The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_witness.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2008 Isilon Systems, Inc.
    3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
    4  * Copyright (c) 1998 Berkeley Software Design, Inc.
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
   16  *    promote products derived from this software without specific prior
   17  *    written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
   32  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
   33  */
   34 
   35 /*
   36  * Implementation of the `witness' lock verifier.  Originally implemented for
   37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
   38  * classes in FreeBSD.
   39  */
   40 
   41 /*
   42  *      Main Entry: witness
   43  *      Pronunciation: 'wit-n&s
   44  *      Function: noun
   45  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
   46  *          testimony, witness, from 2wit
   47  *      Date: before 12th century
   48  *      1 : attestation of a fact or event : TESTIMONY
   49  *      2 : one that gives evidence; specifically : one who testifies in
   50  *          a cause or before a judicial tribunal
   51  *      3 : one asked to be present at a transaction so as to be able to
   52  *          testify to its having taken place
   53  *      4 : one who has personal knowledge of something
   54  *      5 a : something serving as evidence or proof : SIGN
   55  *        b : public affirmation by word or example of usually
   56  *            religious faith or conviction <the heroic witness to divine
   57  *            life -- Pilot>
   58  *      6 capitalized : a member of the Jehovah's Witnesses 
   59  */
   60 
   61 /*
   62  * Special rules concerning Giant and lock orders:
   63  *
   64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
   65  *    no other mutex may be held when Giant is acquired.
   66  *
   67  * 2) Giant must be released when blocking on a sleepable lock.
   68  *
   69  * This rule is less obvious, but is a result of Giant providing the same
   70  * semantics as spl().  Basically, when a thread sleeps, it must release
   71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
   72  * 2).
   73  *
   74  * 3) Giant may be acquired before or after sleepable locks.
   75  *
   76  * This rule is also not quite as obvious.  Giant may be acquired after
   77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
   78  * locks may always be acquired while holding a sleepable lock.  The second
   79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
   80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
   81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
   82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
   83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
   84  * will not result in a lock order reversal.
   85  */
   86 
   87 #include <sys/cdefs.h>
   88 __FBSDID("$FreeBSD: releng/10.1/sys/kern/subr_witness.c 270185 2014-08-19 23:08:47Z grehan $");
   89 
   90 #include "opt_ddb.h"
   91 #include "opt_hwpmc_hooks.h"
   92 #include "opt_stack.h"
   93 #include "opt_witness.h"
   94 
   95 #include <sys/param.h>
   96 #include <sys/bus.h>
   97 #include <sys/kdb.h>
   98 #include <sys/kernel.h>
   99 #include <sys/ktr.h>
  100 #include <sys/lock.h>
  101 #include <sys/malloc.h>
  102 #include <sys/mutex.h>
  103 #include <sys/priv.h>
  104 #include <sys/proc.h>
  105 #include <sys/sbuf.h>
  106 #include <sys/sched.h>
  107 #include <sys/stack.h>
  108 #include <sys/sysctl.h>
  109 #include <sys/systm.h>
  110 
  111 #ifdef DDB
  112 #include <ddb/ddb.h>
  113 #endif
  114 
  115 #include <machine/stdarg.h>
  116 
  117 #if !defined(DDB) && !defined(STACK)
  118 #error "DDB or STACK options are required for WITNESS"
  119 #endif
  120 
  121 /* Note that these traces do not work with KTR_ALQ. */
  122 #if 0
  123 #define KTR_WITNESS     KTR_SUBSYS
  124 #else
  125 #define KTR_WITNESS     0
  126 #endif
  127 
  128 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
  129 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
  130 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
  131 
  132 /* Define this to check for blessed mutexes */
  133 #undef BLESSING
  134 
  135 #define WITNESS_COUNT           1024
  136 #define WITNESS_CHILDCOUNT      (WITNESS_COUNT * 4)
  137 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
  138 #define WITNESS_PENDLIST        (1024 + MAXCPU)
  139 
  140 /* Allocate 256 KB of stack data space */
  141 #define WITNESS_LO_DATA_COUNT   2048
  142 
  143 /* Prime, gives load factor of ~2 at full load */
  144 #define WITNESS_LO_HASH_SIZE    1021
  145 
  146 /*
  147  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
  148  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
  149  * probably be safe for the most part, but it's still a SWAG.
  150  */
  151 #define LOCK_NCHILDREN  5
  152 #define LOCK_CHILDCOUNT 2048
  153 
  154 #define MAX_W_NAME      64
  155 
  156 #define BADSTACK_SBUF_SIZE      (256 * WITNESS_COUNT)
  157 #define FULLGRAPH_SBUF_SIZE     512
  158 
  159 /*
  160  * These flags go in the witness relationship matrix and describe the
  161  * relationship between any two struct witness objects.
  162  */
  163 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
  164 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
  165 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
  166 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
  167 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
  168 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
  169 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
  170 #define WITNESS_RELATED_MASK                                            \
  171         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
  172 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
  173                                           * observed. */
  174 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
  175 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
  176 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
  177 
  178 /* Descendant to ancestor flags */
  179 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
  180 
  181 /* Ancestor to descendant flags */
  182 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
  183 
  184 #define WITNESS_INDEX_ASSERT(i)                                         \
  185         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
  186 
  187 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
  188 
  189 /*
  190  * Lock instances.  A lock instance is the data associated with a lock while
  191  * it is held by witness.  For example, a lock instance will hold the
  192  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
  193  * are held in a per-cpu list while sleep locks are held in per-thread list.
  194  */
  195 struct lock_instance {
  196         struct lock_object      *li_lock;
  197         const char              *li_file;
  198         int                     li_line;
  199         u_int                   li_flags;
  200 };
  201 
  202 /*
  203  * A simple list type used to build the list of locks held by a thread
  204  * or CPU.  We can't simply embed the list in struct lock_object since a
  205  * lock may be held by more than one thread if it is a shared lock.  Locks
  206  * are added to the head of the list, so we fill up each list entry from
  207  * "the back" logically.  To ease some of the arithmetic, we actually fill
  208  * in each list entry the normal way (children[0] then children[1], etc.) but
  209  * when we traverse the list we read children[count-1] as the first entry
  210  * down to children[0] as the final entry.
  211  */
  212 struct lock_list_entry {
  213         struct lock_list_entry  *ll_next;
  214         struct lock_instance    ll_children[LOCK_NCHILDREN];
  215         u_int                   ll_count;
  216 };
  217 
  218 /*
  219  * The main witness structure. One of these per named lock type in the system
  220  * (for example, "vnode interlock").
  221  */
  222 struct witness {
  223         char                    w_name[MAX_W_NAME];
  224         uint32_t                w_index;  /* Index in the relationship matrix */
  225         struct lock_class       *w_class;
  226         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
  227         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
  228         struct witness          *w_hash_next; /* Linked list in hash buckets. */
  229         const char              *w_file; /* File where last acquired */
  230         uint32_t                w_line; /* Line where last acquired */
  231         uint32_t                w_refcount;
  232         uint16_t                w_num_ancestors; /* direct/indirect
  233                                                   * ancestor count */
  234         uint16_t                w_num_descendants; /* direct/indirect
  235                                                     * descendant count */
  236         int16_t                 w_ddb_level;
  237         unsigned                w_displayed:1;
  238         unsigned                w_reversed:1;
  239 };
  240 
  241 STAILQ_HEAD(witness_list, witness);
  242 
  243 /*
  244  * The witness hash table. Keys are witness names (const char *), elements are
  245  * witness objects (struct witness *).
  246  */
  247 struct witness_hash {
  248         struct witness  *wh_array[WITNESS_HASH_SIZE];
  249         uint32_t        wh_size;
  250         uint32_t        wh_count;
  251 };
  252 
  253 /*
  254  * Key type for the lock order data hash table.
  255  */
  256 struct witness_lock_order_key {
  257         uint16_t        from;
  258         uint16_t        to;
  259 };
  260 
  261 struct witness_lock_order_data {
  262         struct stack                    wlod_stack;
  263         struct witness_lock_order_key   wlod_key;
  264         struct witness_lock_order_data  *wlod_next;
  265 };
  266 
  267 /*
  268  * The witness lock order data hash table. Keys are witness index tuples
  269  * (struct witness_lock_order_key), elements are lock order data objects
  270  * (struct witness_lock_order_data). 
  271  */
  272 struct witness_lock_order_hash {
  273         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
  274         u_int   wloh_size;
  275         u_int   wloh_count;
  276 };
  277 
  278 #ifdef BLESSING
  279 struct witness_blessed {
  280         const char      *b_lock1;
  281         const char      *b_lock2;
  282 };
  283 #endif
  284 
  285 struct witness_pendhelp {
  286         const char              *wh_type;
  287         struct lock_object      *wh_lock;
  288 };
  289 
  290 struct witness_order_list_entry {
  291         const char              *w_name;
  292         struct lock_class       *w_class;
  293 };
  294 
  295 /*
  296  * Returns 0 if one of the locks is a spin lock and the other is not.
  297  * Returns 1 otherwise.
  298  */
  299 static __inline int
  300 witness_lock_type_equal(struct witness *w1, struct witness *w2)
  301 {
  302 
  303         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
  304                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
  305 }
  306 
  307 static __inline int
  308 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
  309     const struct witness_lock_order_key *b)
  310 {
  311 
  312         return (a->from == b->from && a->to == b->to);
  313 }
  314 
  315 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
  316                     const char *fname);
  317 #ifdef KDB
  318 static void     _witness_debugger(int cond, const char *msg);
  319 #endif
  320 static void     adopt(struct witness *parent, struct witness *child);
  321 #ifdef BLESSING
  322 static int      blessed(struct witness *, struct witness *);
  323 #endif
  324 static void     depart(struct witness *w);
  325 static struct witness   *enroll(const char *description,
  326                             struct lock_class *lock_class);
  327 static struct lock_instance     *find_instance(struct lock_list_entry *list,
  328                                     const struct lock_object *lock);
  329 static int      isitmychild(struct witness *parent, struct witness *child);
  330 static int      isitmydescendant(struct witness *parent, struct witness *child);
  331 static void     itismychild(struct witness *parent, struct witness *child);
  332 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
  333 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
  334 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
  335 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
  336 #ifdef DDB
  337 static void     witness_ddb_compute_levels(void);
  338 static void     witness_ddb_display(int(*)(const char *fmt, ...));
  339 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
  340                     struct witness *, int indent);
  341 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
  342                     struct witness_list *list);
  343 static void     witness_ddb_level_descendants(struct witness *parent, int l);
  344 static void     witness_ddb_list(struct thread *td);
  345 #endif
  346 static void     witness_free(struct witness *m);
  347 static struct witness   *witness_get(void);
  348 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
  349 static struct witness   *witness_hash_get(const char *key);
  350 static void     witness_hash_put(struct witness *w);
  351 static void     witness_init_hash_tables(void);
  352 static void     witness_increment_graph_generation(void);
  353 static void     witness_lock_list_free(struct lock_list_entry *lle);
  354 static struct lock_list_entry   *witness_lock_list_get(void);
  355 static int      witness_lock_order_add(struct witness *parent,
  356                     struct witness *child);
  357 static int      witness_lock_order_check(struct witness *parent,
  358                     struct witness *child);
  359 static struct witness_lock_order_data   *witness_lock_order_get(
  360                                             struct witness *parent,
  361                                             struct witness *child);
  362 static void     witness_list_lock(struct lock_instance *instance,
  363                     int (*prnt)(const char *fmt, ...));
  364 static void     witness_setflag(struct lock_object *lock, int flag, int set);
  365 
  366 #ifdef KDB
  367 #define witness_debugger(c)     _witness_debugger(c, __func__)
  368 #else
  369 #define witness_debugger(c)
  370 #endif
  371 
  372 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
  373     "Witness Locking");
  374 
  375 /*
  376  * If set to 0, lock order checking is disabled.  If set to -1,
  377  * witness is completely disabled.  Otherwise witness performs full
  378  * lock order checking for all locks.  At runtime, lock order checking
  379  * may be toggled.  However, witness cannot be reenabled once it is
  380  * completely disabled.
  381  */
  382 static int witness_watch = 1;
  383 TUNABLE_INT("debug.witness.watch", &witness_watch);
  384 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
  385     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
  386 
  387 #ifdef KDB
  388 /*
  389  * When KDB is enabled and witness_kdb is 1, it will cause the system
  390  * to drop into kdebug() when:
  391  *      - a lock hierarchy violation occurs
  392  *      - locks are held when going to sleep.
  393  */
  394 #ifdef WITNESS_KDB
  395 int     witness_kdb = 1;
  396 #else
  397 int     witness_kdb = 0;
  398 #endif
  399 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
  400 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
  401 
  402 /*
  403  * When KDB is enabled and witness_trace is 1, it will cause the system
  404  * to print a stack trace:
  405  *      - a lock hierarchy violation occurs
  406  *      - locks are held when going to sleep.
  407  */
  408 int     witness_trace = 1;
  409 TUNABLE_INT("debug.witness.trace", &witness_trace);
  410 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
  411 #endif /* KDB */
  412 
  413 #ifdef WITNESS_SKIPSPIN
  414 int     witness_skipspin = 1;
  415 #else
  416 int     witness_skipspin = 0;
  417 #endif
  418 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
  419 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
  420     0, "");
  421 
  422 /*
  423  * Call this to print out the relations between locks.
  424  */
  425 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
  426     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
  427 
  428 /*
  429  * Call this to print out the witness faulty stacks.
  430  */
  431 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
  432     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
  433 
  434 static struct mtx w_mtx;
  435 
  436 /* w_list */
  437 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
  438 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
  439 
  440 /* w_typelist */
  441 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
  442 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
  443 
  444 /* lock list */
  445 static struct lock_list_entry *w_lock_list_free = NULL;
  446 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
  447 static u_int pending_cnt;
  448 
  449 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
  450 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
  451 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
  452 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
  453     "");
  454 
  455 static struct witness *w_data;
  456 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
  457 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
  458 static struct witness_hash w_hash;      /* The witness hash table. */
  459 
  460 /* The lock order data hash */
  461 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
  462 static struct witness_lock_order_data *w_lofree = NULL;
  463 static struct witness_lock_order_hash w_lohash;
  464 static int w_max_used_index = 0;
  465 static unsigned int w_generation = 0;
  466 static const char w_notrunning[] = "Witness not running\n";
  467 static const char w_stillcold[] = "Witness is still cold\n";
  468 
  469 
  470 static struct witness_order_list_entry order_lists[] = {
  471         /*
  472          * sx locks
  473          */
  474         { "proctree", &lock_class_sx },
  475         { "allproc", &lock_class_sx },
  476         { "allprison", &lock_class_sx },
  477         { NULL, NULL },
  478         /*
  479          * Various mutexes
  480          */
  481         { "Giant", &lock_class_mtx_sleep },
  482         { "pipe mutex", &lock_class_mtx_sleep },
  483         { "sigio lock", &lock_class_mtx_sleep },
  484         { "process group", &lock_class_mtx_sleep },
  485         { "process lock", &lock_class_mtx_sleep },
  486         { "session", &lock_class_mtx_sleep },
  487         { "uidinfo hash", &lock_class_rw },
  488 #ifdef  HWPMC_HOOKS
  489         { "pmc-sleep", &lock_class_mtx_sleep },
  490 #endif
  491         { "time lock", &lock_class_mtx_sleep },
  492         { NULL, NULL },
  493         /*
  494          * Sockets
  495          */
  496         { "accept", &lock_class_mtx_sleep },
  497         { "so_snd", &lock_class_mtx_sleep },
  498         { "so_rcv", &lock_class_mtx_sleep },
  499         { "sellck", &lock_class_mtx_sleep },
  500         { NULL, NULL },
  501         /*
  502          * Routing
  503          */
  504         { "so_rcv", &lock_class_mtx_sleep },
  505         { "radix node head", &lock_class_rw },
  506         { "rtentry", &lock_class_mtx_sleep },
  507         { "ifaddr", &lock_class_mtx_sleep },
  508         { NULL, NULL },
  509         /*
  510          * IPv4 multicast:
  511          * protocol locks before interface locks, after UDP locks.
  512          */
  513         { "udpinp", &lock_class_rw },
  514         { "in_multi_mtx", &lock_class_mtx_sleep },
  515         { "igmp_mtx", &lock_class_mtx_sleep },
  516         { "if_addr_lock", &lock_class_rw },
  517         { NULL, NULL },
  518         /*
  519          * IPv6 multicast:
  520          * protocol locks before interface locks, after UDP locks.
  521          */
  522         { "udpinp", &lock_class_rw },
  523         { "in6_multi_mtx", &lock_class_mtx_sleep },
  524         { "mld_mtx", &lock_class_mtx_sleep },
  525         { "if_addr_lock", &lock_class_rw },
  526         { NULL, NULL },
  527         /*
  528          * UNIX Domain Sockets
  529          */
  530         { "unp_global_rwlock", &lock_class_rw },
  531         { "unp_list_lock", &lock_class_mtx_sleep },
  532         { "unp", &lock_class_mtx_sleep },
  533         { "so_snd", &lock_class_mtx_sleep },
  534         { NULL, NULL },
  535         /*
  536          * UDP/IP
  537          */
  538         { "udp", &lock_class_rw },
  539         { "udpinp", &lock_class_rw },
  540         { "so_snd", &lock_class_mtx_sleep },
  541         { NULL, NULL },
  542         /*
  543          * TCP/IP
  544          */
  545         { "tcp", &lock_class_rw },
  546         { "tcpinp", &lock_class_rw },
  547         { "so_snd", &lock_class_mtx_sleep },
  548         { NULL, NULL },
  549         /*
  550          * netatalk
  551          */
  552         { "ddp_list_mtx", &lock_class_mtx_sleep },
  553         { "ddp_mtx", &lock_class_mtx_sleep },
  554         { NULL, NULL },
  555         /*
  556          * BPF
  557          */
  558         { "bpf global lock", &lock_class_mtx_sleep },
  559         { "bpf interface lock", &lock_class_rw },
  560         { "bpf cdev lock", &lock_class_mtx_sleep },
  561         { NULL, NULL },
  562         /*
  563          * NFS server
  564          */
  565         { "nfsd_mtx", &lock_class_mtx_sleep },
  566         { "so_snd", &lock_class_mtx_sleep },
  567         { NULL, NULL },
  568 
  569         /*
  570          * IEEE 802.11
  571          */
  572         { "802.11 com lock", &lock_class_mtx_sleep},
  573         { NULL, NULL },
  574         /*
  575          * Network drivers
  576          */
  577         { "network driver", &lock_class_mtx_sleep},
  578         { NULL, NULL },
  579 
  580         /*
  581          * Netgraph
  582          */
  583         { "ng_node", &lock_class_mtx_sleep },
  584         { "ng_worklist", &lock_class_mtx_sleep },
  585         { NULL, NULL },
  586         /*
  587          * CDEV
  588          */
  589         { "vm map (system)", &lock_class_mtx_sleep },
  590         { "vm page queue", &lock_class_mtx_sleep },
  591         { "vnode interlock", &lock_class_mtx_sleep },
  592         { "cdev", &lock_class_mtx_sleep },
  593         { NULL, NULL },
  594         /*
  595          * VM
  596          */
  597         { "vm map (user)", &lock_class_sx },
  598         { "vm object", &lock_class_rw },
  599         { "vm page", &lock_class_mtx_sleep },
  600         { "vm page queue", &lock_class_mtx_sleep },
  601         { "pmap pv global", &lock_class_rw },
  602         { "pmap", &lock_class_mtx_sleep },
  603         { "pmap pv list", &lock_class_rw },
  604         { "vm page free queue", &lock_class_mtx_sleep },
  605         { NULL, NULL },
  606         /*
  607          * kqueue/VFS interaction
  608          */
  609         { "kqueue", &lock_class_mtx_sleep },
  610         { "struct mount mtx", &lock_class_mtx_sleep },
  611         { "vnode interlock", &lock_class_mtx_sleep },
  612         { NULL, NULL },
  613         /*
  614          * ZFS locking
  615          */
  616         { "dn->dn_mtx", &lock_class_sx },
  617         { "dr->dt.di.dr_mtx", &lock_class_sx },
  618         { "db->db_mtx", &lock_class_sx },
  619         { NULL, NULL },
  620         /*
  621          * spin locks
  622          */
  623 #ifdef SMP
  624         { "ap boot", &lock_class_mtx_spin },
  625 #endif
  626         { "rm.mutex_mtx", &lock_class_mtx_spin },
  627         { "sio", &lock_class_mtx_spin },
  628         { "scrlock", &lock_class_mtx_spin },
  629 #ifdef __i386__
  630         { "cy", &lock_class_mtx_spin },
  631 #endif
  632 #ifdef __sparc64__
  633         { "pcib_mtx", &lock_class_mtx_spin },
  634         { "rtc_mtx", &lock_class_mtx_spin },
  635 #endif
  636         { "scc_hwmtx", &lock_class_mtx_spin },
  637         { "uart_hwmtx", &lock_class_mtx_spin },
  638         { "fast_taskqueue", &lock_class_mtx_spin },
  639         { "intr table", &lock_class_mtx_spin },
  640 #ifdef  HWPMC_HOOKS
  641         { "pmc-per-proc", &lock_class_mtx_spin },
  642 #endif
  643         { "process slock", &lock_class_mtx_spin },
  644         { "sleepq chain", &lock_class_mtx_spin },
  645         { "umtx lock", &lock_class_mtx_spin },
  646         { "rm_spinlock", &lock_class_mtx_spin },
  647         { "turnstile chain", &lock_class_mtx_spin },
  648         { "turnstile lock", &lock_class_mtx_spin },
  649         { "sched lock", &lock_class_mtx_spin },
  650         { "td_contested", &lock_class_mtx_spin },
  651         { "callout", &lock_class_mtx_spin },
  652         { "entropy harvest mutex", &lock_class_mtx_spin },
  653         { "syscons video lock", &lock_class_mtx_spin },
  654 #ifdef SMP
  655         { "smp rendezvous", &lock_class_mtx_spin },
  656 #endif
  657 #ifdef __powerpc__
  658         { "tlb0", &lock_class_mtx_spin },
  659 #endif
  660         /*
  661          * leaf locks
  662          */
  663         { "intrcnt", &lock_class_mtx_spin },
  664         { "icu", &lock_class_mtx_spin },
  665 #ifdef __i386__
  666         { "allpmaps", &lock_class_mtx_spin },
  667         { "descriptor tables", &lock_class_mtx_spin },
  668 #endif
  669         { "clk", &lock_class_mtx_spin },
  670         { "cpuset", &lock_class_mtx_spin },
  671         { "mprof lock", &lock_class_mtx_spin },
  672         { "zombie lock", &lock_class_mtx_spin },
  673         { "ALD Queue", &lock_class_mtx_spin },
  674 #ifdef __ia64__
  675         { "MCA spin lock", &lock_class_mtx_spin },
  676 #endif
  677 #if defined(__i386__) || defined(__amd64__)
  678         { "pcicfg", &lock_class_mtx_spin },
  679         { "NDIS thread lock", &lock_class_mtx_spin },
  680 #endif
  681         { "tw_osl_io_lock", &lock_class_mtx_spin },
  682         { "tw_osl_q_lock", &lock_class_mtx_spin },
  683         { "tw_cl_io_lock", &lock_class_mtx_spin },
  684         { "tw_cl_intr_lock", &lock_class_mtx_spin },
  685         { "tw_cl_gen_lock", &lock_class_mtx_spin },
  686 #ifdef  HWPMC_HOOKS
  687         { "pmc-leaf", &lock_class_mtx_spin },
  688 #endif
  689         { "blocked lock", &lock_class_mtx_spin },
  690         { NULL, NULL },
  691         { NULL, NULL }
  692 };
  693 
  694 #ifdef BLESSING
  695 /*
  696  * Pairs of locks which have been blessed
  697  * Don't complain about order problems with blessed locks
  698  */
  699 static struct witness_blessed blessed_list[] = {
  700 };
  701 static int blessed_count =
  702         sizeof(blessed_list) / sizeof(struct witness_blessed);
  703 #endif
  704 
  705 /*
  706  * This global is set to 0 once it becomes safe to use the witness code.
  707  */
  708 static int witness_cold = 1;
  709 
  710 /*
  711  * This global is set to 1 once the static lock orders have been enrolled
  712  * so that a warning can be issued for any spin locks enrolled later.
  713  */
  714 static int witness_spin_warn = 0;
  715 
  716 /* Trim useless garbage from filenames. */
  717 static const char *
  718 fixup_filename(const char *file)
  719 {
  720 
  721         if (file == NULL)
  722                 return (NULL);
  723         while (strncmp(file, "../", 3) == 0)
  724                 file += 3;
  725         return (file);
  726 }
  727 
  728 /*
  729  * The WITNESS-enabled diagnostic code.  Note that the witness code does
  730  * assume that the early boot is single-threaded at least until after this
  731  * routine is completed.
  732  */
  733 static void
  734 witness_initialize(void *dummy __unused)
  735 {
  736         struct lock_object *lock;
  737         struct witness_order_list_entry *order;
  738         struct witness *w, *w1;
  739         int i;
  740 
  741         w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
  742             M_NOWAIT | M_ZERO);
  743 
  744         /*
  745          * We have to release Giant before initializing its witness
  746          * structure so that WITNESS doesn't get confused.
  747          */
  748         mtx_unlock(&Giant);
  749         mtx_assert(&Giant, MA_NOTOWNED);
  750 
  751         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
  752         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
  753             MTX_NOWITNESS | MTX_NOPROFILE);
  754         for (i = WITNESS_COUNT - 1; i >= 0; i--) {
  755                 w = &w_data[i];
  756                 memset(w, 0, sizeof(*w));
  757                 w_data[i].w_index = i;  /* Witness index never changes. */
  758                 witness_free(w);
  759         }
  760         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
  761             ("%s: Invalid list of free witness objects", __func__));
  762 
  763         /* Witness with index 0 is not used to aid in debugging. */
  764         STAILQ_REMOVE_HEAD(&w_free, w_list);
  765         w_free_cnt--;
  766 
  767         memset(w_rmatrix, 0,
  768             (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
  769 
  770         for (i = 0; i < LOCK_CHILDCOUNT; i++)
  771                 witness_lock_list_free(&w_locklistdata[i]);
  772         witness_init_hash_tables();
  773 
  774         /* First add in all the specified order lists. */
  775         for (order = order_lists; order->w_name != NULL; order++) {
  776                 w = enroll(order->w_name, order->w_class);
  777                 if (w == NULL)
  778                         continue;
  779                 w->w_file = "order list";
  780                 for (order++; order->w_name != NULL; order++) {
  781                         w1 = enroll(order->w_name, order->w_class);
  782                         if (w1 == NULL)
  783                                 continue;
  784                         w1->w_file = "order list";
  785                         itismychild(w, w1);
  786                         w = w1;
  787                 }
  788         }
  789         witness_spin_warn = 1;
  790 
  791         /* Iterate through all locks and add them to witness. */
  792         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
  793                 lock = pending_locks[i].wh_lock;
  794                 KASSERT(lock->lo_flags & LO_WITNESS,
  795                     ("%s: lock %s is on pending list but not LO_WITNESS",
  796                     __func__, lock->lo_name));
  797                 lock->lo_witness = enroll(pending_locks[i].wh_type,
  798                     LOCK_CLASS(lock));
  799         }
  800 
  801         /* Mark the witness code as being ready for use. */
  802         witness_cold = 0;
  803 
  804         mtx_lock(&Giant);
  805 }
  806 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
  807     NULL);
  808 
  809 void
  810 witness_init(struct lock_object *lock, const char *type)
  811 {
  812         struct lock_class *class;
  813 
  814         /* Various sanity checks. */
  815         class = LOCK_CLASS(lock);
  816         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
  817             (class->lc_flags & LC_RECURSABLE) == 0)
  818                 kassert_panic("%s: lock (%s) %s can not be recursable",
  819                     __func__, class->lc_name, lock->lo_name);
  820         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
  821             (class->lc_flags & LC_SLEEPABLE) == 0)
  822                 kassert_panic("%s: lock (%s) %s can not be sleepable",
  823                     __func__, class->lc_name, lock->lo_name);
  824         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
  825             (class->lc_flags & LC_UPGRADABLE) == 0)
  826                 kassert_panic("%s: lock (%s) %s can not be upgradable",
  827                     __func__, class->lc_name, lock->lo_name);
  828 
  829         /*
  830          * If we shouldn't watch this lock, then just clear lo_witness.
  831          * Otherwise, if witness_cold is set, then it is too early to
  832          * enroll this lock, so defer it to witness_initialize() by adding
  833          * it to the pending_locks list.  If it is not too early, then enroll
  834          * the lock now.
  835          */
  836         if (witness_watch < 1 || panicstr != NULL ||
  837             (lock->lo_flags & LO_WITNESS) == 0)
  838                 lock->lo_witness = NULL;
  839         else if (witness_cold) {
  840                 pending_locks[pending_cnt].wh_lock = lock;
  841                 pending_locks[pending_cnt++].wh_type = type;
  842                 if (pending_cnt > WITNESS_PENDLIST)
  843                         panic("%s: pending locks list is too small, "
  844                             "increase WITNESS_PENDLIST\n",
  845                             __func__);
  846         } else
  847                 lock->lo_witness = enroll(type, class);
  848 }
  849 
  850 void
  851 witness_destroy(struct lock_object *lock)
  852 {
  853         struct lock_class *class;
  854         struct witness *w;
  855 
  856         class = LOCK_CLASS(lock);
  857 
  858         if (witness_cold)
  859                 panic("lock (%s) %s destroyed while witness_cold",
  860                     class->lc_name, lock->lo_name);
  861 
  862         /* XXX: need to verify that no one holds the lock */
  863         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
  864                 return;
  865         w = lock->lo_witness;
  866 
  867         mtx_lock_spin(&w_mtx);
  868         MPASS(w->w_refcount > 0);
  869         w->w_refcount--;
  870 
  871         if (w->w_refcount == 0)
  872                 depart(w);
  873         mtx_unlock_spin(&w_mtx);
  874 }
  875 
  876 #ifdef DDB
  877 static void
  878 witness_ddb_compute_levels(void)
  879 {
  880         struct witness *w;
  881 
  882         /*
  883          * First clear all levels.
  884          */
  885         STAILQ_FOREACH(w, &w_all, w_list)
  886                 w->w_ddb_level = -1;
  887 
  888         /*
  889          * Look for locks with no parents and level all their descendants.
  890          */
  891         STAILQ_FOREACH(w, &w_all, w_list) {
  892 
  893                 /* If the witness has ancestors (is not a root), skip it. */
  894                 if (w->w_num_ancestors > 0)
  895                         continue;
  896                 witness_ddb_level_descendants(w, 0);
  897         }
  898 }
  899 
  900 static void
  901 witness_ddb_level_descendants(struct witness *w, int l)
  902 {
  903         int i;
  904 
  905         if (w->w_ddb_level >= l)
  906                 return;
  907 
  908         w->w_ddb_level = l;
  909         l++;
  910 
  911         for (i = 1; i <= w_max_used_index; i++) {
  912                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
  913                         witness_ddb_level_descendants(&w_data[i], l);
  914         }
  915 }
  916 
  917 static void
  918 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
  919     struct witness *w, int indent)
  920 {
  921         int i;
  922 
  923         for (i = 0; i < indent; i++)
  924                 prnt(" ");
  925         prnt("%s (type: %s, depth: %d, active refs: %d)",
  926              w->w_name, w->w_class->lc_name,
  927              w->w_ddb_level, w->w_refcount);
  928         if (w->w_displayed) {
  929                 prnt(" -- (already displayed)\n");
  930                 return;
  931         }
  932         w->w_displayed = 1;
  933         if (w->w_file != NULL && w->w_line != 0)
  934                 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
  935                     w->w_line);
  936         else
  937                 prnt(" -- never acquired\n");
  938         indent++;
  939         WITNESS_INDEX_ASSERT(w->w_index);
  940         for (i = 1; i <= w_max_used_index; i++) {
  941                 if (db_pager_quit)
  942                         return;
  943                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
  944                         witness_ddb_display_descendants(prnt, &w_data[i],
  945                             indent);
  946         }
  947 }
  948 
  949 static void
  950 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
  951     struct witness_list *list)
  952 {
  953         struct witness *w;
  954 
  955         STAILQ_FOREACH(w, list, w_typelist) {
  956                 if (w->w_file == NULL || w->w_ddb_level > 0)
  957                         continue;
  958 
  959                 /* This lock has no anscestors - display its descendants. */
  960                 witness_ddb_display_descendants(prnt, w, 0);
  961                 if (db_pager_quit)
  962                         return;
  963         }
  964 }
  965         
  966 static void
  967 witness_ddb_display(int(*prnt)(const char *fmt, ...))
  968 {
  969         struct witness *w;
  970 
  971         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
  972         witness_ddb_compute_levels();
  973 
  974         /* Clear all the displayed flags. */
  975         STAILQ_FOREACH(w, &w_all, w_list)
  976                 w->w_displayed = 0;
  977 
  978         /*
  979          * First, handle sleep locks which have been acquired at least
  980          * once.
  981          */
  982         prnt("Sleep locks:\n");
  983         witness_ddb_display_list(prnt, &w_sleep);
  984         if (db_pager_quit)
  985                 return;
  986         
  987         /*
  988          * Now do spin locks which have been acquired at least once.
  989          */
  990         prnt("\nSpin locks:\n");
  991         witness_ddb_display_list(prnt, &w_spin);
  992         if (db_pager_quit)
  993                 return;
  994         
  995         /*
  996          * Finally, any locks which have not been acquired yet.
  997          */
  998         prnt("\nLocks which were never acquired:\n");
  999         STAILQ_FOREACH(w, &w_all, w_list) {
 1000                 if (w->w_file != NULL || w->w_refcount == 0)
 1001                         continue;
 1002                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
 1003                     w->w_class->lc_name, w->w_ddb_level);
 1004                 if (db_pager_quit)
 1005                         return;
 1006         }
 1007 }
 1008 #endif /* DDB */
 1009 
 1010 int
 1011 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
 1012 {
 1013 
 1014         if (witness_watch == -1 || panicstr != NULL)
 1015                 return (0);
 1016 
 1017         /* Require locks that witness knows about. */
 1018         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
 1019             lock2->lo_witness == NULL)
 1020                 return (EINVAL);
 1021 
 1022         mtx_assert(&w_mtx, MA_NOTOWNED);
 1023         mtx_lock_spin(&w_mtx);
 1024 
 1025         /*
 1026          * If we already have either an explicit or implied lock order that
 1027          * is the other way around, then return an error.
 1028          */
 1029         if (witness_watch &&
 1030             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
 1031                 mtx_unlock_spin(&w_mtx);
 1032                 return (EDOOFUS);
 1033         }
 1034         
 1035         /* Try to add the new order. */
 1036         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
 1037             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
 1038         itismychild(lock1->lo_witness, lock2->lo_witness);
 1039         mtx_unlock_spin(&w_mtx);
 1040         return (0);
 1041 }
 1042 
 1043 void
 1044 witness_checkorder(struct lock_object *lock, int flags, const char *file,
 1045     int line, struct lock_object *interlock)
 1046 {
 1047         struct lock_list_entry *lock_list, *lle;
 1048         struct lock_instance *lock1, *lock2, *plock;
 1049         struct lock_class *class, *iclass;
 1050         struct witness *w, *w1;
 1051         struct thread *td;
 1052         int i, j;
 1053 
 1054         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
 1055             panicstr != NULL)
 1056                 return;
 1057 
 1058         w = lock->lo_witness;
 1059         class = LOCK_CLASS(lock);
 1060         td = curthread;
 1061 
 1062         if (class->lc_flags & LC_SLEEPLOCK) {
 1063 
 1064                 /*
 1065                  * Since spin locks include a critical section, this check
 1066                  * implicitly enforces a lock order of all sleep locks before
 1067                  * all spin locks.
 1068                  */
 1069                 if (td->td_critnest != 0 && !kdb_active)
 1070                         kassert_panic("acquiring blockable sleep lock with "
 1071                             "spinlock or critical section held (%s) %s @ %s:%d",
 1072                             class->lc_name, lock->lo_name,
 1073                             fixup_filename(file), line);
 1074 
 1075                 /*
 1076                  * If this is the first lock acquired then just return as
 1077                  * no order checking is needed.
 1078                  */
 1079                 lock_list = td->td_sleeplocks;
 1080                 if (lock_list == NULL || lock_list->ll_count == 0)
 1081                         return;
 1082         } else {
 1083 
 1084                 /*
 1085                  * If this is the first lock, just return as no order
 1086                  * checking is needed.  Avoid problems with thread
 1087                  * migration pinning the thread while checking if
 1088                  * spinlocks are held.  If at least one spinlock is held
 1089                  * the thread is in a safe path and it is allowed to
 1090                  * unpin it.
 1091                  */
 1092                 sched_pin();
 1093                 lock_list = PCPU_GET(spinlocks);
 1094                 if (lock_list == NULL || lock_list->ll_count == 0) {
 1095                         sched_unpin();
 1096                         return;
 1097                 }
 1098                 sched_unpin();
 1099         }
 1100 
 1101         /*
 1102          * Check to see if we are recursing on a lock we already own.  If
 1103          * so, make sure that we don't mismatch exclusive and shared lock
 1104          * acquires.
 1105          */
 1106         lock1 = find_instance(lock_list, lock);
 1107         if (lock1 != NULL) {
 1108                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
 1109                     (flags & LOP_EXCLUSIVE) == 0) {
 1110                         printf("shared lock of (%s) %s @ %s:%d\n",
 1111                             class->lc_name, lock->lo_name,
 1112                             fixup_filename(file), line);
 1113                         printf("while exclusively locked from %s:%d\n",
 1114                             fixup_filename(lock1->li_file), lock1->li_line);
 1115                         kassert_panic("excl->share");
 1116                 }
 1117                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
 1118                     (flags & LOP_EXCLUSIVE) != 0) {
 1119                         printf("exclusive lock of (%s) %s @ %s:%d\n",
 1120                             class->lc_name, lock->lo_name,
 1121                             fixup_filename(file), line);
 1122                         printf("while share locked from %s:%d\n",
 1123                             fixup_filename(lock1->li_file), lock1->li_line);
 1124                         kassert_panic("share->excl");
 1125                 }
 1126                 return;
 1127         }
 1128 
 1129         /* Warn if the interlock is not locked exactly once. */
 1130         if (interlock != NULL) {
 1131                 iclass = LOCK_CLASS(interlock);
 1132                 lock1 = find_instance(lock_list, interlock);
 1133                 if (lock1 == NULL)
 1134                         kassert_panic("interlock (%s) %s not locked @ %s:%d",
 1135                             iclass->lc_name, interlock->lo_name,
 1136                             fixup_filename(file), line);
 1137                 else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
 1138                         kassert_panic("interlock (%s) %s recursed @ %s:%d",
 1139                             iclass->lc_name, interlock->lo_name,
 1140                             fixup_filename(file), line);
 1141         }
 1142 
 1143         /*
 1144          * Find the previously acquired lock, but ignore interlocks.
 1145          */
 1146         plock = &lock_list->ll_children[lock_list->ll_count - 1];
 1147         if (interlock != NULL && plock->li_lock == interlock) {
 1148                 if (lock_list->ll_count > 1)
 1149                         plock =
 1150                             &lock_list->ll_children[lock_list->ll_count - 2];
 1151                 else {
 1152                         lle = lock_list->ll_next;
 1153 
 1154                         /*
 1155                          * The interlock is the only lock we hold, so
 1156                          * simply return.
 1157                          */
 1158                         if (lle == NULL)
 1159                                 return;
 1160                         plock = &lle->ll_children[lle->ll_count - 1];
 1161                 }
 1162         }
 1163         
 1164         /*
 1165          * Try to perform most checks without a lock.  If this succeeds we
 1166          * can skip acquiring the lock and return success.
 1167          */
 1168         w1 = plock->li_lock->lo_witness;
 1169         if (witness_lock_order_check(w1, w))
 1170                 return;
 1171 
 1172         /*
 1173          * Check for duplicate locks of the same type.  Note that we only
 1174          * have to check for this on the last lock we just acquired.  Any
 1175          * other cases will be caught as lock order violations.
 1176          */
 1177         mtx_lock_spin(&w_mtx);
 1178         witness_lock_order_add(w1, w);
 1179         if (w1 == w) {
 1180                 i = w->w_index;
 1181                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
 1182                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
 1183                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
 1184                         w->w_reversed = 1;
 1185                         mtx_unlock_spin(&w_mtx);
 1186                         printf(
 1187                             "acquiring duplicate lock of same type: \"%s\"\n", 
 1188                             w->w_name);
 1189                         printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
 1190                             fixup_filename(plock->li_file), plock->li_line);
 1191                         printf(" 2nd %s @ %s:%d\n", lock->lo_name,
 1192                             fixup_filename(file), line);
 1193                         witness_debugger(1);
 1194                 } else
 1195                         mtx_unlock_spin(&w_mtx);
 1196                 return;
 1197         }
 1198         mtx_assert(&w_mtx, MA_OWNED);
 1199 
 1200         /*
 1201          * If we know that the lock we are acquiring comes after
 1202          * the lock we most recently acquired in the lock order tree,
 1203          * then there is no need for any further checks.
 1204          */
 1205         if (isitmychild(w1, w))
 1206                 goto out;
 1207 
 1208         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
 1209                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
 1210 
 1211                         MPASS(j < WITNESS_COUNT);
 1212                         lock1 = &lle->ll_children[i];
 1213 
 1214                         /*
 1215                          * Ignore the interlock.
 1216                          */
 1217                         if (interlock == lock1->li_lock)
 1218                                 continue;
 1219 
 1220                         /*
 1221                          * If this lock doesn't undergo witness checking,
 1222                          * then skip it.
 1223                          */
 1224                         w1 = lock1->li_lock->lo_witness;
 1225                         if (w1 == NULL) {
 1226                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
 1227                                     ("lock missing witness structure"));
 1228                                 continue;
 1229                         }
 1230 
 1231                         /*
 1232                          * If we are locking Giant and this is a sleepable
 1233                          * lock, then skip it.
 1234                          */
 1235                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1236                             lock == &Giant.lock_object)
 1237                                 continue;
 1238 
 1239                         /*
 1240                          * If we are locking a sleepable lock and this lock
 1241                          * is Giant, then skip it.
 1242                          */
 1243                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1244                             lock1->li_lock == &Giant.lock_object)
 1245                                 continue;
 1246 
 1247                         /*
 1248                          * If we are locking a sleepable lock and this lock
 1249                          * isn't sleepable, we want to treat it as a lock
 1250                          * order violation to enfore a general lock order of
 1251                          * sleepable locks before non-sleepable locks.
 1252                          */
 1253                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1254                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
 1255                                 goto reversal;
 1256 
 1257                         /*
 1258                          * If we are locking Giant and this is a non-sleepable
 1259                          * lock, then treat it as a reversal.
 1260                          */
 1261                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
 1262                             lock == &Giant.lock_object)
 1263                                 goto reversal;
 1264 
 1265                         /*
 1266                          * Check the lock order hierarchy for a reveresal.
 1267                          */
 1268                         if (!isitmydescendant(w, w1))
 1269                                 continue;
 1270                 reversal:
 1271 
 1272                         /*
 1273                          * We have a lock order violation, check to see if it
 1274                          * is allowed or has already been yelled about.
 1275                          */
 1276 #ifdef BLESSING
 1277 
 1278                         /*
 1279                          * If the lock order is blessed, just bail.  We don't
 1280                          * look for other lock order violations though, which
 1281                          * may be a bug.
 1282                          */
 1283                         if (blessed(w, w1))
 1284                                 goto out;
 1285 #endif
 1286 
 1287                         /* Bail if this violation is known */
 1288                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
 1289                                 goto out;
 1290 
 1291                         /* Record this as a violation */
 1292                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
 1293                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
 1294                         w->w_reversed = w1->w_reversed = 1;
 1295                         witness_increment_graph_generation();
 1296                         mtx_unlock_spin(&w_mtx);
 1297 
 1298 #ifdef WITNESS_NO_VNODE
 1299                         /*
 1300                          * There are known LORs between VNODE locks. They are
 1301                          * not an indication of a bug. VNODE locks are flagged
 1302                          * as such (LO_IS_VNODE) and we don't yell if the LOR
 1303                          * is between 2 VNODE locks.
 1304                          */
 1305                         if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
 1306                             (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
 1307                                 return;
 1308 #endif
 1309 
 1310                         /*
 1311                          * Ok, yell about it.
 1312                          */
 1313                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1314                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
 1315                                 printf(
 1316                 "lock order reversal: (sleepable after non-sleepable)\n");
 1317                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
 1318                             && lock == &Giant.lock_object)
 1319                                 printf(
 1320                 "lock order reversal: (Giant after non-sleepable)\n");
 1321                         else
 1322                                 printf("lock order reversal:\n");
 1323 
 1324                         /*
 1325                          * Try to locate an earlier lock with
 1326                          * witness w in our list.
 1327                          */
 1328                         do {
 1329                                 lock2 = &lle->ll_children[i];
 1330                                 MPASS(lock2->li_lock != NULL);
 1331                                 if (lock2->li_lock->lo_witness == w)
 1332                                         break;
 1333                                 if (i == 0 && lle->ll_next != NULL) {
 1334                                         lle = lle->ll_next;
 1335                                         i = lle->ll_count - 1;
 1336                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
 1337                                 } else
 1338                                         i--;
 1339                         } while (i >= 0);
 1340                         if (i < 0) {
 1341                                 printf(" 1st %p %s (%s) @ %s:%d\n",
 1342                                     lock1->li_lock, lock1->li_lock->lo_name,
 1343                                     w1->w_name, fixup_filename(lock1->li_file),
 1344                                     lock1->li_line);
 1345                                 printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
 1346                                     lock->lo_name, w->w_name,
 1347                                     fixup_filename(file), line);
 1348                         } else {
 1349                                 printf(" 1st %p %s (%s) @ %s:%d\n",
 1350                                     lock2->li_lock, lock2->li_lock->lo_name,
 1351                                     lock2->li_lock->lo_witness->w_name,
 1352                                     fixup_filename(lock2->li_file),
 1353                                     lock2->li_line);
 1354                                 printf(" 2nd %p %s (%s) @ %s:%d\n",
 1355                                     lock1->li_lock, lock1->li_lock->lo_name,
 1356                                     w1->w_name, fixup_filename(lock1->li_file),
 1357                                     lock1->li_line);
 1358                                 printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
 1359                                     lock->lo_name, w->w_name,
 1360                                     fixup_filename(file), line);
 1361                         }
 1362                         witness_debugger(1);
 1363                         return;
 1364                 }
 1365         }
 1366 
 1367         /*
 1368          * If requested, build a new lock order.  However, don't build a new
 1369          * relationship between a sleepable lock and Giant if it is in the
 1370          * wrong direction.  The correct lock order is that sleepable locks
 1371          * always come before Giant.
 1372          */
 1373         if (flags & LOP_NEWORDER &&
 1374             !(plock->li_lock == &Giant.lock_object &&
 1375             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
 1376                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
 1377                     w->w_name, plock->li_lock->lo_witness->w_name);
 1378                 itismychild(plock->li_lock->lo_witness, w);
 1379         }
 1380 out:
 1381         mtx_unlock_spin(&w_mtx);
 1382 }
 1383 
 1384 void
 1385 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
 1386 {
 1387         struct lock_list_entry **lock_list, *lle;
 1388         struct lock_instance *instance;
 1389         struct witness *w;
 1390         struct thread *td;
 1391 
 1392         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
 1393             panicstr != NULL)
 1394                 return;
 1395         w = lock->lo_witness;
 1396         td = curthread;
 1397 
 1398         /* Determine lock list for this lock. */
 1399         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
 1400                 lock_list = &td->td_sleeplocks;
 1401         else
 1402                 lock_list = PCPU_PTR(spinlocks);
 1403 
 1404         /* Check to see if we are recursing on a lock we already own. */
 1405         instance = find_instance(*lock_list, lock);
 1406         if (instance != NULL) {
 1407                 instance->li_flags++;
 1408                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
 1409                     td->td_proc->p_pid, lock->lo_name,
 1410                     instance->li_flags & LI_RECURSEMASK);
 1411                 instance->li_file = file;
 1412                 instance->li_line = line;
 1413                 return;
 1414         }
 1415 
 1416         /* Update per-witness last file and line acquire. */
 1417         w->w_file = file;
 1418         w->w_line = line;
 1419 
 1420         /* Find the next open lock instance in the list and fill it. */
 1421         lle = *lock_list;
 1422         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
 1423                 lle = witness_lock_list_get();
 1424                 if (lle == NULL)
 1425                         return;
 1426                 lle->ll_next = *lock_list;
 1427                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
 1428                     td->td_proc->p_pid, lle);
 1429                 *lock_list = lle;
 1430         }
 1431         instance = &lle->ll_children[lle->ll_count++];
 1432         instance->li_lock = lock;
 1433         instance->li_line = line;
 1434         instance->li_file = file;
 1435         if ((flags & LOP_EXCLUSIVE) != 0)
 1436                 instance->li_flags = LI_EXCLUSIVE;
 1437         else
 1438                 instance->li_flags = 0;
 1439         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
 1440             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
 1441 }
 1442 
 1443 void
 1444 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
 1445 {
 1446         struct lock_instance *instance;
 1447         struct lock_class *class;
 1448 
 1449         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 1450         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 1451                 return;
 1452         class = LOCK_CLASS(lock);
 1453         if (witness_watch) {
 1454                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
 1455                         kassert_panic(
 1456                             "upgrade of non-upgradable lock (%s) %s @ %s:%d",
 1457                             class->lc_name, lock->lo_name,
 1458                             fixup_filename(file), line);
 1459                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
 1460                         kassert_panic(
 1461                             "upgrade of non-sleep lock (%s) %s @ %s:%d",
 1462                             class->lc_name, lock->lo_name,
 1463                             fixup_filename(file), line);
 1464         }
 1465         instance = find_instance(curthread->td_sleeplocks, lock);
 1466         if (instance == NULL) {
 1467                 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
 1468                     class->lc_name, lock->lo_name,
 1469                     fixup_filename(file), line);
 1470                 return;
 1471         }
 1472         if (witness_watch) {
 1473                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
 1474                         kassert_panic(
 1475                             "upgrade of exclusive lock (%s) %s @ %s:%d",
 1476                             class->lc_name, lock->lo_name,
 1477                             fixup_filename(file), line);
 1478                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
 1479                         kassert_panic(
 1480                             "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
 1481                             class->lc_name, lock->lo_name,
 1482                             instance->li_flags & LI_RECURSEMASK,
 1483                             fixup_filename(file), line);
 1484         }
 1485         instance->li_flags |= LI_EXCLUSIVE;
 1486 }
 1487 
 1488 void
 1489 witness_downgrade(struct lock_object *lock, int flags, const char *file,
 1490     int line)
 1491 {
 1492         struct lock_instance *instance;
 1493         struct lock_class *class;
 1494 
 1495         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 1496         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 1497                 return;
 1498         class = LOCK_CLASS(lock);
 1499         if (witness_watch) {
 1500                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
 1501                         kassert_panic(
 1502                             "downgrade of non-upgradable lock (%s) %s @ %s:%d",
 1503                             class->lc_name, lock->lo_name,
 1504                             fixup_filename(file), line);
 1505                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
 1506                         kassert_panic(
 1507                             "downgrade of non-sleep lock (%s) %s @ %s:%d",
 1508                             class->lc_name, lock->lo_name,
 1509                             fixup_filename(file), line);
 1510         }
 1511         instance = find_instance(curthread->td_sleeplocks, lock);
 1512         if (instance == NULL) {
 1513                 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
 1514                     class->lc_name, lock->lo_name,
 1515                     fixup_filename(file), line);
 1516                 return;
 1517         }
 1518         if (witness_watch) {
 1519                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
 1520                         kassert_panic(
 1521                             "downgrade of shared lock (%s) %s @ %s:%d",
 1522                             class->lc_name, lock->lo_name,
 1523                             fixup_filename(file), line);
 1524                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
 1525                         kassert_panic(
 1526                             "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
 1527                             class->lc_name, lock->lo_name,
 1528                             instance->li_flags & LI_RECURSEMASK,
 1529                             fixup_filename(file), line);
 1530         }
 1531         instance->li_flags &= ~LI_EXCLUSIVE;
 1532 }
 1533 
 1534 void
 1535 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
 1536 {
 1537         struct lock_list_entry **lock_list, *lle;
 1538         struct lock_instance *instance;
 1539         struct lock_class *class;
 1540         struct thread *td;
 1541         register_t s;
 1542         int i, j;
 1543 
 1544         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
 1545                 return;
 1546         td = curthread;
 1547         class = LOCK_CLASS(lock);
 1548 
 1549         /* Find lock instance associated with this lock. */
 1550         if (class->lc_flags & LC_SLEEPLOCK)
 1551                 lock_list = &td->td_sleeplocks;
 1552         else
 1553                 lock_list = PCPU_PTR(spinlocks);
 1554         lle = *lock_list;
 1555         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
 1556                 for (i = 0; i < (*lock_list)->ll_count; i++) {
 1557                         instance = &(*lock_list)->ll_children[i];
 1558                         if (instance->li_lock == lock)
 1559                                 goto found;
 1560                 }
 1561 
 1562         /*
 1563          * When disabling WITNESS through witness_watch we could end up in
 1564          * having registered locks in the td_sleeplocks queue.
 1565          * We have to make sure we flush these queues, so just search for
 1566          * eventual register locks and remove them.
 1567          */
 1568         if (witness_watch > 0) {
 1569                 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
 1570                     lock->lo_name, fixup_filename(file), line);
 1571                 return;
 1572         } else {
 1573                 return;
 1574         }
 1575 found:
 1576 
 1577         /* First, check for shared/exclusive mismatches. */
 1578         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
 1579             (flags & LOP_EXCLUSIVE) == 0) {
 1580                 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
 1581                     lock->lo_name, fixup_filename(file), line);
 1582                 printf("while exclusively locked from %s:%d\n",
 1583                     fixup_filename(instance->li_file), instance->li_line);
 1584                 kassert_panic("excl->ushare");
 1585         }
 1586         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
 1587             (flags & LOP_EXCLUSIVE) != 0) {
 1588                 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
 1589                     lock->lo_name, fixup_filename(file), line);
 1590                 printf("while share locked from %s:%d\n",
 1591                     fixup_filename(instance->li_file),
 1592                     instance->li_line);
 1593                 kassert_panic("share->uexcl");
 1594         }
 1595         /* If we are recursed, unrecurse. */
 1596         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
 1597                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
 1598                     td->td_proc->p_pid, instance->li_lock->lo_name,
 1599                     instance->li_flags);
 1600                 instance->li_flags--;
 1601                 return;
 1602         }
 1603         /* The lock is now being dropped, check for NORELEASE flag */
 1604         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
 1605                 printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
 1606                     lock->lo_name, fixup_filename(file), line);
 1607                 kassert_panic("lock marked norelease");
 1608         }
 1609 
 1610         /* Otherwise, remove this item from the list. */
 1611         s = intr_disable();
 1612         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
 1613             td->td_proc->p_pid, instance->li_lock->lo_name,
 1614             (*lock_list)->ll_count - 1);
 1615         for (j = i; j < (*lock_list)->ll_count - 1; j++)
 1616                 (*lock_list)->ll_children[j] =
 1617                     (*lock_list)->ll_children[j + 1];
 1618         (*lock_list)->ll_count--;
 1619         intr_restore(s);
 1620 
 1621         /*
 1622          * In order to reduce contention on w_mtx, we want to keep always an
 1623          * head object into lists so that frequent allocation from the 
 1624          * free witness pool (and subsequent locking) is avoided.
 1625          * In order to maintain the current code simple, when the head
 1626          * object is totally unloaded it means also that we do not have
 1627          * further objects in the list, so the list ownership needs to be
 1628          * hand over to another object if the current head needs to be freed.
 1629          */
 1630         if ((*lock_list)->ll_count == 0) {
 1631                 if (*lock_list == lle) {
 1632                         if (lle->ll_next == NULL)
 1633                                 return;
 1634                 } else
 1635                         lle = *lock_list;
 1636                 *lock_list = lle->ll_next;
 1637                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
 1638                     td->td_proc->p_pid, lle);
 1639                 witness_lock_list_free(lle);
 1640         }
 1641 }
 1642 
 1643 void
 1644 witness_thread_exit(struct thread *td)
 1645 {
 1646         struct lock_list_entry *lle;
 1647         int i, n;
 1648 
 1649         lle = td->td_sleeplocks;
 1650         if (lle == NULL || panicstr != NULL)
 1651                 return;
 1652         if (lle->ll_count != 0) {
 1653                 for (n = 0; lle != NULL; lle = lle->ll_next)
 1654                         for (i = lle->ll_count - 1; i >= 0; i--) {
 1655                                 if (n == 0)
 1656                 printf("Thread %p exiting with the following locks held:\n",
 1657                                             td);
 1658                                 n++;
 1659                                 witness_list_lock(&lle->ll_children[i], printf);
 1660                                 
 1661                         }
 1662                 kassert_panic(
 1663                     "Thread %p cannot exit while holding sleeplocks\n", td);
 1664         }
 1665         witness_lock_list_free(lle);
 1666 }
 1667 
 1668 /*
 1669  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
 1670  * exempt Giant and sleepable locks from the checks as well.  If any
 1671  * non-exempt locks are held, then a supplied message is printed to the
 1672  * console along with a list of the offending locks.  If indicated in the
 1673  * flags then a failure results in a panic as well.
 1674  */
 1675 int
 1676 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
 1677 {
 1678         struct lock_list_entry *lock_list, *lle;
 1679         struct lock_instance *lock1;
 1680         struct thread *td;
 1681         va_list ap;
 1682         int i, n;
 1683 
 1684         if (witness_cold || witness_watch < 1 || panicstr != NULL)
 1685                 return (0);
 1686         n = 0;
 1687         td = curthread;
 1688         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
 1689                 for (i = lle->ll_count - 1; i >= 0; i--) {
 1690                         lock1 = &lle->ll_children[i];
 1691                         if (lock1->li_lock == lock)
 1692                                 continue;
 1693                         if (flags & WARN_GIANTOK &&
 1694                             lock1->li_lock == &Giant.lock_object)
 1695                                 continue;
 1696                         if (flags & WARN_SLEEPOK &&
 1697                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
 1698                                 continue;
 1699                         if (n == 0) {
 1700                                 va_start(ap, fmt);
 1701                                 vprintf(fmt, ap);
 1702                                 va_end(ap);
 1703                                 printf(" with the following");
 1704                                 if (flags & WARN_SLEEPOK)
 1705                                         printf(" non-sleepable");
 1706                                 printf(" locks held:\n");
 1707                         }
 1708                         n++;
 1709                         witness_list_lock(lock1, printf);
 1710                 }
 1711 
 1712         /*
 1713          * Pin the thread in order to avoid problems with thread migration.
 1714          * Once that all verifies are passed about spinlocks ownership,
 1715          * the thread is in a safe path and it can be unpinned.
 1716          */
 1717         sched_pin();
 1718         lock_list = PCPU_GET(spinlocks);
 1719         if (lock_list != NULL && lock_list->ll_count != 0) {
 1720                 sched_unpin();
 1721 
 1722                 /*
 1723                  * We should only have one spinlock and as long as
 1724                  * the flags cannot match for this locks class,
 1725                  * check if the first spinlock is the one curthread
 1726                  * should hold.
 1727                  */
 1728                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
 1729                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
 1730                     lock1->li_lock == lock && n == 0)
 1731                         return (0);
 1732 
 1733                 va_start(ap, fmt);
 1734                 vprintf(fmt, ap);
 1735                 va_end(ap);
 1736                 printf(" with the following");
 1737                 if (flags & WARN_SLEEPOK)
 1738                         printf(" non-sleepable");
 1739                 printf(" locks held:\n");
 1740                 n += witness_list_locks(&lock_list, printf);
 1741         } else
 1742                 sched_unpin();
 1743         if (flags & WARN_PANIC && n)
 1744                 kassert_panic("%s", __func__);
 1745         else
 1746                 witness_debugger(n);
 1747         return (n);
 1748 }
 1749 
 1750 const char *
 1751 witness_file(struct lock_object *lock)
 1752 {
 1753         struct witness *w;
 1754 
 1755         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
 1756                 return ("?");
 1757         w = lock->lo_witness;
 1758         return (w->w_file);
 1759 }
 1760 
 1761 int
 1762 witness_line(struct lock_object *lock)
 1763 {
 1764         struct witness *w;
 1765 
 1766         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
 1767                 return (0);
 1768         w = lock->lo_witness;
 1769         return (w->w_line);
 1770 }
 1771 
 1772 static struct witness *
 1773 enroll(const char *description, struct lock_class *lock_class)
 1774 {
 1775         struct witness *w;
 1776         struct witness_list *typelist;
 1777 
 1778         MPASS(description != NULL);
 1779 
 1780         if (witness_watch == -1 || panicstr != NULL)
 1781                 return (NULL);
 1782         if ((lock_class->lc_flags & LC_SPINLOCK)) {
 1783                 if (witness_skipspin)
 1784                         return (NULL);
 1785                 else
 1786                         typelist = &w_spin;
 1787         } else if ((lock_class->lc_flags & LC_SLEEPLOCK)) {
 1788                 typelist = &w_sleep;
 1789         } else {
 1790                 kassert_panic("lock class %s is not sleep or spin",
 1791                     lock_class->lc_name);
 1792                 return (NULL);
 1793         }
 1794 
 1795         mtx_lock_spin(&w_mtx);
 1796         w = witness_hash_get(description);
 1797         if (w)
 1798                 goto found;
 1799         if ((w = witness_get()) == NULL)
 1800                 return (NULL);
 1801         MPASS(strlen(description) < MAX_W_NAME);
 1802         strcpy(w->w_name, description);
 1803         w->w_class = lock_class;
 1804         w->w_refcount = 1;
 1805         STAILQ_INSERT_HEAD(&w_all, w, w_list);
 1806         if (lock_class->lc_flags & LC_SPINLOCK) {
 1807                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
 1808                 w_spin_cnt++;
 1809         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
 1810                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
 1811                 w_sleep_cnt++;
 1812         }
 1813 
 1814         /* Insert new witness into the hash */
 1815         witness_hash_put(w);
 1816         witness_increment_graph_generation();
 1817         mtx_unlock_spin(&w_mtx);
 1818         return (w);
 1819 found:
 1820         w->w_refcount++;
 1821         mtx_unlock_spin(&w_mtx);
 1822         if (lock_class != w->w_class)
 1823                 kassert_panic(
 1824                         "lock (%s) %s does not match earlier (%s) lock",
 1825                         description, lock_class->lc_name,
 1826                         w->w_class->lc_name);
 1827         return (w);
 1828 }
 1829 
 1830 static void
 1831 depart(struct witness *w)
 1832 {
 1833         struct witness_list *list;
 1834 
 1835         MPASS(w->w_refcount == 0);
 1836         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
 1837                 list = &w_sleep;
 1838                 w_sleep_cnt--;
 1839         } else {
 1840                 list = &w_spin;
 1841                 w_spin_cnt--;
 1842         }
 1843         /*
 1844          * Set file to NULL as it may point into a loadable module.
 1845          */
 1846         w->w_file = NULL;
 1847         w->w_line = 0;
 1848         witness_increment_graph_generation();
 1849 }
 1850 
 1851 
 1852 static void
 1853 adopt(struct witness *parent, struct witness *child)
 1854 {
 1855         int pi, ci, i, j;
 1856 
 1857         if (witness_cold == 0)
 1858                 mtx_assert(&w_mtx, MA_OWNED);
 1859 
 1860         /* If the relationship is already known, there's no work to be done. */
 1861         if (isitmychild(parent, child))
 1862                 return;
 1863 
 1864         /* When the structure of the graph changes, bump up the generation. */
 1865         witness_increment_graph_generation();
 1866 
 1867         /*
 1868          * The hard part ... create the direct relationship, then propagate all
 1869          * indirect relationships.
 1870          */
 1871         pi = parent->w_index;
 1872         ci = child->w_index;
 1873         WITNESS_INDEX_ASSERT(pi);
 1874         WITNESS_INDEX_ASSERT(ci);
 1875         MPASS(pi != ci);
 1876         w_rmatrix[pi][ci] |= WITNESS_PARENT;
 1877         w_rmatrix[ci][pi] |= WITNESS_CHILD;
 1878 
 1879         /*
 1880          * If parent was not already an ancestor of child,
 1881          * then we increment the descendant and ancestor counters.
 1882          */
 1883         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
 1884                 parent->w_num_descendants++;
 1885                 child->w_num_ancestors++;
 1886         }
 1887 
 1888         /* 
 1889          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
 1890          * an ancestor of 'pi' during this loop.
 1891          */
 1892         for (i = 1; i <= w_max_used_index; i++) {
 1893                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
 1894                     (i != pi))
 1895                         continue;
 1896 
 1897                 /* Find each descendant of 'i' and mark it as a descendant. */
 1898                 for (j = 1; j <= w_max_used_index; j++) {
 1899 
 1900                         /* 
 1901                          * Skip children that are already marked as
 1902                          * descendants of 'i'.
 1903                          */
 1904                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
 1905                                 continue;
 1906 
 1907                         /*
 1908                          * We are only interested in descendants of 'ci'. Note
 1909                          * that 'ci' itself is counted as a descendant of 'ci'.
 1910                          */
 1911                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
 1912                             (j != ci))
 1913                                 continue;
 1914                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
 1915                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
 1916                         w_data[i].w_num_descendants++;
 1917                         w_data[j].w_num_ancestors++;
 1918 
 1919                         /* 
 1920                          * Make sure we aren't marking a node as both an
 1921                          * ancestor and descendant. We should have caught 
 1922                          * this as a lock order reversal earlier.
 1923                          */
 1924                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
 1925                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
 1926                                 printf("witness rmatrix paradox! [%d][%d]=%d "
 1927                                     "both ancestor and descendant\n",
 1928                                     i, j, w_rmatrix[i][j]); 
 1929                                 kdb_backtrace();
 1930                                 printf("Witness disabled.\n");
 1931                                 witness_watch = -1;
 1932                         }
 1933                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
 1934                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
 1935                                 printf("witness rmatrix paradox! [%d][%d]=%d "
 1936                                     "both ancestor and descendant\n",
 1937                                     j, i, w_rmatrix[j][i]); 
 1938                                 kdb_backtrace();
 1939                                 printf("Witness disabled.\n");
 1940                                 witness_watch = -1;
 1941                         }
 1942                 }
 1943         }
 1944 }
 1945 
 1946 static void
 1947 itismychild(struct witness *parent, struct witness *child)
 1948 {
 1949         int unlocked;
 1950 
 1951         MPASS(child != NULL && parent != NULL);
 1952         if (witness_cold == 0)
 1953                 mtx_assert(&w_mtx, MA_OWNED);
 1954 
 1955         if (!witness_lock_type_equal(parent, child)) {
 1956                 if (witness_cold == 0) {
 1957                         unlocked = 1;
 1958                         mtx_unlock_spin(&w_mtx);
 1959                 } else {
 1960                         unlocked = 0;
 1961                 }
 1962                 kassert_panic(
 1963                     "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
 1964                     "the same lock type", __func__, parent->w_name,
 1965                     parent->w_class->lc_name, child->w_name,
 1966                     child->w_class->lc_name);
 1967                 if (unlocked)
 1968                         mtx_lock_spin(&w_mtx);
 1969         }
 1970         adopt(parent, child);
 1971 }
 1972 
 1973 /*
 1974  * Generic code for the isitmy*() functions. The rmask parameter is the
 1975  * expected relationship of w1 to w2.
 1976  */
 1977 static int
 1978 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
 1979 {
 1980         unsigned char r1, r2;
 1981         int i1, i2;
 1982 
 1983         i1 = w1->w_index;
 1984         i2 = w2->w_index;
 1985         WITNESS_INDEX_ASSERT(i1);
 1986         WITNESS_INDEX_ASSERT(i2);
 1987         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
 1988         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
 1989 
 1990         /* The flags on one better be the inverse of the flags on the other */
 1991         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
 1992                 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
 1993                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
 1994                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
 1995                     "w_rmatrix[%d][%d] == %hhx\n",
 1996                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
 1997                     i2, i1, r2);
 1998                 kdb_backtrace();
 1999                 printf("Witness disabled.\n");
 2000                 witness_watch = -1;
 2001         }
 2002         return (r1 & rmask);
 2003 }
 2004 
 2005 /*
 2006  * Checks if @child is a direct child of @parent.
 2007  */
 2008 static int
 2009 isitmychild(struct witness *parent, struct witness *child)
 2010 {
 2011 
 2012         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
 2013 }
 2014 
 2015 /*
 2016  * Checks if @descendant is a direct or inderect descendant of @ancestor.
 2017  */
 2018 static int
 2019 isitmydescendant(struct witness *ancestor, struct witness *descendant)
 2020 {
 2021 
 2022         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
 2023             __func__));
 2024 }
 2025 
 2026 #ifdef BLESSING
 2027 static int
 2028 blessed(struct witness *w1, struct witness *w2)
 2029 {
 2030         int i;
 2031         struct witness_blessed *b;
 2032 
 2033         for (i = 0; i < blessed_count; i++) {
 2034                 b = &blessed_list[i];
 2035                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
 2036                         if (strcmp(w2->w_name, b->b_lock2) == 0)
 2037                                 return (1);
 2038                         continue;
 2039                 }
 2040                 if (strcmp(w1->w_name, b->b_lock2) == 0)
 2041                         if (strcmp(w2->w_name, b->b_lock1) == 0)
 2042                                 return (1);
 2043         }
 2044         return (0);
 2045 }
 2046 #endif
 2047 
 2048 static struct witness *
 2049 witness_get(void)
 2050 {
 2051         struct witness *w;
 2052         int index;
 2053 
 2054         if (witness_cold == 0)
 2055                 mtx_assert(&w_mtx, MA_OWNED);
 2056 
 2057         if (witness_watch == -1) {
 2058                 mtx_unlock_spin(&w_mtx);
 2059                 return (NULL);
 2060         }
 2061         if (STAILQ_EMPTY(&w_free)) {
 2062                 witness_watch = -1;
 2063                 mtx_unlock_spin(&w_mtx);
 2064                 printf("WITNESS: unable to allocate a new witness object\n");
 2065                 return (NULL);
 2066         }
 2067         w = STAILQ_FIRST(&w_free);
 2068         STAILQ_REMOVE_HEAD(&w_free, w_list);
 2069         w_free_cnt--;
 2070         index = w->w_index;
 2071         MPASS(index > 0 && index == w_max_used_index+1 &&
 2072             index < WITNESS_COUNT);
 2073         bzero(w, sizeof(*w));
 2074         w->w_index = index;
 2075         if (index > w_max_used_index)
 2076                 w_max_used_index = index;
 2077         return (w);
 2078 }
 2079 
 2080 static void
 2081 witness_free(struct witness *w)
 2082 {
 2083 
 2084         STAILQ_INSERT_HEAD(&w_free, w, w_list);
 2085         w_free_cnt++;
 2086 }
 2087 
 2088 static struct lock_list_entry *
 2089 witness_lock_list_get(void)
 2090 {
 2091         struct lock_list_entry *lle;
 2092 
 2093         if (witness_watch == -1)
 2094                 return (NULL);
 2095         mtx_lock_spin(&w_mtx);
 2096         lle = w_lock_list_free;
 2097         if (lle == NULL) {
 2098                 witness_watch = -1;
 2099                 mtx_unlock_spin(&w_mtx);
 2100                 printf("%s: witness exhausted\n", __func__);
 2101                 return (NULL);
 2102         }
 2103         w_lock_list_free = lle->ll_next;
 2104         mtx_unlock_spin(&w_mtx);
 2105         bzero(lle, sizeof(*lle));
 2106         return (lle);
 2107 }
 2108                 
 2109 static void
 2110 witness_lock_list_free(struct lock_list_entry *lle)
 2111 {
 2112 
 2113         mtx_lock_spin(&w_mtx);
 2114         lle->ll_next = w_lock_list_free;
 2115         w_lock_list_free = lle;
 2116         mtx_unlock_spin(&w_mtx);
 2117 }
 2118 
 2119 static struct lock_instance *
 2120 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
 2121 {
 2122         struct lock_list_entry *lle;
 2123         struct lock_instance *instance;
 2124         int i;
 2125 
 2126         for (lle = list; lle != NULL; lle = lle->ll_next)
 2127                 for (i = lle->ll_count - 1; i >= 0; i--) {
 2128                         instance = &lle->ll_children[i];
 2129                         if (instance->li_lock == lock)
 2130                                 return (instance);
 2131                 }
 2132         return (NULL);
 2133 }
 2134 
 2135 static void
 2136 witness_list_lock(struct lock_instance *instance,
 2137     int (*prnt)(const char *fmt, ...))
 2138 {
 2139         struct lock_object *lock;
 2140 
 2141         lock = instance->li_lock;
 2142         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
 2143             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
 2144         if (lock->lo_witness->w_name != lock->lo_name)
 2145                 prnt(" (%s)", lock->lo_witness->w_name);
 2146         prnt(" r = %d (%p) locked @ %s:%d\n",
 2147             instance->li_flags & LI_RECURSEMASK, lock,
 2148             fixup_filename(instance->li_file), instance->li_line);
 2149 }
 2150 
 2151 #ifdef DDB
 2152 static int
 2153 witness_thread_has_locks(struct thread *td)
 2154 {
 2155 
 2156         if (td->td_sleeplocks == NULL)
 2157                 return (0);
 2158         return (td->td_sleeplocks->ll_count != 0);
 2159 }
 2160 
 2161 static int
 2162 witness_proc_has_locks(struct proc *p)
 2163 {
 2164         struct thread *td;
 2165 
 2166         FOREACH_THREAD_IN_PROC(p, td) {
 2167                 if (witness_thread_has_locks(td))
 2168                         return (1);
 2169         }
 2170         return (0);
 2171 }
 2172 #endif
 2173 
 2174 int
 2175 witness_list_locks(struct lock_list_entry **lock_list,
 2176     int (*prnt)(const char *fmt, ...))
 2177 {
 2178         struct lock_list_entry *lle;
 2179         int i, nheld;
 2180 
 2181         nheld = 0;
 2182         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
 2183                 for (i = lle->ll_count - 1; i >= 0; i--) {
 2184                         witness_list_lock(&lle->ll_children[i], prnt);
 2185                         nheld++;
 2186                 }
 2187         return (nheld);
 2188 }
 2189 
 2190 /*
 2191  * This is a bit risky at best.  We call this function when we have timed
 2192  * out acquiring a spin lock, and we assume that the other CPU is stuck
 2193  * with this lock held.  So, we go groveling around in the other CPU's
 2194  * per-cpu data to try to find the lock instance for this spin lock to
 2195  * see when it was last acquired.
 2196  */
 2197 void
 2198 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
 2199     int (*prnt)(const char *fmt, ...))
 2200 {
 2201         struct lock_instance *instance;
 2202         struct pcpu *pc;
 2203 
 2204         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
 2205                 return;
 2206         pc = pcpu_find(owner->td_oncpu);
 2207         instance = find_instance(pc->pc_spinlocks, lock);
 2208         if (instance != NULL)
 2209                 witness_list_lock(instance, prnt);
 2210 }
 2211 
 2212 void
 2213 witness_save(struct lock_object *lock, const char **filep, int *linep)
 2214 {
 2215         struct lock_list_entry *lock_list;
 2216         struct lock_instance *instance;
 2217         struct lock_class *class;
 2218 
 2219         /*
 2220          * This function is used independently in locking code to deal with
 2221          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
 2222          * is gone.
 2223          */
 2224         if (SCHEDULER_STOPPED())
 2225                 return;
 2226         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2227         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 2228                 return;
 2229         class = LOCK_CLASS(lock);
 2230         if (class->lc_flags & LC_SLEEPLOCK)
 2231                 lock_list = curthread->td_sleeplocks;
 2232         else {
 2233                 if (witness_skipspin)
 2234                         return;
 2235                 lock_list = PCPU_GET(spinlocks);
 2236         }
 2237         instance = find_instance(lock_list, lock);
 2238         if (instance == NULL) {
 2239                 kassert_panic("%s: lock (%s) %s not locked", __func__,
 2240                     class->lc_name, lock->lo_name);
 2241                 return;
 2242         }
 2243         *filep = instance->li_file;
 2244         *linep = instance->li_line;
 2245 }
 2246 
 2247 void
 2248 witness_restore(struct lock_object *lock, const char *file, int line)
 2249 {
 2250         struct lock_list_entry *lock_list;
 2251         struct lock_instance *instance;
 2252         struct lock_class *class;
 2253 
 2254         /*
 2255          * This function is used independently in locking code to deal with
 2256          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
 2257          * is gone.
 2258          */
 2259         if (SCHEDULER_STOPPED())
 2260                 return;
 2261         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2262         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 2263                 return;
 2264         class = LOCK_CLASS(lock);
 2265         if (class->lc_flags & LC_SLEEPLOCK)
 2266                 lock_list = curthread->td_sleeplocks;
 2267         else {
 2268                 if (witness_skipspin)
 2269                         return;
 2270                 lock_list = PCPU_GET(spinlocks);
 2271         }
 2272         instance = find_instance(lock_list, lock);
 2273         if (instance == NULL)
 2274                 kassert_panic("%s: lock (%s) %s not locked", __func__,
 2275                     class->lc_name, lock->lo_name);
 2276         lock->lo_witness->w_file = file;
 2277         lock->lo_witness->w_line = line;
 2278         if (instance == NULL)
 2279                 return;
 2280         instance->li_file = file;
 2281         instance->li_line = line;
 2282 }
 2283 
 2284 void
 2285 witness_assert(const struct lock_object *lock, int flags, const char *file,
 2286     int line)
 2287 {
 2288 #ifdef INVARIANT_SUPPORT
 2289         struct lock_instance *instance;
 2290         struct lock_class *class;
 2291 
 2292         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
 2293                 return;
 2294         class = LOCK_CLASS(lock);
 2295         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
 2296                 instance = find_instance(curthread->td_sleeplocks, lock);
 2297         else if ((class->lc_flags & LC_SPINLOCK) != 0)
 2298                 instance = find_instance(PCPU_GET(spinlocks), lock);
 2299         else {
 2300                 kassert_panic("Lock (%s) %s is not sleep or spin!",
 2301                     class->lc_name, lock->lo_name);
 2302                 return;
 2303         }
 2304         switch (flags) {
 2305         case LA_UNLOCKED:
 2306                 if (instance != NULL)
 2307                         kassert_panic("Lock (%s) %s locked @ %s:%d.",
 2308                             class->lc_name, lock->lo_name,
 2309                             fixup_filename(file), line);
 2310                 break;
 2311         case LA_LOCKED:
 2312         case LA_LOCKED | LA_RECURSED:
 2313         case LA_LOCKED | LA_NOTRECURSED:
 2314         case LA_SLOCKED:
 2315         case LA_SLOCKED | LA_RECURSED:
 2316         case LA_SLOCKED | LA_NOTRECURSED:
 2317         case LA_XLOCKED:
 2318         case LA_XLOCKED | LA_RECURSED:
 2319         case LA_XLOCKED | LA_NOTRECURSED:
 2320                 if (instance == NULL) {
 2321                         kassert_panic("Lock (%s) %s not locked @ %s:%d.",
 2322                             class->lc_name, lock->lo_name,
 2323                             fixup_filename(file), line);
 2324                         break;
 2325                 }
 2326                 if ((flags & LA_XLOCKED) != 0 &&
 2327                     (instance->li_flags & LI_EXCLUSIVE) == 0)
 2328                         kassert_panic(
 2329                             "Lock (%s) %s not exclusively locked @ %s:%d.",
 2330                             class->lc_name, lock->lo_name,
 2331                             fixup_filename(file), line);
 2332                 if ((flags & LA_SLOCKED) != 0 &&
 2333                     (instance->li_flags & LI_EXCLUSIVE) != 0)
 2334                         kassert_panic(
 2335                             "Lock (%s) %s exclusively locked @ %s:%d.",
 2336                             class->lc_name, lock->lo_name,
 2337                             fixup_filename(file), line);
 2338                 if ((flags & LA_RECURSED) != 0 &&
 2339                     (instance->li_flags & LI_RECURSEMASK) == 0)
 2340                         kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
 2341                             class->lc_name, lock->lo_name,
 2342                             fixup_filename(file), line);
 2343                 if ((flags & LA_NOTRECURSED) != 0 &&
 2344                     (instance->li_flags & LI_RECURSEMASK) != 0)
 2345                         kassert_panic("Lock (%s) %s recursed @ %s:%d.",
 2346                             class->lc_name, lock->lo_name,
 2347                             fixup_filename(file), line);
 2348                 break;
 2349         default:
 2350                 kassert_panic("Invalid lock assertion at %s:%d.",
 2351                     fixup_filename(file), line);
 2352 
 2353         }
 2354 #endif  /* INVARIANT_SUPPORT */
 2355 }
 2356 
 2357 static void
 2358 witness_setflag(struct lock_object *lock, int flag, int set)
 2359 {
 2360         struct lock_list_entry *lock_list;
 2361         struct lock_instance *instance;
 2362         struct lock_class *class;
 2363 
 2364         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 2365                 return;
 2366         class = LOCK_CLASS(lock);
 2367         if (class->lc_flags & LC_SLEEPLOCK)
 2368                 lock_list = curthread->td_sleeplocks;
 2369         else {
 2370                 if (witness_skipspin)
 2371                         return;
 2372                 lock_list = PCPU_GET(spinlocks);
 2373         }
 2374         instance = find_instance(lock_list, lock);
 2375         if (instance == NULL) {
 2376                 kassert_panic("%s: lock (%s) %s not locked", __func__,
 2377                     class->lc_name, lock->lo_name);
 2378                 return;
 2379         }
 2380 
 2381         if (set)
 2382                 instance->li_flags |= flag;
 2383         else
 2384                 instance->li_flags &= ~flag;
 2385 }
 2386 
 2387 void
 2388 witness_norelease(struct lock_object *lock)
 2389 {
 2390 
 2391         witness_setflag(lock, LI_NORELEASE, 1);
 2392 }
 2393 
 2394 void
 2395 witness_releaseok(struct lock_object *lock)
 2396 {
 2397 
 2398         witness_setflag(lock, LI_NORELEASE, 0);
 2399 }
 2400 
 2401 #ifdef DDB
 2402 static void
 2403 witness_ddb_list(struct thread *td)
 2404 {
 2405 
 2406         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2407         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
 2408 
 2409         if (witness_watch < 1)
 2410                 return;
 2411 
 2412         witness_list_locks(&td->td_sleeplocks, db_printf);
 2413 
 2414         /*
 2415          * We only handle spinlocks if td == curthread.  This is somewhat broken
 2416          * if td is currently executing on some other CPU and holds spin locks
 2417          * as we won't display those locks.  If we had a MI way of getting
 2418          * the per-cpu data for a given cpu then we could use
 2419          * td->td_oncpu to get the list of spinlocks for this thread
 2420          * and "fix" this.
 2421          *
 2422          * That still wouldn't really fix this unless we locked the scheduler
 2423          * lock or stopped the other CPU to make sure it wasn't changing the
 2424          * list out from under us.  It is probably best to just not try to
 2425          * handle threads on other CPU's for now.
 2426          */
 2427         if (td == curthread && PCPU_GET(spinlocks) != NULL)
 2428                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
 2429 }
 2430 
 2431 DB_SHOW_COMMAND(locks, db_witness_list)
 2432 {
 2433         struct thread *td;
 2434 
 2435         if (have_addr)
 2436                 td = db_lookup_thread(addr, TRUE);
 2437         else
 2438                 td = kdb_thread;
 2439         witness_ddb_list(td);
 2440 }
 2441 
 2442 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
 2443 {
 2444         struct thread *td;
 2445         struct proc *p;
 2446 
 2447         /*
 2448          * It would be nice to list only threads and processes that actually
 2449          * held sleep locks, but that information is currently not exported
 2450          * by WITNESS.
 2451          */
 2452         FOREACH_PROC_IN_SYSTEM(p) {
 2453                 if (!witness_proc_has_locks(p))
 2454                         continue;
 2455                 FOREACH_THREAD_IN_PROC(p, td) {
 2456                         if (!witness_thread_has_locks(td))
 2457                                 continue;
 2458                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
 2459                             p->p_comm, td, td->td_tid);
 2460                         witness_ddb_list(td);
 2461                         if (db_pager_quit)
 2462                                 return;
 2463                 }
 2464         }
 2465 }
 2466 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
 2467 
 2468 DB_SHOW_COMMAND(witness, db_witness_display)
 2469 {
 2470 
 2471         witness_ddb_display(db_printf);
 2472 }
 2473 #endif
 2474 
 2475 static int
 2476 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
 2477 {
 2478         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
 2479         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
 2480         struct sbuf *sb;
 2481         u_int w_rmatrix1, w_rmatrix2;
 2482         int error, generation, i, j;
 2483 
 2484         tmp_data1 = NULL;
 2485         tmp_data2 = NULL;
 2486         tmp_w1 = NULL;
 2487         tmp_w2 = NULL;
 2488         if (witness_watch < 1) {
 2489                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
 2490                 return (error);
 2491         }
 2492         if (witness_cold) {
 2493                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
 2494                 return (error);
 2495         }
 2496         error = 0;
 2497         sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
 2498         if (sb == NULL)
 2499                 return (ENOMEM);
 2500 
 2501         /* Allocate and init temporary storage space. */
 2502         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
 2503         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
 2504         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
 2505             M_WAITOK | M_ZERO);
 2506         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
 2507             M_WAITOK | M_ZERO);
 2508         stack_zero(&tmp_data1->wlod_stack);
 2509         stack_zero(&tmp_data2->wlod_stack);
 2510 
 2511 restart:
 2512         mtx_lock_spin(&w_mtx);
 2513         generation = w_generation;
 2514         mtx_unlock_spin(&w_mtx);
 2515         sbuf_printf(sb, "Number of known direct relationships is %d\n",
 2516             w_lohash.wloh_count);
 2517         for (i = 1; i < w_max_used_index; i++) {
 2518                 mtx_lock_spin(&w_mtx);
 2519                 if (generation != w_generation) {
 2520                         mtx_unlock_spin(&w_mtx);
 2521 
 2522                         /* The graph has changed, try again. */
 2523                         req->oldidx = 0;
 2524                         sbuf_clear(sb);
 2525                         goto restart;
 2526                 }
 2527 
 2528                 w1 = &w_data[i];
 2529                 if (w1->w_reversed == 0) {
 2530                         mtx_unlock_spin(&w_mtx);
 2531                         continue;
 2532                 }
 2533 
 2534                 /* Copy w1 locally so we can release the spin lock. */
 2535                 *tmp_w1 = *w1;
 2536                 mtx_unlock_spin(&w_mtx);
 2537 
 2538                 if (tmp_w1->w_reversed == 0)
 2539                         continue;
 2540                 for (j = 1; j < w_max_used_index; j++) {
 2541                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
 2542                                 continue;
 2543 
 2544                         mtx_lock_spin(&w_mtx);
 2545                         if (generation != w_generation) {
 2546                                 mtx_unlock_spin(&w_mtx);
 2547 
 2548                                 /* The graph has changed, try again. */
 2549                                 req->oldidx = 0;
 2550                                 sbuf_clear(sb);
 2551                                 goto restart;
 2552                         }
 2553 
 2554                         w2 = &w_data[j];
 2555                         data1 = witness_lock_order_get(w1, w2);
 2556                         data2 = witness_lock_order_get(w2, w1);
 2557 
 2558                         /*
 2559                          * Copy information locally so we can release the
 2560                          * spin lock.
 2561                          */
 2562                         *tmp_w2 = *w2;
 2563                         w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
 2564                         w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
 2565 
 2566                         if (data1) {
 2567                                 stack_zero(&tmp_data1->wlod_stack);
 2568                                 stack_copy(&data1->wlod_stack,
 2569                                     &tmp_data1->wlod_stack);
 2570                         }
 2571                         if (data2 && data2 != data1) {
 2572                                 stack_zero(&tmp_data2->wlod_stack);
 2573                                 stack_copy(&data2->wlod_stack,
 2574                                     &tmp_data2->wlod_stack);
 2575                         }
 2576                         mtx_unlock_spin(&w_mtx);
 2577 
 2578                         sbuf_printf(sb,
 2579             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
 2580                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
 2581                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
 2582 #if 0
 2583                         sbuf_printf(sb,
 2584                         "w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
 2585                             tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
 2586                             tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
 2587 #endif
 2588                         if (data1) {
 2589                                 sbuf_printf(sb,
 2590                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
 2591                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
 2592                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
 2593                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
 2594                                 sbuf_printf(sb, "\n");
 2595                         }
 2596                         if (data2 && data2 != data1) {
 2597                                 sbuf_printf(sb,
 2598                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
 2599                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
 2600                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
 2601                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
 2602                                 sbuf_printf(sb, "\n");
 2603                         }
 2604                 }
 2605         }
 2606         mtx_lock_spin(&w_mtx);
 2607         if (generation != w_generation) {
 2608                 mtx_unlock_spin(&w_mtx);
 2609 
 2610                 /*
 2611                  * The graph changed while we were printing stack data,
 2612                  * try again.
 2613                  */
 2614                 req->oldidx = 0;
 2615                 sbuf_clear(sb);
 2616                 goto restart;
 2617         }
 2618         mtx_unlock_spin(&w_mtx);
 2619 
 2620         /* Free temporary storage space. */
 2621         free(tmp_data1, M_TEMP);
 2622         free(tmp_data2, M_TEMP);
 2623         free(tmp_w1, M_TEMP);
 2624         free(tmp_w2, M_TEMP);
 2625 
 2626         sbuf_finish(sb);
 2627         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
 2628         sbuf_delete(sb);
 2629 
 2630         return (error);
 2631 }
 2632 
 2633 static int
 2634 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
 2635 {
 2636         struct witness *w;
 2637         struct sbuf *sb;
 2638         int error;
 2639 
 2640         if (witness_watch < 1) {
 2641                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
 2642                 return (error);
 2643         }
 2644         if (witness_cold) {
 2645                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
 2646                 return (error);
 2647         }
 2648         error = 0;
 2649 
 2650         error = sysctl_wire_old_buffer(req, 0);
 2651         if (error != 0)
 2652                 return (error);
 2653         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
 2654         if (sb == NULL)
 2655                 return (ENOMEM);
 2656         sbuf_printf(sb, "\n");
 2657 
 2658         mtx_lock_spin(&w_mtx);
 2659         STAILQ_FOREACH(w, &w_all, w_list)
 2660                 w->w_displayed = 0;
 2661         STAILQ_FOREACH(w, &w_all, w_list)
 2662                 witness_add_fullgraph(sb, w);
 2663         mtx_unlock_spin(&w_mtx);
 2664 
 2665         /*
 2666          * Close the sbuf and return to userland.
 2667          */
 2668         error = sbuf_finish(sb);
 2669         sbuf_delete(sb);
 2670 
 2671         return (error);
 2672 }
 2673 
 2674 static int
 2675 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
 2676 {
 2677         int error, value;
 2678 
 2679         value = witness_watch;
 2680         error = sysctl_handle_int(oidp, &value, 0, req);
 2681         if (error != 0 || req->newptr == NULL)
 2682                 return (error);
 2683         if (value > 1 || value < -1 ||
 2684             (witness_watch == -1 && value != witness_watch))
 2685                 return (EINVAL);
 2686         witness_watch = value;
 2687         return (0);
 2688 }
 2689 
 2690 static void
 2691 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
 2692 {
 2693         int i;
 2694 
 2695         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
 2696                 return;
 2697         w->w_displayed = 1;
 2698 
 2699         WITNESS_INDEX_ASSERT(w->w_index);
 2700         for (i = 1; i <= w_max_used_index; i++) {
 2701                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
 2702                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
 2703                             w_data[i].w_name);
 2704                         witness_add_fullgraph(sb, &w_data[i]);
 2705                 }
 2706         }
 2707 }
 2708 
 2709 /*
 2710  * A simple hash function. Takes a key pointer and a key size. If size == 0,
 2711  * interprets the key as a string and reads until the null
 2712  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
 2713  * hash value computed from the key.
 2714  */
 2715 static uint32_t
 2716 witness_hash_djb2(const uint8_t *key, uint32_t size)
 2717 {
 2718         unsigned int hash = 5381;
 2719         int i;
 2720 
 2721         /* hash = hash * 33 + key[i] */
 2722         if (size)
 2723                 for (i = 0; i < size; i++)
 2724                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
 2725         else
 2726                 for (i = 0; key[i] != 0; i++)
 2727                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
 2728 
 2729         return (hash);
 2730 }
 2731 
 2732 
 2733 /*
 2734  * Initializes the two witness hash tables. Called exactly once from
 2735  * witness_initialize().
 2736  */
 2737 static void
 2738 witness_init_hash_tables(void)
 2739 {
 2740         int i;
 2741 
 2742         MPASS(witness_cold);
 2743 
 2744         /* Initialize the hash tables. */
 2745         for (i = 0; i < WITNESS_HASH_SIZE; i++)
 2746                 w_hash.wh_array[i] = NULL;
 2747 
 2748         w_hash.wh_size = WITNESS_HASH_SIZE;
 2749         w_hash.wh_count = 0;
 2750 
 2751         /* Initialize the lock order data hash. */
 2752         w_lofree = NULL;
 2753         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
 2754                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
 2755                 w_lodata[i].wlod_next = w_lofree;
 2756                 w_lofree = &w_lodata[i];
 2757         }
 2758         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
 2759         w_lohash.wloh_count = 0;
 2760         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
 2761                 w_lohash.wloh_array[i] = NULL;
 2762 }
 2763 
 2764 static struct witness *
 2765 witness_hash_get(const char *key)
 2766 {
 2767         struct witness *w;
 2768         uint32_t hash;
 2769         
 2770         MPASS(key != NULL);
 2771         if (witness_cold == 0)
 2772                 mtx_assert(&w_mtx, MA_OWNED);
 2773         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
 2774         w = w_hash.wh_array[hash];
 2775         while (w != NULL) {
 2776                 if (strcmp(w->w_name, key) == 0)
 2777                         goto out;
 2778                 w = w->w_hash_next;
 2779         }
 2780 
 2781 out:
 2782         return (w);
 2783 }
 2784 
 2785 static void
 2786 witness_hash_put(struct witness *w)
 2787 {
 2788         uint32_t hash;
 2789 
 2790         MPASS(w != NULL);
 2791         MPASS(w->w_name != NULL);
 2792         if (witness_cold == 0)
 2793                 mtx_assert(&w_mtx, MA_OWNED);
 2794         KASSERT(witness_hash_get(w->w_name) == NULL,
 2795             ("%s: trying to add a hash entry that already exists!", __func__));
 2796         KASSERT(w->w_hash_next == NULL,
 2797             ("%s: w->w_hash_next != NULL", __func__));
 2798 
 2799         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
 2800         w->w_hash_next = w_hash.wh_array[hash];
 2801         w_hash.wh_array[hash] = w;
 2802         w_hash.wh_count++;
 2803 }
 2804 
 2805 
 2806 static struct witness_lock_order_data *
 2807 witness_lock_order_get(struct witness *parent, struct witness *child)
 2808 {
 2809         struct witness_lock_order_data *data = NULL;
 2810         struct witness_lock_order_key key;
 2811         unsigned int hash;
 2812 
 2813         MPASS(parent != NULL && child != NULL);
 2814         key.from = parent->w_index;
 2815         key.to = child->w_index;
 2816         WITNESS_INDEX_ASSERT(key.from);
 2817         WITNESS_INDEX_ASSERT(key.to);
 2818         if ((w_rmatrix[parent->w_index][child->w_index]
 2819             & WITNESS_LOCK_ORDER_KNOWN) == 0)
 2820                 goto out;
 2821 
 2822         hash = witness_hash_djb2((const char*)&key,
 2823             sizeof(key)) % w_lohash.wloh_size;
 2824         data = w_lohash.wloh_array[hash];
 2825         while (data != NULL) {
 2826                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
 2827                         break;
 2828                 data = data->wlod_next;
 2829         }
 2830 
 2831 out:
 2832         return (data);
 2833 }
 2834 
 2835 /*
 2836  * Verify that parent and child have a known relationship, are not the same,
 2837  * and child is actually a child of parent.  This is done without w_mtx
 2838  * to avoid contention in the common case.
 2839  */
 2840 static int
 2841 witness_lock_order_check(struct witness *parent, struct witness *child)
 2842 {
 2843 
 2844         if (parent != child &&
 2845             w_rmatrix[parent->w_index][child->w_index]
 2846             & WITNESS_LOCK_ORDER_KNOWN &&
 2847             isitmychild(parent, child))
 2848                 return (1);
 2849 
 2850         return (0);
 2851 }
 2852 
 2853 static int
 2854 witness_lock_order_add(struct witness *parent, struct witness *child)
 2855 {
 2856         struct witness_lock_order_data *data = NULL;
 2857         struct witness_lock_order_key key;
 2858         unsigned int hash;
 2859         
 2860         MPASS(parent != NULL && child != NULL);
 2861         key.from = parent->w_index;
 2862         key.to = child->w_index;
 2863         WITNESS_INDEX_ASSERT(key.from);
 2864         WITNESS_INDEX_ASSERT(key.to);
 2865         if (w_rmatrix[parent->w_index][child->w_index]
 2866             & WITNESS_LOCK_ORDER_KNOWN)
 2867                 return (1);
 2868 
 2869         hash = witness_hash_djb2((const char*)&key,
 2870             sizeof(key)) % w_lohash.wloh_size;
 2871         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
 2872         data = w_lofree;
 2873         if (data == NULL)
 2874                 return (0);
 2875         w_lofree = data->wlod_next;
 2876         data->wlod_next = w_lohash.wloh_array[hash];
 2877         data->wlod_key = key;
 2878         w_lohash.wloh_array[hash] = data;
 2879         w_lohash.wloh_count++;
 2880         stack_zero(&data->wlod_stack);
 2881         stack_save(&data->wlod_stack);
 2882         return (1);
 2883 }
 2884 
 2885 /* Call this whenver the structure of the witness graph changes. */
 2886 static void
 2887 witness_increment_graph_generation(void)
 2888 {
 2889 
 2890         if (witness_cold == 0)
 2891                 mtx_assert(&w_mtx, MA_OWNED);
 2892         w_generation++;
 2893 }
 2894 
 2895 #ifdef KDB
 2896 static void
 2897 _witness_debugger(int cond, const char *msg)
 2898 {
 2899 
 2900         if (witness_trace && cond)
 2901                 kdb_backtrace();
 2902         if (witness_kdb && cond)
 2903                 kdb_enter(KDB_WHY_WITNESS, msg);
 2904 }
 2905 #endif

Cache object: e484171dce7d4b3ffd3a6b3382bc517a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.