1126         td = curthread;
 1127 
 1128         if (class->lc_flags & LC_SLEEPLOCK) {
 1129                 /*
 1130                  * Since spin locks include a critical section, this check
 1131                  * implicitly enforces a lock order of all sleep locks before
 1132                  * all spin locks.
 1133                  */
 1134                 if (td->td_critnest != 0 && !kdb_active)
 1135                         kassert_panic("acquiring blockable sleep lock with "
 1136                             "spinlock or critical section held (%s) %s @ %s:%d",
 1137                             class->lc_name, lock->lo_name,
 1138                             fixup_filename(file), line);
 1139 
 1140                 /*
 1141                  * If this is the first lock acquired then just return as
 1142                  * no order checking is needed.
 1143                  */
 1144                 lock_list = td->td_sleeplocks;
 1145                 if (lock_list == NULL || lock_list->ll_count == 0)
 1146                         return;
 1147         } else {
 1148                 /*
 1149                  * If this is the first lock, just return as no order
 1150                  * checking is needed.  Avoid problems with thread
 1151                  * migration pinning the thread while checking if
 1152                  * spinlocks are held.  If at least one spinlock is held
 1153                  * the thread is in a safe path and it is allowed to
 1154                  * unpin it.
 1155                  */
 1156                 sched_pin();
 1157                 lock_list = PCPU_GET(spinlocks);
 1158                 if (lock_list == NULL || lock_list->ll_count == 0) {
 1159                         sched_unpin();
 1160                         return;
 1161                 }
 1162                 sched_unpin();
 1163         }
 1164 
 1165         /*
 1166          * Check to see if we are recursing on a lock we already own.  If
 1167          * so, make sure that we don't mismatch exclusive and shared lock
 1168          * acquires.
 1169          */
 1170         lock1 = find_instance(lock_list, lock);
 1171         if (lock1 != NULL) {
 1172                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
 1173                     (flags & LOP_EXCLUSIVE) == 0) {
 1174                         witness_output("shared lock of (%s) %s @ %s:%d\n",
 1175                             class->lc_name, lock->lo_name,
 1176                             fixup_filename(file), line);
 1177                         witness_output("while exclusively locked from %s:%d\n",
 1178                             fixup_filename(lock1->li_file), lock1->li_line);
 1179                         kassert_panic("excl->share");
 1180                 }
 1181                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
 1182                     (flags & LOP_EXCLUSIVE) != 0) {
 1183                         witness_output("exclusive lock of (%s) %s @ %s:%d\n",
 1184                             class->lc_name, lock->lo_name,
 1185                             fixup_filename(file), line);
 1186                         witness_output("while share locked from %s:%d\n",
 1187                             fixup_filename(lock1->li_file), lock1->li_line);
 1188                         kassert_panic("share->excl");
 1189                 }
 1190                 return;
 1191         }
 1192 
 1193         /* Warn if the interlock is not locked exactly once. */
 1194         if (interlock != NULL) {
 1195                 iclass = LOCK_CLASS(interlock);
 1196                 lock1 = find_instance(lock_list, interlock);
 1197                 if (lock1 == NULL)
 1198                         kassert_panic("interlock (%s) %s not locked @ %s:%d",
 1199                             iclass->lc_name, interlock->lo_name,
 1200                             fixup_filename(file), line);
 1201                 else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
 1202                         kassert_panic("interlock (%s) %s recursed @ %s:%d",
 1203                             iclass->lc_name, interlock->lo_name,
 1204                             fixup_filename(file), line);
 1205         }
 1206 
 1207         /*
 1208          * Find the previously acquired lock, but ignore interlocks.
 1209          */
 1210         plock = &lock_list->ll_children[lock_list->ll_count - 1];
 1211         if (interlock != NULL && plock->li_lock == interlock) {
 1212                 if (lock_list->ll_count > 1)
 1213                         plock =
 1214                             &lock_list->ll_children[lock_list->ll_count - 2];
 1215                 else {
 1216                         lle = lock_list->ll_next;
 1217 
 1218                         /*
 1219                          * The interlock is the only lock we hold, so
 1220                          * simply return.
 1221                          */
 1222                         if (lle == NULL)
 1223                                 return;
 1224                         plock = &lle->ll_children[lle->ll_count - 1];
 1225                 }
 1226         }
 1227 
 1228         /*
 1229          * Try to perform most checks without a lock.  If this succeeds we
 1230          * can skip acquiring the lock and return success.  Otherwise we redo
 1231          * the check with the lock held to handle races with concurrent updates.
 1232          */
 1233         w1 = plock->li_lock->lo_witness;
 1234         if (witness_lock_order_check(w1, w))
 1235                 return;
 1236 
 1237         mtx_lock_spin(&w_mtx);
 1238         if (witness_lock_order_check(w1, w)) {
 1239                 mtx_unlock_spin(&w_mtx);
 1240                 return;
 1241         }
 1242         witness_lock_order_add(w1, w);
 1243 
 1244         /*
 1245          * Check for duplicate locks of the same type.  Note that we only
 1246          * have to check for this on the last lock we just acquired.  Any
 1247          * other cases will be caught as lock order violations.
 1248          */
 1249         if (w1 == w) {
 1250                 i = w->w_index;
 1251                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
 1252                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
 1253                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
 1254                         w->w_reversed = 1;
 1255                         mtx_unlock_spin(&w_mtx);
 1256                         witness_output(
 1257                             "acquiring duplicate lock of same type: \"%s\"\n", 
 1258                             w->w_name);
 1259                         witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
 1260                             fixup_filename(plock->li_file), plock->li_line);
 1261                         witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
 1262                             fixup_filename(file), line);
 1263                         witness_debugger(1, __func__);
 1264                 } else
 1265                         mtx_unlock_spin(&w_mtx);
 1266                 return;
 1267         }
 1268         mtx_assert(&w_mtx, MA_OWNED);
 1269 
 1270         /*
 1271          * If we know that the lock we are acquiring comes after
 1272          * the lock we most recently acquired in the lock order tree,
 1273          * then there is no need for any further checks.
 1274          */
 1275         if (isitmychild(w1, w))
 1276                 goto out;
 1277 
 1278         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
 1279                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
 1280                         struct stack pstack;
 1281                         bool pstackv, trace;
 1282 
 1283                         MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
 1284                         lock1 = &lle->ll_children[i];
 1285 
 1286                         /*
 1287                          * Ignore the interlock.
 1288                          */
 1289                         if (interlock == lock1->li_lock)
 1290                                 continue;
 1291 
 1292                         /*
 1293                          * If this lock doesn't undergo witness checking,
 1294                          * then skip it.
 1295                          */
 1296                         w1 = lock1->li_lock->lo_witness;
 1297                         if (w1 == NULL) {
 1298                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
 1299                                     ("lock missing witness structure"));
 1300                                 continue;
 1301                         }
 1302 
 1303                         /*
 1304                          * If we are locking Giant and this is a sleepable
 1305                          * lock, then skip it.
 1306                          */
 1307                         if ((lock1->li_flags & LI_SLEEPABLE) != 0 &&
 1308                             lock == &Giant.lock_object)
 1309                                 continue;
 1310 
 1311                         /*
 1312                          * If we are locking a sleepable lock and this lock
 1313                          * is Giant, then skip it.
 1314                          */
 1315                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1316                             (flags & LOP_NOSLEEP) == 0 &&
 1317                             lock1->li_lock == &Giant.lock_object)
 1318                                 continue;
 1319 
 1320                         /*
 1321                          * If we are locking a sleepable lock and this lock
 1322                          * isn't sleepable, we want to treat it as a lock
 1323                          * order violation to enfore a general lock order of
 1324                          * sleepable locks before non-sleepable locks.
 1325                          */
 1326                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1327                             (flags & LOP_NOSLEEP) == 0 &&
 1328                             (lock1->li_flags & LI_SLEEPABLE) == 0)
 1329                                 goto reversal;
 1330 
 1331                         /*
 1332                          * If we are locking Giant and this is a non-sleepable
 1333                          * lock, then treat it as a reversal.
 1334                          */
 1335                         if ((lock1->li_flags & LI_SLEEPABLE) == 0 &&
 1336                             lock == &Giant.lock_object)
 1337                                 goto reversal;
 1338 
 1339                         /*
 1340                          * Check the lock order hierarchy for a reveresal.
 1341                          */
 1342                         if (!isitmydescendant(w, w1))
 1343                                 continue;
 1344                 reversal:
 1345 
 1346                         /*
 1347                          * We have a lock order violation, check to see if it
 1348                          * is allowed or has already been yelled about.
 1349                          */
 1350 
 1351                         /* Bail if this violation is known */
 1352                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
 1353                                 goto out;
 1354 
 1355                         /* Record this as a violation */
 1356                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
 1357                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
 1358                         w->w_reversed = w1->w_reversed = 1;
 1359                         witness_increment_graph_generation();
 1360 
 1361                         /*
 1362                          * If the lock order is blessed, bail before logging
 1363                          * anything.  We don't look for other lock order
 1364                          * violations though, which may be a bug.
 1365                          */
 1366                         if (blessed(w, w1))
 1367                                 goto out;
 1368 
 1369                         trace = atomic_load_int(&witness_trace);
 1370                         if (trace) {
 1371                                 struct witness_lock_order_data *data;
 1372 
 1373                                 pstackv = false;
 1374                                 data = witness_lock_order_get(w, w1);
 1375                                 if (data != NULL) {
 1376                                         stack_copy(&data->wlod_stack,
 1377                                             &pstack);
 1378                                         pstackv = true;
 1379                                 }
 1380                         }
 1381                         mtx_unlock_spin(&w_mtx);
 1382 
 1383 #ifdef WITNESS_NO_VNODE
 1384                         /*
 1385                          * There are known LORs between VNODE locks. They are
 1386                          * not an indication of a bug. VNODE locks are flagged
 1387                          * as such (LO_IS_VNODE) and we don't yell if the LOR
 1388                          * is between 2 VNODE locks.
 1389                          */
 1390                         if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
 1391                             (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
 1392                                 return;
 1393 #endif
 1394 
 1395                         /*
 1396                          * Ok, yell about it.
 1397                          */
 1398                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1399                             (flags & LOP_NOSLEEP) == 0 &&
 1400                             (lock1->li_flags & LI_SLEEPABLE) == 0)
 1401                                 witness_output(
 1402                 "lock order reversal: (sleepable after non-sleepable)\n");
 1403                         else if ((lock1->li_flags & LI_SLEEPABLE) == 0
 1404                             && lock == &Giant.lock_object)
 1405                                 witness_output(
 1406                 "lock order reversal: (Giant after non-sleepable)\n");
 1407                         else
 1408                                 witness_output("lock order reversal:\n");
 1409 
 1410                         /*
 1411                          * Try to locate an earlier lock with
 1412                          * witness w in our list.
 1413                          */
 1414                         do {
 1415                                 lock2 = &lle->ll_children[i];
 1416                                 MPASS(lock2->li_lock != NULL);
 1417                                 if (lock2->li_lock->lo_witness == w)
 1418                                         break;
 1419                                 if (i == 0 && lle->ll_next != NULL) {
 1420                                         lle = lle->ll_next;
 1421                                         i = lle->ll_count - 1;
 1422                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
 1423                                 } else
 1424                                         i--;
 1425                         } while (i >= 0);
 1426                         if (i < 0) {
 1427                                 witness_output(" 1st %p %s (%s, %s) @ %s:%d\n",
 1428                                     lock1->li_lock, lock1->li_lock->lo_name,
 1429                                     w1->w_name, w1->w_class->lc_name,
 1430                                     fixup_filename(lock1->li_file),
 1431                                     lock1->li_line);
 1432                                 witness_output(" 2nd %p %s (%s, %s) @ %s:%d\n",
 1433                                     lock, lock->lo_name, w->w_name,
 1434                                     w->w_class->lc_name, fixup_filename(file),
 1435                                     line);
 1436                         } else {
 1437                                 struct witness *w2 = lock2->li_lock->lo_witness;
 1438 
 1439                                 witness_output(" 1st %p %s (%s, %s) @ %s:%d\n",
 1440                                     lock2->li_lock, lock2->li_lock->lo_name,
 1441                                     w2->w_name, w2->w_class->lc_name,
 1442                                     fixup_filename(lock2->li_file),
 1443                                     lock2->li_line);
 1444                                 witness_output(" 2nd %p %s (%s, %s) @ %s:%d\n",
 1445                                     lock1->li_lock, lock1->li_lock->lo_name,
 1446                                     w1->w_name, w1->w_class->lc_name,
 1447                                     fixup_filename(lock1->li_file),
 1448                                     lock1->li_line);
 1449                                 witness_output(" 3rd %p %s (%s, %s) @ %s:%d\n", lock,
 1450                                     lock->lo_name, w->w_name,
 1451                                     w->w_class->lc_name, fixup_filename(file),
 1452                                     line);
 1453                         }
 1454                         if (trace) {
 1455                                 char buf[64];
 1456                                 struct sbuf sb;
 1457 
 1458                                 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 1459                                 sbuf_set_drain(&sb, witness_output_drain,
 1460                                     NULL);
 1461 
 1462                                 if (pstackv) {
 1463                                         sbuf_printf(&sb,
 1464                                     "lock order %s -> %s established at:\n",
 1465                                             w->w_name, w1->w_name);
 1466                                         stack_sbuf_print_flags(&sb, &pstack,
 1467                                             M_NOWAIT, STACK_SBUF_FMT_LONG);
 1468                                 }
 1469 
 1470                                 sbuf_printf(&sb,
 1471                                     "lock order %s -> %s attempted at:\n",
 1472                                     w1->w_name, w->w_name);
 1473                                 stack_save(&pstack);
 1474                                 stack_sbuf_print_flags(&sb, &pstack, M_NOWAIT,
 1475                                     STACK_SBUF_FMT_LONG);
 1476 
 1477                                 sbuf_finish(&sb);
 1478                                 sbuf_delete(&sb);
 1479                         }
 1480                         witness_enter_debugger(__func__);
 1481                         return;
 1482                 }
 1483         }
 1484 
 1485         /*
 1486          * If requested, build a new lock order.  However, don't build a new
 1487          * relationship between a sleepable lock and Giant if it is in the
 1488          * wrong direction.  The correct lock order is that sleepable locks
 1489          * always come before Giant.
 1490          */
 1491         if (flags & LOP_NEWORDER &&
 1492             !(plock->li_lock == &Giant.lock_object &&
 1493             (lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1494             (flags & LOP_NOSLEEP) == 0)) {
 1495                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
 1496                     w->w_name, plock->li_lock->lo_witness->w_name);
 1497                 itismychild(plock->li_lock->lo_witness, w);
 1498         }
 1499 out:
 1500         mtx_unlock_spin(&w_mtx);
 1501 }
 1502 
 1503 void
 1504 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
 1505 {
 1506         struct lock_list_entry **lock_list, *lle;
 1507         struct lock_instance *instance;
 1508         struct witness *w;
 1509         struct thread *td;
 1510 
 1511         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
 1512             KERNEL_PANICKED())
 1513                 return;
 1514         w = lock->lo_witness;
 1515         td = curthread;
 1516 
 1517         /* Determine lock list for this lock. */
 1518         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
 1519                 lock_list = &td->td_sleeplocks;
 1520         else
 1521                 lock_list = PCPU_PTR(spinlocks);
 1522 
 1523         /* Check to see if we are recursing on a lock we already own. */
 1524         instance = find_instance(*lock_list, lock);
 1525         if (instance != NULL) {
 1526                 instance->li_flags++;
 1527                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
 1528                     td->td_proc->p_pid, lock->lo_name,
 1529                     instance->li_flags & LI_RECURSEMASK);
 1530                 instance->li_file = file;
 1531                 instance->li_line = line;
 1532                 return;
 1533         }
 1534 
 1535         /* Update per-witness last file and line acquire. */
 1536         w->w_file = file;
 1537         w->w_line = line;
 1538 
 1539         /* Find the next open lock instance in the list and fill it. */
 1540         lle = *lock_list;
 1541         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
 1542                 lle = witness_lock_list_get();
 1543                 if (lle == NULL)
 1544                         return;
 1545                 lle->ll_next = *lock_list;
 1546                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
 1547                     td->td_proc->p_pid, lle);
 1548                 *lock_list = lle;
 1549         }
 1550         instance = &lle->ll_children[lle->ll_count++];
 1551         instance->li_lock = lock;
 1552         instance->li_line = line;
 1553         instance->li_file = file;
 1554         instance->li_flags = 0;
 1555         if ((flags & LOP_EXCLUSIVE) != 0)
 1556                 instance->li_flags |= LI_EXCLUSIVE;
 1557         if ((lock->lo_flags & LO_SLEEPABLE) != 0 && (flags & LOP_NOSLEEP) == 0)
 1558                 instance->li_flags |= LI_SLEEPABLE;
 1559         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
 1560             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
 1561 }
 1562 
 1563 void
 1564 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
 1565 {
 1566         struct lock_instance *instance;
 1567         struct lock_class *class;
 1568 
 1569         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 1570         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
 1571                 return;
 1572         class = LOCK_CLASS(lock);
 1573         if (witness_watch) {
 1574                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
 1575                         kassert_panic(
 1576                             "upgrade of non-upgradable lock (%s) %s @ %s:%d",
 1577                             class->lc_name, lock->lo_name,
 1578                             fixup_filename(file), line);
 1579                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
 1580                         kassert_panic(
 1581                             "upgrade of non-sleep lock (%s) %s @ %s:%d",
 1582                             class->lc_name, lock->lo_name,
 1583                             fixup_filename(file), line);
 1584         }
 1585         instance = find_instance(curthread->td_sleeplocks, lock);
 1586         if (instance == NULL) {
 1587                 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
 1588                     class->lc_name, lock->lo_name,
 1589                     fixup_filename(file), line);
 1590                 return;
 1591         }
 1592         if (witness_watch) {
 1593                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
 1594                         kassert_panic(
 1595                             "upgrade of exclusive lock (%s) %s @ %s:%d",
 1596                             class->lc_name, lock->lo_name,
 1597                             fixup_filename(file), line);
 1598                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
 1599                         kassert_panic(
 1600                             "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
 1601                             class->lc_name, lock->lo_name,
 1602                             instance->li_flags & LI_RECURSEMASK,
 1603                             fixup_filename(file), line);
 1604         }
 1605         instance->li_flags |= LI_EXCLUSIVE;
 1606 }
 1607 
 1608 void
 1609 witness_downgrade(struct lock_object *lock, int flags, const char *file,
 1610     int line)
 1611 {
 1612         struct lock_instance *instance;
 1613         struct lock_class *class;
 1614 
 1615         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 1616         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
 1617                 return;
 1618         class = LOCK_CLASS(lock);
 1619         if (witness_watch) {
 1620                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
 1621                         kassert_panic(
 1622                             "downgrade of non-upgradable lock (%s) %s @ %s:%d",
 1623                             class->lc_name, lock->lo_name,
 1624                             fixup_filename(file), line);
 1625                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
 1626                         kassert_panic(
 1627                             "downgrade of non-sleep lock (%s) %s @ %s:%d",
 1628                             class->lc_name, lock->lo_name,
 1629                             fixup_filename(file), line);
 1630         }
 1631         instance = find_instance(curthread->td_sleeplocks, lock);
 1632         if (instance == NULL) {
 1633                 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
 1634                     class->lc_name, lock->lo_name,
 1635                     fixup_filename(file), line);
 1636                 return;
 1637         }
 1638         if (witness_watch) {
 1639                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
 1640                         kassert_panic(
 1641                             "downgrade of shared lock (%s) %s @ %s:%d",
 1642                             class->lc_name, lock->lo_name,
 1643                             fixup_filename(file), line);
 1644                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
 1645                         kassert_panic(
 1646                             "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
 1647                             class->lc_name, lock->lo_name,
 1648                             instance->li_flags & LI_RECURSEMASK,
 1649                             fixup_filename(file), line);
 1650         }
 1651         instance->li_flags &= ~LI_EXCLUSIVE;
 1652 }
 1653 
 1654 void
 1655 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
 1656 {
 1657         struct lock_list_entry **lock_list, *lle;
 1658         struct lock_instance *instance;
 1659         struct lock_class *class;
 1660         struct thread *td;
 1661         register_t s;
 1662         int i, j;
 1663 
 1664         if (witness_cold || lock->lo_witness == NULL || KERNEL_PANICKED())
 1665                 return;
 1666         td = curthread;
 1667         class = LOCK_CLASS(lock);
 1668 
 1669         /* Find lock instance associated with this lock. */
 1670         if (class->lc_flags & LC_SLEEPLOCK)
 1671                 lock_list = &td->td_sleeplocks;
 1672         else
 1673                 lock_list = PCPU_PTR(spinlocks);
 1674         lle = *lock_list;
 1675         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
 1676                 for (i = 0; i < (*lock_list)->ll_count; i++) {
 1677                         instance = &(*lock_list)->ll_children[i];
 1678                         if (instance->li_lock == lock)
 1679                                 goto found;
 1680                 }
 1681 
 1682         /*
 1683          * When disabling WITNESS through witness_watch we could end up in
 1684          * having registered locks in the td_sleeplocks queue.
 1685          * We have to make sure we flush these queues, so just search for
 1686          * eventual register locks and remove them.
 1687          */
 1688         if (witness_watch > 0) {
 1689                 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
 1690                     lock->lo_name, fixup_filename(file), line);
 1691                 return;
 1692         } else {
 1693                 return;
 1694         }
 1695 found:
 1696 
 1697         /* First, check for shared/exclusive mismatches. */
 1698         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
 1699             (flags & LOP_EXCLUSIVE) == 0) {
 1700                 witness_output("shared unlock of (%s) %s @ %s:%d\n",
 1701                     class->lc_name, lock->lo_name, fixup_filename(file), line);
 1702                 witness_output("while exclusively locked from %s:%d\n",
 1703                     fixup_filename(instance->li_file), instance->li_line);
 1704                 kassert_panic("excl->ushare");
 1705         }
 1706         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
 1707             (flags & LOP_EXCLUSIVE) != 0) {
 1708                 witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
 1709                     class->lc_name, lock->lo_name, fixup_filename(file), line);
 1710                 witness_output("while share locked from %s:%d\n",
 1711                     fixup_filename(instance->li_file),
 1712                     instance->li_line);
 1713                 kassert_panic("share->uexcl");
 1714         }
 1715         /* If we are recursed, unrecurse. */
 1716         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
 1717                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
 1718                     td->td_proc->p_pid, instance->li_lock->lo_name,
 1719                     instance->li_flags);
 1720                 instance->li_flags--;
 1721                 return;
 1722         }
 1723         /* The lock is now being dropped, check for NORELEASE flag */
 1724         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
 1725                 witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
 1726                     class->lc_name, lock->lo_name, fixup_filename(file), line);
 1727                 kassert_panic("lock marked norelease");
 1728         }
 1729 
 1730         /* Otherwise, remove this item from the list. */
 1731         s = intr_disable();
 1732         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
 1733             td->td_proc->p_pid, instance->li_lock->lo_name,
 1734             (*lock_list)->ll_count - 1);
 1735         for (j = i; j < (*lock_list)->ll_count - 1; j++)
 1736                 (*lock_list)->ll_children[j] =
 1737                     (*lock_list)->ll_children[j + 1];
 1738         (*lock_list)->ll_count--;
 1739         intr_restore(s);
 1740 
 1741         /*
 1742          * In order to reduce contention on w_mtx, we want to keep always an
 1743          * head object into lists so that frequent allocation from the 
 1744          * free witness pool (and subsequent locking) is avoided.
 1745          * In order to maintain the current code simple, when the head
 1746          * object is totally unloaded it means also that we do not have
 1747          * further objects in the list, so the list ownership needs to be
 1748          * hand over to another object if the current head needs to be freed.
 1749          */
 1750         if ((*lock_list)->ll_count == 0) {
 1751                 if (*lock_list == lle) {
 1752                         if (lle->ll_next == NULL)
 1753                                 return;
 1754                 } else
 1755                         lle = *lock_list;
 1756                 *lock_list = lle->ll_next;
 1757                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
 1758                     td->td_proc->p_pid, lle);
 1759                 witness_lock_list_free(lle);
 1760         }
 1761 }
 1762 
 1763 void
 1764 witness_thread_exit(struct thread *td)
 1765 {
 1766         struct lock_list_entry *lle;
 1767         int i, n;
 1768 
 1769         lle = td->td_sleeplocks;
 1770         if (lle == NULL || KERNEL_PANICKED())
 1771                 return;
 1772         if (lle->ll_count != 0) {
 1773                 for (n = 0; lle != NULL; lle = lle->ll_next)
 1774                         for (i = lle->ll_count - 1; i >= 0; i--) {
 1775                                 if (n == 0)
 1776                                         witness_output(
 1777                     "Thread %p exiting with the following locks held:\n", td);
 1778                                 n++;
 1779                                 witness_list_lock(&lle->ll_children[i],
 1780                                     witness_output);
 1781                                 
 1782                         }
 1783                 kassert_panic(
 1784                     "Thread %p cannot exit while holding sleeplocks\n", td);
 1785         }
 1786         witness_lock_list_free(lle);
 1787 }
 1788 
 1789 /*
 1790  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
 1791  * exempt Giant and sleepable locks from the checks as well.  If any
 1792  * non-exempt locks are held, then a supplied message is printed to the
 1793  * output channel along with a list of the offending locks.  If indicated in the
 1794  * flags then a failure results in a panic as well.
 1795  */
 1796 int
 1797 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
 1798 {
 1799         struct lock_list_entry *lock_list, *lle;
 1800         struct lock_instance *lock1;
 1801         struct thread *td;
 1802         va_list ap;
 1803         int i, n;
 1804 
 1805         if (witness_cold || witness_watch < 1 || KERNEL_PANICKED())
 1806                 return (0);
 1807         n = 0;
 1808         td = curthread;
 1809         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
 1810                 for (i = lle->ll_count - 1; i >= 0; i--) {
 1811                         lock1 = &lle->ll_children[i];
 1812                         if (lock1->li_lock == lock)
 1813                                 continue;
 1814                         if (flags & WARN_GIANTOK &&
 1815                             lock1->li_lock == &Giant.lock_object)
 1816                                 continue;
 1817                         if (flags & WARN_SLEEPOK &&
 1818                             (lock1->li_flags & LI_SLEEPABLE) != 0)
 1819                                 continue;
 1820                         if (n == 0) {
 1821                                 va_start(ap, fmt);
 1822                                 vprintf(fmt, ap);
 1823                                 va_end(ap);
 1824                                 printf(" with the following %slocks held:\n",
 1825                                     (flags & WARN_SLEEPOK) != 0 ?
 1826                                     "non-sleepable " : "");
 1827                         }
 1828                         n++;
 1829                         witness_list_lock(lock1, printf);
 1830                 }
 1831 
 1832         /*
 1833          * Pin the thread in order to avoid problems with thread migration.
 1834          * Once that all verifies are passed about spinlocks ownership,
 1835          * the thread is in a safe path and it can be unpinned.
 1836          */
 1837         sched_pin();
 1838         lock_list = PCPU_GET(spinlocks);
 1839         if (lock_list != NULL && lock_list->ll_count != 0) {
 1840                 sched_unpin();
 1841 
 1842                 /*
 1843                  * We should only have one spinlock and as long as
 1844                  * the flags cannot match for this locks class,
 1845                  * check if the first spinlock is the one curthread
 1846                  * should hold.
 1847                  */
 1848                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
 1849                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
 1850                     lock1->li_lock == lock && n == 0)
 1851                         return (0);
 1852 
 1853                 va_start(ap, fmt);
 1854                 vprintf(fmt, ap);
 1855                 va_end(ap);
 1856                 printf(" with the following %slocks held:\n",
 1857                     (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
 1858                 n += witness_list_locks(&lock_list, printf);
 1859         } else
 1860                 sched_unpin();
 1861         if (flags & WARN_PANIC && n)
 1862                 kassert_panic("%s", __func__);
 1863         else
 1864                 witness_debugger(n, __func__);
 1865         return (n);
 1866 }
 1867 
 1868 const char *
 1869 witness_file(struct lock_object *lock)
 1870 {
 1871         struct witness *w;
 1872 
 1873         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
 1874                 return ("?");
 1875         w = lock->lo_witness;
 1876         return (w->w_file);
 1877 }
 1878 
 1879 int
 1880 witness_line(struct lock_object *lock)
 1881 {
 1882         struct witness *w;
 1883 
 1884         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
 1885                 return (0);
 1886         w = lock->lo_witness;
 1887         return (w->w_line);
 1888 }
 1889 
 1890 static struct witness *
 1891 enroll(const char *description, struct lock_class *lock_class)
 1892 {
 1893         struct witness *w;
 1894 
 1895         MPASS(description != NULL);
 1896 
 1897         if (witness_watch == -1 || KERNEL_PANICKED())
 1898                 return (NULL);
 1899         if ((lock_class->lc_flags & LC_SPINLOCK)) {
 1900                 if (witness_skipspin)
 1901                         return (NULL);
 1902         } else if ((lock_class->lc_flags & LC_SLEEPLOCK) == 0) {
 1903                 kassert_panic("lock class %s is not sleep or spin",
 1904                     lock_class->lc_name);
 1905                 return (NULL);
 1906         }
 1907 
 1908         mtx_lock_spin(&w_mtx);
 1909         w = witness_hash_get(description);
 1910         if (w)
 1911                 goto found;
 1912         if ((w = witness_get()) == NULL)
 1913                 return (NULL);
 1914         MPASS(strlen(description) < MAX_W_NAME);
 1915         strcpy(w->w_name, description);
 1916         w->w_class = lock_class;
 1917         w->w_refcount = 1;
 1918         STAILQ_INSERT_HEAD(&w_all, w, w_list);
 1919         if (lock_class->lc_flags & LC_SPINLOCK) {
 1920                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
 1921                 w_spin_cnt++;
 1922         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
 1923                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
 1924                 w_sleep_cnt++;
 1925         }
 1926 
 1927         /* Insert new witness into the hash */
 1928         witness_hash_put(w);
 1929         witness_increment_graph_generation();
 1930         mtx_unlock_spin(&w_mtx);
 1931         return (w);
 1932 found:
 1933         w->w_refcount++;
 1934         if (w->w_refcount == 1)
 1935                 w->w_class = lock_class;
 1936         mtx_unlock_spin(&w_mtx);
 1937         if (lock_class != w->w_class)
 1938                 kassert_panic(
 1939                     "lock (%s) %s does not match earlier (%s) lock",
 1940                     description, lock_class->lc_name,
 1941                     w->w_class->lc_name);
 1942         return (w);
 1943 }
 1944 
 1945 static void
 1946 depart(struct witness *w)
 1947 {
 1948 
 1949         MPASS(w->w_refcount == 0);
 1950         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
 1951                 w_sleep_cnt--;
 1952         } else {
 1953                 w_spin_cnt--;
 1954         }
 1955         /*
 1956          * Set file to NULL as it may point into a loadable module.
 1957          */
 1958         w->w_file = NULL;
 1959         w->w_line = 0;
 1960         witness_increment_graph_generation();
 1961 }
 1962 
 1963 static void
 1964 adopt(struct witness *parent, struct witness *child)
 1965 {
 1966         int pi, ci, i, j;
 1967 
 1968         if (witness_cold == 0)
 1969                 mtx_assert(&w_mtx, MA_OWNED);
 1970 
 1971         /* If the relationship is already known, there's no work to be done. */
 1972         if (isitmychild(parent, child))
 1973                 return;
 1974 
 1975         /* When the structure of the graph changes, bump up the generation. */
 1976         witness_increment_graph_generation();
 1977 
 1978         /*
 1979          * The hard part ... create the direct relationship, then propagate all
 1980          * indirect relationships.
 1981          */
 1982         pi = parent->w_index;
 1983         ci = child->w_index;
 1984         WITNESS_INDEX_ASSERT(pi);
 1985         WITNESS_INDEX_ASSERT(ci);
 1986         MPASS(pi != ci);
 1987         w_rmatrix[pi][ci] |= WITNESS_PARENT;
 1988         w_rmatrix[ci][pi] |= WITNESS_CHILD;
 1989 
 1990         /*
 1991          * If parent was not already an ancestor of child,
 1992          * then we increment the descendant and ancestor counters.
 1993          */
 1994         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
 1995                 parent->w_num_descendants++;
 1996                 child->w_num_ancestors++;
 1997         }
 1998 
 1999         /* 
 2000          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
 2001          * an ancestor of 'pi' during this loop.
 2002          */
 2003         for (i = 1; i <= w_max_used_index; i++) {
 2004                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
 2005                     (i != pi))
 2006                         continue;
 2007 
 2008                 /* Find each descendant of 'i' and mark it as a descendant. */
 2009                 for (j = 1; j <= w_max_used_index; j++) {
 2010                         /* 
 2011                          * Skip children that are already marked as
 2012                          * descendants of 'i'.
 2013                          */
 2014                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
 2015                                 continue;
 2016 
 2017                         /*
 2018                          * We are only interested in descendants of 'ci'. Note
 2019                          * that 'ci' itself is counted as a descendant of 'ci'.
 2020                          */
 2021                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
 2022                             (j != ci))
 2023                                 continue;
 2024                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
 2025                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
 2026                         w_data[i].w_num_descendants++;
 2027                         w_data[j].w_num_ancestors++;
 2028 
 2029                         /* 
 2030                          * Make sure we aren't marking a node as both an
 2031                          * ancestor and descendant. We should have caught 
 2032                          * this as a lock order reversal earlier.
 2033                          */
 2034                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
 2035                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
 2036                                 printf("witness rmatrix paradox! [%d][%d]=%d "
 2037                                     "both ancestor and descendant\n",
 2038                                     i, j, w_rmatrix[i][j]); 
 2039                                 kdb_backtrace();
 2040                                 printf("Witness disabled.\n");
 2041                                 witness_watch = -1;
 2042                         }
 2043                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
 2044                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
 2045                                 printf("witness rmatrix paradox! [%d][%d]=%d "
 2046                                     "both ancestor and descendant\n",
 2047                                     j, i, w_rmatrix[j][i]); 
 2048                                 kdb_backtrace();
 2049                                 printf("Witness disabled.\n");
 2050                                 witness_watch = -1;
 2051                         }
 2052                 }
 2053         }
 2054 }
 2055 
 2056 static void
 2057 itismychild(struct witness *parent, struct witness *child)
 2058 {
 2059         int unlocked;
 2060 
 2061         MPASS(child != NULL && parent != NULL);
 2062         if (witness_cold == 0)
 2063                 mtx_assert(&w_mtx, MA_OWNED);
 2064 
 2065         if (!witness_lock_type_equal(parent, child)) {
 2066                 if (witness_cold == 0) {
 2067                         unlocked = 1;
 2068                         mtx_unlock_spin(&w_mtx);
 2069                 } else {
 2070                         unlocked = 0;
 2071                 }
 2072                 kassert_panic(
 2073                     "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
 2074                     "the same lock type", __func__, parent->w_name,
 2075                     parent->w_class->lc_name, child->w_name,
 2076                     child->w_class->lc_name);
 2077                 if (unlocked)
 2078                         mtx_lock_spin(&w_mtx);
 2079         }
 2080         adopt(parent, child);
 2081 }
 2082 
 2083 /*
 2084  * Generic code for the isitmy*() functions. The rmask parameter is the
 2085  * expected relationship of w1 to w2.
 2086  */
 2087 static int
 2088 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
 2089 {
 2090         unsigned char r1, r2;
 2091         int i1, i2;
 2092 
 2093         i1 = w1->w_index;
 2094         i2 = w2->w_index;
 2095         WITNESS_INDEX_ASSERT(i1);
 2096         WITNESS_INDEX_ASSERT(i2);
 2097         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
 2098         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
 2099 
 2100         /* The flags on one better be the inverse of the flags on the other */
 2101         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
 2102             (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
 2103                 /* Don't squawk if we're potentially racing with an update. */
 2104                 if (!mtx_owned(&w_mtx))
 2105                         return (0);
 2106                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
 2107                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
 2108                     "w_rmatrix[%d][%d] == %hhx\n",
 2109                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
 2110                     i2, i1, r2);
 2111                 kdb_backtrace();
 2112                 printf("Witness disabled.\n");
 2113                 witness_watch = -1;
 2114         }
 2115         return (r1 & rmask);
 2116 }
 2117 
 2118 /*
 2119  * Checks if @child is a direct child of @parent.
 2120  */
 2121 static int
 2122 isitmychild(struct witness *parent, struct witness *child)
 2123 {
 2124 
 2125         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
 2126 }
 2127 
 2128 /*
 2129  * Checks if @descendant is a direct or inderect descendant of @ancestor.
 2130  */
 2131 static int
 2132 isitmydescendant(struct witness *ancestor, struct witness *descendant)
 2133 {
 2134 
 2135         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
 2136             __func__));
 2137 }
 2138 
 2139 static int
 2140 blessed(struct witness *w1, struct witness *w2)
 2141 {
 2142         int i;
 2143         struct witness_blessed *b;
 2144 
 2145         for (i = 0; i < nitems(blessed_list); i++) {
 2146                 b = &blessed_list[i];
 2147                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
 2148                         if (strcmp(w2->w_name, b->b_lock2) == 0)
 2149                                 return (1);
 2150                         continue;
 2151                 }
 2152                 if (strcmp(w1->w_name, b->b_lock2) == 0)
 2153                         if (strcmp(w2->w_name, b->b_lock1) == 0)
 2154                                 return (1);
 2155         }
 2156         return (0);
 2157 }
 2158 
 2159 static struct witness *
 2160 witness_get(void)
 2161 {
 2162         struct witness *w;
 2163         int index;
 2164 
 2165         if (witness_cold == 0)
 2166                 mtx_assert(&w_mtx, MA_OWNED);
 2167 
 2168         if (witness_watch == -1) {
 2169                 mtx_unlock_spin(&w_mtx);
 2170                 return (NULL);
 2171         }
 2172         if (STAILQ_EMPTY(&w_free)) {
 2173                 witness_watch = -1;
 2174                 mtx_unlock_spin(&w_mtx);
 2175                 printf("WITNESS: unable to allocate a new witness object\n");
 2176                 return (NULL);
 2177         }
 2178         w = STAILQ_FIRST(&w_free);
 2179         STAILQ_REMOVE_HEAD(&w_free, w_list);
 2180         w_free_cnt--;
 2181         index = w->w_index;
 2182         MPASS(index > 0 && index == w_max_used_index+1 &&
 2183             index < witness_count);
 2184         bzero(w, sizeof(*w));
 2185         w->w_index = index;
 2186         if (index > w_max_used_index)
 2187                 w_max_used_index = index;
 2188         return (w);
 2189 }
 2190 
 2191 static void
 2192 witness_free(struct witness *w)
 2193 {
 2194 
 2195         STAILQ_INSERT_HEAD(&w_free, w, w_list);
 2196         w_free_cnt++;
 2197 }
 2198 
 2199 static struct lock_list_entry *
 2200 witness_lock_list_get(void)
 2201 {
 2202         struct lock_list_entry *lle;
 2203 
 2204         if (witness_watch == -1)
 2205                 return (NULL);
 2206         mtx_lock_spin(&w_mtx);
 2207         lle = w_lock_list_free;
 2208         if (lle == NULL) {
 2209                 witness_watch = -1;
 2210                 mtx_unlock_spin(&w_mtx);
 2211                 printf("%s: witness exhausted\n", __func__);
 2212                 return (NULL);
 2213         }
 2214         w_lock_list_free = lle->ll_next;
 2215         mtx_unlock_spin(&w_mtx);
 2216         bzero(lle, sizeof(*lle));
 2217         return (lle);
 2218 }
 2219                 
 2220 static void
 2221 witness_lock_list_free(struct lock_list_entry *lle)
 2222 {
 2223 
 2224         mtx_lock_spin(&w_mtx);
 2225         lle->ll_next = w_lock_list_free;
 2226         w_lock_list_free = lle;
 2227         mtx_unlock_spin(&w_mtx);
 2228 }
 2229 
 2230 static struct lock_instance *
 2231 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
 2232 {
 2233         struct lock_list_entry *lle;
 2234         struct lock_instance *instance;
 2235         int i;
 2236 
 2237         for (lle = list; lle != NULL; lle = lle->ll_next)
 2238                 for (i = lle->ll_count - 1; i >= 0; i--) {
 2239                         instance = &lle->ll_children[i];
 2240                         if (instance->li_lock == lock)
 2241                                 return (instance);
 2242                 }
 2243         return (NULL);
 2244 }
 2245 
 2246 static void
 2247 witness_list_lock(struct lock_instance *instance,
 2248     int (*prnt)(const char *fmt, ...))
 2249 {
 2250         struct lock_object *lock;
 2251 
 2252         lock = instance->li_lock;
 2253         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
 2254             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
 2255         if (lock->lo_witness->w_name != lock->lo_name)
 2256                 prnt(" (%s)", lock->lo_witness->w_name);
 2257         prnt(" r = %d (%p) locked @ %s:%d\n",
 2258             instance->li_flags & LI_RECURSEMASK, lock,
 2259             fixup_filename(instance->li_file), instance->li_line);
 2260 }
 2261 
 2262 static int
 2263 witness_output(const char *fmt, ...)
 2264 {
 2265         va_list ap;
 2266         int ret;
 2267 
 2268         va_start(ap, fmt);
 2269         ret = witness_voutput(fmt, ap);
 2270         va_end(ap);
 2271         return (ret);
 2272 }
 2273 
 2274 static int
 2275 witness_voutput(const char *fmt, va_list ap)
 2276 {
 2277         int ret;
 2278 
 2279         ret = 0;
 2280         switch (witness_channel) {
 2281         case WITNESS_CONSOLE:
 2282                 ret = vprintf(fmt, ap);
 2283                 break;
 2284         case WITNESS_LOG:
 2285                 vlog(LOG_NOTICE, fmt, ap);
 2286                 break;
 2287         case WITNESS_NONE:
 2288                 break;
 2289         }
 2290         return (ret);
 2291 }
 2292 
 2293 #ifdef DDB
 2294 static int
 2295 witness_thread_has_locks(struct thread *td)
 2296 {
 2297 
 2298         if (td->td_sleeplocks == NULL)
 2299                 return (0);
 2300         return (td->td_sleeplocks->ll_count != 0);
 2301 }
 2302 
 2303 static int
 2304 witness_proc_has_locks(struct proc *p)
 2305 {
 2306         struct thread *td;
 2307 
 2308         FOREACH_THREAD_IN_PROC(p, td) {
 2309                 if (witness_thread_has_locks(td))
 2310                         return (1);
 2311         }
 2312         return (0);
 2313 }
 2314 #endif
 2315 
 2316 int
 2317 witness_list_locks(struct lock_list_entry **lock_list,
 2318     int (*prnt)(const char *fmt, ...))
 2319 {
 2320         struct lock_list_entry *lle;
 2321         int i, nheld;
 2322 
 2323         nheld = 0;
 2324         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
 2325                 for (i = lle->ll_count - 1; i >= 0; i--) {
 2326                         witness_list_lock(&lle->ll_children[i], prnt);
 2327                         nheld++;
 2328                 }
 2329         return (nheld);
 2330 }
 2331 
 2332 /*
 2333  * This is a bit risky at best.  We call this function when we have timed
 2334  * out acquiring a spin lock, and we assume that the other CPU is stuck
 2335  * with this lock held.  So, we go groveling around in the other CPU's
 2336  * per-cpu data to try to find the lock instance for this spin lock to
 2337  * see when it was last acquired.
 2338  */
 2339 void
 2340 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
 2341     int (*prnt)(const char *fmt, ...))
 2342 {
 2343         struct lock_instance *instance;
 2344         struct pcpu *pc;
 2345 
 2346         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
 2347                 return;
 2348         pc = pcpu_find(owner->td_oncpu);
 2349         instance = find_instance(pc->pc_spinlocks, lock);
 2350         if (instance != NULL)
 2351                 witness_list_lock(instance, prnt);
 2352 }
 2353 
 2354 void
 2355 witness_save(struct lock_object *lock, const char **filep, int *linep)
 2356 {
 2357         struct lock_list_entry *lock_list;
 2358         struct lock_instance *instance;
 2359         struct lock_class *class;
 2360 
 2361         /*
 2362          * This function is used independently in locking code to deal with
 2363          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
 2364          * is gone.
 2365          */
 2366         if (SCHEDULER_STOPPED())
 2367                 return;
 2368         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2369         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
 2370                 return;
 2371         class = LOCK_CLASS(lock);
 2372         if (class->lc_flags & LC_SLEEPLOCK)
 2373                 lock_list = curthread->td_sleeplocks;
 2374         else {
 2375                 if (witness_skipspin)
 2376                         return;
 2377                 lock_list = PCPU_GET(spinlocks);
 2378         }
 2379         instance = find_instance(lock_list, lock);
 2380         if (instance == NULL) {
 2381                 kassert_panic("%s: lock (%s) %s not locked", __func__,
 2382                     class->lc_name, lock->lo_name);
 2383                 return;
 2384         }
 2385         *filep = instance->li_file;
 2386         *linep = instance->li_line;
 2387 }
 2388 
 2389 void
 2390 witness_restore(struct lock_object *lock, const char *file, int line)
 2391 {
 2392         struct lock_list_entry *lock_list;
 2393         struct lock_instance *instance;
 2394         struct lock_class *class;
 2395 
 2396         /*
 2397          * This function is used independently in locking code to deal with
 2398          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
 2399          * is gone.
 2400          */
 2401         if (SCHEDULER_STOPPED())
 2402                 return;
 2403         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2404         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
 2405                 return;
 2406         class = LOCK_CLASS(lock);
 2407         if (class->lc_flags & LC_SLEEPLOCK)
 2408                 lock_list = curthread->td_sleeplocks;
 2409         else {
 2410                 if (witness_skipspin)
 2411                         return;
 2412                 lock_list = PCPU_GET(spinlocks);
 2413         }
 2414         instance = find_instance(lock_list, lock);
 2415         if (instance == NULL)
 2416                 kassert_panic("%s: lock (%s) %s not locked", __func__,
 2417                     class->lc_name, lock->lo_name);
 2418         lock->lo_witness->w_file = file;
 2419         lock->lo_witness->w_line = line;
 2420         if (instance == NULL)
 2421                 return;
 2422         instance->li_file = file;
 2423         instance->li_line = line;
 2424 }
 2425 
 2426 void
 2427 witness_assert(const struct lock_object *lock, int flags, const char *file,
 2428     int line)
 2429 {
 2430 #ifdef INVARIANT_SUPPORT
 2431         struct lock_instance *instance;
 2432         struct lock_class *class;
 2433 
 2434         if (lock->lo_witness == NULL || witness_watch < 1 || KERNEL_PANICKED())
 2435                 return;
 2436         class = LOCK_CLASS(lock);
 2437         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
 2438                 instance = find_instance(curthread->td_sleeplocks, lock);
 2439         else if ((class->lc_flags & LC_SPINLOCK) != 0)
 2440                 instance = find_instance(PCPU_GET(spinlocks), lock);
 2441         else {
 2442                 kassert_panic("Lock (%s) %s is not sleep or spin!",
 2443                     class->lc_name, lock->lo_name);
 2444                 return;
 2445         }
 2446         switch (flags) {
 2447         case LA_UNLOCKED:
 2448                 if (instance != NULL)
 2449                         kassert_panic("Lock (%s) %s locked @ %s:%d.",
 2450                             class->lc_name, lock->lo_name,
 2451                             fixup_filename(file), line);
 2452                 break;
 2453         case LA_LOCKED:
 2454         case LA_LOCKED | LA_RECURSED:
 2455         case LA_LOCKED | LA_NOTRECURSED:
 2456         case LA_SLOCKED:
 2457         case LA_SLOCKED | LA_RECURSED:
 2458         case LA_SLOCKED | LA_NOTRECURSED:
 2459         case LA_XLOCKED:
 2460         case LA_XLOCKED | LA_RECURSED:
 2461         case LA_XLOCKED | LA_NOTRECURSED:
 2462                 if (instance == NULL) {
 2463                         kassert_panic("Lock (%s) %s not locked @ %s:%d.",
 2464                             class->lc_name, lock->lo_name,
 2465                             fixup_filename(file), line);
 2466                         break;
 2467                 }
 2468                 if ((flags & LA_XLOCKED) != 0 &&
 2469                     (instance->li_flags & LI_EXCLUSIVE) == 0)
 2470                         kassert_panic(
 2471                             "Lock (%s) %s not exclusively locked @ %s:%d.",
 2472                             class->lc_name, lock->lo_name,
 2473                             fixup_filename(file), line);
 2474                 if ((flags & LA_SLOCKED) != 0 &&
 2475                     (instance->li_flags & LI_EXCLUSIVE) != 0)
 2476                         kassert_panic(
 2477                             "Lock (%s) %s exclusively locked @ %s:%d.",
 2478                             class->lc_name, lock->lo_name,
 2479                             fixup_filename(file), line);
 2480                 if ((flags & LA_RECURSED) != 0 &&
 2481                     (instance->li_flags & LI_RECURSEMASK) == 0)
 2482                         kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
 2483                             class->lc_name, lock->lo_name,
 2484                             fixup_filename(file), line);
 2485                 if ((flags & LA_NOTRECURSED) != 0 &&
 2486                     (instance->li_flags & LI_RECURSEMASK) != 0)
 2487                         kassert_panic("Lock (%s) %s recursed @ %s:%d.",
 2488                             class->lc_name, lock->lo_name,
 2489                             fixup_filename(file), line);
 2490                 break;
 2491         default:
 2492                 kassert_panic("Invalid lock assertion at %s:%d.",
 2493                     fixup_filename(file), line);
 2494         }
 2495 #endif  /* INVARIANT_SUPPORT */
 2496 }
 2497 
 2498 static void
 2499 witness_setflag(struct lock_object *lock, int flag, int set)
 2500 {
 2501         struct lock_list_entry *lock_list;
 2502         struct lock_instance *instance;
 2503         struct lock_class *class;
 2504 
 2505         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
 2506                 return;
 2507         class = LOCK_CLASS(lock);
 2508         if (class->lc_flags & LC_SLEEPLOCK)
 2509                 lock_list = curthread->td_sleeplocks;
 2510         else {
 2511                 if (witness_skipspin)
 2512                         return;
 2513                 lock_list = PCPU_GET(spinlocks);
 2514         }
 2515         instance = find_instance(lock_list, lock);
 2516         if (instance == NULL) {
 2517                 kassert_panic("%s: lock (%s) %s not locked", __func__,
 2518                     class->lc_name, lock->lo_name);
 2519                 return;
 2520         }
 2521 
 2522         if (set)
 2523                 instance->li_flags |= flag;
 2524         else
 2525                 instance->li_flags &= ~flag;
 2526 }
 2527 
 2528 void
 2529 witness_norelease(struct lock_object *lock)
 2530 {
 2531 
 2532         witness_setflag(lock, LI_NORELEASE, 1);
 2533 }
 2534 
 2535 void
 2536 witness_releaseok(struct lock_object *lock)
 2537 {
 2538 
 2539         witness_setflag(lock, LI_NORELEASE, 0);
 2540 }
 2541 
 2542 #ifdef DDB
 2543 static void
 2544 witness_ddb_list(struct thread *td)
 2545 {
 2546 
 2547         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2548         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
 2549 
 2550         if (witness_watch < 1)
 2551                 return;
 2552 
 2553         witness_list_locks(&td->td_sleeplocks, db_printf);
 2554 
 2555         /*
 2556          * We only handle spinlocks if td == curthread.  This is somewhat broken
 2557          * if td is currently executing on some other CPU and holds spin locks
 2558          * as we won't display those locks.  If we had a MI way of getting
 2559          * the per-cpu data for a given cpu then we could use
 2560          * td->td_oncpu to get the list of spinlocks for this thread
 2561          * and "fix" this.
 2562          *
 2563          * That still wouldn't really fix this unless we locked the scheduler
 2564          * lock or stopped the other CPU to make sure it wasn't changing the
 2565          * list out from under us.  It is probably best to just not try to
 2566          * handle threads on other CPU's for now.
 2567          */
 2568         if (td == curthread && PCPU_GET(spinlocks) != NULL)
 2569                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
 2570 }
 2571 
 2572 DB_SHOW_COMMAND(locks, db_witness_list)
 2573 {
 2574         struct thread *td;
 2575 
 2576         if (have_addr)
 2577                 td = db_lookup_thread(addr, true);
 2578         else
 2579                 td = kdb_thread;
 2580         witness_ddb_list(td);
 2581 }
 2582 
 2583 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
 2584 {
 2585         struct thread *td;
 2586         struct proc *p;
 2587 
 2588         /*
 2589          * It would be nice to list only threads and processes that actually
 2590          * held sleep locks, but that information is currently not exported
 2591          * by WITNESS.
 2592          */
 2593         FOREACH_PROC_IN_SYSTEM(p) {
 2594                 if (!witness_proc_has_locks(p))
 2595                         continue;
 2596                 FOREACH_THREAD_IN_PROC(p, td) {
 2597                         if (!witness_thread_has_locks(td))
 2598                                 continue;
 2599                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
 2600                             p->p_comm, td, td->td_tid);
 2601                         witness_ddb_list(td);
 2602                         if (db_pager_quit)
 2603                                 return;
 2604                 }
 2605         }
 2606 }
 2607 DB_SHOW_ALIAS_FLAGS(alllocks, db_witness_list_all, DB_CMD_MEMSAFE)
 2608 
 2609 DB_SHOW_COMMAND_FLAGS(witness, db_witness_display, DB_CMD_MEMSAFE)
 2610 {
 2611 
 2612         witness_ddb_display(db_printf);
 2613 }
 2614 #endif
 2615 
 2616 static void
 2617 sbuf_print_witness_badstacks(struct sbuf *sb, size_t *oldidx)
 2618 {
 2619         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
 2620         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
 2621         int generation, i, j;
 2622 
 2623         tmp_data1 = NULL;
 2624         tmp_data2 = NULL;
 2625         tmp_w1 = NULL;
 2626         tmp_w2 = NULL;
 2627 
 2628         /* Allocate and init temporary storage space. */
 2629         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
 2630         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
 2631         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
 2632             M_WAITOK | M_ZERO);
 2633         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
 2634             M_WAITOK | M_ZERO);
 2635         stack_zero(&tmp_data1->wlod_stack);
 2636         stack_zero(&tmp_data2->wlod_stack);
 2637 
 2638 restart:
 2639         mtx_lock_spin(&w_mtx);
 2640         generation = w_generation;
 2641         mtx_unlock_spin(&w_mtx);
 2642         sbuf_printf(sb, "Number of known direct relationships is %d\n",
 2643             w_lohash.wloh_count);
 2644         for (i = 1; i < w_max_used_index; i++) {
 2645                 mtx_lock_spin(&w_mtx);
 2646                 if (generation != w_generation) {
 2647                         mtx_unlock_spin(&w_mtx);
 2648 
 2649                         /* The graph has changed, try again. */
 2650                         *oldidx = 0;
 2651                         sbuf_clear(sb);
 2652                         goto restart;
 2653                 }
 2654 
 2655                 w1 = &w_data[i];
 2656                 if (w1->w_reversed == 0) {
 2657                         mtx_unlock_spin(&w_mtx);
 2658                         continue;
 2659                 }
 2660 
 2661                 /* Copy w1 locally so we can release the spin lock. */
 2662                 *tmp_w1 = *w1;
 2663                 mtx_unlock_spin(&w_mtx);
 2664 
 2665                 if (tmp_w1->w_reversed == 0)
 2666                         continue;
 2667                 for (j = 1; j < w_max_used_index; j++) {
 2668                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
 2669                                 continue;
 2670 
 2671                         mtx_lock_spin(&w_mtx);
 2672                         if (generation != w_generation) {
 2673                                 mtx_unlock_spin(&w_mtx);
 2674 
 2675                                 /* The graph has changed, try again. */
 2676                                 *oldidx = 0;
 2677                                 sbuf_clear(sb);
 2678                                 goto restart;
 2679                         }
 2680 
 2681                         w2 = &w_data[j];
 2682                         data1 = witness_lock_order_get(w1, w2);
 2683                         data2 = witness_lock_order_get(w2, w1);
 2684 
 2685                         /*
 2686                          * Copy information locally so we can release the
 2687                          * spin lock.
 2688                          */
 2689                         *tmp_w2 = *w2;
 2690 
 2691                         if (data1) {
 2692                                 stack_zero(&tmp_data1->wlod_stack);
 2693                                 stack_copy(&data1->wlod_stack,
 2694                                     &tmp_data1->wlod_stack);
 2695                         }
 2696                         if (data2 && data2 != data1) {
 2697                                 stack_zero(&tmp_data2->wlod_stack);
 2698                                 stack_copy(&data2->wlod_stack,
 2699                                     &tmp_data2->wlod_stack);
 2700                         }
 2701                         mtx_unlock_spin(&w_mtx);
 2702 
 2703                         if (blessed(tmp_w1, tmp_w2))
 2704                                 continue;
 2705 
 2706                         sbuf_printf(sb,
 2707             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
 2708                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
 2709                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
 2710                         if (data1) {
 2711                                 sbuf_printf(sb,
 2712                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
 2713                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
 2714                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
 2715                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
 2716                                 sbuf_printf(sb, "\n");
 2717                         }
 2718                         if (data2 && data2 != data1) {
 2719                                 sbuf_printf(sb,
 2720                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
 2721                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
 2722                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
 2723                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
 2724                                 sbuf_printf(sb, "\n");
 2725                         }
 2726                 }
 2727         }
 2728         mtx_lock_spin(&w_mtx);
 2729         if (generation != w_generation) {
 2730                 mtx_unlock_spin(&w_mtx);
 2731 
 2732                 /*
 2733                  * The graph changed while we were printing stack data,
 2734                  * try again.
 2735                  */
 2736                 *oldidx = 0;
 2737                 sbuf_clear(sb);
 2738                 goto restart;
 2739         }
 2740         mtx_unlock_spin(&w_mtx);
 2741 
 2742         /* Free temporary storage space. */
 2743         free(tmp_data1, M_TEMP);
 2744         free(tmp_data2, M_TEMP);
 2745         free(tmp_w1, M_TEMP);
 2746         free(tmp_w2, M_TEMP);
 2747 }
 2748 
 2749 static int
 2750 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
 2751 {
 2752         struct sbuf *sb;
 2753         int error;
 2754 
 2755         if (witness_watch < 1) {
 2756                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
 2757                 return (error);
 2758         }
 2759         if (witness_cold) {
 2760                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
 2761                 return (error);
 2762         }
 2763         error = 0;
 2764         sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
 2765         if (sb == NULL)
 2766                 return (ENOMEM);
 2767 
 2768         sbuf_print_witness_badstacks(sb, &req->oldidx);
 2769 
 2770         sbuf_finish(sb);
 2771         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
 2772         sbuf_delete(sb);
 2773 
 2774         return (error);
 2775 }
 2776 
 2777 #ifdef DDB
 2778 static int
 2779 sbuf_db_printf_drain(void *arg __unused, const char *data, int len)
 2780 {
 2781 
 2782         return (db_printf("%.*s", len, data));
 2783 }
 2784 
 2785 DB_SHOW_COMMAND_FLAGS(badstacks, db_witness_badstacks, DB_CMD_MEMSAFE)
 2786 {
 2787         struct sbuf sb;
 2788         char buffer[128];
 2789         size_t dummy;
 2790 
 2791         sbuf_new(&sb, buffer, sizeof(buffer), SBUF_FIXEDLEN);
 2792         sbuf_set_drain(&sb, sbuf_db_printf_drain, NULL);
 2793         sbuf_print_witness_badstacks(&sb, &dummy);
 2794         sbuf_finish(&sb);
 2795 }
 2796 #endif
 2797 
 2798 static int
 2799 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
 2800 {
 2801         static const struct {
 2802                 enum witness_channel channel;
 2803                 const char *name;
 2804         } channels[] = {
 2805                 { WITNESS_CONSOLE, "console" },
 2806                 { WITNESS_LOG, "log" },
 2807                 { WITNESS_NONE, "none" },
 2808         };
 2809         char buf[16];
 2810         u_int i;
 2811         int error;
 2812 
 2813         buf[0] = '\0';
 2814         for (i = 0; i < nitems(channels); i++)
 2815                 if (witness_channel == channels[i].channel) {
 2816                         snprintf(buf, sizeof(buf), "%s", channels[i].name);
 2817                         break;
 2818                 }
 2819 
 2820         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
 2821         if (error != 0 || req->newptr == NULL)
 2822                 return (error);
 2823 
 2824         error = EINVAL;
 2825         for (i = 0; i < nitems(channels); i++)
 2826                 if (strcmp(channels[i].name, buf) == 0) {
 2827                         witness_channel = channels[i].channel;
 2828                         error = 0;
 2829                         break;
 2830                 }
 2831         return (error);
 2832 }
 2833 
 2834 static int
 2835 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
 2836 {
 2837         struct witness *w;
 2838         struct sbuf *sb;
 2839         int error;
 2840 
 2841 #ifdef __i386__
 2842         error = SYSCTL_OUT(req, w_notallowed, sizeof(w_notallowed));
 2843         return (error);
 2844 #endif
 2845 
 2846         if (witness_watch < 1) {
 2847                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
 2848                 return (error);
 2849         }
 2850         if (witness_cold) {
 2851                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
 2852                 return (error);
 2853         }
 2854         error = 0;
 2855 
 2856         error = sysctl_wire_old_buffer(req, 0);
 2857         if (error != 0)
 2858                 return (error);
 2859         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
 2860         if (sb == NULL)
 2861                 return (ENOMEM);
 2862         sbuf_printf(sb, "\n");
 2863 
 2864         mtx_lock_spin(&w_mtx);
 2865         STAILQ_FOREACH(w, &w_all, w_list)
 2866                 w->w_displayed = 0;
 2867         STAILQ_FOREACH(w, &w_all, w_list)
 2868                 witness_add_fullgraph(sb, w);
 2869         mtx_unlock_spin(&w_mtx);
 2870 
 2871         /*
 2872          * Close the sbuf and return to userland.
 2873          */
 2874         error = sbuf_finish(sb);
 2875         sbuf_delete(sb);
 2876 
 2877         return (error);
 2878 }
 2879 
 2880 static int
 2881 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
 2882 {
 2883         int error, value;
 2884 
 2885         value = witness_watch;
 2886         error = sysctl_handle_int(oidp, &value, 0, req);
 2887         if (error != 0 || req->newptr == NULL)
 2888                 return (error);
 2889         if (value > 1 || value < -1 ||
 2890             (witness_watch == -1 && value != witness_watch))
 2891                 return (EINVAL);
 2892         witness_watch = value;
 2893         return (0);
 2894 }
 2895 
 2896 static void
 2897 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
 2898 {
 2899         int i;
 2900 
 2901         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
 2902                 return;
 2903         w->w_displayed = 1;
 2904 
 2905         WITNESS_INDEX_ASSERT(w->w_index);
 2906         for (i = 1; i <= w_max_used_index; i++) {
 2907                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
 2908                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
 2909                             w_data[i].w_name);
 2910                         witness_add_fullgraph(sb, &w_data[i]);
 2911                 }
 2912         }
 2913 }
 2914 
 2915 /*
 2916  * A simple hash function. Takes a key pointer and a key size. If size == 0,
 2917  * interprets the key as a string and reads until the null
 2918  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
 2919  * hash value computed from the key.
 2920  */
 2921 static uint32_t
 2922 witness_hash_djb2(const uint8_t *key, uint32_t size)
 2923 {
 2924         unsigned int hash = 5381;
 2925         int i;
 2926 
 2927         /* hash = hash * 33 + key[i] */
 2928         if (size)
 2929                 for (i = 0; i < size; i++)
 2930                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
 2931         else
 2932                 for (i = 0; key[i] != 0; i++)
 2933                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
 2934 
 2935         return (hash);
 2936 }
 2937 
 2938 /*
 2939  * Initializes the two witness hash tables. Called exactly once from
 2940  * witness_initialize().
 2941  */
 2942 static void
 2943 witness_init_hash_tables(void)
 2944 {
 2945         int i;
 2946 
 2947         MPASS(witness_cold);
 2948 
 2949         /* Initialize the hash tables. */
 2950         for (i = 0; i < WITNESS_HASH_SIZE; i++)
 2951                 w_hash.wh_array[i] = NULL;
 2952 
 2953         w_hash.wh_size = WITNESS_HASH_SIZE;
 2954         w_hash.wh_count = 0;
 2955 
 2956         /* Initialize the lock order data hash. */
 2957         w_lofree = NULL;
 2958         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
 2959                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
 2960                 w_lodata[i].wlod_next = w_lofree;
 2961                 w_lofree = &w_lodata[i];
 2962         }
 2963         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
 2964         w_lohash.wloh_count = 0;
 2965         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
 2966                 w_lohash.wloh_array[i] = NULL;
 2967 }
 2968 
 2969 static struct witness *
 2970 witness_hash_get(const char *key)
 2971 {
 2972         struct witness *w;
 2973         uint32_t hash;
 2974 
 2975         MPASS(key != NULL);
 2976         if (witness_cold == 0)
 2977                 mtx_assert(&w_mtx, MA_OWNED);
 2978         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
 2979         w = w_hash.wh_array[hash];
 2980         while (w != NULL) {
 2981                 if (strcmp(w->w_name, key) == 0)
 2982                         goto out;
 2983                 w = w->w_hash_next;
 2984         }
 2985 
 2986 out:
 2987         return (w);
 2988 }
 2989 
 2990 static void
 2991 witness_hash_put(struct witness *w)
 2992 {
 2993         uint32_t hash;
 2994 
 2995         MPASS(w != NULL);
 2996         MPASS(w->w_name != NULL);
 2997         if (witness_cold == 0)
 2998                 mtx_assert(&w_mtx, MA_OWNED);
 2999         KASSERT(witness_hash_get(w->w_name) == NULL,
 3000             ("%s: trying to add a hash entry that already exists!", __func__));
 3001         KASSERT(w->w_hash_next == NULL,
 3002             ("%s: w->w_hash_next != NULL", __func__));
 3003 
 3004         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
 3005         w->w_hash_next = w_hash.wh_array[hash];
 3006         w_hash.wh_array[hash] = w;
 3007         w_hash.wh_count++;
 3008 }
 3009 
 3010 static struct witness_lock_order_data *
 3011 witness_lock_order_get(struct witness *parent, struct witness *child)
 3012 {
 3013         struct witness_lock_order_data *data = NULL;
 3014         struct witness_lock_order_key key;
 3015         unsigned int hash;
 3016 
 3017         MPASS(parent != NULL && child != NULL);
 3018         key.from = parent->w_index;
 3019         key.to = child->w_index;
 3020         WITNESS_INDEX_ASSERT(key.from);
 3021         WITNESS_INDEX_ASSERT(key.to);
 3022         if ((w_rmatrix[parent->w_index][child->w_index]
 3023             & WITNESS_LOCK_ORDER_KNOWN) == 0)
 3024                 goto out;
 3025 
 3026         hash = witness_hash_djb2((const char*)&key,
 3027             sizeof(key)) % w_lohash.wloh_size;
 3028         data = w_lohash.wloh_array[hash];
 3029         while (data != NULL) {
 3030                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
 3031                         break;
 3032                 data = data->wlod_next;
 3033         }
 3034 
 3035 out:
 3036         return (data);
 3037 }
 3038 
 3039 /*
 3040  * Verify that parent and child have a known relationship, are not the same,
 3041  * and child is actually a child of parent.  This is done without w_mtx
 3042  * to avoid contention in the common case.
 3043  */
 3044 static int
 3045 witness_lock_order_check(struct witness *parent, struct witness *child)
 3046 {
 3047 
 3048         if (parent != child &&
 3049             w_rmatrix[parent->w_index][child->w_index]
 3050             & WITNESS_LOCK_ORDER_KNOWN &&
 3051             isitmychild(parent, child))
 3052                 return (1);
 3053 
 3054         return (0);
 3055 }
 3056 
 3057 static int
 3058 witness_lock_order_add(struct witness *parent, struct witness *child)
 3059 {
 3060         struct witness_lock_order_data *data = NULL;
 3061         struct witness_lock_order_key key;
 3062         unsigned int hash;
 3063 
 3064         MPASS(parent != NULL && child != NULL);
 3065         key.from = parent->w_index;
 3066         key.to = child->w_index;
 3067         WITNESS_INDEX_ASSERT(key.from);
 3068         WITNESS_INDEX_ASSERT(key.to);
 3069         if (w_rmatrix[parent->w_index][child->w_index]
 3070             & WITNESS_LOCK_ORDER_KNOWN)
 3071                 return (1);
 3072 
 3073         hash = witness_hash_djb2((const char*)&key,
 3074             sizeof(key)) % w_lohash.wloh_size;
 3075         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
 3076         data = w_lofree;
 3077         if (data == NULL)
 3078                 return (0);
 3079         w_lofree = data->wlod_next;
 3080         data->wlod_next = w_lohash.wloh_array[hash];
 3081         data->wlod_key = key;
 3082         w_lohash.wloh_array[hash] = data;
 3083         w_lohash.wloh_count++;
 3084         stack_save(&data->wlod_stack);
 3085         return (1);
 3086 }
 3087 
 3088 /* Call this whenever the structure of the witness graph changes. */
 3089 static void
 3090 witness_increment_graph_generation(void)
 3091 {
 3092 
 3093         if (witness_cold == 0)
 3094                 mtx_assert(&w_mtx, MA_OWNED);
 3095         w_generation++;
 3096 }
 3097 
 3098 static int
 3099 witness_output_drain(void *arg __unused, const char *data, int len)
 3100 {
 3101 
 3102         witness_output("%.*s", len, data);
 3103         return (len);
 3104 }
 3105 
 3106 static void
 3107 witness_debugger(int cond, const char *msg)
 3108 {
 3109         char buf[32];
 3110         struct sbuf sb;
 3111         struct stack st;
 3112 
 3113         if (!cond)
 3114                 return;
 3115 
 3116         if (witness_trace) {
 3117                 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 3118                 sbuf_set_drain(&sb, witness_output_drain, NULL);
 3119 
 3120                 stack_save(&st);
 3121                 witness_output("stack backtrace:\n");
 3122                 stack_sbuf_print_ddb(&sb, &st);
 3123 
 3124                 sbuf_finish(&sb);
 3125         }
 3126 
 3127         witness_enter_debugger(msg);
 3128 }
 3129 
 3130 static void
 3131 witness_enter_debugger(const char *msg)
 3132 {
 3133 #ifdef KDB
 3134         if (witness_kdb)
 3135                 kdb_enter(KDB_WHY_WITNESS, msg);
 3136 #endif
 3137 }

Cache object: 1e58716d0fed4f70d6e728e1e75da0b4


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.