The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_witness.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2008 Isilon Systems, Inc.
    3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
    4  * Copyright (c) 1998 Berkeley Software Design, Inc.
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
   16  *    promote products derived from this software without specific prior
   17  *    written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
   32  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
   33  */
   34 
   35 /*
   36  * Implementation of the `witness' lock verifier.  Originally implemented for
   37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
   38  * classes in FreeBSD.
   39  */
   40 
   41 /*
   42  *      Main Entry: witness
   43  *      Pronunciation: 'wit-n&s
   44  *      Function: noun
   45  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
   46  *          testimony, witness, from 2wit
   47  *      Date: before 12th century
   48  *      1 : attestation of a fact or event : TESTIMONY
   49  *      2 : one that gives evidence; specifically : one who testifies in
   50  *          a cause or before a judicial tribunal
   51  *      3 : one asked to be present at a transaction so as to be able to
   52  *          testify to its having taken place
   53  *      4 : one who has personal knowledge of something
   54  *      5 a : something serving as evidence or proof : SIGN
   55  *        b : public affirmation by word or example of usually
   56  *            religious faith or conviction <the heroic witness to divine
   57  *            life -- Pilot>
   58  *      6 capitalized : a member of the Jehovah's Witnesses 
   59  */
   60 
   61 /*
   62  * Special rules concerning Giant and lock orders:
   63  *
   64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
   65  *    no other mutex may be held when Giant is acquired.
   66  *
   67  * 2) Giant must be released when blocking on a sleepable lock.
   68  *
   69  * This rule is less obvious, but is a result of Giant providing the same
   70  * semantics as spl().  Basically, when a thread sleeps, it must release
   71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
   72  * 2).
   73  *
   74  * 3) Giant may be acquired before or after sleepable locks.
   75  *
   76  * This rule is also not quite as obvious.  Giant may be acquired after
   77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
   78  * locks may always be acquired while holding a sleepable lock.  The second
   79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
   80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
   81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
   82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
   83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
   84  * will not result in a lock order reversal.
   85  */
   86 
   87 #include <sys/cdefs.h>
   88 __FBSDID("$FreeBSD: releng/10.0/sys/kern/subr_witness.c 255205 2013-09-04 11:52:28Z jhb $");
   89 
   90 #include "opt_ddb.h"
   91 #include "opt_hwpmc_hooks.h"
   92 #include "opt_stack.h"
   93 #include "opt_witness.h"
   94 
   95 #include <sys/param.h>
   96 #include <sys/bus.h>
   97 #include <sys/kdb.h>
   98 #include <sys/kernel.h>
   99 #include <sys/ktr.h>
  100 #include <sys/lock.h>
  101 #include <sys/malloc.h>
  102 #include <sys/mutex.h>
  103 #include <sys/priv.h>
  104 #include <sys/proc.h>
  105 #include <sys/sbuf.h>
  106 #include <sys/sched.h>
  107 #include <sys/stack.h>
  108 #include <sys/sysctl.h>
  109 #include <sys/systm.h>
  110 
  111 #ifdef DDB
  112 #include <ddb/ddb.h>
  113 #endif
  114 
  115 #include <machine/stdarg.h>
  116 
  117 #if !defined(DDB) && !defined(STACK)
  118 #error "DDB or STACK options are required for WITNESS"
  119 #endif
  120 
  121 /* Note that these traces do not work with KTR_ALQ. */
  122 #if 0
  123 #define KTR_WITNESS     KTR_SUBSYS
  124 #else
  125 #define KTR_WITNESS     0
  126 #endif
  127 
  128 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
  129 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
  130 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
  131 
  132 /* Define this to check for blessed mutexes */
  133 #undef BLESSING
  134 
  135 #define WITNESS_COUNT           1024
  136 #define WITNESS_CHILDCOUNT      (WITNESS_COUNT * 4)
  137 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
  138 #define WITNESS_PENDLIST        1024
  139 
  140 /* Allocate 256 KB of stack data space */
  141 #define WITNESS_LO_DATA_COUNT   2048
  142 
  143 /* Prime, gives load factor of ~2 at full load */
  144 #define WITNESS_LO_HASH_SIZE    1021
  145 
  146 /*
  147  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
  148  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
  149  * probably be safe for the most part, but it's still a SWAG.
  150  */
  151 #define LOCK_NCHILDREN  5
  152 #define LOCK_CHILDCOUNT 2048
  153 
  154 #define MAX_W_NAME      64
  155 
  156 #define BADSTACK_SBUF_SIZE      (256 * WITNESS_COUNT)
  157 #define FULLGRAPH_SBUF_SIZE     512
  158 
  159 /*
  160  * These flags go in the witness relationship matrix and describe the
  161  * relationship between any two struct witness objects.
  162  */
  163 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
  164 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
  165 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
  166 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
  167 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
  168 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
  169 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
  170 #define WITNESS_RELATED_MASK                                            \
  171         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
  172 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
  173                                           * observed. */
  174 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
  175 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
  176 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
  177 
  178 /* Descendant to ancestor flags */
  179 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
  180 
  181 /* Ancestor to descendant flags */
  182 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
  183 
  184 #define WITNESS_INDEX_ASSERT(i)                                         \
  185         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
  186 
  187 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
  188 
  189 /*
  190  * Lock instances.  A lock instance is the data associated with a lock while
  191  * it is held by witness.  For example, a lock instance will hold the
  192  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
  193  * are held in a per-cpu list while sleep locks are held in per-thread list.
  194  */
  195 struct lock_instance {
  196         struct lock_object      *li_lock;
  197         const char              *li_file;
  198         int                     li_line;
  199         u_int                   li_flags;
  200 };
  201 
  202 /*
  203  * A simple list type used to build the list of locks held by a thread
  204  * or CPU.  We can't simply embed the list in struct lock_object since a
  205  * lock may be held by more than one thread if it is a shared lock.  Locks
  206  * are added to the head of the list, so we fill up each list entry from
  207  * "the back" logically.  To ease some of the arithmetic, we actually fill
  208  * in each list entry the normal way (children[0] then children[1], etc.) but
  209  * when we traverse the list we read children[count-1] as the first entry
  210  * down to children[0] as the final entry.
  211  */
  212 struct lock_list_entry {
  213         struct lock_list_entry  *ll_next;
  214         struct lock_instance    ll_children[LOCK_NCHILDREN];
  215         u_int                   ll_count;
  216 };
  217 
  218 /*
  219  * The main witness structure. One of these per named lock type in the system
  220  * (for example, "vnode interlock").
  221  */
  222 struct witness {
  223         char                    w_name[MAX_W_NAME];
  224         uint32_t                w_index;  /* Index in the relationship matrix */
  225         struct lock_class       *w_class;
  226         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
  227         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
  228         struct witness          *w_hash_next; /* Linked list in hash buckets. */
  229         const char              *w_file; /* File where last acquired */
  230         uint32_t                w_line; /* Line where last acquired */
  231         uint32_t                w_refcount;
  232         uint16_t                w_num_ancestors; /* direct/indirect
  233                                                   * ancestor count */
  234         uint16_t                w_num_descendants; /* direct/indirect
  235                                                     * descendant count */
  236         int16_t                 w_ddb_level;
  237         unsigned                w_displayed:1;
  238         unsigned                w_reversed:1;
  239 };
  240 
  241 STAILQ_HEAD(witness_list, witness);
  242 
  243 /*
  244  * The witness hash table. Keys are witness names (const char *), elements are
  245  * witness objects (struct witness *).
  246  */
  247 struct witness_hash {
  248         struct witness  *wh_array[WITNESS_HASH_SIZE];
  249         uint32_t        wh_size;
  250         uint32_t        wh_count;
  251 };
  252 
  253 /*
  254  * Key type for the lock order data hash table.
  255  */
  256 struct witness_lock_order_key {
  257         uint16_t        from;
  258         uint16_t        to;
  259 };
  260 
  261 struct witness_lock_order_data {
  262         struct stack                    wlod_stack;
  263         struct witness_lock_order_key   wlod_key;
  264         struct witness_lock_order_data  *wlod_next;
  265 };
  266 
  267 /*
  268  * The witness lock order data hash table. Keys are witness index tuples
  269  * (struct witness_lock_order_key), elements are lock order data objects
  270  * (struct witness_lock_order_data). 
  271  */
  272 struct witness_lock_order_hash {
  273         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
  274         u_int   wloh_size;
  275         u_int   wloh_count;
  276 };
  277 
  278 #ifdef BLESSING
  279 struct witness_blessed {
  280         const char      *b_lock1;
  281         const char      *b_lock2;
  282 };
  283 #endif
  284 
  285 struct witness_pendhelp {
  286         const char              *wh_type;
  287         struct lock_object      *wh_lock;
  288 };
  289 
  290 struct witness_order_list_entry {
  291         const char              *w_name;
  292         struct lock_class       *w_class;
  293 };
  294 
  295 /*
  296  * Returns 0 if one of the locks is a spin lock and the other is not.
  297  * Returns 1 otherwise.
  298  */
  299 static __inline int
  300 witness_lock_type_equal(struct witness *w1, struct witness *w2)
  301 {
  302 
  303         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
  304                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
  305 }
  306 
  307 static __inline int
  308 witness_lock_order_key_empty(const struct witness_lock_order_key *key)
  309 {
  310 
  311         return (key->from == 0 && key->to == 0);
  312 }
  313 
  314 static __inline int
  315 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
  316     const struct witness_lock_order_key *b)
  317 {
  318 
  319         return (a->from == b->from && a->to == b->to);
  320 }
  321 
  322 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
  323                     const char *fname);
  324 #ifdef KDB
  325 static void     _witness_debugger(int cond, const char *msg);
  326 #endif
  327 static void     adopt(struct witness *parent, struct witness *child);
  328 #ifdef BLESSING
  329 static int      blessed(struct witness *, struct witness *);
  330 #endif
  331 static void     depart(struct witness *w);
  332 static struct witness   *enroll(const char *description,
  333                             struct lock_class *lock_class);
  334 static struct lock_instance     *find_instance(struct lock_list_entry *list,
  335                                     const struct lock_object *lock);
  336 static int      isitmychild(struct witness *parent, struct witness *child);
  337 static int      isitmydescendant(struct witness *parent, struct witness *child);
  338 static void     itismychild(struct witness *parent, struct witness *child);
  339 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
  340 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
  341 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
  342 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
  343 #ifdef DDB
  344 static void     witness_ddb_compute_levels(void);
  345 static void     witness_ddb_display(int(*)(const char *fmt, ...));
  346 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
  347                     struct witness *, int indent);
  348 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
  349                     struct witness_list *list);
  350 static void     witness_ddb_level_descendants(struct witness *parent, int l);
  351 static void     witness_ddb_list(struct thread *td);
  352 #endif
  353 static void     witness_free(struct witness *m);
  354 static struct witness   *witness_get(void);
  355 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
  356 static struct witness   *witness_hash_get(const char *key);
  357 static void     witness_hash_put(struct witness *w);
  358 static void     witness_init_hash_tables(void);
  359 static void     witness_increment_graph_generation(void);
  360 static void     witness_lock_list_free(struct lock_list_entry *lle);
  361 static struct lock_list_entry   *witness_lock_list_get(void);
  362 static int      witness_lock_order_add(struct witness *parent,
  363                     struct witness *child);
  364 static int      witness_lock_order_check(struct witness *parent,
  365                     struct witness *child);
  366 static struct witness_lock_order_data   *witness_lock_order_get(
  367                                             struct witness *parent,
  368                                             struct witness *child);
  369 static void     witness_list_lock(struct lock_instance *instance,
  370                     int (*prnt)(const char *fmt, ...));
  371 static void     witness_setflag(struct lock_object *lock, int flag, int set);
  372 
  373 #ifdef KDB
  374 #define witness_debugger(c)     _witness_debugger(c, __func__)
  375 #else
  376 #define witness_debugger(c)
  377 #endif
  378 
  379 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
  380     "Witness Locking");
  381 
  382 /*
  383  * If set to 0, lock order checking is disabled.  If set to -1,
  384  * witness is completely disabled.  Otherwise witness performs full
  385  * lock order checking for all locks.  At runtime, lock order checking
  386  * may be toggled.  However, witness cannot be reenabled once it is
  387  * completely disabled.
  388  */
  389 static int witness_watch = 1;
  390 TUNABLE_INT("debug.witness.watch", &witness_watch);
  391 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
  392     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
  393 
  394 #ifdef KDB
  395 /*
  396  * When KDB is enabled and witness_kdb is 1, it will cause the system
  397  * to drop into kdebug() when:
  398  *      - a lock hierarchy violation occurs
  399  *      - locks are held when going to sleep.
  400  */
  401 #ifdef WITNESS_KDB
  402 int     witness_kdb = 1;
  403 #else
  404 int     witness_kdb = 0;
  405 #endif
  406 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
  407 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
  408 
  409 /*
  410  * When KDB is enabled and witness_trace is 1, it will cause the system
  411  * to print a stack trace:
  412  *      - a lock hierarchy violation occurs
  413  *      - locks are held when going to sleep.
  414  */
  415 int     witness_trace = 1;
  416 TUNABLE_INT("debug.witness.trace", &witness_trace);
  417 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
  418 #endif /* KDB */
  419 
  420 #ifdef WITNESS_SKIPSPIN
  421 int     witness_skipspin = 1;
  422 #else
  423 int     witness_skipspin = 0;
  424 #endif
  425 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
  426 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
  427     0, "");
  428 
  429 /*
  430  * Call this to print out the relations between locks.
  431  */
  432 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
  433     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
  434 
  435 /*
  436  * Call this to print out the witness faulty stacks.
  437  */
  438 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
  439     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
  440 
  441 static struct mtx w_mtx;
  442 
  443 /* w_list */
  444 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
  445 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
  446 
  447 /* w_typelist */
  448 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
  449 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
  450 
  451 /* lock list */
  452 static struct lock_list_entry *w_lock_list_free = NULL;
  453 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
  454 static u_int pending_cnt;
  455 
  456 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
  457 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
  458 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
  459 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
  460     "");
  461 
  462 static struct witness *w_data;
  463 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
  464 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
  465 static struct witness_hash w_hash;      /* The witness hash table. */
  466 
  467 /* The lock order data hash */
  468 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
  469 static struct witness_lock_order_data *w_lofree = NULL;
  470 static struct witness_lock_order_hash w_lohash;
  471 static int w_max_used_index = 0;
  472 static unsigned int w_generation = 0;
  473 static const char w_notrunning[] = "Witness not running\n";
  474 static const char w_stillcold[] = "Witness is still cold\n";
  475 
  476 
  477 static struct witness_order_list_entry order_lists[] = {
  478         /*
  479          * sx locks
  480          */
  481         { "proctree", &lock_class_sx },
  482         { "allproc", &lock_class_sx },
  483         { "allprison", &lock_class_sx },
  484         { NULL, NULL },
  485         /*
  486          * Various mutexes
  487          */
  488         { "Giant", &lock_class_mtx_sleep },
  489         { "pipe mutex", &lock_class_mtx_sleep },
  490         { "sigio lock", &lock_class_mtx_sleep },
  491         { "process group", &lock_class_mtx_sleep },
  492         { "process lock", &lock_class_mtx_sleep },
  493         { "session", &lock_class_mtx_sleep },
  494         { "uidinfo hash", &lock_class_rw },
  495 #ifdef  HWPMC_HOOKS
  496         { "pmc-sleep", &lock_class_mtx_sleep },
  497 #endif
  498         { "time lock", &lock_class_mtx_sleep },
  499         { NULL, NULL },
  500         /*
  501          * Sockets
  502          */
  503         { "accept", &lock_class_mtx_sleep },
  504         { "so_snd", &lock_class_mtx_sleep },
  505         { "so_rcv", &lock_class_mtx_sleep },
  506         { "sellck", &lock_class_mtx_sleep },
  507         { NULL, NULL },
  508         /*
  509          * Routing
  510          */
  511         { "so_rcv", &lock_class_mtx_sleep },
  512         { "radix node head", &lock_class_rw },
  513         { "rtentry", &lock_class_mtx_sleep },
  514         { "ifaddr", &lock_class_mtx_sleep },
  515         { NULL, NULL },
  516         /*
  517          * IPv4 multicast:
  518          * protocol locks before interface locks, after UDP locks.
  519          */
  520         { "udpinp", &lock_class_rw },
  521         { "in_multi_mtx", &lock_class_mtx_sleep },
  522         { "igmp_mtx", &lock_class_mtx_sleep },
  523         { "if_addr_lock", &lock_class_rw },
  524         { NULL, NULL },
  525         /*
  526          * IPv6 multicast:
  527          * protocol locks before interface locks, after UDP locks.
  528          */
  529         { "udpinp", &lock_class_rw },
  530         { "in6_multi_mtx", &lock_class_mtx_sleep },
  531         { "mld_mtx", &lock_class_mtx_sleep },
  532         { "if_addr_lock", &lock_class_rw },
  533         { NULL, NULL },
  534         /*
  535          * UNIX Domain Sockets
  536          */
  537         { "unp_global_rwlock", &lock_class_rw },
  538         { "unp_list_lock", &lock_class_mtx_sleep },
  539         { "unp", &lock_class_mtx_sleep },
  540         { "so_snd", &lock_class_mtx_sleep },
  541         { NULL, NULL },
  542         /*
  543          * UDP/IP
  544          */
  545         { "udp", &lock_class_rw },
  546         { "udpinp", &lock_class_rw },
  547         { "so_snd", &lock_class_mtx_sleep },
  548         { NULL, NULL },
  549         /*
  550          * TCP/IP
  551          */
  552         { "tcp", &lock_class_rw },
  553         { "tcpinp", &lock_class_rw },
  554         { "so_snd", &lock_class_mtx_sleep },
  555         { NULL, NULL },
  556         /*
  557          * netatalk
  558          */
  559         { "ddp_list_mtx", &lock_class_mtx_sleep },
  560         { "ddp_mtx", &lock_class_mtx_sleep },
  561         { NULL, NULL },
  562         /*
  563          * BPF
  564          */
  565         { "bpf global lock", &lock_class_mtx_sleep },
  566         { "bpf interface lock", &lock_class_rw },
  567         { "bpf cdev lock", &lock_class_mtx_sleep },
  568         { NULL, NULL },
  569         /*
  570          * NFS server
  571          */
  572         { "nfsd_mtx", &lock_class_mtx_sleep },
  573         { "so_snd", &lock_class_mtx_sleep },
  574         { NULL, NULL },
  575 
  576         /*
  577          * IEEE 802.11
  578          */
  579         { "802.11 com lock", &lock_class_mtx_sleep},
  580         { NULL, NULL },
  581         /*
  582          * Network drivers
  583          */
  584         { "network driver", &lock_class_mtx_sleep},
  585         { NULL, NULL },
  586 
  587         /*
  588          * Netgraph
  589          */
  590         { "ng_node", &lock_class_mtx_sleep },
  591         { "ng_worklist", &lock_class_mtx_sleep },
  592         { NULL, NULL },
  593         /*
  594          * CDEV
  595          */
  596         { "vm map (system)", &lock_class_mtx_sleep },
  597         { "vm page queue", &lock_class_mtx_sleep },
  598         { "vnode interlock", &lock_class_mtx_sleep },
  599         { "cdev", &lock_class_mtx_sleep },
  600         { NULL, NULL },
  601         /*
  602          * VM
  603          */
  604         { "vm map (user)", &lock_class_sx },
  605         { "vm object", &lock_class_rw },
  606         { "vm page", &lock_class_mtx_sleep },
  607         { "vm page queue", &lock_class_mtx_sleep },
  608         { "pmap pv global", &lock_class_rw },
  609         { "pmap", &lock_class_mtx_sleep },
  610         { "pmap pv list", &lock_class_rw },
  611         { "vm page free queue", &lock_class_mtx_sleep },
  612         { NULL, NULL },
  613         /*
  614          * kqueue/VFS interaction
  615          */
  616         { "kqueue", &lock_class_mtx_sleep },
  617         { "struct mount mtx", &lock_class_mtx_sleep },
  618         { "vnode interlock", &lock_class_mtx_sleep },
  619         { NULL, NULL },
  620         /*
  621          * ZFS locking
  622          */
  623         { "dn->dn_mtx", &lock_class_sx },
  624         { "dr->dt.di.dr_mtx", &lock_class_sx },
  625         { "db->db_mtx", &lock_class_sx },
  626         { NULL, NULL },
  627         /*
  628          * spin locks
  629          */
  630 #ifdef SMP
  631         { "ap boot", &lock_class_mtx_spin },
  632 #endif
  633         { "rm.mutex_mtx", &lock_class_mtx_spin },
  634         { "sio", &lock_class_mtx_spin },
  635         { "scrlock", &lock_class_mtx_spin },
  636 #ifdef __i386__
  637         { "cy", &lock_class_mtx_spin },
  638 #endif
  639 #ifdef __sparc64__
  640         { "pcib_mtx", &lock_class_mtx_spin },
  641         { "rtc_mtx", &lock_class_mtx_spin },
  642 #endif
  643         { "scc_hwmtx", &lock_class_mtx_spin },
  644         { "uart_hwmtx", &lock_class_mtx_spin },
  645         { "fast_taskqueue", &lock_class_mtx_spin },
  646         { "intr table", &lock_class_mtx_spin },
  647 #ifdef  HWPMC_HOOKS
  648         { "pmc-per-proc", &lock_class_mtx_spin },
  649 #endif
  650         { "process slock", &lock_class_mtx_spin },
  651         { "sleepq chain", &lock_class_mtx_spin },
  652         { "umtx lock", &lock_class_mtx_spin },
  653         { "rm_spinlock", &lock_class_mtx_spin },
  654         { "turnstile chain", &lock_class_mtx_spin },
  655         { "turnstile lock", &lock_class_mtx_spin },
  656         { "sched lock", &lock_class_mtx_spin },
  657         { "td_contested", &lock_class_mtx_spin },
  658         { "callout", &lock_class_mtx_spin },
  659         { "entropy harvest mutex", &lock_class_mtx_spin },
  660         { "syscons video lock", &lock_class_mtx_spin },
  661 #ifdef SMP
  662         { "smp rendezvous", &lock_class_mtx_spin },
  663 #endif
  664 #ifdef __powerpc__
  665         { "tlb0", &lock_class_mtx_spin },
  666 #endif
  667         /*
  668          * leaf locks
  669          */
  670         { "intrcnt", &lock_class_mtx_spin },
  671         { "icu", &lock_class_mtx_spin },
  672 #ifdef __i386__
  673         { "allpmaps", &lock_class_mtx_spin },
  674         { "descriptor tables", &lock_class_mtx_spin },
  675 #endif
  676         { "clk", &lock_class_mtx_spin },
  677         { "cpuset", &lock_class_mtx_spin },
  678         { "mprof lock", &lock_class_mtx_spin },
  679         { "zombie lock", &lock_class_mtx_spin },
  680         { "ALD Queue", &lock_class_mtx_spin },
  681 #ifdef __ia64__
  682         { "MCA spin lock", &lock_class_mtx_spin },
  683 #endif
  684 #if defined(__i386__) || defined(__amd64__)
  685         { "pcicfg", &lock_class_mtx_spin },
  686         { "NDIS thread lock", &lock_class_mtx_spin },
  687 #endif
  688         { "tw_osl_io_lock", &lock_class_mtx_spin },
  689         { "tw_osl_q_lock", &lock_class_mtx_spin },
  690         { "tw_cl_io_lock", &lock_class_mtx_spin },
  691         { "tw_cl_intr_lock", &lock_class_mtx_spin },
  692         { "tw_cl_gen_lock", &lock_class_mtx_spin },
  693 #ifdef  HWPMC_HOOKS
  694         { "pmc-leaf", &lock_class_mtx_spin },
  695 #endif
  696         { "blocked lock", &lock_class_mtx_spin },
  697         { NULL, NULL },
  698         { NULL, NULL }
  699 };
  700 
  701 #ifdef BLESSING
  702 /*
  703  * Pairs of locks which have been blessed
  704  * Don't complain about order problems with blessed locks
  705  */
  706 static struct witness_blessed blessed_list[] = {
  707 };
  708 static int blessed_count =
  709         sizeof(blessed_list) / sizeof(struct witness_blessed);
  710 #endif
  711 
  712 /*
  713  * This global is set to 0 once it becomes safe to use the witness code.
  714  */
  715 static int witness_cold = 1;
  716 
  717 /*
  718  * This global is set to 1 once the static lock orders have been enrolled
  719  * so that a warning can be issued for any spin locks enrolled later.
  720  */
  721 static int witness_spin_warn = 0;
  722 
  723 /* Trim useless garbage from filenames. */
  724 static const char *
  725 fixup_filename(const char *file)
  726 {
  727 
  728         if (file == NULL)
  729                 return (NULL);
  730         while (strncmp(file, "../", 3) == 0)
  731                 file += 3;
  732         return (file);
  733 }
  734 
  735 /*
  736  * The WITNESS-enabled diagnostic code.  Note that the witness code does
  737  * assume that the early boot is single-threaded at least until after this
  738  * routine is completed.
  739  */
  740 static void
  741 witness_initialize(void *dummy __unused)
  742 {
  743         struct lock_object *lock;
  744         struct witness_order_list_entry *order;
  745         struct witness *w, *w1;
  746         int i;
  747 
  748         w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
  749             M_NOWAIT | M_ZERO);
  750 
  751         /*
  752          * We have to release Giant before initializing its witness
  753          * structure so that WITNESS doesn't get confused.
  754          */
  755         mtx_unlock(&Giant);
  756         mtx_assert(&Giant, MA_NOTOWNED);
  757 
  758         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
  759         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
  760             MTX_NOWITNESS | MTX_NOPROFILE);
  761         for (i = WITNESS_COUNT - 1; i >= 0; i--) {
  762                 w = &w_data[i];
  763                 memset(w, 0, sizeof(*w));
  764                 w_data[i].w_index = i;  /* Witness index never changes. */
  765                 witness_free(w);
  766         }
  767         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
  768             ("%s: Invalid list of free witness objects", __func__));
  769 
  770         /* Witness with index 0 is not used to aid in debugging. */
  771         STAILQ_REMOVE_HEAD(&w_free, w_list);
  772         w_free_cnt--;
  773 
  774         memset(w_rmatrix, 0,
  775             (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
  776 
  777         for (i = 0; i < LOCK_CHILDCOUNT; i++)
  778                 witness_lock_list_free(&w_locklistdata[i]);
  779         witness_init_hash_tables();
  780 
  781         /* First add in all the specified order lists. */
  782         for (order = order_lists; order->w_name != NULL; order++) {
  783                 w = enroll(order->w_name, order->w_class);
  784                 if (w == NULL)
  785                         continue;
  786                 w->w_file = "order list";
  787                 for (order++; order->w_name != NULL; order++) {
  788                         w1 = enroll(order->w_name, order->w_class);
  789                         if (w1 == NULL)
  790                                 continue;
  791                         w1->w_file = "order list";
  792                         itismychild(w, w1);
  793                         w = w1;
  794                 }
  795         }
  796         witness_spin_warn = 1;
  797 
  798         /* Iterate through all locks and add them to witness. */
  799         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
  800                 lock = pending_locks[i].wh_lock;
  801                 KASSERT(lock->lo_flags & LO_WITNESS,
  802                     ("%s: lock %s is on pending list but not LO_WITNESS",
  803                     __func__, lock->lo_name));
  804                 lock->lo_witness = enroll(pending_locks[i].wh_type,
  805                     LOCK_CLASS(lock));
  806         }
  807 
  808         /* Mark the witness code as being ready for use. */
  809         witness_cold = 0;
  810 
  811         mtx_lock(&Giant);
  812 }
  813 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
  814     NULL);
  815 
  816 void
  817 witness_init(struct lock_object *lock, const char *type)
  818 {
  819         struct lock_class *class;
  820 
  821         /* Various sanity checks. */
  822         class = LOCK_CLASS(lock);
  823         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
  824             (class->lc_flags & LC_RECURSABLE) == 0)
  825                 kassert_panic("%s: lock (%s) %s can not be recursable",
  826                     __func__, class->lc_name, lock->lo_name);
  827         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
  828             (class->lc_flags & LC_SLEEPABLE) == 0)
  829                 kassert_panic("%s: lock (%s) %s can not be sleepable",
  830                     __func__, class->lc_name, lock->lo_name);
  831         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
  832             (class->lc_flags & LC_UPGRADABLE) == 0)
  833                 kassert_panic("%s: lock (%s) %s can not be upgradable",
  834                     __func__, class->lc_name, lock->lo_name);
  835 
  836         /*
  837          * If we shouldn't watch this lock, then just clear lo_witness.
  838          * Otherwise, if witness_cold is set, then it is too early to
  839          * enroll this lock, so defer it to witness_initialize() by adding
  840          * it to the pending_locks list.  If it is not too early, then enroll
  841          * the lock now.
  842          */
  843         if (witness_watch < 1 || panicstr != NULL ||
  844             (lock->lo_flags & LO_WITNESS) == 0)
  845                 lock->lo_witness = NULL;
  846         else if (witness_cold) {
  847                 pending_locks[pending_cnt].wh_lock = lock;
  848                 pending_locks[pending_cnt++].wh_type = type;
  849                 if (pending_cnt > WITNESS_PENDLIST)
  850                         panic("%s: pending locks list is too small, "
  851                             "increase WITNESS_PENDLIST\n",
  852                             __func__);
  853         } else
  854                 lock->lo_witness = enroll(type, class);
  855 }
  856 
  857 void
  858 witness_destroy(struct lock_object *lock)
  859 {
  860         struct lock_class *class;
  861         struct witness *w;
  862 
  863         class = LOCK_CLASS(lock);
  864 
  865         if (witness_cold)
  866                 panic("lock (%s) %s destroyed while witness_cold",
  867                     class->lc_name, lock->lo_name);
  868 
  869         /* XXX: need to verify that no one holds the lock */
  870         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
  871                 return;
  872         w = lock->lo_witness;
  873 
  874         mtx_lock_spin(&w_mtx);
  875         MPASS(w->w_refcount > 0);
  876         w->w_refcount--;
  877 
  878         if (w->w_refcount == 0)
  879                 depart(w);
  880         mtx_unlock_spin(&w_mtx);
  881 }
  882 
  883 #ifdef DDB
  884 static void
  885 witness_ddb_compute_levels(void)
  886 {
  887         struct witness *w;
  888 
  889         /*
  890          * First clear all levels.
  891          */
  892         STAILQ_FOREACH(w, &w_all, w_list)
  893                 w->w_ddb_level = -1;
  894 
  895         /*
  896          * Look for locks with no parents and level all their descendants.
  897          */
  898         STAILQ_FOREACH(w, &w_all, w_list) {
  899 
  900                 /* If the witness has ancestors (is not a root), skip it. */
  901                 if (w->w_num_ancestors > 0)
  902                         continue;
  903                 witness_ddb_level_descendants(w, 0);
  904         }
  905 }
  906 
  907 static void
  908 witness_ddb_level_descendants(struct witness *w, int l)
  909 {
  910         int i;
  911 
  912         if (w->w_ddb_level >= l)
  913                 return;
  914 
  915         w->w_ddb_level = l;
  916         l++;
  917 
  918         for (i = 1; i <= w_max_used_index; i++) {
  919                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
  920                         witness_ddb_level_descendants(&w_data[i], l);
  921         }
  922 }
  923 
  924 static void
  925 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
  926     struct witness *w, int indent)
  927 {
  928         int i;
  929 
  930         for (i = 0; i < indent; i++)
  931                 prnt(" ");
  932         prnt("%s (type: %s, depth: %d, active refs: %d)",
  933              w->w_name, w->w_class->lc_name,
  934              w->w_ddb_level, w->w_refcount);
  935         if (w->w_displayed) {
  936                 prnt(" -- (already displayed)\n");
  937                 return;
  938         }
  939         w->w_displayed = 1;
  940         if (w->w_file != NULL && w->w_line != 0)
  941                 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
  942                     w->w_line);
  943         else
  944                 prnt(" -- never acquired\n");
  945         indent++;
  946         WITNESS_INDEX_ASSERT(w->w_index);
  947         for (i = 1; i <= w_max_used_index; i++) {
  948                 if (db_pager_quit)
  949                         return;
  950                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
  951                         witness_ddb_display_descendants(prnt, &w_data[i],
  952                             indent);
  953         }
  954 }
  955 
  956 static void
  957 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
  958     struct witness_list *list)
  959 {
  960         struct witness *w;
  961 
  962         STAILQ_FOREACH(w, list, w_typelist) {
  963                 if (w->w_file == NULL || w->w_ddb_level > 0)
  964                         continue;
  965 
  966                 /* This lock has no anscestors - display its descendants. */
  967                 witness_ddb_display_descendants(prnt, w, 0);
  968                 if (db_pager_quit)
  969                         return;
  970         }
  971 }
  972         
  973 static void
  974 witness_ddb_display(int(*prnt)(const char *fmt, ...))
  975 {
  976         struct witness *w;
  977 
  978         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
  979         witness_ddb_compute_levels();
  980 
  981         /* Clear all the displayed flags. */
  982         STAILQ_FOREACH(w, &w_all, w_list)
  983                 w->w_displayed = 0;
  984 
  985         /*
  986          * First, handle sleep locks which have been acquired at least
  987          * once.
  988          */
  989         prnt("Sleep locks:\n");
  990         witness_ddb_display_list(prnt, &w_sleep);
  991         if (db_pager_quit)
  992                 return;
  993         
  994         /*
  995          * Now do spin locks which have been acquired at least once.
  996          */
  997         prnt("\nSpin locks:\n");
  998         witness_ddb_display_list(prnt, &w_spin);
  999         if (db_pager_quit)
 1000                 return;
 1001         
 1002         /*
 1003          * Finally, any locks which have not been acquired yet.
 1004          */
 1005         prnt("\nLocks which were never acquired:\n");
 1006         STAILQ_FOREACH(w, &w_all, w_list) {
 1007                 if (w->w_file != NULL || w->w_refcount == 0)
 1008                         continue;
 1009                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
 1010                     w->w_class->lc_name, w->w_ddb_level);
 1011                 if (db_pager_quit)
 1012                         return;
 1013         }
 1014 }
 1015 #endif /* DDB */
 1016 
 1017 int
 1018 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
 1019 {
 1020 
 1021         if (witness_watch == -1 || panicstr != NULL)
 1022                 return (0);
 1023 
 1024         /* Require locks that witness knows about. */
 1025         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
 1026             lock2->lo_witness == NULL)
 1027                 return (EINVAL);
 1028 
 1029         mtx_assert(&w_mtx, MA_NOTOWNED);
 1030         mtx_lock_spin(&w_mtx);
 1031 
 1032         /*
 1033          * If we already have either an explicit or implied lock order that
 1034          * is the other way around, then return an error.
 1035          */
 1036         if (witness_watch &&
 1037             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
 1038                 mtx_unlock_spin(&w_mtx);
 1039                 return (EDOOFUS);
 1040         }
 1041         
 1042         /* Try to add the new order. */
 1043         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
 1044             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
 1045         itismychild(lock1->lo_witness, lock2->lo_witness);
 1046         mtx_unlock_spin(&w_mtx);
 1047         return (0);
 1048 }
 1049 
 1050 void
 1051 witness_checkorder(struct lock_object *lock, int flags, const char *file,
 1052     int line, struct lock_object *interlock)
 1053 {
 1054         struct lock_list_entry *lock_list, *lle;
 1055         struct lock_instance *lock1, *lock2, *plock;
 1056         struct lock_class *class, *iclass;
 1057         struct witness *w, *w1;
 1058         struct thread *td;
 1059         int i, j;
 1060 
 1061         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
 1062             panicstr != NULL)
 1063                 return;
 1064 
 1065         w = lock->lo_witness;
 1066         class = LOCK_CLASS(lock);
 1067         td = curthread;
 1068 
 1069         if (class->lc_flags & LC_SLEEPLOCK) {
 1070 
 1071                 /*
 1072                  * Since spin locks include a critical section, this check
 1073                  * implicitly enforces a lock order of all sleep locks before
 1074                  * all spin locks.
 1075                  */
 1076                 if (td->td_critnest != 0 && !kdb_active)
 1077                         kassert_panic("acquiring blockable sleep lock with "
 1078                             "spinlock or critical section held (%s) %s @ %s:%d",
 1079                             class->lc_name, lock->lo_name,
 1080                             fixup_filename(file), line);
 1081 
 1082                 /*
 1083                  * If this is the first lock acquired then just return as
 1084                  * no order checking is needed.
 1085                  */
 1086                 lock_list = td->td_sleeplocks;
 1087                 if (lock_list == NULL || lock_list->ll_count == 0)
 1088                         return;
 1089         } else {
 1090 
 1091                 /*
 1092                  * If this is the first lock, just return as no order
 1093                  * checking is needed.  Avoid problems with thread
 1094                  * migration pinning the thread while checking if
 1095                  * spinlocks are held.  If at least one spinlock is held
 1096                  * the thread is in a safe path and it is allowed to
 1097                  * unpin it.
 1098                  */
 1099                 sched_pin();
 1100                 lock_list = PCPU_GET(spinlocks);
 1101                 if (lock_list == NULL || lock_list->ll_count == 0) {
 1102                         sched_unpin();
 1103                         return;
 1104                 }
 1105                 sched_unpin();
 1106         }
 1107 
 1108         /*
 1109          * Check to see if we are recursing on a lock we already own.  If
 1110          * so, make sure that we don't mismatch exclusive and shared lock
 1111          * acquires.
 1112          */
 1113         lock1 = find_instance(lock_list, lock);
 1114         if (lock1 != NULL) {
 1115                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
 1116                     (flags & LOP_EXCLUSIVE) == 0) {
 1117                         printf("shared lock of (%s) %s @ %s:%d\n",
 1118                             class->lc_name, lock->lo_name,
 1119                             fixup_filename(file), line);
 1120                         printf("while exclusively locked from %s:%d\n",
 1121                             fixup_filename(lock1->li_file), lock1->li_line);
 1122                         kassert_panic("excl->share");
 1123                 }
 1124                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
 1125                     (flags & LOP_EXCLUSIVE) != 0) {
 1126                         printf("exclusive lock of (%s) %s @ %s:%d\n",
 1127                             class->lc_name, lock->lo_name,
 1128                             fixup_filename(file), line);
 1129                         printf("while share locked from %s:%d\n",
 1130                             fixup_filename(lock1->li_file), lock1->li_line);
 1131                         kassert_panic("share->excl");
 1132                 }
 1133                 return;
 1134         }
 1135 
 1136         /* Warn if the interlock is not locked exactly once. */
 1137         if (interlock != NULL) {
 1138                 iclass = LOCK_CLASS(interlock);
 1139                 lock1 = find_instance(lock_list, interlock);
 1140                 if (lock1 == NULL)
 1141                         kassert_panic("interlock (%s) %s not locked @ %s:%d",
 1142                             iclass->lc_name, interlock->lo_name,
 1143                             fixup_filename(file), line);
 1144                 else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
 1145                         kassert_panic("interlock (%s) %s recursed @ %s:%d",
 1146                             iclass->lc_name, interlock->lo_name,
 1147                             fixup_filename(file), line);
 1148         }
 1149 
 1150         /*
 1151          * Find the previously acquired lock, but ignore interlocks.
 1152          */
 1153         plock = &lock_list->ll_children[lock_list->ll_count - 1];
 1154         if (interlock != NULL && plock->li_lock == interlock) {
 1155                 if (lock_list->ll_count > 1)
 1156                         plock =
 1157                             &lock_list->ll_children[lock_list->ll_count - 2];
 1158                 else {
 1159                         lle = lock_list->ll_next;
 1160 
 1161                         /*
 1162                          * The interlock is the only lock we hold, so
 1163                          * simply return.
 1164                          */
 1165                         if (lle == NULL)
 1166                                 return;
 1167                         plock = &lle->ll_children[lle->ll_count - 1];
 1168                 }
 1169         }
 1170         
 1171         /*
 1172          * Try to perform most checks without a lock.  If this succeeds we
 1173          * can skip acquiring the lock and return success.
 1174          */
 1175         w1 = plock->li_lock->lo_witness;
 1176         if (witness_lock_order_check(w1, w))
 1177                 return;
 1178 
 1179         /*
 1180          * Check for duplicate locks of the same type.  Note that we only
 1181          * have to check for this on the last lock we just acquired.  Any
 1182          * other cases will be caught as lock order violations.
 1183          */
 1184         mtx_lock_spin(&w_mtx);
 1185         witness_lock_order_add(w1, w);
 1186         if (w1 == w) {
 1187                 i = w->w_index;
 1188                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
 1189                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
 1190                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
 1191                         w->w_reversed = 1;
 1192                         mtx_unlock_spin(&w_mtx);
 1193                         printf(
 1194                             "acquiring duplicate lock of same type: \"%s\"\n", 
 1195                             w->w_name);
 1196                         printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
 1197                             fixup_filename(plock->li_file), plock->li_line);
 1198                         printf(" 2nd %s @ %s:%d\n", lock->lo_name,
 1199                             fixup_filename(file), line);
 1200                         witness_debugger(1);
 1201                 } else
 1202                         mtx_unlock_spin(&w_mtx);
 1203                 return;
 1204         }
 1205         mtx_assert(&w_mtx, MA_OWNED);
 1206 
 1207         /*
 1208          * If we know that the lock we are acquiring comes after
 1209          * the lock we most recently acquired in the lock order tree,
 1210          * then there is no need for any further checks.
 1211          */
 1212         if (isitmychild(w1, w))
 1213                 goto out;
 1214 
 1215         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
 1216                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
 1217 
 1218                         MPASS(j < WITNESS_COUNT);
 1219                         lock1 = &lle->ll_children[i];
 1220 
 1221                         /*
 1222                          * Ignore the interlock.
 1223                          */
 1224                         if (interlock == lock1->li_lock)
 1225                                 continue;
 1226 
 1227                         /*
 1228                          * If this lock doesn't undergo witness checking,
 1229                          * then skip it.
 1230                          */
 1231                         w1 = lock1->li_lock->lo_witness;
 1232                         if (w1 == NULL) {
 1233                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
 1234                                     ("lock missing witness structure"));
 1235                                 continue;
 1236                         }
 1237 
 1238                         /*
 1239                          * If we are locking Giant and this is a sleepable
 1240                          * lock, then skip it.
 1241                          */
 1242                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1243                             lock == &Giant.lock_object)
 1244                                 continue;
 1245 
 1246                         /*
 1247                          * If we are locking a sleepable lock and this lock
 1248                          * is Giant, then skip it.
 1249                          */
 1250                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1251                             lock1->li_lock == &Giant.lock_object)
 1252                                 continue;
 1253 
 1254                         /*
 1255                          * If we are locking a sleepable lock and this lock
 1256                          * isn't sleepable, we want to treat it as a lock
 1257                          * order violation to enfore a general lock order of
 1258                          * sleepable locks before non-sleepable locks.
 1259                          */
 1260                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1261                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
 1262                                 goto reversal;
 1263 
 1264                         /*
 1265                          * If we are locking Giant and this is a non-sleepable
 1266                          * lock, then treat it as a reversal.
 1267                          */
 1268                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
 1269                             lock == &Giant.lock_object)
 1270                                 goto reversal;
 1271 
 1272                         /*
 1273                          * Check the lock order hierarchy for a reveresal.
 1274                          */
 1275                         if (!isitmydescendant(w, w1))
 1276                                 continue;
 1277                 reversal:
 1278 
 1279                         /*
 1280                          * We have a lock order violation, check to see if it
 1281                          * is allowed or has already been yelled about.
 1282                          */
 1283 #ifdef BLESSING
 1284 
 1285                         /*
 1286                          * If the lock order is blessed, just bail.  We don't
 1287                          * look for other lock order violations though, which
 1288                          * may be a bug.
 1289                          */
 1290                         if (blessed(w, w1))
 1291                                 goto out;
 1292 #endif
 1293 
 1294                         /* Bail if this violation is known */
 1295                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
 1296                                 goto out;
 1297 
 1298                         /* Record this as a violation */
 1299                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
 1300                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
 1301                         w->w_reversed = w1->w_reversed = 1;
 1302                         witness_increment_graph_generation();
 1303                         mtx_unlock_spin(&w_mtx);
 1304 
 1305 #ifdef WITNESS_NO_VNODE
 1306                         /*
 1307                          * There are known LORs between VNODE locks. They are
 1308                          * not an indication of a bug. VNODE locks are flagged
 1309                          * as such (LO_IS_VNODE) and we don't yell if the LOR
 1310                          * is between 2 VNODE locks.
 1311                          */
 1312                         if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
 1313                             (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
 1314                                 return;
 1315 #endif
 1316 
 1317                         /*
 1318                          * Ok, yell about it.
 1319                          */
 1320                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1321                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
 1322                                 printf(
 1323                 "lock order reversal: (sleepable after non-sleepable)\n");
 1324                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
 1325                             && lock == &Giant.lock_object)
 1326                                 printf(
 1327                 "lock order reversal: (Giant after non-sleepable)\n");
 1328                         else
 1329                                 printf("lock order reversal:\n");
 1330 
 1331                         /*
 1332                          * Try to locate an earlier lock with
 1333                          * witness w in our list.
 1334                          */
 1335                         do {
 1336                                 lock2 = &lle->ll_children[i];
 1337                                 MPASS(lock2->li_lock != NULL);
 1338                                 if (lock2->li_lock->lo_witness == w)
 1339                                         break;
 1340                                 if (i == 0 && lle->ll_next != NULL) {
 1341                                         lle = lle->ll_next;
 1342                                         i = lle->ll_count - 1;
 1343                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
 1344                                 } else
 1345                                         i--;
 1346                         } while (i >= 0);
 1347                         if (i < 0) {
 1348                                 printf(" 1st %p %s (%s) @ %s:%d\n",
 1349                                     lock1->li_lock, lock1->li_lock->lo_name,
 1350                                     w1->w_name, fixup_filename(lock1->li_file),
 1351                                     lock1->li_line);
 1352                                 printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
 1353                                     lock->lo_name, w->w_name,
 1354                                     fixup_filename(file), line);
 1355                         } else {
 1356                                 printf(" 1st %p %s (%s) @ %s:%d\n",
 1357                                     lock2->li_lock, lock2->li_lock->lo_name,
 1358                                     lock2->li_lock->lo_witness->w_name,
 1359                                     fixup_filename(lock2->li_file),
 1360                                     lock2->li_line);
 1361                                 printf(" 2nd %p %s (%s) @ %s:%d\n",
 1362                                     lock1->li_lock, lock1->li_lock->lo_name,
 1363                                     w1->w_name, fixup_filename(lock1->li_file),
 1364                                     lock1->li_line);
 1365                                 printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
 1366                                     lock->lo_name, w->w_name,
 1367                                     fixup_filename(file), line);
 1368                         }
 1369                         witness_debugger(1);
 1370                         return;
 1371                 }
 1372         }
 1373 
 1374         /*
 1375          * If requested, build a new lock order.  However, don't build a new
 1376          * relationship between a sleepable lock and Giant if it is in the
 1377          * wrong direction.  The correct lock order is that sleepable locks
 1378          * always come before Giant.
 1379          */
 1380         if (flags & LOP_NEWORDER &&
 1381             !(plock->li_lock == &Giant.lock_object &&
 1382             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
 1383                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
 1384                     w->w_name, plock->li_lock->lo_witness->w_name);
 1385                 itismychild(plock->li_lock->lo_witness, w);
 1386         }
 1387 out:
 1388         mtx_unlock_spin(&w_mtx);
 1389 }
 1390 
 1391 void
 1392 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
 1393 {
 1394         struct lock_list_entry **lock_list, *lle;
 1395         struct lock_instance *instance;
 1396         struct witness *w;
 1397         struct thread *td;
 1398 
 1399         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
 1400             panicstr != NULL)
 1401                 return;
 1402         w = lock->lo_witness;
 1403         td = curthread;
 1404 
 1405         /* Determine lock list for this lock. */
 1406         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
 1407                 lock_list = &td->td_sleeplocks;
 1408         else
 1409                 lock_list = PCPU_PTR(spinlocks);
 1410 
 1411         /* Check to see if we are recursing on a lock we already own. */
 1412         instance = find_instance(*lock_list, lock);
 1413         if (instance != NULL) {
 1414                 instance->li_flags++;
 1415                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
 1416                     td->td_proc->p_pid, lock->lo_name,
 1417                     instance->li_flags & LI_RECURSEMASK);
 1418                 instance->li_file = file;
 1419                 instance->li_line = line;
 1420                 return;
 1421         }
 1422 
 1423         /* Update per-witness last file and line acquire. */
 1424         w->w_file = file;
 1425         w->w_line = line;
 1426 
 1427         /* Find the next open lock instance in the list and fill it. */
 1428         lle = *lock_list;
 1429         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
 1430                 lle = witness_lock_list_get();
 1431                 if (lle == NULL)
 1432                         return;
 1433                 lle->ll_next = *lock_list;
 1434                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
 1435                     td->td_proc->p_pid, lle);
 1436                 *lock_list = lle;
 1437         }
 1438         instance = &lle->ll_children[lle->ll_count++];
 1439         instance->li_lock = lock;
 1440         instance->li_line = line;
 1441         instance->li_file = file;
 1442         if ((flags & LOP_EXCLUSIVE) != 0)
 1443                 instance->li_flags = LI_EXCLUSIVE;
 1444         else
 1445                 instance->li_flags = 0;
 1446         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
 1447             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
 1448 }
 1449 
 1450 void
 1451 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
 1452 {
 1453         struct lock_instance *instance;
 1454         struct lock_class *class;
 1455 
 1456         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 1457         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 1458                 return;
 1459         class = LOCK_CLASS(lock);
 1460         if (witness_watch) {
 1461                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
 1462                         kassert_panic(
 1463                             "upgrade of non-upgradable lock (%s) %s @ %s:%d",
 1464                             class->lc_name, lock->lo_name,
 1465                             fixup_filename(file), line);
 1466                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
 1467                         kassert_panic(
 1468                             "upgrade of non-sleep lock (%s) %s @ %s:%d",
 1469                             class->lc_name, lock->lo_name,
 1470                             fixup_filename(file), line);
 1471         }
 1472         instance = find_instance(curthread->td_sleeplocks, lock);
 1473         if (instance == NULL) {
 1474                 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
 1475                     class->lc_name, lock->lo_name,
 1476                     fixup_filename(file), line);
 1477                 return;
 1478         }
 1479         if (witness_watch) {
 1480                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
 1481                         kassert_panic(
 1482                             "upgrade of exclusive lock (%s) %s @ %s:%d",
 1483                             class->lc_name, lock->lo_name,
 1484                             fixup_filename(file), line);
 1485                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
 1486                         kassert_panic(
 1487                             "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
 1488                             class->lc_name, lock->lo_name,
 1489                             instance->li_flags & LI_RECURSEMASK,
 1490                             fixup_filename(file), line);
 1491         }
 1492         instance->li_flags |= LI_EXCLUSIVE;
 1493 }
 1494 
 1495 void
 1496 witness_downgrade(struct lock_object *lock, int flags, const char *file,
 1497     int line)
 1498 {
 1499         struct lock_instance *instance;
 1500         struct lock_class *class;
 1501 
 1502         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 1503         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 1504                 return;
 1505         class = LOCK_CLASS(lock);
 1506         if (witness_watch) {
 1507                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
 1508                         kassert_panic(
 1509                             "downgrade of non-upgradable lock (%s) %s @ %s:%d",
 1510                             class->lc_name, lock->lo_name,
 1511                             fixup_filename(file), line);
 1512                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
 1513                         kassert_panic(
 1514                             "downgrade of non-sleep lock (%s) %s @ %s:%d",
 1515                             class->lc_name, lock->lo_name,
 1516                             fixup_filename(file), line);
 1517         }
 1518         instance = find_instance(curthread->td_sleeplocks, lock);
 1519         if (instance == NULL) {
 1520                 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
 1521                     class->lc_name, lock->lo_name,
 1522                     fixup_filename(file), line);
 1523                 return;
 1524         }
 1525         if (witness_watch) {
 1526                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
 1527                         kassert_panic(
 1528                             "downgrade of shared lock (%s) %s @ %s:%d",
 1529                             class->lc_name, lock->lo_name,
 1530                             fixup_filename(file), line);
 1531                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
 1532                         kassert_panic(
 1533                             "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
 1534                             class->lc_name, lock->lo_name,
 1535                             instance->li_flags & LI_RECURSEMASK,
 1536                             fixup_filename(file), line);
 1537         }
 1538         instance->li_flags &= ~LI_EXCLUSIVE;
 1539 }
 1540 
 1541 void
 1542 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
 1543 {
 1544         struct lock_list_entry **lock_list, *lle;
 1545         struct lock_instance *instance;
 1546         struct lock_class *class;
 1547         struct thread *td;
 1548         register_t s;
 1549         int i, j;
 1550 
 1551         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
 1552                 return;
 1553         td = curthread;
 1554         class = LOCK_CLASS(lock);
 1555 
 1556         /* Find lock instance associated with this lock. */
 1557         if (class->lc_flags & LC_SLEEPLOCK)
 1558                 lock_list = &td->td_sleeplocks;
 1559         else
 1560                 lock_list = PCPU_PTR(spinlocks);
 1561         lle = *lock_list;
 1562         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
 1563                 for (i = 0; i < (*lock_list)->ll_count; i++) {
 1564                         instance = &(*lock_list)->ll_children[i];
 1565                         if (instance->li_lock == lock)
 1566                                 goto found;
 1567                 }
 1568 
 1569         /*
 1570          * When disabling WITNESS through witness_watch we could end up in
 1571          * having registered locks in the td_sleeplocks queue.
 1572          * We have to make sure we flush these queues, so just search for
 1573          * eventual register locks and remove them.
 1574          */
 1575         if (witness_watch > 0) {
 1576                 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
 1577                     lock->lo_name, fixup_filename(file), line);
 1578                 return;
 1579         } else {
 1580                 return;
 1581         }
 1582 found:
 1583 
 1584         /* First, check for shared/exclusive mismatches. */
 1585         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
 1586             (flags & LOP_EXCLUSIVE) == 0) {
 1587                 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
 1588                     lock->lo_name, fixup_filename(file), line);
 1589                 printf("while exclusively locked from %s:%d\n",
 1590                     fixup_filename(instance->li_file), instance->li_line);
 1591                 kassert_panic("excl->ushare");
 1592         }
 1593         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
 1594             (flags & LOP_EXCLUSIVE) != 0) {
 1595                 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
 1596                     lock->lo_name, fixup_filename(file), line);
 1597                 printf("while share locked from %s:%d\n",
 1598                     fixup_filename(instance->li_file),
 1599                     instance->li_line);
 1600                 kassert_panic("share->uexcl");
 1601         }
 1602         /* If we are recursed, unrecurse. */
 1603         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
 1604                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
 1605                     td->td_proc->p_pid, instance->li_lock->lo_name,
 1606                     instance->li_flags);
 1607                 instance->li_flags--;
 1608                 return;
 1609         }
 1610         /* The lock is now being dropped, check for NORELEASE flag */
 1611         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
 1612                 printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
 1613                     lock->lo_name, fixup_filename(file), line);
 1614                 kassert_panic("lock marked norelease");
 1615         }
 1616 
 1617         /* Otherwise, remove this item from the list. */
 1618         s = intr_disable();
 1619         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
 1620             td->td_proc->p_pid, instance->li_lock->lo_name,
 1621             (*lock_list)->ll_count - 1);
 1622         for (j = i; j < (*lock_list)->ll_count - 1; j++)
 1623                 (*lock_list)->ll_children[j] =
 1624                     (*lock_list)->ll_children[j + 1];
 1625         (*lock_list)->ll_count--;
 1626         intr_restore(s);
 1627 
 1628         /*
 1629          * In order to reduce contention on w_mtx, we want to keep always an
 1630          * head object into lists so that frequent allocation from the 
 1631          * free witness pool (and subsequent locking) is avoided.
 1632          * In order to maintain the current code simple, when the head
 1633          * object is totally unloaded it means also that we do not have
 1634          * further objects in the list, so the list ownership needs to be
 1635          * hand over to another object if the current head needs to be freed.
 1636          */
 1637         if ((*lock_list)->ll_count == 0) {
 1638                 if (*lock_list == lle) {
 1639                         if (lle->ll_next == NULL)
 1640                                 return;
 1641                 } else
 1642                         lle = *lock_list;
 1643                 *lock_list = lle->ll_next;
 1644                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
 1645                     td->td_proc->p_pid, lle);
 1646                 witness_lock_list_free(lle);
 1647         }
 1648 }
 1649 
 1650 void
 1651 witness_thread_exit(struct thread *td)
 1652 {
 1653         struct lock_list_entry *lle;
 1654         int i, n;
 1655 
 1656         lle = td->td_sleeplocks;
 1657         if (lle == NULL || panicstr != NULL)
 1658                 return;
 1659         if (lle->ll_count != 0) {
 1660                 for (n = 0; lle != NULL; lle = lle->ll_next)
 1661                         for (i = lle->ll_count - 1; i >= 0; i--) {
 1662                                 if (n == 0)
 1663                 printf("Thread %p exiting with the following locks held:\n",
 1664                                             td);
 1665                                 n++;
 1666                                 witness_list_lock(&lle->ll_children[i], printf);
 1667                                 
 1668                         }
 1669                 kassert_panic(
 1670                     "Thread %p cannot exit while holding sleeplocks\n", td);
 1671         }
 1672         witness_lock_list_free(lle);
 1673 }
 1674 
 1675 /*
 1676  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
 1677  * exempt Giant and sleepable locks from the checks as well.  If any
 1678  * non-exempt locks are held, then a supplied message is printed to the
 1679  * console along with a list of the offending locks.  If indicated in the
 1680  * flags then a failure results in a panic as well.
 1681  */
 1682 int
 1683 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
 1684 {
 1685         struct lock_list_entry *lock_list, *lle;
 1686         struct lock_instance *lock1;
 1687         struct thread *td;
 1688         va_list ap;
 1689         int i, n;
 1690 
 1691         if (witness_cold || witness_watch < 1 || panicstr != NULL)
 1692                 return (0);
 1693         n = 0;
 1694         td = curthread;
 1695         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
 1696                 for (i = lle->ll_count - 1; i >= 0; i--) {
 1697                         lock1 = &lle->ll_children[i];
 1698                         if (lock1->li_lock == lock)
 1699                                 continue;
 1700                         if (flags & WARN_GIANTOK &&
 1701                             lock1->li_lock == &Giant.lock_object)
 1702                                 continue;
 1703                         if (flags & WARN_SLEEPOK &&
 1704                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
 1705                                 continue;
 1706                         if (n == 0) {
 1707                                 va_start(ap, fmt);
 1708                                 vprintf(fmt, ap);
 1709                                 va_end(ap);
 1710                                 printf(" with the following");
 1711                                 if (flags & WARN_SLEEPOK)
 1712                                         printf(" non-sleepable");
 1713                                 printf(" locks held:\n");
 1714                         }
 1715                         n++;
 1716                         witness_list_lock(lock1, printf);
 1717                 }
 1718 
 1719         /*
 1720          * Pin the thread in order to avoid problems with thread migration.
 1721          * Once that all verifies are passed about spinlocks ownership,
 1722          * the thread is in a safe path and it can be unpinned.
 1723          */
 1724         sched_pin();
 1725         lock_list = PCPU_GET(spinlocks);
 1726         if (lock_list != NULL && lock_list->ll_count != 0) {
 1727                 sched_unpin();
 1728 
 1729                 /*
 1730                  * We should only have one spinlock and as long as
 1731                  * the flags cannot match for this locks class,
 1732                  * check if the first spinlock is the one curthread
 1733                  * should hold.
 1734                  */
 1735                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
 1736                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
 1737                     lock1->li_lock == lock && n == 0)
 1738                         return (0);
 1739 
 1740                 va_start(ap, fmt);
 1741                 vprintf(fmt, ap);
 1742                 va_end(ap);
 1743                 printf(" with the following");
 1744                 if (flags & WARN_SLEEPOK)
 1745                         printf(" non-sleepable");
 1746                 printf(" locks held:\n");
 1747                 n += witness_list_locks(&lock_list, printf);
 1748         } else
 1749                 sched_unpin();
 1750         if (flags & WARN_PANIC && n)
 1751                 kassert_panic("%s", __func__);
 1752         else
 1753                 witness_debugger(n);
 1754         return (n);
 1755 }
 1756 
 1757 const char *
 1758 witness_file(struct lock_object *lock)
 1759 {
 1760         struct witness *w;
 1761 
 1762         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
 1763                 return ("?");
 1764         w = lock->lo_witness;
 1765         return (w->w_file);
 1766 }
 1767 
 1768 int
 1769 witness_line(struct lock_object *lock)
 1770 {
 1771         struct witness *w;
 1772 
 1773         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
 1774                 return (0);
 1775         w = lock->lo_witness;
 1776         return (w->w_line);
 1777 }
 1778 
 1779 static struct witness *
 1780 enroll(const char *description, struct lock_class *lock_class)
 1781 {
 1782         struct witness *w;
 1783         struct witness_list *typelist;
 1784 
 1785         MPASS(description != NULL);
 1786 
 1787         if (witness_watch == -1 || panicstr != NULL)
 1788                 return (NULL);
 1789         if ((lock_class->lc_flags & LC_SPINLOCK)) {
 1790                 if (witness_skipspin)
 1791                         return (NULL);
 1792                 else
 1793                         typelist = &w_spin;
 1794         } else if ((lock_class->lc_flags & LC_SLEEPLOCK)) {
 1795                 typelist = &w_sleep;
 1796         } else {
 1797                 kassert_panic("lock class %s is not sleep or spin",
 1798                     lock_class->lc_name);
 1799                 return (NULL);
 1800         }
 1801 
 1802         mtx_lock_spin(&w_mtx);
 1803         w = witness_hash_get(description);
 1804         if (w)
 1805                 goto found;
 1806         if ((w = witness_get()) == NULL)
 1807                 return (NULL);
 1808         MPASS(strlen(description) < MAX_W_NAME);
 1809         strcpy(w->w_name, description);
 1810         w->w_class = lock_class;
 1811         w->w_refcount = 1;
 1812         STAILQ_INSERT_HEAD(&w_all, w, w_list);
 1813         if (lock_class->lc_flags & LC_SPINLOCK) {
 1814                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
 1815                 w_spin_cnt++;
 1816         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
 1817                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
 1818                 w_sleep_cnt++;
 1819         }
 1820 
 1821         /* Insert new witness into the hash */
 1822         witness_hash_put(w);
 1823         witness_increment_graph_generation();
 1824         mtx_unlock_spin(&w_mtx);
 1825         return (w);
 1826 found:
 1827         w->w_refcount++;
 1828         mtx_unlock_spin(&w_mtx);
 1829         if (lock_class != w->w_class)
 1830                 kassert_panic(
 1831                         "lock (%s) %s does not match earlier (%s) lock",
 1832                         description, lock_class->lc_name,
 1833                         w->w_class->lc_name);
 1834         return (w);
 1835 }
 1836 
 1837 static void
 1838 depart(struct witness *w)
 1839 {
 1840         struct witness_list *list;
 1841 
 1842         MPASS(w->w_refcount == 0);
 1843         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
 1844                 list = &w_sleep;
 1845                 w_sleep_cnt--;
 1846         } else {
 1847                 list = &w_spin;
 1848                 w_spin_cnt--;
 1849         }
 1850         /*
 1851          * Set file to NULL as it may point into a loadable module.
 1852          */
 1853         w->w_file = NULL;
 1854         w->w_line = 0;
 1855         witness_increment_graph_generation();
 1856 }
 1857 
 1858 
 1859 static void
 1860 adopt(struct witness *parent, struct witness *child)
 1861 {
 1862         int pi, ci, i, j;
 1863 
 1864         if (witness_cold == 0)
 1865                 mtx_assert(&w_mtx, MA_OWNED);
 1866 
 1867         /* If the relationship is already known, there's no work to be done. */
 1868         if (isitmychild(parent, child))
 1869                 return;
 1870 
 1871         /* When the structure of the graph changes, bump up the generation. */
 1872         witness_increment_graph_generation();
 1873 
 1874         /*
 1875          * The hard part ... create the direct relationship, then propagate all
 1876          * indirect relationships.
 1877          */
 1878         pi = parent->w_index;
 1879         ci = child->w_index;
 1880         WITNESS_INDEX_ASSERT(pi);
 1881         WITNESS_INDEX_ASSERT(ci);
 1882         MPASS(pi != ci);
 1883         w_rmatrix[pi][ci] |= WITNESS_PARENT;
 1884         w_rmatrix[ci][pi] |= WITNESS_CHILD;
 1885 
 1886         /*
 1887          * If parent was not already an ancestor of child,
 1888          * then we increment the descendant and ancestor counters.
 1889          */
 1890         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
 1891                 parent->w_num_descendants++;
 1892                 child->w_num_ancestors++;
 1893         }
 1894 
 1895         /* 
 1896          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
 1897          * an ancestor of 'pi' during this loop.
 1898          */
 1899         for (i = 1; i <= w_max_used_index; i++) {
 1900                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
 1901                     (i != pi))
 1902                         continue;
 1903 
 1904                 /* Find each descendant of 'i' and mark it as a descendant. */
 1905                 for (j = 1; j <= w_max_used_index; j++) {
 1906 
 1907                         /* 
 1908                          * Skip children that are already marked as
 1909                          * descendants of 'i'.
 1910                          */
 1911                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
 1912                                 continue;
 1913 
 1914                         /*
 1915                          * We are only interested in descendants of 'ci'. Note
 1916                          * that 'ci' itself is counted as a descendant of 'ci'.
 1917                          */
 1918                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
 1919                             (j != ci))
 1920                                 continue;
 1921                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
 1922                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
 1923                         w_data[i].w_num_descendants++;
 1924                         w_data[j].w_num_ancestors++;
 1925 
 1926                         /* 
 1927                          * Make sure we aren't marking a node as both an
 1928                          * ancestor and descendant. We should have caught 
 1929                          * this as a lock order reversal earlier.
 1930                          */
 1931                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
 1932                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
 1933                                 printf("witness rmatrix paradox! [%d][%d]=%d "
 1934                                     "both ancestor and descendant\n",
 1935                                     i, j, w_rmatrix[i][j]); 
 1936                                 kdb_backtrace();
 1937                                 printf("Witness disabled.\n");
 1938                                 witness_watch = -1;
 1939                         }
 1940                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
 1941                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
 1942                                 printf("witness rmatrix paradox! [%d][%d]=%d "
 1943                                     "both ancestor and descendant\n",
 1944                                     j, i, w_rmatrix[j][i]); 
 1945                                 kdb_backtrace();
 1946                                 printf("Witness disabled.\n");
 1947                                 witness_watch = -1;
 1948                         }
 1949                 }
 1950         }
 1951 }
 1952 
 1953 static void
 1954 itismychild(struct witness *parent, struct witness *child)
 1955 {
 1956         int unlocked;
 1957 
 1958         MPASS(child != NULL && parent != NULL);
 1959         if (witness_cold == 0)
 1960                 mtx_assert(&w_mtx, MA_OWNED);
 1961 
 1962         if (!witness_lock_type_equal(parent, child)) {
 1963                 if (witness_cold == 0) {
 1964                         unlocked = 1;
 1965                         mtx_unlock_spin(&w_mtx);
 1966                 } else {
 1967                         unlocked = 0;
 1968                 }
 1969                 kassert_panic(
 1970                     "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
 1971                     "the same lock type", __func__, parent->w_name,
 1972                     parent->w_class->lc_name, child->w_name,
 1973                     child->w_class->lc_name);
 1974                 if (unlocked)
 1975                         mtx_lock_spin(&w_mtx);
 1976         }
 1977         adopt(parent, child);
 1978 }
 1979 
 1980 /*
 1981  * Generic code for the isitmy*() functions. The rmask parameter is the
 1982  * expected relationship of w1 to w2.
 1983  */
 1984 static int
 1985 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
 1986 {
 1987         unsigned char r1, r2;
 1988         int i1, i2;
 1989 
 1990         i1 = w1->w_index;
 1991         i2 = w2->w_index;
 1992         WITNESS_INDEX_ASSERT(i1);
 1993         WITNESS_INDEX_ASSERT(i2);
 1994         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
 1995         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
 1996 
 1997         /* The flags on one better be the inverse of the flags on the other */
 1998         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
 1999                 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
 2000                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
 2001                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
 2002                     "w_rmatrix[%d][%d] == %hhx\n",
 2003                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
 2004                     i2, i1, r2);
 2005                 kdb_backtrace();
 2006                 printf("Witness disabled.\n");
 2007                 witness_watch = -1;
 2008         }
 2009         return (r1 & rmask);
 2010 }
 2011 
 2012 /*
 2013  * Checks if @child is a direct child of @parent.
 2014  */
 2015 static int
 2016 isitmychild(struct witness *parent, struct witness *child)
 2017 {
 2018 
 2019         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
 2020 }
 2021 
 2022 /*
 2023  * Checks if @descendant is a direct or inderect descendant of @ancestor.
 2024  */
 2025 static int
 2026 isitmydescendant(struct witness *ancestor, struct witness *descendant)
 2027 {
 2028 
 2029         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
 2030             __func__));
 2031 }
 2032 
 2033 #ifdef BLESSING
 2034 static int
 2035 blessed(struct witness *w1, struct witness *w2)
 2036 {
 2037         int i;
 2038         struct witness_blessed *b;
 2039 
 2040         for (i = 0; i < blessed_count; i++) {
 2041                 b = &blessed_list[i];
 2042                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
 2043                         if (strcmp(w2->w_name, b->b_lock2) == 0)
 2044                                 return (1);
 2045                         continue;
 2046                 }
 2047                 if (strcmp(w1->w_name, b->b_lock2) == 0)
 2048                         if (strcmp(w2->w_name, b->b_lock1) == 0)
 2049                                 return (1);
 2050         }
 2051         return (0);
 2052 }
 2053 #endif
 2054 
 2055 static struct witness *
 2056 witness_get(void)
 2057 {
 2058         struct witness *w;
 2059         int index;
 2060 
 2061         if (witness_cold == 0)
 2062                 mtx_assert(&w_mtx, MA_OWNED);
 2063 
 2064         if (witness_watch == -1) {
 2065                 mtx_unlock_spin(&w_mtx);
 2066                 return (NULL);
 2067         }
 2068         if (STAILQ_EMPTY(&w_free)) {
 2069                 witness_watch = -1;
 2070                 mtx_unlock_spin(&w_mtx);
 2071                 printf("WITNESS: unable to allocate a new witness object\n");
 2072                 return (NULL);
 2073         }
 2074         w = STAILQ_FIRST(&w_free);
 2075         STAILQ_REMOVE_HEAD(&w_free, w_list);
 2076         w_free_cnt--;
 2077         index = w->w_index;
 2078         MPASS(index > 0 && index == w_max_used_index+1 &&
 2079             index < WITNESS_COUNT);
 2080         bzero(w, sizeof(*w));
 2081         w->w_index = index;
 2082         if (index > w_max_used_index)
 2083                 w_max_used_index = index;
 2084         return (w);
 2085 }
 2086 
 2087 static void
 2088 witness_free(struct witness *w)
 2089 {
 2090 
 2091         STAILQ_INSERT_HEAD(&w_free, w, w_list);
 2092         w_free_cnt++;
 2093 }
 2094 
 2095 static struct lock_list_entry *
 2096 witness_lock_list_get(void)
 2097 {
 2098         struct lock_list_entry *lle;
 2099 
 2100         if (witness_watch == -1)
 2101                 return (NULL);
 2102         mtx_lock_spin(&w_mtx);
 2103         lle = w_lock_list_free;
 2104         if (lle == NULL) {
 2105                 witness_watch = -1;
 2106                 mtx_unlock_spin(&w_mtx);
 2107                 printf("%s: witness exhausted\n", __func__);
 2108                 return (NULL);
 2109         }
 2110         w_lock_list_free = lle->ll_next;
 2111         mtx_unlock_spin(&w_mtx);
 2112         bzero(lle, sizeof(*lle));
 2113         return (lle);
 2114 }
 2115                 
 2116 static void
 2117 witness_lock_list_free(struct lock_list_entry *lle)
 2118 {
 2119 
 2120         mtx_lock_spin(&w_mtx);
 2121         lle->ll_next = w_lock_list_free;
 2122         w_lock_list_free = lle;
 2123         mtx_unlock_spin(&w_mtx);
 2124 }
 2125 
 2126 static struct lock_instance *
 2127 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
 2128 {
 2129         struct lock_list_entry *lle;
 2130         struct lock_instance *instance;
 2131         int i;
 2132 
 2133         for (lle = list; lle != NULL; lle = lle->ll_next)
 2134                 for (i = lle->ll_count - 1; i >= 0; i--) {
 2135                         instance = &lle->ll_children[i];
 2136                         if (instance->li_lock == lock)
 2137                                 return (instance);
 2138                 }
 2139         return (NULL);
 2140 }
 2141 
 2142 static void
 2143 witness_list_lock(struct lock_instance *instance,
 2144     int (*prnt)(const char *fmt, ...))
 2145 {
 2146         struct lock_object *lock;
 2147 
 2148         lock = instance->li_lock;
 2149         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
 2150             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
 2151         if (lock->lo_witness->w_name != lock->lo_name)
 2152                 prnt(" (%s)", lock->lo_witness->w_name);
 2153         prnt(" r = %d (%p) locked @ %s:%d\n",
 2154             instance->li_flags & LI_RECURSEMASK, lock,
 2155             fixup_filename(instance->li_file), instance->li_line);
 2156 }
 2157 
 2158 #ifdef DDB
 2159 static int
 2160 witness_thread_has_locks(struct thread *td)
 2161 {
 2162 
 2163         if (td->td_sleeplocks == NULL)
 2164                 return (0);
 2165         return (td->td_sleeplocks->ll_count != 0);
 2166 }
 2167 
 2168 static int
 2169 witness_proc_has_locks(struct proc *p)
 2170 {
 2171         struct thread *td;
 2172 
 2173         FOREACH_THREAD_IN_PROC(p, td) {
 2174                 if (witness_thread_has_locks(td))
 2175                         return (1);
 2176         }
 2177         return (0);
 2178 }
 2179 #endif
 2180 
 2181 int
 2182 witness_list_locks(struct lock_list_entry **lock_list,
 2183     int (*prnt)(const char *fmt, ...))
 2184 {
 2185         struct lock_list_entry *lle;
 2186         int i, nheld;
 2187 
 2188         nheld = 0;
 2189         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
 2190                 for (i = lle->ll_count - 1; i >= 0; i--) {
 2191                         witness_list_lock(&lle->ll_children[i], prnt);
 2192                         nheld++;
 2193                 }
 2194         return (nheld);
 2195 }
 2196 
 2197 /*
 2198  * This is a bit risky at best.  We call this function when we have timed
 2199  * out acquiring a spin lock, and we assume that the other CPU is stuck
 2200  * with this lock held.  So, we go groveling around in the other CPU's
 2201  * per-cpu data to try to find the lock instance for this spin lock to
 2202  * see when it was last acquired.
 2203  */
 2204 void
 2205 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
 2206     int (*prnt)(const char *fmt, ...))
 2207 {
 2208         struct lock_instance *instance;
 2209         struct pcpu *pc;
 2210 
 2211         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
 2212                 return;
 2213         pc = pcpu_find(owner->td_oncpu);
 2214         instance = find_instance(pc->pc_spinlocks, lock);
 2215         if (instance != NULL)
 2216                 witness_list_lock(instance, prnt);
 2217 }
 2218 
 2219 void
 2220 witness_save(struct lock_object *lock, const char **filep, int *linep)
 2221 {
 2222         struct lock_list_entry *lock_list;
 2223         struct lock_instance *instance;
 2224         struct lock_class *class;
 2225 
 2226         /*
 2227          * This function is used independently in locking code to deal with
 2228          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
 2229          * is gone.
 2230          */
 2231         if (SCHEDULER_STOPPED())
 2232                 return;
 2233         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2234         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 2235                 return;
 2236         class = LOCK_CLASS(lock);
 2237         if (class->lc_flags & LC_SLEEPLOCK)
 2238                 lock_list = curthread->td_sleeplocks;
 2239         else {
 2240                 if (witness_skipspin)
 2241                         return;
 2242                 lock_list = PCPU_GET(spinlocks);
 2243         }
 2244         instance = find_instance(lock_list, lock);
 2245         if (instance == NULL) {
 2246                 kassert_panic("%s: lock (%s) %s not locked", __func__,
 2247                     class->lc_name, lock->lo_name);
 2248                 return;
 2249         }
 2250         *filep = instance->li_file;
 2251         *linep = instance->li_line;
 2252 }
 2253 
 2254 void
 2255 witness_restore(struct lock_object *lock, const char *file, int line)
 2256 {
 2257         struct lock_list_entry *lock_list;
 2258         struct lock_instance *instance;
 2259         struct lock_class *class;
 2260 
 2261         /*
 2262          * This function is used independently in locking code to deal with
 2263          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
 2264          * is gone.
 2265          */
 2266         if (SCHEDULER_STOPPED())
 2267                 return;
 2268         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2269         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 2270                 return;
 2271         class = LOCK_CLASS(lock);
 2272         if (class->lc_flags & LC_SLEEPLOCK)
 2273                 lock_list = curthread->td_sleeplocks;
 2274         else {
 2275                 if (witness_skipspin)
 2276                         return;
 2277                 lock_list = PCPU_GET(spinlocks);
 2278         }
 2279         instance = find_instance(lock_list, lock);
 2280         if (instance == NULL)
 2281                 kassert_panic("%s: lock (%s) %s not locked", __func__,
 2282                     class->lc_name, lock->lo_name);
 2283         lock->lo_witness->w_file = file;
 2284         lock->lo_witness->w_line = line;
 2285         if (instance == NULL)
 2286                 return;
 2287         instance->li_file = file;
 2288         instance->li_line = line;
 2289 }
 2290 
 2291 void
 2292 witness_assert(const struct lock_object *lock, int flags, const char *file,
 2293     int line)
 2294 {
 2295 #ifdef INVARIANT_SUPPORT
 2296         struct lock_instance *instance;
 2297         struct lock_class *class;
 2298 
 2299         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
 2300                 return;
 2301         class = LOCK_CLASS(lock);
 2302         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
 2303                 instance = find_instance(curthread->td_sleeplocks, lock);
 2304         else if ((class->lc_flags & LC_SPINLOCK) != 0)
 2305                 instance = find_instance(PCPU_GET(spinlocks), lock);
 2306         else {
 2307                 kassert_panic("Lock (%s) %s is not sleep or spin!",
 2308                     class->lc_name, lock->lo_name);
 2309                 return;
 2310         }
 2311         switch (flags) {
 2312         case LA_UNLOCKED:
 2313                 if (instance != NULL)
 2314                         kassert_panic("Lock (%s) %s locked @ %s:%d.",
 2315                             class->lc_name, lock->lo_name,
 2316                             fixup_filename(file), line);
 2317                 break;
 2318         case LA_LOCKED:
 2319         case LA_LOCKED | LA_RECURSED:
 2320         case LA_LOCKED | LA_NOTRECURSED:
 2321         case LA_SLOCKED:
 2322         case LA_SLOCKED | LA_RECURSED:
 2323         case LA_SLOCKED | LA_NOTRECURSED:
 2324         case LA_XLOCKED:
 2325         case LA_XLOCKED | LA_RECURSED:
 2326         case LA_XLOCKED | LA_NOTRECURSED:
 2327                 if (instance == NULL) {
 2328                         kassert_panic("Lock (%s) %s not locked @ %s:%d.",
 2329                             class->lc_name, lock->lo_name,
 2330                             fixup_filename(file), line);
 2331                         break;
 2332                 }
 2333                 if ((flags & LA_XLOCKED) != 0 &&
 2334                     (instance->li_flags & LI_EXCLUSIVE) == 0)
 2335                         kassert_panic(
 2336                             "Lock (%s) %s not exclusively locked @ %s:%d.",
 2337                             class->lc_name, lock->lo_name,
 2338                             fixup_filename(file), line);
 2339                 if ((flags & LA_SLOCKED) != 0 &&
 2340                     (instance->li_flags & LI_EXCLUSIVE) != 0)
 2341                         kassert_panic(
 2342                             "Lock (%s) %s exclusively locked @ %s:%d.",
 2343                             class->lc_name, lock->lo_name,
 2344                             fixup_filename(file), line);
 2345                 if ((flags & LA_RECURSED) != 0 &&
 2346                     (instance->li_flags & LI_RECURSEMASK) == 0)
 2347                         kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
 2348                             class->lc_name, lock->lo_name,
 2349                             fixup_filename(file), line);
 2350                 if ((flags & LA_NOTRECURSED) != 0 &&
 2351                     (instance->li_flags & LI_RECURSEMASK) != 0)
 2352                         kassert_panic("Lock (%s) %s recursed @ %s:%d.",
 2353                             class->lc_name, lock->lo_name,
 2354                             fixup_filename(file), line);
 2355                 break;
 2356         default:
 2357                 kassert_panic("Invalid lock assertion at %s:%d.",
 2358                     fixup_filename(file), line);
 2359 
 2360         }
 2361 #endif  /* INVARIANT_SUPPORT */
 2362 }
 2363 
 2364 static void
 2365 witness_setflag(struct lock_object *lock, int flag, int set)
 2366 {
 2367         struct lock_list_entry *lock_list;
 2368         struct lock_instance *instance;
 2369         struct lock_class *class;
 2370 
 2371         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 2372                 return;
 2373         class = LOCK_CLASS(lock);
 2374         if (class->lc_flags & LC_SLEEPLOCK)
 2375                 lock_list = curthread->td_sleeplocks;
 2376         else {
 2377                 if (witness_skipspin)
 2378                         return;
 2379                 lock_list = PCPU_GET(spinlocks);
 2380         }
 2381         instance = find_instance(lock_list, lock);
 2382         if (instance == NULL) {
 2383                 kassert_panic("%s: lock (%s) %s not locked", __func__,
 2384                     class->lc_name, lock->lo_name);
 2385                 return;
 2386         }
 2387 
 2388         if (set)
 2389                 instance->li_flags |= flag;
 2390         else
 2391                 instance->li_flags &= ~flag;
 2392 }
 2393 
 2394 void
 2395 witness_norelease(struct lock_object *lock)
 2396 {
 2397 
 2398         witness_setflag(lock, LI_NORELEASE, 1);
 2399 }
 2400 
 2401 void
 2402 witness_releaseok(struct lock_object *lock)
 2403 {
 2404 
 2405         witness_setflag(lock, LI_NORELEASE, 0);
 2406 }
 2407 
 2408 #ifdef DDB
 2409 static void
 2410 witness_ddb_list(struct thread *td)
 2411 {
 2412 
 2413         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2414         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
 2415 
 2416         if (witness_watch < 1)
 2417                 return;
 2418 
 2419         witness_list_locks(&td->td_sleeplocks, db_printf);
 2420 
 2421         /*
 2422          * We only handle spinlocks if td == curthread.  This is somewhat broken
 2423          * if td is currently executing on some other CPU and holds spin locks
 2424          * as we won't display those locks.  If we had a MI way of getting
 2425          * the per-cpu data for a given cpu then we could use
 2426          * td->td_oncpu to get the list of spinlocks for this thread
 2427          * and "fix" this.
 2428          *
 2429          * That still wouldn't really fix this unless we locked the scheduler
 2430          * lock or stopped the other CPU to make sure it wasn't changing the
 2431          * list out from under us.  It is probably best to just not try to
 2432          * handle threads on other CPU's for now.
 2433          */
 2434         if (td == curthread && PCPU_GET(spinlocks) != NULL)
 2435                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
 2436 }
 2437 
 2438 DB_SHOW_COMMAND(locks, db_witness_list)
 2439 {
 2440         struct thread *td;
 2441 
 2442         if (have_addr)
 2443                 td = db_lookup_thread(addr, TRUE);
 2444         else
 2445                 td = kdb_thread;
 2446         witness_ddb_list(td);
 2447 }
 2448 
 2449 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
 2450 {
 2451         struct thread *td;
 2452         struct proc *p;
 2453 
 2454         /*
 2455          * It would be nice to list only threads and processes that actually
 2456          * held sleep locks, but that information is currently not exported
 2457          * by WITNESS.
 2458          */
 2459         FOREACH_PROC_IN_SYSTEM(p) {
 2460                 if (!witness_proc_has_locks(p))
 2461                         continue;
 2462                 FOREACH_THREAD_IN_PROC(p, td) {
 2463                         if (!witness_thread_has_locks(td))
 2464                                 continue;
 2465                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
 2466                             p->p_comm, td, td->td_tid);
 2467                         witness_ddb_list(td);
 2468                         if (db_pager_quit)
 2469                                 return;
 2470                 }
 2471         }
 2472 }
 2473 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
 2474 
 2475 DB_SHOW_COMMAND(witness, db_witness_display)
 2476 {
 2477 
 2478         witness_ddb_display(db_printf);
 2479 }
 2480 #endif
 2481 
 2482 static int
 2483 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
 2484 {
 2485         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
 2486         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
 2487         struct sbuf *sb;
 2488         u_int w_rmatrix1, w_rmatrix2;
 2489         int error, generation, i, j;
 2490 
 2491         tmp_data1 = NULL;
 2492         tmp_data2 = NULL;
 2493         tmp_w1 = NULL;
 2494         tmp_w2 = NULL;
 2495         if (witness_watch < 1) {
 2496                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
 2497                 return (error);
 2498         }
 2499         if (witness_cold) {
 2500                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
 2501                 return (error);
 2502         }
 2503         error = 0;
 2504         sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
 2505         if (sb == NULL)
 2506                 return (ENOMEM);
 2507 
 2508         /* Allocate and init temporary storage space. */
 2509         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
 2510         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
 2511         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
 2512             M_WAITOK | M_ZERO);
 2513         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
 2514             M_WAITOK | M_ZERO);
 2515         stack_zero(&tmp_data1->wlod_stack);
 2516         stack_zero(&tmp_data2->wlod_stack);
 2517 
 2518 restart:
 2519         mtx_lock_spin(&w_mtx);
 2520         generation = w_generation;
 2521         mtx_unlock_spin(&w_mtx);
 2522         sbuf_printf(sb, "Number of known direct relationships is %d\n",
 2523             w_lohash.wloh_count);
 2524         for (i = 1; i < w_max_used_index; i++) {
 2525                 mtx_lock_spin(&w_mtx);
 2526                 if (generation != w_generation) {
 2527                         mtx_unlock_spin(&w_mtx);
 2528 
 2529                         /* The graph has changed, try again. */
 2530                         req->oldidx = 0;
 2531                         sbuf_clear(sb);
 2532                         goto restart;
 2533                 }
 2534 
 2535                 w1 = &w_data[i];
 2536                 if (w1->w_reversed == 0) {
 2537                         mtx_unlock_spin(&w_mtx);
 2538                         continue;
 2539                 }
 2540 
 2541                 /* Copy w1 locally so we can release the spin lock. */
 2542                 *tmp_w1 = *w1;
 2543                 mtx_unlock_spin(&w_mtx);
 2544 
 2545                 if (tmp_w1->w_reversed == 0)
 2546                         continue;
 2547                 for (j = 1; j < w_max_used_index; j++) {
 2548                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
 2549                                 continue;
 2550 
 2551                         mtx_lock_spin(&w_mtx);
 2552                         if (generation != w_generation) {
 2553                                 mtx_unlock_spin(&w_mtx);
 2554 
 2555                                 /* The graph has changed, try again. */
 2556                                 req->oldidx = 0;
 2557                                 sbuf_clear(sb);
 2558                                 goto restart;
 2559                         }
 2560 
 2561                         w2 = &w_data[j];
 2562                         data1 = witness_lock_order_get(w1, w2);
 2563                         data2 = witness_lock_order_get(w2, w1);
 2564 
 2565                         /*
 2566                          * Copy information locally so we can release the
 2567                          * spin lock.
 2568                          */
 2569                         *tmp_w2 = *w2;
 2570                         w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
 2571                         w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
 2572 
 2573                         if (data1) {
 2574                                 stack_zero(&tmp_data1->wlod_stack);
 2575                                 stack_copy(&data1->wlod_stack,
 2576                                     &tmp_data1->wlod_stack);
 2577                         }
 2578                         if (data2 && data2 != data1) {
 2579                                 stack_zero(&tmp_data2->wlod_stack);
 2580                                 stack_copy(&data2->wlod_stack,
 2581                                     &tmp_data2->wlod_stack);
 2582                         }
 2583                         mtx_unlock_spin(&w_mtx);
 2584 
 2585                         sbuf_printf(sb,
 2586             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
 2587                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
 2588                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
 2589 #if 0
 2590                         sbuf_printf(sb,
 2591                         "w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
 2592                             tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
 2593                             tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
 2594 #endif
 2595                         if (data1) {
 2596                                 sbuf_printf(sb,
 2597                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
 2598                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
 2599                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
 2600                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
 2601                                 sbuf_printf(sb, "\n");
 2602                         }
 2603                         if (data2 && data2 != data1) {
 2604                                 sbuf_printf(sb,
 2605                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
 2606                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
 2607                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
 2608                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
 2609                                 sbuf_printf(sb, "\n");
 2610                         }
 2611                 }
 2612         }
 2613         mtx_lock_spin(&w_mtx);
 2614         if (generation != w_generation) {
 2615                 mtx_unlock_spin(&w_mtx);
 2616 
 2617                 /*
 2618                  * The graph changed while we were printing stack data,
 2619                  * try again.
 2620                  */
 2621                 req->oldidx = 0;
 2622                 sbuf_clear(sb);
 2623                 goto restart;
 2624         }
 2625         mtx_unlock_spin(&w_mtx);
 2626 
 2627         /* Free temporary storage space. */
 2628         free(tmp_data1, M_TEMP);
 2629         free(tmp_data2, M_TEMP);
 2630         free(tmp_w1, M_TEMP);
 2631         free(tmp_w2, M_TEMP);
 2632 
 2633         sbuf_finish(sb);
 2634         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
 2635         sbuf_delete(sb);
 2636 
 2637         return (error);
 2638 }
 2639 
 2640 static int
 2641 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
 2642 {
 2643         struct witness *w;
 2644         struct sbuf *sb;
 2645         int error;
 2646 
 2647         if (witness_watch < 1) {
 2648                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
 2649                 return (error);
 2650         }
 2651         if (witness_cold) {
 2652                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
 2653                 return (error);
 2654         }
 2655         error = 0;
 2656 
 2657         error = sysctl_wire_old_buffer(req, 0);
 2658         if (error != 0)
 2659                 return (error);
 2660         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
 2661         if (sb == NULL)
 2662                 return (ENOMEM);
 2663         sbuf_printf(sb, "\n");
 2664 
 2665         mtx_lock_spin(&w_mtx);
 2666         STAILQ_FOREACH(w, &w_all, w_list)
 2667                 w->w_displayed = 0;
 2668         STAILQ_FOREACH(w, &w_all, w_list)
 2669                 witness_add_fullgraph(sb, w);
 2670         mtx_unlock_spin(&w_mtx);
 2671 
 2672         /*
 2673          * Close the sbuf and return to userland.
 2674          */
 2675         error = sbuf_finish(sb);
 2676         sbuf_delete(sb);
 2677 
 2678         return (error);
 2679 }
 2680 
 2681 static int
 2682 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
 2683 {
 2684         int error, value;
 2685 
 2686         value = witness_watch;
 2687         error = sysctl_handle_int(oidp, &value, 0, req);
 2688         if (error != 0 || req->newptr == NULL)
 2689                 return (error);
 2690         if (value > 1 || value < -1 ||
 2691             (witness_watch == -1 && value != witness_watch))
 2692                 return (EINVAL);
 2693         witness_watch = value;
 2694         return (0);
 2695 }
 2696 
 2697 static void
 2698 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
 2699 {
 2700         int i;
 2701 
 2702         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
 2703                 return;
 2704         w->w_displayed = 1;
 2705 
 2706         WITNESS_INDEX_ASSERT(w->w_index);
 2707         for (i = 1; i <= w_max_used_index; i++) {
 2708                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
 2709                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
 2710                             w_data[i].w_name);
 2711                         witness_add_fullgraph(sb, &w_data[i]);
 2712                 }
 2713         }
 2714 }
 2715 
 2716 /*
 2717  * A simple hash function. Takes a key pointer and a key size. If size == 0,
 2718  * interprets the key as a string and reads until the null
 2719  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
 2720  * hash value computed from the key.
 2721  */
 2722 static uint32_t
 2723 witness_hash_djb2(const uint8_t *key, uint32_t size)
 2724 {
 2725         unsigned int hash = 5381;
 2726         int i;
 2727 
 2728         /* hash = hash * 33 + key[i] */
 2729         if (size)
 2730                 for (i = 0; i < size; i++)
 2731                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
 2732         else
 2733                 for (i = 0; key[i] != 0; i++)
 2734                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
 2735 
 2736         return (hash);
 2737 }
 2738 
 2739 
 2740 /*
 2741  * Initializes the two witness hash tables. Called exactly once from
 2742  * witness_initialize().
 2743  */
 2744 static void
 2745 witness_init_hash_tables(void)
 2746 {
 2747         int i;
 2748 
 2749         MPASS(witness_cold);
 2750 
 2751         /* Initialize the hash tables. */
 2752         for (i = 0; i < WITNESS_HASH_SIZE; i++)
 2753                 w_hash.wh_array[i] = NULL;
 2754 
 2755         w_hash.wh_size = WITNESS_HASH_SIZE;
 2756         w_hash.wh_count = 0;
 2757 
 2758         /* Initialize the lock order data hash. */
 2759         w_lofree = NULL;
 2760         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
 2761                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
 2762                 w_lodata[i].wlod_next = w_lofree;
 2763                 w_lofree = &w_lodata[i];
 2764         }
 2765         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
 2766         w_lohash.wloh_count = 0;
 2767         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
 2768                 w_lohash.wloh_array[i] = NULL;
 2769 }
 2770 
 2771 static struct witness *
 2772 witness_hash_get(const char *key)
 2773 {
 2774         struct witness *w;
 2775         uint32_t hash;
 2776         
 2777         MPASS(key != NULL);
 2778         if (witness_cold == 0)
 2779                 mtx_assert(&w_mtx, MA_OWNED);
 2780         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
 2781         w = w_hash.wh_array[hash];
 2782         while (w != NULL) {
 2783                 if (strcmp(w->w_name, key) == 0)
 2784                         goto out;
 2785                 w = w->w_hash_next;
 2786         }
 2787 
 2788 out:
 2789         return (w);
 2790 }
 2791 
 2792 static void
 2793 witness_hash_put(struct witness *w)
 2794 {
 2795         uint32_t hash;
 2796 
 2797         MPASS(w != NULL);
 2798         MPASS(w->w_name != NULL);
 2799         if (witness_cold == 0)
 2800                 mtx_assert(&w_mtx, MA_OWNED);
 2801         KASSERT(witness_hash_get(w->w_name) == NULL,
 2802             ("%s: trying to add a hash entry that already exists!", __func__));
 2803         KASSERT(w->w_hash_next == NULL,
 2804             ("%s: w->w_hash_next != NULL", __func__));
 2805 
 2806         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
 2807         w->w_hash_next = w_hash.wh_array[hash];
 2808         w_hash.wh_array[hash] = w;
 2809         w_hash.wh_count++;
 2810 }
 2811 
 2812 
 2813 static struct witness_lock_order_data *
 2814 witness_lock_order_get(struct witness *parent, struct witness *child)
 2815 {
 2816         struct witness_lock_order_data *data = NULL;
 2817         struct witness_lock_order_key key;
 2818         unsigned int hash;
 2819 
 2820         MPASS(parent != NULL && child != NULL);
 2821         key.from = parent->w_index;
 2822         key.to = child->w_index;
 2823         WITNESS_INDEX_ASSERT(key.from);
 2824         WITNESS_INDEX_ASSERT(key.to);
 2825         if ((w_rmatrix[parent->w_index][child->w_index]
 2826             & WITNESS_LOCK_ORDER_KNOWN) == 0)
 2827                 goto out;
 2828 
 2829         hash = witness_hash_djb2((const char*)&key,
 2830             sizeof(key)) % w_lohash.wloh_size;
 2831         data = w_lohash.wloh_array[hash];
 2832         while (data != NULL) {
 2833                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
 2834                         break;
 2835                 data = data->wlod_next;
 2836         }
 2837 
 2838 out:
 2839         return (data);
 2840 }
 2841 
 2842 /*
 2843  * Verify that parent and child have a known relationship, are not the same,
 2844  * and child is actually a child of parent.  This is done without w_mtx
 2845  * to avoid contention in the common case.
 2846  */
 2847 static int
 2848 witness_lock_order_check(struct witness *parent, struct witness *child)
 2849 {
 2850 
 2851         if (parent != child &&
 2852             w_rmatrix[parent->w_index][child->w_index]
 2853             & WITNESS_LOCK_ORDER_KNOWN &&
 2854             isitmychild(parent, child))
 2855                 return (1);
 2856 
 2857         return (0);
 2858 }
 2859 
 2860 static int
 2861 witness_lock_order_add(struct witness *parent, struct witness *child)
 2862 {
 2863         struct witness_lock_order_data *data = NULL;
 2864         struct witness_lock_order_key key;
 2865         unsigned int hash;
 2866         
 2867         MPASS(parent != NULL && child != NULL);
 2868         key.from = parent->w_index;
 2869         key.to = child->w_index;
 2870         WITNESS_INDEX_ASSERT(key.from);
 2871         WITNESS_INDEX_ASSERT(key.to);
 2872         if (w_rmatrix[parent->w_index][child->w_index]
 2873             & WITNESS_LOCK_ORDER_KNOWN)
 2874                 return (1);
 2875 
 2876         hash = witness_hash_djb2((const char*)&key,
 2877             sizeof(key)) % w_lohash.wloh_size;
 2878         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
 2879         data = w_lofree;
 2880         if (data == NULL)
 2881                 return (0);
 2882         w_lofree = data->wlod_next;
 2883         data->wlod_next = w_lohash.wloh_array[hash];
 2884         data->wlod_key = key;
 2885         w_lohash.wloh_array[hash] = data;
 2886         w_lohash.wloh_count++;
 2887         stack_zero(&data->wlod_stack);
 2888         stack_save(&data->wlod_stack);
 2889         return (1);
 2890 }
 2891 
 2892 /* Call this whenver the structure of the witness graph changes. */
 2893 static void
 2894 witness_increment_graph_generation(void)
 2895 {
 2896 
 2897         if (witness_cold == 0)
 2898                 mtx_assert(&w_mtx, MA_OWNED);
 2899         w_generation++;
 2900 }
 2901 
 2902 #ifdef KDB
 2903 static void
 2904 _witness_debugger(int cond, const char *msg)
 2905 {
 2906 
 2907         if (witness_trace && cond)
 2908                 kdb_backtrace();
 2909         if (witness_kdb && cond)
 2910                 kdb_enter(KDB_WHY_WITNESS, msg);
 2911 }
 2912 #endif

Cache object: 8664935565420bee7067ef8aac62ed39


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.