The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_witness.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2008 Isilon Systems, Inc.
    3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
    4  * Copyright (c) 1998 Berkeley Software Design, Inc.
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
   16  *    promote products derived from this software without specific prior
   17  *    written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
   32  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
   33  */
   34 
   35 /*
   36  * Implementation of the `witness' lock verifier.  Originally implemented for
   37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
   38  * classes in FreeBSD.
   39  */
   40 
   41 /*
   42  *      Main Entry: witness
   43  *      Pronunciation: 'wit-n&s
   44  *      Function: noun
   45  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
   46  *          testimony, witness, from 2wit
   47  *      Date: before 12th century
   48  *      1 : attestation of a fact or event : TESTIMONY
   49  *      2 : one that gives evidence; specifically : one who testifies in
   50  *          a cause or before a judicial tribunal
   51  *      3 : one asked to be present at a transaction so as to be able to
   52  *          testify to its having taken place
   53  *      4 : one who has personal knowledge of something
   54  *      5 a : something serving as evidence or proof : SIGN
   55  *        b : public affirmation by word or example of usually
   56  *            religious faith or conviction <the heroic witness to divine
   57  *            life -- Pilot>
   58  *      6 capitalized : a member of the Jehovah's Witnesses 
   59  */
   60 
   61 /*
   62  * Special rules concerning Giant and lock orders:
   63  *
   64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
   65  *    no other mutex may be held when Giant is acquired.
   66  *
   67  * 2) Giant must be released when blocking on a sleepable lock.
   68  *
   69  * This rule is less obvious, but is a result of Giant providing the same
   70  * semantics as spl().  Basically, when a thread sleeps, it must release
   71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
   72  * 2).
   73  *
   74  * 3) Giant may be acquired before or after sleepable locks.
   75  *
   76  * This rule is also not quite as obvious.  Giant may be acquired after
   77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
   78  * locks may always be acquired while holding a sleepable lock.  The second
   79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
   80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
   81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
   82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
   83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
   84  * will not result in a lock order reversal.
   85  */
   86 
   87 #include <sys/cdefs.h>
   88 __FBSDID("$FreeBSD: releng/11.1/sys/kern/subr_witness.c 314063 2017-02-22 00:50:36Z markj $");
   89 
   90 #include "opt_ddb.h"
   91 #include "opt_hwpmc_hooks.h"
   92 #include "opt_stack.h"
   93 #include "opt_witness.h"
   94 
   95 #include <sys/param.h>
   96 #include <sys/bus.h>
   97 #include <sys/kdb.h>
   98 #include <sys/kernel.h>
   99 #include <sys/ktr.h>
  100 #include <sys/lock.h>
  101 #include <sys/malloc.h>
  102 #include <sys/mutex.h>
  103 #include <sys/priv.h>
  104 #include <sys/proc.h>
  105 #include <sys/sbuf.h>
  106 #include <sys/sched.h>
  107 #include <sys/stack.h>
  108 #include <sys/sysctl.h>
  109 #include <sys/syslog.h>
  110 #include <sys/systm.h>
  111 
  112 #ifdef DDB
  113 #include <ddb/ddb.h>
  114 #endif
  115 
  116 #include <machine/stdarg.h>
  117 
  118 #if !defined(DDB) && !defined(STACK)
  119 #error "DDB or STACK options are required for WITNESS"
  120 #endif
  121 
  122 /* Note that these traces do not work with KTR_ALQ. */
  123 #if 0
  124 #define KTR_WITNESS     KTR_SUBSYS
  125 #else
  126 #define KTR_WITNESS     0
  127 #endif
  128 
  129 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
  130 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
  131 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
  132 
  133 /* Define this to check for blessed mutexes */
  134 #undef BLESSING
  135 
  136 #ifndef WITNESS_COUNT
  137 #define WITNESS_COUNT           1536
  138 #endif
  139 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
  140 #define WITNESS_PENDLIST        (1024 + MAXCPU)
  141 
  142 /* Allocate 256 KB of stack data space */
  143 #define WITNESS_LO_DATA_COUNT   2048
  144 
  145 /* Prime, gives load factor of ~2 at full load */
  146 #define WITNESS_LO_HASH_SIZE    1021
  147 
  148 /*
  149  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
  150  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
  151  * probably be safe for the most part, but it's still a SWAG.
  152  */
  153 #define LOCK_NCHILDREN  5
  154 #define LOCK_CHILDCOUNT 2048
  155 
  156 #define MAX_W_NAME      64
  157 
  158 #define FULLGRAPH_SBUF_SIZE     512
  159 
  160 /*
  161  * These flags go in the witness relationship matrix and describe the
  162  * relationship between any two struct witness objects.
  163  */
  164 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
  165 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
  166 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
  167 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
  168 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
  169 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
  170 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
  171 #define WITNESS_RELATED_MASK                                            \
  172         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
  173 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
  174                                           * observed. */
  175 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
  176 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
  177 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
  178 
  179 /* Descendant to ancestor flags */
  180 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
  181 
  182 /* Ancestor to descendant flags */
  183 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
  184 
  185 #define WITNESS_INDEX_ASSERT(i)                                         \
  186         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
  187 
  188 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
  189 
  190 /*
  191  * Lock instances.  A lock instance is the data associated with a lock while
  192  * it is held by witness.  For example, a lock instance will hold the
  193  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
  194  * are held in a per-cpu list while sleep locks are held in per-thread list.
  195  */
  196 struct lock_instance {
  197         struct lock_object      *li_lock;
  198         const char              *li_file;
  199         int                     li_line;
  200         u_int                   li_flags;
  201 };
  202 
  203 /*
  204  * A simple list type used to build the list of locks held by a thread
  205  * or CPU.  We can't simply embed the list in struct lock_object since a
  206  * lock may be held by more than one thread if it is a shared lock.  Locks
  207  * are added to the head of the list, so we fill up each list entry from
  208  * "the back" logically.  To ease some of the arithmetic, we actually fill
  209  * in each list entry the normal way (children[0] then children[1], etc.) but
  210  * when we traverse the list we read children[count-1] as the first entry
  211  * down to children[0] as the final entry.
  212  */
  213 struct lock_list_entry {
  214         struct lock_list_entry  *ll_next;
  215         struct lock_instance    ll_children[LOCK_NCHILDREN];
  216         u_int                   ll_count;
  217 };
  218 
  219 /*
  220  * The main witness structure. One of these per named lock type in the system
  221  * (for example, "vnode interlock").
  222  */
  223 struct witness {
  224         char                    w_name[MAX_W_NAME];
  225         uint32_t                w_index;  /* Index in the relationship matrix */
  226         struct lock_class       *w_class;
  227         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
  228         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
  229         struct witness          *w_hash_next; /* Linked list in hash buckets. */
  230         const char              *w_file; /* File where last acquired */
  231         uint32_t                w_line; /* Line where last acquired */
  232         uint32_t                w_refcount;
  233         uint16_t                w_num_ancestors; /* direct/indirect
  234                                                   * ancestor count */
  235         uint16_t                w_num_descendants; /* direct/indirect
  236                                                     * descendant count */
  237         int16_t                 w_ddb_level;
  238         unsigned                w_displayed:1;
  239         unsigned                w_reversed:1;
  240 };
  241 
  242 STAILQ_HEAD(witness_list, witness);
  243 
  244 /*
  245  * The witness hash table. Keys are witness names (const char *), elements are
  246  * witness objects (struct witness *).
  247  */
  248 struct witness_hash {
  249         struct witness  *wh_array[WITNESS_HASH_SIZE];
  250         uint32_t        wh_size;
  251         uint32_t        wh_count;
  252 };
  253 
  254 /*
  255  * Key type for the lock order data hash table.
  256  */
  257 struct witness_lock_order_key {
  258         uint16_t        from;
  259         uint16_t        to;
  260 };
  261 
  262 struct witness_lock_order_data {
  263         struct stack                    wlod_stack;
  264         struct witness_lock_order_key   wlod_key;
  265         struct witness_lock_order_data  *wlod_next;
  266 };
  267 
  268 /*
  269  * The witness lock order data hash table. Keys are witness index tuples
  270  * (struct witness_lock_order_key), elements are lock order data objects
  271  * (struct witness_lock_order_data). 
  272  */
  273 struct witness_lock_order_hash {
  274         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
  275         u_int   wloh_size;
  276         u_int   wloh_count;
  277 };
  278 
  279 #ifdef BLESSING
  280 struct witness_blessed {
  281         const char      *b_lock1;
  282         const char      *b_lock2;
  283 };
  284 #endif
  285 
  286 struct witness_pendhelp {
  287         const char              *wh_type;
  288         struct lock_object      *wh_lock;
  289 };
  290 
  291 struct witness_order_list_entry {
  292         const char              *w_name;
  293         struct lock_class       *w_class;
  294 };
  295 
  296 /*
  297  * Returns 0 if one of the locks is a spin lock and the other is not.
  298  * Returns 1 otherwise.
  299  */
  300 static __inline int
  301 witness_lock_type_equal(struct witness *w1, struct witness *w2)
  302 {
  303 
  304         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
  305                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
  306 }
  307 
  308 static __inline int
  309 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
  310     const struct witness_lock_order_key *b)
  311 {
  312 
  313         return (a->from == b->from && a->to == b->to);
  314 }
  315 
  316 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
  317                     const char *fname);
  318 static void     adopt(struct witness *parent, struct witness *child);
  319 #ifdef BLESSING
  320 static int      blessed(struct witness *, struct witness *);
  321 #endif
  322 static void     depart(struct witness *w);
  323 static struct witness   *enroll(const char *description,
  324                             struct lock_class *lock_class);
  325 static struct lock_instance     *find_instance(struct lock_list_entry *list,
  326                                     const struct lock_object *lock);
  327 static int      isitmychild(struct witness *parent, struct witness *child);
  328 static int      isitmydescendant(struct witness *parent, struct witness *child);
  329 static void     itismychild(struct witness *parent, struct witness *child);
  330 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
  331 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
  332 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
  333 static int      sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
  334 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
  335 #ifdef DDB
  336 static void     witness_ddb_compute_levels(void);
  337 static void     witness_ddb_display(int(*)(const char *fmt, ...));
  338 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
  339                     struct witness *, int indent);
  340 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
  341                     struct witness_list *list);
  342 static void     witness_ddb_level_descendants(struct witness *parent, int l);
  343 static void     witness_ddb_list(struct thread *td);
  344 #endif
  345 static void     witness_debugger(int cond, const char *msg);
  346 static void     witness_free(struct witness *m);
  347 static struct witness   *witness_get(void);
  348 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
  349 static struct witness   *witness_hash_get(const char *key);
  350 static void     witness_hash_put(struct witness *w);
  351 static void     witness_init_hash_tables(void);
  352 static void     witness_increment_graph_generation(void);
  353 static void     witness_lock_list_free(struct lock_list_entry *lle);
  354 static struct lock_list_entry   *witness_lock_list_get(void);
  355 static int      witness_lock_order_add(struct witness *parent,
  356                     struct witness *child);
  357 static int      witness_lock_order_check(struct witness *parent,
  358                     struct witness *child);
  359 static struct witness_lock_order_data   *witness_lock_order_get(
  360                                             struct witness *parent,
  361                                             struct witness *child);
  362 static void     witness_list_lock(struct lock_instance *instance,
  363                     int (*prnt)(const char *fmt, ...));
  364 static int      witness_output(const char *fmt, ...) __printflike(1, 2);
  365 static int      witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
  366 static void     witness_setflag(struct lock_object *lock, int flag, int set);
  367 
  368 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
  369     "Witness Locking");
  370 
  371 /*
  372  * If set to 0, lock order checking is disabled.  If set to -1,
  373  * witness is completely disabled.  Otherwise witness performs full
  374  * lock order checking for all locks.  At runtime, lock order checking
  375  * may be toggled.  However, witness cannot be reenabled once it is
  376  * completely disabled.
  377  */
  378 static int witness_watch = 1;
  379 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RWTUN | CTLTYPE_INT, NULL, 0,
  380     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
  381 
  382 #ifdef KDB
  383 /*
  384  * When KDB is enabled and witness_kdb is 1, it will cause the system
  385  * to drop into kdebug() when:
  386  *      - a lock hierarchy violation occurs
  387  *      - locks are held when going to sleep.
  388  */
  389 #ifdef WITNESS_KDB
  390 int     witness_kdb = 1;
  391 #else
  392 int     witness_kdb = 0;
  393 #endif
  394 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
  395 #endif /* KDB */
  396 
  397 #if defined(DDB) || defined(KDB)
  398 /*
  399  * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
  400  * to print a stack trace:
  401  *      - a lock hierarchy violation occurs
  402  *      - locks are held when going to sleep.
  403  */
  404 int     witness_trace = 1;
  405 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
  406 #endif /* DDB || KDB */
  407 
  408 #ifdef WITNESS_SKIPSPIN
  409 int     witness_skipspin = 1;
  410 #else
  411 int     witness_skipspin = 0;
  412 #endif
  413 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
  414 
  415 int badstack_sbuf_size;
  416 
  417 int witness_count = WITNESS_COUNT;
  418 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN, 
  419     &witness_count, 0, "");
  420 
  421 /*
  422  * Output channel for witness messages.  By default we print to the console.
  423  */
  424 enum witness_channel {
  425         WITNESS_CONSOLE,
  426         WITNESS_LOG,
  427         WITNESS_NONE,
  428 };
  429 
  430 static enum witness_channel witness_channel = WITNESS_CONSOLE;
  431 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel, CTLTYPE_STRING |
  432     CTLFLAG_RWTUN, NULL, 0, sysctl_debug_witness_channel, "A",
  433     "Output channel for warnings");
  434 
  435 /*
  436  * Call this to print out the relations between locks.
  437  */
  438 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
  439     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
  440 
  441 /*
  442  * Call this to print out the witness faulty stacks.
  443  */
  444 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
  445     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
  446 
  447 static struct mtx w_mtx;
  448 
  449 /* w_list */
  450 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
  451 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
  452 
  453 /* w_typelist */
  454 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
  455 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
  456 
  457 /* lock list */
  458 static struct lock_list_entry *w_lock_list_free = NULL;
  459 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
  460 static u_int pending_cnt;
  461 
  462 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
  463 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
  464 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
  465 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
  466     "");
  467 
  468 static struct witness *w_data;
  469 static uint8_t **w_rmatrix;
  470 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
  471 static struct witness_hash w_hash;      /* The witness hash table. */
  472 
  473 /* The lock order data hash */
  474 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
  475 static struct witness_lock_order_data *w_lofree = NULL;
  476 static struct witness_lock_order_hash w_lohash;
  477 static int w_max_used_index = 0;
  478 static unsigned int w_generation = 0;
  479 static const char w_notrunning[] = "Witness not running\n";
  480 static const char w_stillcold[] = "Witness is still cold\n";
  481 
  482 
  483 static struct witness_order_list_entry order_lists[] = {
  484         /*
  485          * sx locks
  486          */
  487         { "proctree", &lock_class_sx },
  488         { "allproc", &lock_class_sx },
  489         { "allprison", &lock_class_sx },
  490         { NULL, NULL },
  491         /*
  492          * Various mutexes
  493          */
  494         { "Giant", &lock_class_mtx_sleep },
  495         { "pipe mutex", &lock_class_mtx_sleep },
  496         { "sigio lock", &lock_class_mtx_sleep },
  497         { "process group", &lock_class_mtx_sleep },
  498         { "process lock", &lock_class_mtx_sleep },
  499         { "session", &lock_class_mtx_sleep },
  500         { "uidinfo hash", &lock_class_rw },
  501 #ifdef  HWPMC_HOOKS
  502         { "pmc-sleep", &lock_class_mtx_sleep },
  503 #endif
  504         { "time lock", &lock_class_mtx_sleep },
  505         { NULL, NULL },
  506         /*
  507          * umtx
  508          */
  509         { "umtx lock", &lock_class_mtx_sleep },
  510         { NULL, NULL },
  511         /*
  512          * Sockets
  513          */
  514         { "accept", &lock_class_mtx_sleep },
  515         { "so_snd", &lock_class_mtx_sleep },
  516         { "so_rcv", &lock_class_mtx_sleep },
  517         { "sellck", &lock_class_mtx_sleep },
  518         { NULL, NULL },
  519         /*
  520          * Routing
  521          */
  522         { "so_rcv", &lock_class_mtx_sleep },
  523         { "radix node head", &lock_class_rw },
  524         { "rtentry", &lock_class_mtx_sleep },
  525         { "ifaddr", &lock_class_mtx_sleep },
  526         { NULL, NULL },
  527         /*
  528          * IPv4 multicast:
  529          * protocol locks before interface locks, after UDP locks.
  530          */
  531         { "udpinp", &lock_class_rw },
  532         { "in_multi_mtx", &lock_class_mtx_sleep },
  533         { "igmp_mtx", &lock_class_mtx_sleep },
  534         { "if_addr_lock", &lock_class_rw },
  535         { NULL, NULL },
  536         /*
  537          * IPv6 multicast:
  538          * protocol locks before interface locks, after UDP locks.
  539          */
  540         { "udpinp", &lock_class_rw },
  541         { "in6_multi_mtx", &lock_class_mtx_sleep },
  542         { "mld_mtx", &lock_class_mtx_sleep },
  543         { "if_addr_lock", &lock_class_rw },
  544         { NULL, NULL },
  545         /*
  546          * UNIX Domain Sockets
  547          */
  548         { "unp_link_rwlock", &lock_class_rw },
  549         { "unp_list_lock", &lock_class_mtx_sleep },
  550         { "unp", &lock_class_mtx_sleep },
  551         { "so_snd", &lock_class_mtx_sleep },
  552         { NULL, NULL },
  553         /*
  554          * UDP/IP
  555          */
  556         { "udp", &lock_class_rw },
  557         { "udpinp", &lock_class_rw },
  558         { "so_snd", &lock_class_mtx_sleep },
  559         { NULL, NULL },
  560         /*
  561          * TCP/IP
  562          */
  563         { "tcp", &lock_class_rw },
  564         { "tcpinp", &lock_class_rw },
  565         { "so_snd", &lock_class_mtx_sleep },
  566         { NULL, NULL },
  567         /*
  568          * BPF
  569          */
  570         { "bpf global lock", &lock_class_mtx_sleep },
  571         { "bpf interface lock", &lock_class_rw },
  572         { "bpf cdev lock", &lock_class_mtx_sleep },
  573         { NULL, NULL },
  574         /*
  575          * NFS server
  576          */
  577         { "nfsd_mtx", &lock_class_mtx_sleep },
  578         { "so_snd", &lock_class_mtx_sleep },
  579         { NULL, NULL },
  580 
  581         /*
  582          * IEEE 802.11
  583          */
  584         { "802.11 com lock", &lock_class_mtx_sleep},
  585         { NULL, NULL },
  586         /*
  587          * Network drivers
  588          */
  589         { "network driver", &lock_class_mtx_sleep},
  590         { NULL, NULL },
  591 
  592         /*
  593          * Netgraph
  594          */
  595         { "ng_node", &lock_class_mtx_sleep },
  596         { "ng_worklist", &lock_class_mtx_sleep },
  597         { NULL, NULL },
  598         /*
  599          * CDEV
  600          */
  601         { "vm map (system)", &lock_class_mtx_sleep },
  602         { "vm pagequeue", &lock_class_mtx_sleep },
  603         { "vnode interlock", &lock_class_mtx_sleep },
  604         { "cdev", &lock_class_mtx_sleep },
  605         { NULL, NULL },
  606         /*
  607          * VM
  608          */
  609         { "vm map (user)", &lock_class_sx },
  610         { "vm object", &lock_class_rw },
  611         { "vm page", &lock_class_mtx_sleep },
  612         { "vm pagequeue", &lock_class_mtx_sleep },
  613         { "pmap pv global", &lock_class_rw },
  614         { "pmap", &lock_class_mtx_sleep },
  615         { "pmap pv list", &lock_class_rw },
  616         { "vm page free queue", &lock_class_mtx_sleep },
  617         { NULL, NULL },
  618         /*
  619          * kqueue/VFS interaction
  620          */
  621         { "kqueue", &lock_class_mtx_sleep },
  622         { "struct mount mtx", &lock_class_mtx_sleep },
  623         { "vnode interlock", &lock_class_mtx_sleep },
  624         { NULL, NULL },
  625         /*
  626          * VFS namecache
  627          */
  628         { "ncvn", &lock_class_mtx_sleep },
  629         { "ncbuc", &lock_class_rw },
  630         { "vnode interlock", &lock_class_mtx_sleep },
  631         { "ncneg", &lock_class_mtx_sleep },
  632         { NULL, NULL },
  633         /*
  634          * ZFS locking
  635          */
  636         { "dn->dn_mtx", &lock_class_sx },
  637         { "dr->dt.di.dr_mtx", &lock_class_sx },
  638         { "db->db_mtx", &lock_class_sx },
  639         { NULL, NULL },
  640         /*
  641          * spin locks
  642          */
  643 #ifdef SMP
  644         { "ap boot", &lock_class_mtx_spin },
  645 #endif
  646         { "rm.mutex_mtx", &lock_class_mtx_spin },
  647         { "sio", &lock_class_mtx_spin },
  648         { "scrlock", &lock_class_mtx_spin },
  649 #ifdef __i386__
  650         { "cy", &lock_class_mtx_spin },
  651 #endif
  652 #ifdef __sparc64__
  653         { "pcib_mtx", &lock_class_mtx_spin },
  654         { "rtc_mtx", &lock_class_mtx_spin },
  655 #endif
  656         { "scc_hwmtx", &lock_class_mtx_spin },
  657         { "uart_hwmtx", &lock_class_mtx_spin },
  658         { "fast_taskqueue", &lock_class_mtx_spin },
  659         { "intr table", &lock_class_mtx_spin },
  660 #ifdef  HWPMC_HOOKS
  661         { "pmc-per-proc", &lock_class_mtx_spin },
  662 #endif
  663         { "process slock", &lock_class_mtx_spin },
  664         { "sleepq chain", &lock_class_mtx_spin },
  665         { "rm_spinlock", &lock_class_mtx_spin },
  666         { "turnstile chain", &lock_class_mtx_spin },
  667         { "turnstile lock", &lock_class_mtx_spin },
  668         { "sched lock", &lock_class_mtx_spin },
  669         { "td_contested", &lock_class_mtx_spin },
  670         { "callout", &lock_class_mtx_spin },
  671         { "entropy harvest mutex", &lock_class_mtx_spin },
  672         { "syscons video lock", &lock_class_mtx_spin },
  673 #ifdef SMP
  674         { "smp rendezvous", &lock_class_mtx_spin },
  675 #endif
  676 #ifdef __powerpc__
  677         { "tlb0", &lock_class_mtx_spin },
  678 #endif
  679         /*
  680          * leaf locks
  681          */
  682         { "intrcnt", &lock_class_mtx_spin },
  683         { "icu", &lock_class_mtx_spin },
  684 #if defined(SMP) && defined(__sparc64__)
  685         { "ipi", &lock_class_mtx_spin },
  686 #endif
  687 #ifdef __i386__
  688         { "allpmaps", &lock_class_mtx_spin },
  689         { "descriptor tables", &lock_class_mtx_spin },
  690 #endif
  691         { "clk", &lock_class_mtx_spin },
  692         { "cpuset", &lock_class_mtx_spin },
  693         { "mprof lock", &lock_class_mtx_spin },
  694         { "zombie lock", &lock_class_mtx_spin },
  695         { "ALD Queue", &lock_class_mtx_spin },
  696 #if defined(__i386__) || defined(__amd64__)
  697         { "pcicfg", &lock_class_mtx_spin },
  698         { "NDIS thread lock", &lock_class_mtx_spin },
  699 #endif
  700         { "tw_osl_io_lock", &lock_class_mtx_spin },
  701         { "tw_osl_q_lock", &lock_class_mtx_spin },
  702         { "tw_cl_io_lock", &lock_class_mtx_spin },
  703         { "tw_cl_intr_lock", &lock_class_mtx_spin },
  704         { "tw_cl_gen_lock", &lock_class_mtx_spin },
  705 #ifdef  HWPMC_HOOKS
  706         { "pmc-leaf", &lock_class_mtx_spin },
  707 #endif
  708         { "blocked lock", &lock_class_mtx_spin },
  709         { NULL, NULL },
  710         { NULL, NULL }
  711 };
  712 
  713 #ifdef BLESSING
  714 /*
  715  * Pairs of locks which have been blessed
  716  * Don't complain about order problems with blessed locks
  717  */
  718 static struct witness_blessed blessed_list[] = {
  719 };
  720 #endif
  721 
  722 /*
  723  * This global is set to 0 once it becomes safe to use the witness code.
  724  */
  725 static int witness_cold = 1;
  726 
  727 /*
  728  * This global is set to 1 once the static lock orders have been enrolled
  729  * so that a warning can be issued for any spin locks enrolled later.
  730  */
  731 static int witness_spin_warn = 0;
  732 
  733 /* Trim useless garbage from filenames. */
  734 static const char *
  735 fixup_filename(const char *file)
  736 {
  737 
  738         if (file == NULL)
  739                 return (NULL);
  740         while (strncmp(file, "../", 3) == 0)
  741                 file += 3;
  742         return (file);
  743 }
  744 
  745 /*
  746  * The WITNESS-enabled diagnostic code.  Note that the witness code does
  747  * assume that the early boot is single-threaded at least until after this
  748  * routine is completed.
  749  */
  750 static void
  751 witness_initialize(void *dummy __unused)
  752 {
  753         struct lock_object *lock;
  754         struct witness_order_list_entry *order;
  755         struct witness *w, *w1;
  756         int i;
  757 
  758         w_data = malloc(sizeof (struct witness) * witness_count, M_WITNESS,
  759             M_WAITOK | M_ZERO);
  760 
  761         w_rmatrix = malloc(sizeof(*w_rmatrix) * (witness_count + 1),
  762             M_WITNESS, M_WAITOK | M_ZERO);
  763 
  764         for (i = 0; i < witness_count + 1; i++) {
  765                 w_rmatrix[i] = malloc(sizeof(*w_rmatrix[i]) *
  766                     (witness_count + 1), M_WITNESS, M_WAITOK | M_ZERO);
  767         }
  768         badstack_sbuf_size = witness_count * 256;
  769 
  770         /*
  771          * We have to release Giant before initializing its witness
  772          * structure so that WITNESS doesn't get confused.
  773          */
  774         mtx_unlock(&Giant);
  775         mtx_assert(&Giant, MA_NOTOWNED);
  776 
  777         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
  778         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
  779             MTX_NOWITNESS | MTX_NOPROFILE);
  780         for (i = witness_count - 1; i >= 0; i--) {
  781                 w = &w_data[i];
  782                 memset(w, 0, sizeof(*w));
  783                 w_data[i].w_index = i;  /* Witness index never changes. */
  784                 witness_free(w);
  785         }
  786         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
  787             ("%s: Invalid list of free witness objects", __func__));
  788 
  789         /* Witness with index 0 is not used to aid in debugging. */
  790         STAILQ_REMOVE_HEAD(&w_free, w_list);
  791         w_free_cnt--;
  792 
  793         for (i = 0; i < witness_count; i++) {
  794                 memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) * 
  795                     (witness_count + 1));
  796         }
  797 
  798         for (i = 0; i < LOCK_CHILDCOUNT; i++)
  799                 witness_lock_list_free(&w_locklistdata[i]);
  800         witness_init_hash_tables();
  801 
  802         /* First add in all the specified order lists. */
  803         for (order = order_lists; order->w_name != NULL; order++) {
  804                 w = enroll(order->w_name, order->w_class);
  805                 if (w == NULL)
  806                         continue;
  807                 w->w_file = "order list";
  808                 for (order++; order->w_name != NULL; order++) {
  809                         w1 = enroll(order->w_name, order->w_class);
  810                         if (w1 == NULL)
  811                                 continue;
  812                         w1->w_file = "order list";
  813                         itismychild(w, w1);
  814                         w = w1;
  815                 }
  816         }
  817         witness_spin_warn = 1;
  818 
  819         /* Iterate through all locks and add them to witness. */
  820         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
  821                 lock = pending_locks[i].wh_lock;
  822                 KASSERT(lock->lo_flags & LO_WITNESS,
  823                     ("%s: lock %s is on pending list but not LO_WITNESS",
  824                     __func__, lock->lo_name));
  825                 lock->lo_witness = enroll(pending_locks[i].wh_type,
  826                     LOCK_CLASS(lock));
  827         }
  828 
  829         /* Mark the witness code as being ready for use. */
  830         witness_cold = 0;
  831 
  832         mtx_lock(&Giant);
  833 }
  834 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
  835     NULL);
  836 
  837 void
  838 witness_init(struct lock_object *lock, const char *type)
  839 {
  840         struct lock_class *class;
  841 
  842         /* Various sanity checks. */
  843         class = LOCK_CLASS(lock);
  844         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
  845             (class->lc_flags & LC_RECURSABLE) == 0)
  846                 kassert_panic("%s: lock (%s) %s can not be recursable",
  847                     __func__, class->lc_name, lock->lo_name);
  848         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
  849             (class->lc_flags & LC_SLEEPABLE) == 0)
  850                 kassert_panic("%s: lock (%s) %s can not be sleepable",
  851                     __func__, class->lc_name, lock->lo_name);
  852         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
  853             (class->lc_flags & LC_UPGRADABLE) == 0)
  854                 kassert_panic("%s: lock (%s) %s can not be upgradable",
  855                     __func__, class->lc_name, lock->lo_name);
  856 
  857         /*
  858          * If we shouldn't watch this lock, then just clear lo_witness.
  859          * Otherwise, if witness_cold is set, then it is too early to
  860          * enroll this lock, so defer it to witness_initialize() by adding
  861          * it to the pending_locks list.  If it is not too early, then enroll
  862          * the lock now.
  863          */
  864         if (witness_watch < 1 || panicstr != NULL ||
  865             (lock->lo_flags & LO_WITNESS) == 0)
  866                 lock->lo_witness = NULL;
  867         else if (witness_cold) {
  868                 pending_locks[pending_cnt].wh_lock = lock;
  869                 pending_locks[pending_cnt++].wh_type = type;
  870                 if (pending_cnt > WITNESS_PENDLIST)
  871                         panic("%s: pending locks list is too small, "
  872                             "increase WITNESS_PENDLIST\n",
  873                             __func__);
  874         } else
  875                 lock->lo_witness = enroll(type, class);
  876 }
  877 
  878 void
  879 witness_destroy(struct lock_object *lock)
  880 {
  881         struct lock_class *class;
  882         struct witness *w;
  883 
  884         class = LOCK_CLASS(lock);
  885 
  886         if (witness_cold)
  887                 panic("lock (%s) %s destroyed while witness_cold",
  888                     class->lc_name, lock->lo_name);
  889 
  890         /* XXX: need to verify that no one holds the lock */
  891         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
  892                 return;
  893         w = lock->lo_witness;
  894 
  895         mtx_lock_spin(&w_mtx);
  896         MPASS(w->w_refcount > 0);
  897         w->w_refcount--;
  898 
  899         if (w->w_refcount == 0)
  900                 depart(w);
  901         mtx_unlock_spin(&w_mtx);
  902 }
  903 
  904 #ifdef DDB
  905 static void
  906 witness_ddb_compute_levels(void)
  907 {
  908         struct witness *w;
  909 
  910         /*
  911          * First clear all levels.
  912          */
  913         STAILQ_FOREACH(w, &w_all, w_list)
  914                 w->w_ddb_level = -1;
  915 
  916         /*
  917          * Look for locks with no parents and level all their descendants.
  918          */
  919         STAILQ_FOREACH(w, &w_all, w_list) {
  920 
  921                 /* If the witness has ancestors (is not a root), skip it. */
  922                 if (w->w_num_ancestors > 0)
  923                         continue;
  924                 witness_ddb_level_descendants(w, 0);
  925         }
  926 }
  927 
  928 static void
  929 witness_ddb_level_descendants(struct witness *w, int l)
  930 {
  931         int i;
  932 
  933         if (w->w_ddb_level >= l)
  934                 return;
  935 
  936         w->w_ddb_level = l;
  937         l++;
  938 
  939         for (i = 1; i <= w_max_used_index; i++) {
  940                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
  941                         witness_ddb_level_descendants(&w_data[i], l);
  942         }
  943 }
  944 
  945 static void
  946 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
  947     struct witness *w, int indent)
  948 {
  949         int i;
  950 
  951         for (i = 0; i < indent; i++)
  952                 prnt(" ");
  953         prnt("%s (type: %s, depth: %d, active refs: %d)",
  954              w->w_name, w->w_class->lc_name,
  955              w->w_ddb_level, w->w_refcount);
  956         if (w->w_displayed) {
  957                 prnt(" -- (already displayed)\n");
  958                 return;
  959         }
  960         w->w_displayed = 1;
  961         if (w->w_file != NULL && w->w_line != 0)
  962                 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
  963                     w->w_line);
  964         else
  965                 prnt(" -- never acquired\n");
  966         indent++;
  967         WITNESS_INDEX_ASSERT(w->w_index);
  968         for (i = 1; i <= w_max_used_index; i++) {
  969                 if (db_pager_quit)
  970                         return;
  971                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
  972                         witness_ddb_display_descendants(prnt, &w_data[i],
  973                             indent);
  974         }
  975 }
  976 
  977 static void
  978 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
  979     struct witness_list *list)
  980 {
  981         struct witness *w;
  982 
  983         STAILQ_FOREACH(w, list, w_typelist) {
  984                 if (w->w_file == NULL || w->w_ddb_level > 0)
  985                         continue;
  986 
  987                 /* This lock has no anscestors - display its descendants. */
  988                 witness_ddb_display_descendants(prnt, w, 0);
  989                 if (db_pager_quit)
  990                         return;
  991         }
  992 }
  993         
  994 static void
  995 witness_ddb_display(int(*prnt)(const char *fmt, ...))
  996 {
  997         struct witness *w;
  998 
  999         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 1000         witness_ddb_compute_levels();
 1001 
 1002         /* Clear all the displayed flags. */
 1003         STAILQ_FOREACH(w, &w_all, w_list)
 1004                 w->w_displayed = 0;
 1005 
 1006         /*
 1007          * First, handle sleep locks which have been acquired at least
 1008          * once.
 1009          */
 1010         prnt("Sleep locks:\n");
 1011         witness_ddb_display_list(prnt, &w_sleep);
 1012         if (db_pager_quit)
 1013                 return;
 1014         
 1015         /*
 1016          * Now do spin locks which have been acquired at least once.
 1017          */
 1018         prnt("\nSpin locks:\n");
 1019         witness_ddb_display_list(prnt, &w_spin);
 1020         if (db_pager_quit)
 1021                 return;
 1022         
 1023         /*
 1024          * Finally, any locks which have not been acquired yet.
 1025          */
 1026         prnt("\nLocks which were never acquired:\n");
 1027         STAILQ_FOREACH(w, &w_all, w_list) {
 1028                 if (w->w_file != NULL || w->w_refcount == 0)
 1029                         continue;
 1030                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
 1031                     w->w_class->lc_name, w->w_ddb_level);
 1032                 if (db_pager_quit)
 1033                         return;
 1034         }
 1035 }
 1036 #endif /* DDB */
 1037 
 1038 int
 1039 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
 1040 {
 1041 
 1042         if (witness_watch == -1 || panicstr != NULL)
 1043                 return (0);
 1044 
 1045         /* Require locks that witness knows about. */
 1046         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
 1047             lock2->lo_witness == NULL)
 1048                 return (EINVAL);
 1049 
 1050         mtx_assert(&w_mtx, MA_NOTOWNED);
 1051         mtx_lock_spin(&w_mtx);
 1052 
 1053         /*
 1054          * If we already have either an explicit or implied lock order that
 1055          * is the other way around, then return an error.
 1056          */
 1057         if (witness_watch &&
 1058             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
 1059                 mtx_unlock_spin(&w_mtx);
 1060                 return (EDOOFUS);
 1061         }
 1062         
 1063         /* Try to add the new order. */
 1064         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
 1065             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
 1066         itismychild(lock1->lo_witness, lock2->lo_witness);
 1067         mtx_unlock_spin(&w_mtx);
 1068         return (0);
 1069 }
 1070 
 1071 void
 1072 witness_checkorder(struct lock_object *lock, int flags, const char *file,
 1073     int line, struct lock_object *interlock)
 1074 {
 1075         struct lock_list_entry *lock_list, *lle;
 1076         struct lock_instance *lock1, *lock2, *plock;
 1077         struct lock_class *class, *iclass;
 1078         struct witness *w, *w1;
 1079         struct thread *td;
 1080         int i, j;
 1081 
 1082         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
 1083             panicstr != NULL)
 1084                 return;
 1085 
 1086         w = lock->lo_witness;
 1087         class = LOCK_CLASS(lock);
 1088         td = curthread;
 1089 
 1090         if (class->lc_flags & LC_SLEEPLOCK) {
 1091 
 1092                 /*
 1093                  * Since spin locks include a critical section, this check
 1094                  * implicitly enforces a lock order of all sleep locks before
 1095                  * all spin locks.
 1096                  */
 1097                 if (td->td_critnest != 0 && !kdb_active)
 1098                         kassert_panic("acquiring blockable sleep lock with "
 1099                             "spinlock or critical section held (%s) %s @ %s:%d",
 1100                             class->lc_name, lock->lo_name,
 1101                             fixup_filename(file), line);
 1102 
 1103                 /*
 1104                  * If this is the first lock acquired then just return as
 1105                  * no order checking is needed.
 1106                  */
 1107                 lock_list = td->td_sleeplocks;
 1108                 if (lock_list == NULL || lock_list->ll_count == 0)
 1109                         return;
 1110         } else {
 1111 
 1112                 /*
 1113                  * If this is the first lock, just return as no order
 1114                  * checking is needed.  Avoid problems with thread
 1115                  * migration pinning the thread while checking if
 1116                  * spinlocks are held.  If at least one spinlock is held
 1117                  * the thread is in a safe path and it is allowed to
 1118                  * unpin it.
 1119                  */
 1120                 sched_pin();
 1121                 lock_list = PCPU_GET(spinlocks);
 1122                 if (lock_list == NULL || lock_list->ll_count == 0) {
 1123                         sched_unpin();
 1124                         return;
 1125                 }
 1126                 sched_unpin();
 1127         }
 1128 
 1129         /*
 1130          * Check to see if we are recursing on a lock we already own.  If
 1131          * so, make sure that we don't mismatch exclusive and shared lock
 1132          * acquires.
 1133          */
 1134         lock1 = find_instance(lock_list, lock);
 1135         if (lock1 != NULL) {
 1136                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
 1137                     (flags & LOP_EXCLUSIVE) == 0) {
 1138                         witness_output("shared lock of (%s) %s @ %s:%d\n",
 1139                             class->lc_name, lock->lo_name,
 1140                             fixup_filename(file), line);
 1141                         witness_output("while exclusively locked from %s:%d\n",
 1142                             fixup_filename(lock1->li_file), lock1->li_line);
 1143                         kassert_panic("excl->share");
 1144                 }
 1145                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
 1146                     (flags & LOP_EXCLUSIVE) != 0) {
 1147                         witness_output("exclusive lock of (%s) %s @ %s:%d\n",
 1148                             class->lc_name, lock->lo_name,
 1149                             fixup_filename(file), line);
 1150                         witness_output("while share locked from %s:%d\n",
 1151                             fixup_filename(lock1->li_file), lock1->li_line);
 1152                         kassert_panic("share->excl");
 1153                 }
 1154                 return;
 1155         }
 1156 
 1157         /* Warn if the interlock is not locked exactly once. */
 1158         if (interlock != NULL) {
 1159                 iclass = LOCK_CLASS(interlock);
 1160                 lock1 = find_instance(lock_list, interlock);
 1161                 if (lock1 == NULL)
 1162                         kassert_panic("interlock (%s) %s not locked @ %s:%d",
 1163                             iclass->lc_name, interlock->lo_name,
 1164                             fixup_filename(file), line);
 1165                 else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
 1166                         kassert_panic("interlock (%s) %s recursed @ %s:%d",
 1167                             iclass->lc_name, interlock->lo_name,
 1168                             fixup_filename(file), line);
 1169         }
 1170 
 1171         /*
 1172          * Find the previously acquired lock, but ignore interlocks.
 1173          */
 1174         plock = &lock_list->ll_children[lock_list->ll_count - 1];
 1175         if (interlock != NULL && plock->li_lock == interlock) {
 1176                 if (lock_list->ll_count > 1)
 1177                         plock =
 1178                             &lock_list->ll_children[lock_list->ll_count - 2];
 1179                 else {
 1180                         lle = lock_list->ll_next;
 1181 
 1182                         /*
 1183                          * The interlock is the only lock we hold, so
 1184                          * simply return.
 1185                          */
 1186                         if (lle == NULL)
 1187                                 return;
 1188                         plock = &lle->ll_children[lle->ll_count - 1];
 1189                 }
 1190         }
 1191         
 1192         /*
 1193          * Try to perform most checks without a lock.  If this succeeds we
 1194          * can skip acquiring the lock and return success.  Otherwise we redo
 1195          * the check with the lock held to handle races with concurrent updates.
 1196          */
 1197         w1 = plock->li_lock->lo_witness;
 1198         if (witness_lock_order_check(w1, w))
 1199                 return;
 1200 
 1201         mtx_lock_spin(&w_mtx);
 1202         if (witness_lock_order_check(w1, w)) {
 1203                 mtx_unlock_spin(&w_mtx);
 1204                 return;
 1205         }
 1206         witness_lock_order_add(w1, w);
 1207 
 1208         /*
 1209          * Check for duplicate locks of the same type.  Note that we only
 1210          * have to check for this on the last lock we just acquired.  Any
 1211          * other cases will be caught as lock order violations.
 1212          */
 1213         if (w1 == w) {
 1214                 i = w->w_index;
 1215                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
 1216                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
 1217                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
 1218                         w->w_reversed = 1;
 1219                         mtx_unlock_spin(&w_mtx);
 1220                         witness_output(
 1221                             "acquiring duplicate lock of same type: \"%s\"\n", 
 1222                             w->w_name);
 1223                         witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
 1224                             fixup_filename(plock->li_file), plock->li_line);
 1225                         witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
 1226                             fixup_filename(file), line);
 1227                         witness_debugger(1, __func__);
 1228                 } else
 1229                         mtx_unlock_spin(&w_mtx);
 1230                 return;
 1231         }
 1232         mtx_assert(&w_mtx, MA_OWNED);
 1233 
 1234         /*
 1235          * If we know that the lock we are acquiring comes after
 1236          * the lock we most recently acquired in the lock order tree,
 1237          * then there is no need for any further checks.
 1238          */
 1239         if (isitmychild(w1, w))
 1240                 goto out;
 1241 
 1242         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
 1243                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
 1244 
 1245                         MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
 1246                         lock1 = &lle->ll_children[i];
 1247 
 1248                         /*
 1249                          * Ignore the interlock.
 1250                          */
 1251                         if (interlock == lock1->li_lock)
 1252                                 continue;
 1253 
 1254                         /*
 1255                          * If this lock doesn't undergo witness checking,
 1256                          * then skip it.
 1257                          */
 1258                         w1 = lock1->li_lock->lo_witness;
 1259                         if (w1 == NULL) {
 1260                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
 1261                                     ("lock missing witness structure"));
 1262                                 continue;
 1263                         }
 1264 
 1265                         /*
 1266                          * If we are locking Giant and this is a sleepable
 1267                          * lock, then skip it.
 1268                          */
 1269                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1270                             lock == &Giant.lock_object)
 1271                                 continue;
 1272 
 1273                         /*
 1274                          * If we are locking a sleepable lock and this lock
 1275                          * is Giant, then skip it.
 1276                          */
 1277                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1278                             lock1->li_lock == &Giant.lock_object)
 1279                                 continue;
 1280 
 1281                         /*
 1282                          * If we are locking a sleepable lock and this lock
 1283                          * isn't sleepable, we want to treat it as a lock
 1284                          * order violation to enfore a general lock order of
 1285                          * sleepable locks before non-sleepable locks.
 1286                          */
 1287                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1288                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
 1289                                 goto reversal;
 1290 
 1291                         /*
 1292                          * If we are locking Giant and this is a non-sleepable
 1293                          * lock, then treat it as a reversal.
 1294                          */
 1295                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
 1296                             lock == &Giant.lock_object)
 1297                                 goto reversal;
 1298 
 1299                         /*
 1300                          * Check the lock order hierarchy for a reveresal.
 1301                          */
 1302                         if (!isitmydescendant(w, w1))
 1303                                 continue;
 1304                 reversal:
 1305 
 1306                         /*
 1307                          * We have a lock order violation, check to see if it
 1308                          * is allowed or has already been yelled about.
 1309                          */
 1310 #ifdef BLESSING
 1311 
 1312                         /*
 1313                          * If the lock order is blessed, just bail.  We don't
 1314                          * look for other lock order violations though, which
 1315                          * may be a bug.
 1316                          */
 1317                         if (blessed(w, w1))
 1318                                 goto out;
 1319 #endif
 1320 
 1321                         /* Bail if this violation is known */
 1322                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
 1323                                 goto out;
 1324 
 1325                         /* Record this as a violation */
 1326                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
 1327                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
 1328                         w->w_reversed = w1->w_reversed = 1;
 1329                         witness_increment_graph_generation();
 1330                         mtx_unlock_spin(&w_mtx);
 1331 
 1332 #ifdef WITNESS_NO_VNODE
 1333                         /*
 1334                          * There are known LORs between VNODE locks. They are
 1335                          * not an indication of a bug. VNODE locks are flagged
 1336                          * as such (LO_IS_VNODE) and we don't yell if the LOR
 1337                          * is between 2 VNODE locks.
 1338                          */
 1339                         if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
 1340                             (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
 1341                                 return;
 1342 #endif
 1343 
 1344                         /*
 1345                          * Ok, yell about it.
 1346                          */
 1347                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1348                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
 1349                                 witness_output(
 1350                 "lock order reversal: (sleepable after non-sleepable)\n");
 1351                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
 1352                             && lock == &Giant.lock_object)
 1353                                 witness_output(
 1354                 "lock order reversal: (Giant after non-sleepable)\n");
 1355                         else
 1356                                 witness_output("lock order reversal:\n");
 1357 
 1358                         /*
 1359                          * Try to locate an earlier lock with
 1360                          * witness w in our list.
 1361                          */
 1362                         do {
 1363                                 lock2 = &lle->ll_children[i];
 1364                                 MPASS(lock2->li_lock != NULL);
 1365                                 if (lock2->li_lock->lo_witness == w)
 1366                                         break;
 1367                                 if (i == 0 && lle->ll_next != NULL) {
 1368                                         lle = lle->ll_next;
 1369                                         i = lle->ll_count - 1;
 1370                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
 1371                                 } else
 1372                                         i--;
 1373                         } while (i >= 0);
 1374                         if (i < 0) {
 1375                                 witness_output(" 1st %p %s (%s) @ %s:%d\n",
 1376                                     lock1->li_lock, lock1->li_lock->lo_name,
 1377                                     w1->w_name, fixup_filename(lock1->li_file),
 1378                                     lock1->li_line);
 1379                                 witness_output(" 2nd %p %s (%s) @ %s:%d\n", lock,
 1380                                     lock->lo_name, w->w_name,
 1381                                     fixup_filename(file), line);
 1382                         } else {
 1383                                 witness_output(" 1st %p %s (%s) @ %s:%d\n",
 1384                                     lock2->li_lock, lock2->li_lock->lo_name,
 1385                                     lock2->li_lock->lo_witness->w_name,
 1386                                     fixup_filename(lock2->li_file),
 1387                                     lock2->li_line);
 1388                                 witness_output(" 2nd %p %s (%s) @ %s:%d\n",
 1389                                     lock1->li_lock, lock1->li_lock->lo_name,
 1390                                     w1->w_name, fixup_filename(lock1->li_file),
 1391                                     lock1->li_line);
 1392                                 witness_output(" 3rd %p %s (%s) @ %s:%d\n", lock,
 1393                                     lock->lo_name, w->w_name,
 1394                                     fixup_filename(file), line);
 1395                         }
 1396                         witness_debugger(1, __func__);
 1397                         return;
 1398                 }
 1399         }
 1400 
 1401         /*
 1402          * If requested, build a new lock order.  However, don't build a new
 1403          * relationship between a sleepable lock and Giant if it is in the
 1404          * wrong direction.  The correct lock order is that sleepable locks
 1405          * always come before Giant.
 1406          */
 1407         if (flags & LOP_NEWORDER &&
 1408             !(plock->li_lock == &Giant.lock_object &&
 1409             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
 1410                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
 1411                     w->w_name, plock->li_lock->lo_witness->w_name);
 1412                 itismychild(plock->li_lock->lo_witness, w);
 1413         }
 1414 out:
 1415         mtx_unlock_spin(&w_mtx);
 1416 }
 1417 
 1418 void
 1419 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
 1420 {
 1421         struct lock_list_entry **lock_list, *lle;
 1422         struct lock_instance *instance;
 1423         struct witness *w;
 1424         struct thread *td;
 1425 
 1426         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
 1427             panicstr != NULL)
 1428                 return;
 1429         w = lock->lo_witness;
 1430         td = curthread;
 1431 
 1432         /* Determine lock list for this lock. */
 1433         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
 1434                 lock_list = &td->td_sleeplocks;
 1435         else
 1436                 lock_list = PCPU_PTR(spinlocks);
 1437 
 1438         /* Check to see if we are recursing on a lock we already own. */
 1439         instance = find_instance(*lock_list, lock);
 1440         if (instance != NULL) {
 1441                 instance->li_flags++;
 1442                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
 1443                     td->td_proc->p_pid, lock->lo_name,
 1444                     instance->li_flags & LI_RECURSEMASK);
 1445                 instance->li_file = file;
 1446                 instance->li_line = line;
 1447                 return;
 1448         }
 1449 
 1450         /* Update per-witness last file and line acquire. */
 1451         w->w_file = file;
 1452         w->w_line = line;
 1453 
 1454         /* Find the next open lock instance in the list and fill it. */
 1455         lle = *lock_list;
 1456         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
 1457                 lle = witness_lock_list_get();
 1458                 if (lle == NULL)
 1459                         return;
 1460                 lle->ll_next = *lock_list;
 1461                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
 1462                     td->td_proc->p_pid, lle);
 1463                 *lock_list = lle;
 1464         }
 1465         instance = &lle->ll_children[lle->ll_count++];
 1466         instance->li_lock = lock;
 1467         instance->li_line = line;
 1468         instance->li_file = file;
 1469         if ((flags & LOP_EXCLUSIVE) != 0)
 1470                 instance->li_flags = LI_EXCLUSIVE;
 1471         else
 1472                 instance->li_flags = 0;
 1473         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
 1474             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
 1475 }
 1476 
 1477 void
 1478 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
 1479 {
 1480         struct lock_instance *instance;
 1481         struct lock_class *class;
 1482 
 1483         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 1484         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 1485                 return;
 1486         class = LOCK_CLASS(lock);
 1487         if (witness_watch) {
 1488                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
 1489                         kassert_panic(
 1490                             "upgrade of non-upgradable lock (%s) %s @ %s:%d",
 1491                             class->lc_name, lock->lo_name,
 1492                             fixup_filename(file), line);
 1493                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
 1494                         kassert_panic(
 1495                             "upgrade of non-sleep lock (%s) %s @ %s:%d",
 1496                             class->lc_name, lock->lo_name,
 1497                             fixup_filename(file), line);
 1498         }
 1499         instance = find_instance(curthread->td_sleeplocks, lock);
 1500         if (instance == NULL) {
 1501                 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
 1502                     class->lc_name, lock->lo_name,
 1503                     fixup_filename(file), line);
 1504                 return;
 1505         }
 1506         if (witness_watch) {
 1507                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
 1508                         kassert_panic(
 1509                             "upgrade of exclusive lock (%s) %s @ %s:%d",
 1510                             class->lc_name, lock->lo_name,
 1511                             fixup_filename(file), line);
 1512                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
 1513                         kassert_panic(
 1514                             "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
 1515                             class->lc_name, lock->lo_name,
 1516                             instance->li_flags & LI_RECURSEMASK,
 1517                             fixup_filename(file), line);
 1518         }
 1519         instance->li_flags |= LI_EXCLUSIVE;
 1520 }
 1521 
 1522 void
 1523 witness_downgrade(struct lock_object *lock, int flags, const char *file,
 1524     int line)
 1525 {
 1526         struct lock_instance *instance;
 1527         struct lock_class *class;
 1528 
 1529         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 1530         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 1531                 return;
 1532         class = LOCK_CLASS(lock);
 1533         if (witness_watch) {
 1534                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
 1535                         kassert_panic(
 1536                             "downgrade of non-upgradable lock (%s) %s @ %s:%d",
 1537                             class->lc_name, lock->lo_name,
 1538                             fixup_filename(file), line);
 1539                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
 1540                         kassert_panic(
 1541                             "downgrade of non-sleep lock (%s) %s @ %s:%d",
 1542                             class->lc_name, lock->lo_name,
 1543                             fixup_filename(file), line);
 1544         }
 1545         instance = find_instance(curthread->td_sleeplocks, lock);
 1546         if (instance == NULL) {
 1547                 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
 1548                     class->lc_name, lock->lo_name,
 1549                     fixup_filename(file), line);
 1550                 return;
 1551         }
 1552         if (witness_watch) {
 1553                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
 1554                         kassert_panic(
 1555                             "downgrade of shared lock (%s) %s @ %s:%d",
 1556                             class->lc_name, lock->lo_name,
 1557                             fixup_filename(file), line);
 1558                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
 1559                         kassert_panic(
 1560                             "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
 1561                             class->lc_name, lock->lo_name,
 1562                             instance->li_flags & LI_RECURSEMASK,
 1563                             fixup_filename(file), line);
 1564         }
 1565         instance->li_flags &= ~LI_EXCLUSIVE;
 1566 }
 1567 
 1568 void
 1569 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
 1570 {
 1571         struct lock_list_entry **lock_list, *lle;
 1572         struct lock_instance *instance;
 1573         struct lock_class *class;
 1574         struct thread *td;
 1575         register_t s;
 1576         int i, j;
 1577 
 1578         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
 1579                 return;
 1580         td = curthread;
 1581         class = LOCK_CLASS(lock);
 1582 
 1583         /* Find lock instance associated with this lock. */
 1584         if (class->lc_flags & LC_SLEEPLOCK)
 1585                 lock_list = &td->td_sleeplocks;
 1586         else
 1587                 lock_list = PCPU_PTR(spinlocks);
 1588         lle = *lock_list;
 1589         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
 1590                 for (i = 0; i < (*lock_list)->ll_count; i++) {
 1591                         instance = &(*lock_list)->ll_children[i];
 1592                         if (instance->li_lock == lock)
 1593                                 goto found;
 1594                 }
 1595 
 1596         /*
 1597          * When disabling WITNESS through witness_watch we could end up in
 1598          * having registered locks in the td_sleeplocks queue.
 1599          * We have to make sure we flush these queues, so just search for
 1600          * eventual register locks and remove them.
 1601          */
 1602         if (witness_watch > 0) {
 1603                 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
 1604                     lock->lo_name, fixup_filename(file), line);
 1605                 return;
 1606         } else {
 1607                 return;
 1608         }
 1609 found:
 1610 
 1611         /* First, check for shared/exclusive mismatches. */
 1612         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
 1613             (flags & LOP_EXCLUSIVE) == 0) {
 1614                 witness_output("shared unlock of (%s) %s @ %s:%d\n",
 1615                     class->lc_name, lock->lo_name, fixup_filename(file), line);
 1616                 witness_output("while exclusively locked from %s:%d\n",
 1617                     fixup_filename(instance->li_file), instance->li_line);
 1618                 kassert_panic("excl->ushare");
 1619         }
 1620         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
 1621             (flags & LOP_EXCLUSIVE) != 0) {
 1622                 witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
 1623                     class->lc_name, lock->lo_name, fixup_filename(file), line);
 1624                 witness_output("while share locked from %s:%d\n",
 1625                     fixup_filename(instance->li_file),
 1626                     instance->li_line);
 1627                 kassert_panic("share->uexcl");
 1628         }
 1629         /* If we are recursed, unrecurse. */
 1630         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
 1631                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
 1632                     td->td_proc->p_pid, instance->li_lock->lo_name,
 1633                     instance->li_flags);
 1634                 instance->li_flags--;
 1635                 return;
 1636         }
 1637         /* The lock is now being dropped, check for NORELEASE flag */
 1638         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
 1639                 witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
 1640                     class->lc_name, lock->lo_name, fixup_filename(file), line);
 1641                 kassert_panic("lock marked norelease");
 1642         }
 1643 
 1644         /* Otherwise, remove this item from the list. */
 1645         s = intr_disable();
 1646         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
 1647             td->td_proc->p_pid, instance->li_lock->lo_name,
 1648             (*lock_list)->ll_count - 1);
 1649         for (j = i; j < (*lock_list)->ll_count - 1; j++)
 1650                 (*lock_list)->ll_children[j] =
 1651                     (*lock_list)->ll_children[j + 1];
 1652         (*lock_list)->ll_count--;
 1653         intr_restore(s);
 1654 
 1655         /*
 1656          * In order to reduce contention on w_mtx, we want to keep always an
 1657          * head object into lists so that frequent allocation from the 
 1658          * free witness pool (and subsequent locking) is avoided.
 1659          * In order to maintain the current code simple, when the head
 1660          * object is totally unloaded it means also that we do not have
 1661          * further objects in the list, so the list ownership needs to be
 1662          * hand over to another object if the current head needs to be freed.
 1663          */
 1664         if ((*lock_list)->ll_count == 0) {
 1665                 if (*lock_list == lle) {
 1666                         if (lle->ll_next == NULL)
 1667                                 return;
 1668                 } else
 1669                         lle = *lock_list;
 1670                 *lock_list = lle->ll_next;
 1671                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
 1672                     td->td_proc->p_pid, lle);
 1673                 witness_lock_list_free(lle);
 1674         }
 1675 }
 1676 
 1677 void
 1678 witness_thread_exit(struct thread *td)
 1679 {
 1680         struct lock_list_entry *lle;
 1681         int i, n;
 1682 
 1683         lle = td->td_sleeplocks;
 1684         if (lle == NULL || panicstr != NULL)
 1685                 return;
 1686         if (lle->ll_count != 0) {
 1687                 for (n = 0; lle != NULL; lle = lle->ll_next)
 1688                         for (i = lle->ll_count - 1; i >= 0; i--) {
 1689                                 if (n == 0)
 1690                                         witness_output(
 1691                     "Thread %p exiting with the following locks held:\n", td);
 1692                                 n++;
 1693                                 witness_list_lock(&lle->ll_children[i],
 1694                                     witness_output);
 1695                                 
 1696                         }
 1697                 kassert_panic(
 1698                     "Thread %p cannot exit while holding sleeplocks\n", td);
 1699         }
 1700         witness_lock_list_free(lle);
 1701 }
 1702 
 1703 /*
 1704  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
 1705  * exempt Giant and sleepable locks from the checks as well.  If any
 1706  * non-exempt locks are held, then a supplied message is printed to the
 1707  * output channel along with a list of the offending locks.  If indicated in the
 1708  * flags then a failure results in a panic as well.
 1709  */
 1710 int
 1711 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
 1712 {
 1713         struct lock_list_entry *lock_list, *lle;
 1714         struct lock_instance *lock1;
 1715         struct thread *td;
 1716         va_list ap;
 1717         int i, n;
 1718 
 1719         if (witness_cold || witness_watch < 1 || panicstr != NULL)
 1720                 return (0);
 1721         n = 0;
 1722         td = curthread;
 1723         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
 1724                 for (i = lle->ll_count - 1; i >= 0; i--) {
 1725                         lock1 = &lle->ll_children[i];
 1726                         if (lock1->li_lock == lock)
 1727                                 continue;
 1728                         if (flags & WARN_GIANTOK &&
 1729                             lock1->li_lock == &Giant.lock_object)
 1730                                 continue;
 1731                         if (flags & WARN_SLEEPOK &&
 1732                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
 1733                                 continue;
 1734                         if (n == 0) {
 1735                                 va_start(ap, fmt);
 1736                                 vprintf(fmt, ap);
 1737                                 va_end(ap);
 1738                                 printf(" with the following %slocks held:\n",
 1739                                     (flags & WARN_SLEEPOK) != 0 ?
 1740                                     "non-sleepable " : "");
 1741                         }
 1742                         n++;
 1743                         witness_list_lock(lock1, printf);
 1744                 }
 1745 
 1746         /*
 1747          * Pin the thread in order to avoid problems with thread migration.
 1748          * Once that all verifies are passed about spinlocks ownership,
 1749          * the thread is in a safe path and it can be unpinned.
 1750          */
 1751         sched_pin();
 1752         lock_list = PCPU_GET(spinlocks);
 1753         if (lock_list != NULL && lock_list->ll_count != 0) {
 1754                 sched_unpin();
 1755 
 1756                 /*
 1757                  * We should only have one spinlock and as long as
 1758                  * the flags cannot match for this locks class,
 1759                  * check if the first spinlock is the one curthread
 1760                  * should hold.
 1761                  */
 1762                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
 1763                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
 1764                     lock1->li_lock == lock && n == 0)
 1765                         return (0);
 1766 
 1767                 va_start(ap, fmt);
 1768                 vprintf(fmt, ap);
 1769                 va_end(ap);
 1770                 printf(" with the following %slocks held:\n",
 1771                     (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
 1772                 n += witness_list_locks(&lock_list, printf);
 1773         } else
 1774                 sched_unpin();
 1775         if (flags & WARN_PANIC && n)
 1776                 kassert_panic("%s", __func__);
 1777         else
 1778                 witness_debugger(n, __func__);
 1779         return (n);
 1780 }
 1781 
 1782 const char *
 1783 witness_file(struct lock_object *lock)
 1784 {
 1785         struct witness *w;
 1786 
 1787         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
 1788                 return ("?");
 1789         w = lock->lo_witness;
 1790         return (w->w_file);
 1791 }
 1792 
 1793 int
 1794 witness_line(struct lock_object *lock)
 1795 {
 1796         struct witness *w;
 1797 
 1798         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
 1799                 return (0);
 1800         w = lock->lo_witness;
 1801         return (w->w_line);
 1802 }
 1803 
 1804 static struct witness *
 1805 enroll(const char *description, struct lock_class *lock_class)
 1806 {
 1807         struct witness *w;
 1808         struct witness_list *typelist;
 1809 
 1810         MPASS(description != NULL);
 1811 
 1812         if (witness_watch == -1 || panicstr != NULL)
 1813                 return (NULL);
 1814         if ((lock_class->lc_flags & LC_SPINLOCK)) {
 1815                 if (witness_skipspin)
 1816                         return (NULL);
 1817                 else
 1818                         typelist = &w_spin;
 1819         } else if ((lock_class->lc_flags & LC_SLEEPLOCK)) {
 1820                 typelist = &w_sleep;
 1821         } else {
 1822                 kassert_panic("lock class %s is not sleep or spin",
 1823                     lock_class->lc_name);
 1824                 return (NULL);
 1825         }
 1826 
 1827         mtx_lock_spin(&w_mtx);
 1828         w = witness_hash_get(description);
 1829         if (w)
 1830                 goto found;
 1831         if ((w = witness_get()) == NULL)
 1832                 return (NULL);
 1833         MPASS(strlen(description) < MAX_W_NAME);
 1834         strcpy(w->w_name, description);
 1835         w->w_class = lock_class;
 1836         w->w_refcount = 1;
 1837         STAILQ_INSERT_HEAD(&w_all, w, w_list);
 1838         if (lock_class->lc_flags & LC_SPINLOCK) {
 1839                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
 1840                 w_spin_cnt++;
 1841         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
 1842                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
 1843                 w_sleep_cnt++;
 1844         }
 1845 
 1846         /* Insert new witness into the hash */
 1847         witness_hash_put(w);
 1848         witness_increment_graph_generation();
 1849         mtx_unlock_spin(&w_mtx);
 1850         return (w);
 1851 found:
 1852         w->w_refcount++;
 1853         mtx_unlock_spin(&w_mtx);
 1854         if (lock_class != w->w_class)
 1855                 kassert_panic(
 1856                         "lock (%s) %s does not match earlier (%s) lock",
 1857                         description, lock_class->lc_name,
 1858                         w->w_class->lc_name);
 1859         return (w);
 1860 }
 1861 
 1862 static void
 1863 depart(struct witness *w)
 1864 {
 1865         struct witness_list *list;
 1866 
 1867         MPASS(w->w_refcount == 0);
 1868         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
 1869                 list = &w_sleep;
 1870                 w_sleep_cnt--;
 1871         } else {
 1872                 list = &w_spin;
 1873                 w_spin_cnt--;
 1874         }
 1875         /*
 1876          * Set file to NULL as it may point into a loadable module.
 1877          */
 1878         w->w_file = NULL;
 1879         w->w_line = 0;
 1880         witness_increment_graph_generation();
 1881 }
 1882 
 1883 
 1884 static void
 1885 adopt(struct witness *parent, struct witness *child)
 1886 {
 1887         int pi, ci, i, j;
 1888 
 1889         if (witness_cold == 0)
 1890                 mtx_assert(&w_mtx, MA_OWNED);
 1891 
 1892         /* If the relationship is already known, there's no work to be done. */
 1893         if (isitmychild(parent, child))
 1894                 return;
 1895 
 1896         /* When the structure of the graph changes, bump up the generation. */
 1897         witness_increment_graph_generation();
 1898 
 1899         /*
 1900          * The hard part ... create the direct relationship, then propagate all
 1901          * indirect relationships.
 1902          */
 1903         pi = parent->w_index;
 1904         ci = child->w_index;
 1905         WITNESS_INDEX_ASSERT(pi);
 1906         WITNESS_INDEX_ASSERT(ci);
 1907         MPASS(pi != ci);
 1908         w_rmatrix[pi][ci] |= WITNESS_PARENT;
 1909         w_rmatrix[ci][pi] |= WITNESS_CHILD;
 1910 
 1911         /*
 1912          * If parent was not already an ancestor of child,
 1913          * then we increment the descendant and ancestor counters.
 1914          */
 1915         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
 1916                 parent->w_num_descendants++;
 1917                 child->w_num_ancestors++;
 1918         }
 1919 
 1920         /* 
 1921          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
 1922          * an ancestor of 'pi' during this loop.
 1923          */
 1924         for (i = 1; i <= w_max_used_index; i++) {
 1925                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
 1926                     (i != pi))
 1927                         continue;
 1928 
 1929                 /* Find each descendant of 'i' and mark it as a descendant. */
 1930                 for (j = 1; j <= w_max_used_index; j++) {
 1931 
 1932                         /* 
 1933                          * Skip children that are already marked as
 1934                          * descendants of 'i'.
 1935                          */
 1936                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
 1937                                 continue;
 1938 
 1939                         /*
 1940                          * We are only interested in descendants of 'ci'. Note
 1941                          * that 'ci' itself is counted as a descendant of 'ci'.
 1942                          */
 1943                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
 1944                             (j != ci))
 1945                                 continue;
 1946                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
 1947                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
 1948                         w_data[i].w_num_descendants++;
 1949                         w_data[j].w_num_ancestors++;
 1950 
 1951                         /* 
 1952                          * Make sure we aren't marking a node as both an
 1953                          * ancestor and descendant. We should have caught 
 1954                          * this as a lock order reversal earlier.
 1955                          */
 1956                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
 1957                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
 1958                                 printf("witness rmatrix paradox! [%d][%d]=%d "
 1959                                     "both ancestor and descendant\n",
 1960                                     i, j, w_rmatrix[i][j]); 
 1961                                 kdb_backtrace();
 1962                                 printf("Witness disabled.\n");
 1963                                 witness_watch = -1;
 1964                         }
 1965                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
 1966                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
 1967                                 printf("witness rmatrix paradox! [%d][%d]=%d "
 1968                                     "both ancestor and descendant\n",
 1969                                     j, i, w_rmatrix[j][i]); 
 1970                                 kdb_backtrace();
 1971                                 printf("Witness disabled.\n");
 1972                                 witness_watch = -1;
 1973                         }
 1974                 }
 1975         }
 1976 }
 1977 
 1978 static void
 1979 itismychild(struct witness *parent, struct witness *child)
 1980 {
 1981         int unlocked;
 1982 
 1983         MPASS(child != NULL && parent != NULL);
 1984         if (witness_cold == 0)
 1985                 mtx_assert(&w_mtx, MA_OWNED);
 1986 
 1987         if (!witness_lock_type_equal(parent, child)) {
 1988                 if (witness_cold == 0) {
 1989                         unlocked = 1;
 1990                         mtx_unlock_spin(&w_mtx);
 1991                 } else {
 1992                         unlocked = 0;
 1993                 }
 1994                 kassert_panic(
 1995                     "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
 1996                     "the same lock type", __func__, parent->w_name,
 1997                     parent->w_class->lc_name, child->w_name,
 1998                     child->w_class->lc_name);
 1999                 if (unlocked)
 2000                         mtx_lock_spin(&w_mtx);
 2001         }
 2002         adopt(parent, child);
 2003 }
 2004 
 2005 /*
 2006  * Generic code for the isitmy*() functions. The rmask parameter is the
 2007  * expected relationship of w1 to w2.
 2008  */
 2009 static int
 2010 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
 2011 {
 2012         unsigned char r1, r2;
 2013         int i1, i2;
 2014 
 2015         i1 = w1->w_index;
 2016         i2 = w2->w_index;
 2017         WITNESS_INDEX_ASSERT(i1);
 2018         WITNESS_INDEX_ASSERT(i2);
 2019         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
 2020         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
 2021 
 2022         /* The flags on one better be the inverse of the flags on the other */
 2023         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
 2024             (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
 2025                 /* Don't squawk if we're potentially racing with an update. */
 2026                 if (!mtx_owned(&w_mtx))
 2027                         return (0);
 2028                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
 2029                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
 2030                     "w_rmatrix[%d][%d] == %hhx\n",
 2031                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
 2032                     i2, i1, r2);
 2033                 kdb_backtrace();
 2034                 printf("Witness disabled.\n");
 2035                 witness_watch = -1;
 2036         }
 2037         return (r1 & rmask);
 2038 }
 2039 
 2040 /*
 2041  * Checks if @child is a direct child of @parent.
 2042  */
 2043 static int
 2044 isitmychild(struct witness *parent, struct witness *child)
 2045 {
 2046 
 2047         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
 2048 }
 2049 
 2050 /*
 2051  * Checks if @descendant is a direct or inderect descendant of @ancestor.
 2052  */
 2053 static int
 2054 isitmydescendant(struct witness *ancestor, struct witness *descendant)
 2055 {
 2056 
 2057         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
 2058             __func__));
 2059 }
 2060 
 2061 #ifdef BLESSING
 2062 static int
 2063 blessed(struct witness *w1, struct witness *w2)
 2064 {
 2065         int i;
 2066         struct witness_blessed *b;
 2067 
 2068         for (i = 0; i < nitems(blessed_list); i++) {
 2069                 b = &blessed_list[i];
 2070                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
 2071                         if (strcmp(w2->w_name, b->b_lock2) == 0)
 2072                                 return (1);
 2073                         continue;
 2074                 }
 2075                 if (strcmp(w1->w_name, b->b_lock2) == 0)
 2076                         if (strcmp(w2->w_name, b->b_lock1) == 0)
 2077                                 return (1);
 2078         }
 2079         return (0);
 2080 }
 2081 #endif
 2082 
 2083 static struct witness *
 2084 witness_get(void)
 2085 {
 2086         struct witness *w;
 2087         int index;
 2088 
 2089         if (witness_cold == 0)
 2090                 mtx_assert(&w_mtx, MA_OWNED);
 2091 
 2092         if (witness_watch == -1) {
 2093                 mtx_unlock_spin(&w_mtx);
 2094                 return (NULL);
 2095         }
 2096         if (STAILQ_EMPTY(&w_free)) {
 2097                 witness_watch = -1;
 2098                 mtx_unlock_spin(&w_mtx);
 2099                 printf("WITNESS: unable to allocate a new witness object\n");
 2100                 return (NULL);
 2101         }
 2102         w = STAILQ_FIRST(&w_free);
 2103         STAILQ_REMOVE_HEAD(&w_free, w_list);
 2104         w_free_cnt--;
 2105         index = w->w_index;
 2106         MPASS(index > 0 && index == w_max_used_index+1 &&
 2107             index < witness_count);
 2108         bzero(w, sizeof(*w));
 2109         w->w_index = index;
 2110         if (index > w_max_used_index)
 2111                 w_max_used_index = index;
 2112         return (w);
 2113 }
 2114 
 2115 static void
 2116 witness_free(struct witness *w)
 2117 {
 2118 
 2119         STAILQ_INSERT_HEAD(&w_free, w, w_list);
 2120         w_free_cnt++;
 2121 }
 2122 
 2123 static struct lock_list_entry *
 2124 witness_lock_list_get(void)
 2125 {
 2126         struct lock_list_entry *lle;
 2127 
 2128         if (witness_watch == -1)
 2129                 return (NULL);
 2130         mtx_lock_spin(&w_mtx);
 2131         lle = w_lock_list_free;
 2132         if (lle == NULL) {
 2133                 witness_watch = -1;
 2134                 mtx_unlock_spin(&w_mtx);
 2135                 printf("%s: witness exhausted\n", __func__);
 2136                 return (NULL);
 2137         }
 2138         w_lock_list_free = lle->ll_next;
 2139         mtx_unlock_spin(&w_mtx);
 2140         bzero(lle, sizeof(*lle));
 2141         return (lle);
 2142 }
 2143                 
 2144 static void
 2145 witness_lock_list_free(struct lock_list_entry *lle)
 2146 {
 2147 
 2148         mtx_lock_spin(&w_mtx);
 2149         lle->ll_next = w_lock_list_free;
 2150         w_lock_list_free = lle;
 2151         mtx_unlock_spin(&w_mtx);
 2152 }
 2153 
 2154 static struct lock_instance *
 2155 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
 2156 {
 2157         struct lock_list_entry *lle;
 2158         struct lock_instance *instance;
 2159         int i;
 2160 
 2161         for (lle = list; lle != NULL; lle = lle->ll_next)
 2162                 for (i = lle->ll_count - 1; i >= 0; i--) {
 2163                         instance = &lle->ll_children[i];
 2164                         if (instance->li_lock == lock)
 2165                                 return (instance);
 2166                 }
 2167         return (NULL);
 2168 }
 2169 
 2170 static void
 2171 witness_list_lock(struct lock_instance *instance,
 2172     int (*prnt)(const char *fmt, ...))
 2173 {
 2174         struct lock_object *lock;
 2175 
 2176         lock = instance->li_lock;
 2177         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
 2178             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
 2179         if (lock->lo_witness->w_name != lock->lo_name)
 2180                 prnt(" (%s)", lock->lo_witness->w_name);
 2181         prnt(" r = %d (%p) locked @ %s:%d\n",
 2182             instance->li_flags & LI_RECURSEMASK, lock,
 2183             fixup_filename(instance->li_file), instance->li_line);
 2184 }
 2185 
 2186 static int
 2187 witness_output(const char *fmt, ...)
 2188 {
 2189         va_list ap;
 2190         int ret;
 2191 
 2192         va_start(ap, fmt);
 2193         ret = witness_voutput(fmt, ap);
 2194         va_end(ap);
 2195         return (ret);
 2196 }
 2197 
 2198 static int
 2199 witness_voutput(const char *fmt, va_list ap)
 2200 {
 2201         int ret;
 2202 
 2203         ret = 0;
 2204         switch (witness_channel) {
 2205         case WITNESS_CONSOLE:
 2206                 ret = vprintf(fmt, ap);
 2207                 break;
 2208         case WITNESS_LOG:
 2209                 vlog(LOG_NOTICE, fmt, ap);
 2210                 break;
 2211         case WITNESS_NONE:
 2212                 break;
 2213         }
 2214         return (ret);
 2215 }
 2216 
 2217 #ifdef DDB
 2218 static int
 2219 witness_thread_has_locks(struct thread *td)
 2220 {
 2221 
 2222         if (td->td_sleeplocks == NULL)
 2223                 return (0);
 2224         return (td->td_sleeplocks->ll_count != 0);
 2225 }
 2226 
 2227 static int
 2228 witness_proc_has_locks(struct proc *p)
 2229 {
 2230         struct thread *td;
 2231 
 2232         FOREACH_THREAD_IN_PROC(p, td) {
 2233                 if (witness_thread_has_locks(td))
 2234                         return (1);
 2235         }
 2236         return (0);
 2237 }
 2238 #endif
 2239 
 2240 int
 2241 witness_list_locks(struct lock_list_entry **lock_list,
 2242     int (*prnt)(const char *fmt, ...))
 2243 {
 2244         struct lock_list_entry *lle;
 2245         int i, nheld;
 2246 
 2247         nheld = 0;
 2248         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
 2249                 for (i = lle->ll_count - 1; i >= 0; i--) {
 2250                         witness_list_lock(&lle->ll_children[i], prnt);
 2251                         nheld++;
 2252                 }
 2253         return (nheld);
 2254 }
 2255 
 2256 /*
 2257  * This is a bit risky at best.  We call this function when we have timed
 2258  * out acquiring a spin lock, and we assume that the other CPU is stuck
 2259  * with this lock held.  So, we go groveling around in the other CPU's
 2260  * per-cpu data to try to find the lock instance for this spin lock to
 2261  * see when it was last acquired.
 2262  */
 2263 void
 2264 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
 2265     int (*prnt)(const char *fmt, ...))
 2266 {
 2267         struct lock_instance *instance;
 2268         struct pcpu *pc;
 2269 
 2270         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
 2271                 return;
 2272         pc = pcpu_find(owner->td_oncpu);
 2273         instance = find_instance(pc->pc_spinlocks, lock);
 2274         if (instance != NULL)
 2275                 witness_list_lock(instance, prnt);
 2276 }
 2277 
 2278 void
 2279 witness_save(struct lock_object *lock, const char **filep, int *linep)
 2280 {
 2281         struct lock_list_entry *lock_list;
 2282         struct lock_instance *instance;
 2283         struct lock_class *class;
 2284 
 2285         /*
 2286          * This function is used independently in locking code to deal with
 2287          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
 2288          * is gone.
 2289          */
 2290         if (SCHEDULER_STOPPED())
 2291                 return;
 2292         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2293         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 2294                 return;
 2295         class = LOCK_CLASS(lock);
 2296         if (class->lc_flags & LC_SLEEPLOCK)
 2297                 lock_list = curthread->td_sleeplocks;
 2298         else {
 2299                 if (witness_skipspin)
 2300                         return;
 2301                 lock_list = PCPU_GET(spinlocks);
 2302         }
 2303         instance = find_instance(lock_list, lock);
 2304         if (instance == NULL) {
 2305                 kassert_panic("%s: lock (%s) %s not locked", __func__,
 2306                     class->lc_name, lock->lo_name);
 2307                 return;
 2308         }
 2309         *filep = instance->li_file;
 2310         *linep = instance->li_line;
 2311 }
 2312 
 2313 void
 2314 witness_restore(struct lock_object *lock, const char *file, int line)
 2315 {
 2316         struct lock_list_entry *lock_list;
 2317         struct lock_instance *instance;
 2318         struct lock_class *class;
 2319 
 2320         /*
 2321          * This function is used independently in locking code to deal with
 2322          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
 2323          * is gone.
 2324          */
 2325         if (SCHEDULER_STOPPED())
 2326                 return;
 2327         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2328         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 2329                 return;
 2330         class = LOCK_CLASS(lock);
 2331         if (class->lc_flags & LC_SLEEPLOCK)
 2332                 lock_list = curthread->td_sleeplocks;
 2333         else {
 2334                 if (witness_skipspin)
 2335                         return;
 2336                 lock_list = PCPU_GET(spinlocks);
 2337         }
 2338         instance = find_instance(lock_list, lock);
 2339         if (instance == NULL)
 2340                 kassert_panic("%s: lock (%s) %s not locked", __func__,
 2341                     class->lc_name, lock->lo_name);
 2342         lock->lo_witness->w_file = file;
 2343         lock->lo_witness->w_line = line;
 2344         if (instance == NULL)
 2345                 return;
 2346         instance->li_file = file;
 2347         instance->li_line = line;
 2348 }
 2349 
 2350 void
 2351 witness_assert(const struct lock_object *lock, int flags, const char *file,
 2352     int line)
 2353 {
 2354 #ifdef INVARIANT_SUPPORT
 2355         struct lock_instance *instance;
 2356         struct lock_class *class;
 2357 
 2358         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
 2359                 return;
 2360         class = LOCK_CLASS(lock);
 2361         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
 2362                 instance = find_instance(curthread->td_sleeplocks, lock);
 2363         else if ((class->lc_flags & LC_SPINLOCK) != 0)
 2364                 instance = find_instance(PCPU_GET(spinlocks), lock);
 2365         else {
 2366                 kassert_panic("Lock (%s) %s is not sleep or spin!",
 2367                     class->lc_name, lock->lo_name);
 2368                 return;
 2369         }
 2370         switch (flags) {
 2371         case LA_UNLOCKED:
 2372                 if (instance != NULL)
 2373                         kassert_panic("Lock (%s) %s locked @ %s:%d.",
 2374                             class->lc_name, lock->lo_name,
 2375                             fixup_filename(file), line);
 2376                 break;
 2377         case LA_LOCKED:
 2378         case LA_LOCKED | LA_RECURSED:
 2379         case LA_LOCKED | LA_NOTRECURSED:
 2380         case LA_SLOCKED:
 2381         case LA_SLOCKED | LA_RECURSED:
 2382         case LA_SLOCKED | LA_NOTRECURSED:
 2383         case LA_XLOCKED:
 2384         case LA_XLOCKED | LA_RECURSED:
 2385         case LA_XLOCKED | LA_NOTRECURSED:
 2386                 if (instance == NULL) {
 2387                         kassert_panic("Lock (%s) %s not locked @ %s:%d.",
 2388                             class->lc_name, lock->lo_name,
 2389                             fixup_filename(file), line);
 2390                         break;
 2391                 }
 2392                 if ((flags & LA_XLOCKED) != 0 &&
 2393                     (instance->li_flags & LI_EXCLUSIVE) == 0)
 2394                         kassert_panic(
 2395                             "Lock (%s) %s not exclusively locked @ %s:%d.",
 2396                             class->lc_name, lock->lo_name,
 2397                             fixup_filename(file), line);
 2398                 if ((flags & LA_SLOCKED) != 0 &&
 2399                     (instance->li_flags & LI_EXCLUSIVE) != 0)
 2400                         kassert_panic(
 2401                             "Lock (%s) %s exclusively locked @ %s:%d.",
 2402                             class->lc_name, lock->lo_name,
 2403                             fixup_filename(file), line);
 2404                 if ((flags & LA_RECURSED) != 0 &&
 2405                     (instance->li_flags & LI_RECURSEMASK) == 0)
 2406                         kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
 2407                             class->lc_name, lock->lo_name,
 2408                             fixup_filename(file), line);
 2409                 if ((flags & LA_NOTRECURSED) != 0 &&
 2410                     (instance->li_flags & LI_RECURSEMASK) != 0)
 2411                         kassert_panic("Lock (%s) %s recursed @ %s:%d.",
 2412                             class->lc_name, lock->lo_name,
 2413                             fixup_filename(file), line);
 2414                 break;
 2415         default:
 2416                 kassert_panic("Invalid lock assertion at %s:%d.",
 2417                     fixup_filename(file), line);
 2418 
 2419         }
 2420 #endif  /* INVARIANT_SUPPORT */
 2421 }
 2422 
 2423 static void
 2424 witness_setflag(struct lock_object *lock, int flag, int set)
 2425 {
 2426         struct lock_list_entry *lock_list;
 2427         struct lock_instance *instance;
 2428         struct lock_class *class;
 2429 
 2430         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 2431                 return;
 2432         class = LOCK_CLASS(lock);
 2433         if (class->lc_flags & LC_SLEEPLOCK)
 2434                 lock_list = curthread->td_sleeplocks;
 2435         else {
 2436                 if (witness_skipspin)
 2437                         return;
 2438                 lock_list = PCPU_GET(spinlocks);
 2439         }
 2440         instance = find_instance(lock_list, lock);
 2441         if (instance == NULL) {
 2442                 kassert_panic("%s: lock (%s) %s not locked", __func__,
 2443                     class->lc_name, lock->lo_name);
 2444                 return;
 2445         }
 2446 
 2447         if (set)
 2448                 instance->li_flags |= flag;
 2449         else
 2450                 instance->li_flags &= ~flag;
 2451 }
 2452 
 2453 void
 2454 witness_norelease(struct lock_object *lock)
 2455 {
 2456 
 2457         witness_setflag(lock, LI_NORELEASE, 1);
 2458 }
 2459 
 2460 void
 2461 witness_releaseok(struct lock_object *lock)
 2462 {
 2463 
 2464         witness_setflag(lock, LI_NORELEASE, 0);
 2465 }
 2466 
 2467 #ifdef DDB
 2468 static void
 2469 witness_ddb_list(struct thread *td)
 2470 {
 2471 
 2472         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2473         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
 2474 
 2475         if (witness_watch < 1)
 2476                 return;
 2477 
 2478         witness_list_locks(&td->td_sleeplocks, db_printf);
 2479 
 2480         /*
 2481          * We only handle spinlocks if td == curthread.  This is somewhat broken
 2482          * if td is currently executing on some other CPU and holds spin locks
 2483          * as we won't display those locks.  If we had a MI way of getting
 2484          * the per-cpu data for a given cpu then we could use
 2485          * td->td_oncpu to get the list of spinlocks for this thread
 2486          * and "fix" this.
 2487          *
 2488          * That still wouldn't really fix this unless we locked the scheduler
 2489          * lock or stopped the other CPU to make sure it wasn't changing the
 2490          * list out from under us.  It is probably best to just not try to
 2491          * handle threads on other CPU's for now.
 2492          */
 2493         if (td == curthread && PCPU_GET(spinlocks) != NULL)
 2494                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
 2495 }
 2496 
 2497 DB_SHOW_COMMAND(locks, db_witness_list)
 2498 {
 2499         struct thread *td;
 2500 
 2501         if (have_addr)
 2502                 td = db_lookup_thread(addr, true);
 2503         else
 2504                 td = kdb_thread;
 2505         witness_ddb_list(td);
 2506 }
 2507 
 2508 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
 2509 {
 2510         struct thread *td;
 2511         struct proc *p;
 2512 
 2513         /*
 2514          * It would be nice to list only threads and processes that actually
 2515          * held sleep locks, but that information is currently not exported
 2516          * by WITNESS.
 2517          */
 2518         FOREACH_PROC_IN_SYSTEM(p) {
 2519                 if (!witness_proc_has_locks(p))
 2520                         continue;
 2521                 FOREACH_THREAD_IN_PROC(p, td) {
 2522                         if (!witness_thread_has_locks(td))
 2523                                 continue;
 2524                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
 2525                             p->p_comm, td, td->td_tid);
 2526                         witness_ddb_list(td);
 2527                         if (db_pager_quit)
 2528                                 return;
 2529                 }
 2530         }
 2531 }
 2532 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
 2533 
 2534 DB_SHOW_COMMAND(witness, db_witness_display)
 2535 {
 2536 
 2537         witness_ddb_display(db_printf);
 2538 }
 2539 #endif
 2540 
 2541 static int
 2542 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
 2543 {
 2544         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
 2545         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
 2546         struct sbuf *sb;
 2547         u_int w_rmatrix1, w_rmatrix2;
 2548         int error, generation, i, j;
 2549 
 2550         tmp_data1 = NULL;
 2551         tmp_data2 = NULL;
 2552         tmp_w1 = NULL;
 2553         tmp_w2 = NULL;
 2554         if (witness_watch < 1) {
 2555                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
 2556                 return (error);
 2557         }
 2558         if (witness_cold) {
 2559                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
 2560                 return (error);
 2561         }
 2562         error = 0;
 2563         sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
 2564         if (sb == NULL)
 2565                 return (ENOMEM);
 2566 
 2567         /* Allocate and init temporary storage space. */
 2568         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
 2569         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
 2570         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
 2571             M_WAITOK | M_ZERO);
 2572         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
 2573             M_WAITOK | M_ZERO);
 2574         stack_zero(&tmp_data1->wlod_stack);
 2575         stack_zero(&tmp_data2->wlod_stack);
 2576 
 2577 restart:
 2578         mtx_lock_spin(&w_mtx);
 2579         generation = w_generation;
 2580         mtx_unlock_spin(&w_mtx);
 2581         sbuf_printf(sb, "Number of known direct relationships is %d\n",
 2582             w_lohash.wloh_count);
 2583         for (i = 1; i < w_max_used_index; i++) {
 2584                 mtx_lock_spin(&w_mtx);
 2585                 if (generation != w_generation) {
 2586                         mtx_unlock_spin(&w_mtx);
 2587 
 2588                         /* The graph has changed, try again. */
 2589                         req->oldidx = 0;
 2590                         sbuf_clear(sb);
 2591                         goto restart;
 2592                 }
 2593 
 2594                 w1 = &w_data[i];
 2595                 if (w1->w_reversed == 0) {
 2596                         mtx_unlock_spin(&w_mtx);
 2597                         continue;
 2598                 }
 2599 
 2600                 /* Copy w1 locally so we can release the spin lock. */
 2601                 *tmp_w1 = *w1;
 2602                 mtx_unlock_spin(&w_mtx);
 2603 
 2604                 if (tmp_w1->w_reversed == 0)
 2605                         continue;
 2606                 for (j = 1; j < w_max_used_index; j++) {
 2607                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
 2608                                 continue;
 2609 
 2610                         mtx_lock_spin(&w_mtx);
 2611                         if (generation != w_generation) {
 2612                                 mtx_unlock_spin(&w_mtx);
 2613 
 2614                                 /* The graph has changed, try again. */
 2615                                 req->oldidx = 0;
 2616                                 sbuf_clear(sb);
 2617                                 goto restart;
 2618                         }
 2619 
 2620                         w2 = &w_data[j];
 2621                         data1 = witness_lock_order_get(w1, w2);
 2622                         data2 = witness_lock_order_get(w2, w1);
 2623 
 2624                         /*
 2625                          * Copy information locally so we can release the
 2626                          * spin lock.
 2627                          */
 2628                         *tmp_w2 = *w2;
 2629                         w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
 2630                         w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
 2631 
 2632                         if (data1) {
 2633                                 stack_zero(&tmp_data1->wlod_stack);
 2634                                 stack_copy(&data1->wlod_stack,
 2635                                     &tmp_data1->wlod_stack);
 2636                         }
 2637                         if (data2 && data2 != data1) {
 2638                                 stack_zero(&tmp_data2->wlod_stack);
 2639                                 stack_copy(&data2->wlod_stack,
 2640                                     &tmp_data2->wlod_stack);
 2641                         }
 2642                         mtx_unlock_spin(&w_mtx);
 2643 
 2644                         sbuf_printf(sb,
 2645             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
 2646                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
 2647                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
 2648                         if (data1) {
 2649                                 sbuf_printf(sb,
 2650                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
 2651                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
 2652                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
 2653                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
 2654                                 sbuf_printf(sb, "\n");
 2655                         }
 2656                         if (data2 && data2 != data1) {
 2657                                 sbuf_printf(sb,
 2658                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
 2659                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
 2660                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
 2661                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
 2662                                 sbuf_printf(sb, "\n");
 2663                         }
 2664                 }
 2665         }
 2666         mtx_lock_spin(&w_mtx);
 2667         if (generation != w_generation) {
 2668                 mtx_unlock_spin(&w_mtx);
 2669 
 2670                 /*
 2671                  * The graph changed while we were printing stack data,
 2672                  * try again.
 2673                  */
 2674                 req->oldidx = 0;
 2675                 sbuf_clear(sb);
 2676                 goto restart;
 2677         }
 2678         mtx_unlock_spin(&w_mtx);
 2679 
 2680         /* Free temporary storage space. */
 2681         free(tmp_data1, M_TEMP);
 2682         free(tmp_data2, M_TEMP);
 2683         free(tmp_w1, M_TEMP);
 2684         free(tmp_w2, M_TEMP);
 2685 
 2686         sbuf_finish(sb);
 2687         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
 2688         sbuf_delete(sb);
 2689 
 2690         return (error);
 2691 }
 2692 
 2693 static int
 2694 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
 2695 {
 2696         static const struct {
 2697                 enum witness_channel channel;
 2698                 const char *name;
 2699         } channels[] = {
 2700                 { WITNESS_CONSOLE, "console" },
 2701                 { WITNESS_LOG, "log" },
 2702                 { WITNESS_NONE, "none" },
 2703         };
 2704         char buf[16];
 2705         u_int i;
 2706         int error;
 2707 
 2708         buf[0] = '\0';
 2709         for (i = 0; i < nitems(channels); i++)
 2710                 if (witness_channel == channels[i].channel) {
 2711                         snprintf(buf, sizeof(buf), "%s", channels[i].name);
 2712                         break;
 2713                 }
 2714 
 2715         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
 2716         if (error != 0 || req->newptr == NULL)
 2717                 return (error);
 2718 
 2719         error = EINVAL;
 2720         for (i = 0; i < nitems(channels); i++)
 2721                 if (strcmp(channels[i].name, buf) == 0) {
 2722                         witness_channel = channels[i].channel;
 2723                         error = 0;
 2724                         break;
 2725                 }
 2726         return (error);
 2727 }
 2728 
 2729 static int
 2730 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
 2731 {
 2732         struct witness *w;
 2733         struct sbuf *sb;
 2734         int error;
 2735 
 2736         if (witness_watch < 1) {
 2737                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
 2738                 return (error);
 2739         }
 2740         if (witness_cold) {
 2741                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
 2742                 return (error);
 2743         }
 2744         error = 0;
 2745 
 2746         error = sysctl_wire_old_buffer(req, 0);
 2747         if (error != 0)
 2748                 return (error);
 2749         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
 2750         if (sb == NULL)
 2751                 return (ENOMEM);
 2752         sbuf_printf(sb, "\n");
 2753 
 2754         mtx_lock_spin(&w_mtx);
 2755         STAILQ_FOREACH(w, &w_all, w_list)
 2756                 w->w_displayed = 0;
 2757         STAILQ_FOREACH(w, &w_all, w_list)
 2758                 witness_add_fullgraph(sb, w);
 2759         mtx_unlock_spin(&w_mtx);
 2760 
 2761         /*
 2762          * Close the sbuf and return to userland.
 2763          */
 2764         error = sbuf_finish(sb);
 2765         sbuf_delete(sb);
 2766 
 2767         return (error);
 2768 }
 2769 
 2770 static int
 2771 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
 2772 {
 2773         int error, value;
 2774 
 2775         value = witness_watch;
 2776         error = sysctl_handle_int(oidp, &value, 0, req);
 2777         if (error != 0 || req->newptr == NULL)
 2778                 return (error);
 2779         if (value > 1 || value < -1 ||
 2780             (witness_watch == -1 && value != witness_watch))
 2781                 return (EINVAL);
 2782         witness_watch = value;
 2783         return (0);
 2784 }
 2785 
 2786 static void
 2787 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
 2788 {
 2789         int i;
 2790 
 2791         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
 2792                 return;
 2793         w->w_displayed = 1;
 2794 
 2795         WITNESS_INDEX_ASSERT(w->w_index);
 2796         for (i = 1; i <= w_max_used_index; i++) {
 2797                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
 2798                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
 2799                             w_data[i].w_name);
 2800                         witness_add_fullgraph(sb, &w_data[i]);
 2801                 }
 2802         }
 2803 }
 2804 
 2805 /*
 2806  * A simple hash function. Takes a key pointer and a key size. If size == 0,
 2807  * interprets the key as a string and reads until the null
 2808  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
 2809  * hash value computed from the key.
 2810  */
 2811 static uint32_t
 2812 witness_hash_djb2(const uint8_t *key, uint32_t size)
 2813 {
 2814         unsigned int hash = 5381;
 2815         int i;
 2816 
 2817         /* hash = hash * 33 + key[i] */
 2818         if (size)
 2819                 for (i = 0; i < size; i++)
 2820                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
 2821         else
 2822                 for (i = 0; key[i] != 0; i++)
 2823                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
 2824 
 2825         return (hash);
 2826 }
 2827 
 2828 
 2829 /*
 2830  * Initializes the two witness hash tables. Called exactly once from
 2831  * witness_initialize().
 2832  */
 2833 static void
 2834 witness_init_hash_tables(void)
 2835 {
 2836         int i;
 2837 
 2838         MPASS(witness_cold);
 2839 
 2840         /* Initialize the hash tables. */
 2841         for (i = 0; i < WITNESS_HASH_SIZE; i++)
 2842                 w_hash.wh_array[i] = NULL;
 2843 
 2844         w_hash.wh_size = WITNESS_HASH_SIZE;
 2845         w_hash.wh_count = 0;
 2846 
 2847         /* Initialize the lock order data hash. */
 2848         w_lofree = NULL;
 2849         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
 2850                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
 2851                 w_lodata[i].wlod_next = w_lofree;
 2852                 w_lofree = &w_lodata[i];
 2853         }
 2854         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
 2855         w_lohash.wloh_count = 0;
 2856         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
 2857                 w_lohash.wloh_array[i] = NULL;
 2858 }
 2859 
 2860 static struct witness *
 2861 witness_hash_get(const char *key)
 2862 {
 2863         struct witness *w;
 2864         uint32_t hash;
 2865         
 2866         MPASS(key != NULL);
 2867         if (witness_cold == 0)
 2868                 mtx_assert(&w_mtx, MA_OWNED);
 2869         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
 2870         w = w_hash.wh_array[hash];
 2871         while (w != NULL) {
 2872                 if (strcmp(w->w_name, key) == 0)
 2873                         goto out;
 2874                 w = w->w_hash_next;
 2875         }
 2876 
 2877 out:
 2878         return (w);
 2879 }
 2880 
 2881 static void
 2882 witness_hash_put(struct witness *w)
 2883 {
 2884         uint32_t hash;
 2885 
 2886         MPASS(w != NULL);
 2887         MPASS(w->w_name != NULL);
 2888         if (witness_cold == 0)
 2889                 mtx_assert(&w_mtx, MA_OWNED);
 2890         KASSERT(witness_hash_get(w->w_name) == NULL,
 2891             ("%s: trying to add a hash entry that already exists!", __func__));
 2892         KASSERT(w->w_hash_next == NULL,
 2893             ("%s: w->w_hash_next != NULL", __func__));
 2894 
 2895         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
 2896         w->w_hash_next = w_hash.wh_array[hash];
 2897         w_hash.wh_array[hash] = w;
 2898         w_hash.wh_count++;
 2899 }
 2900 
 2901 
 2902 static struct witness_lock_order_data *
 2903 witness_lock_order_get(struct witness *parent, struct witness *child)
 2904 {
 2905         struct witness_lock_order_data *data = NULL;
 2906         struct witness_lock_order_key key;
 2907         unsigned int hash;
 2908 
 2909         MPASS(parent != NULL && child != NULL);
 2910         key.from = parent->w_index;
 2911         key.to = child->w_index;
 2912         WITNESS_INDEX_ASSERT(key.from);
 2913         WITNESS_INDEX_ASSERT(key.to);
 2914         if ((w_rmatrix[parent->w_index][child->w_index]
 2915             & WITNESS_LOCK_ORDER_KNOWN) == 0)
 2916                 goto out;
 2917 
 2918         hash = witness_hash_djb2((const char*)&key,
 2919             sizeof(key)) % w_lohash.wloh_size;
 2920         data = w_lohash.wloh_array[hash];
 2921         while (data != NULL) {
 2922                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
 2923                         break;
 2924                 data = data->wlod_next;
 2925         }
 2926 
 2927 out:
 2928         return (data);
 2929 }
 2930 
 2931 /*
 2932  * Verify that parent and child have a known relationship, are not the same,
 2933  * and child is actually a child of parent.  This is done without w_mtx
 2934  * to avoid contention in the common case.
 2935  */
 2936 static int
 2937 witness_lock_order_check(struct witness *parent, struct witness *child)
 2938 {
 2939 
 2940         if (parent != child &&
 2941             w_rmatrix[parent->w_index][child->w_index]
 2942             & WITNESS_LOCK_ORDER_KNOWN &&
 2943             isitmychild(parent, child))
 2944                 return (1);
 2945 
 2946         return (0);
 2947 }
 2948 
 2949 static int
 2950 witness_lock_order_add(struct witness *parent, struct witness *child)
 2951 {
 2952         struct witness_lock_order_data *data = NULL;
 2953         struct witness_lock_order_key key;
 2954         unsigned int hash;
 2955         
 2956         MPASS(parent != NULL && child != NULL);
 2957         key.from = parent->w_index;
 2958         key.to = child->w_index;
 2959         WITNESS_INDEX_ASSERT(key.from);
 2960         WITNESS_INDEX_ASSERT(key.to);
 2961         if (w_rmatrix[parent->w_index][child->w_index]
 2962             & WITNESS_LOCK_ORDER_KNOWN)
 2963                 return (1);
 2964 
 2965         hash = witness_hash_djb2((const char*)&key,
 2966             sizeof(key)) % w_lohash.wloh_size;
 2967         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
 2968         data = w_lofree;
 2969         if (data == NULL)
 2970                 return (0);
 2971         w_lofree = data->wlod_next;
 2972         data->wlod_next = w_lohash.wloh_array[hash];
 2973         data->wlod_key = key;
 2974         w_lohash.wloh_array[hash] = data;
 2975         w_lohash.wloh_count++;
 2976         stack_zero(&data->wlod_stack);
 2977         stack_save(&data->wlod_stack);
 2978         return (1);
 2979 }
 2980 
 2981 /* Call this whenever the structure of the witness graph changes. */
 2982 static void
 2983 witness_increment_graph_generation(void)
 2984 {
 2985 
 2986         if (witness_cold == 0)
 2987                 mtx_assert(&w_mtx, MA_OWNED);
 2988         w_generation++;
 2989 }
 2990 
 2991 static int
 2992 witness_output_drain(void *arg __unused, const char *data, int len)
 2993 {
 2994 
 2995         witness_output("%.*s", len, data);
 2996         return (len);
 2997 }
 2998 
 2999 static void
 3000 witness_debugger(int cond, const char *msg)
 3001 {
 3002         char buf[32];
 3003         struct sbuf sb;
 3004         struct stack st;
 3005 
 3006         if (!cond)
 3007                 return;
 3008 
 3009         if (witness_trace) {
 3010                 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 3011                 sbuf_set_drain(&sb, witness_output_drain, NULL);
 3012 
 3013                 stack_zero(&st);
 3014                 stack_save(&st);
 3015                 witness_output("stack backtrace:\n");
 3016                 stack_sbuf_print_ddb(&sb, &st);
 3017 
 3018                 sbuf_finish(&sb);
 3019         }
 3020 
 3021 #ifdef KDB
 3022         if (witness_kdb)
 3023                 kdb_enter(KDB_WHY_WITNESS, msg);
 3024 #endif
 3025 }

Cache object: a7febbf2d08222136a83b5eabff8144c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.