The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_witness.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 2008 Isilon Systems, Inc.
    5  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
    6  * Copyright (c) 1998 Berkeley Software Design, Inc.
    7  * All rights reserved.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. Berkeley Software Design Inc's name may not be used to endorse or
   18  *    promote products derived from this software without specific prior
   19  *    written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  *
   33  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
   34  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
   35  */
   36 
   37 /*
   38  * Implementation of the `witness' lock verifier.  Originally implemented for
   39  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
   40  * classes in FreeBSD.
   41  */
   42 
   43 /*
   44  *      Main Entry: witness
   45  *      Pronunciation: 'wit-n&s
   46  *      Function: noun
   47  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
   48  *          testimony, witness, from 2wit
   49  *      Date: before 12th century
   50  *      1 : attestation of a fact or event : TESTIMONY
   51  *      2 : one that gives evidence; specifically : one who testifies in
   52  *          a cause or before a judicial tribunal
   53  *      3 : one asked to be present at a transaction so as to be able to
   54  *          testify to its having taken place
   55  *      4 : one who has personal knowledge of something
   56  *      5 a : something serving as evidence or proof : SIGN
   57  *        b : public affirmation by word or example of usually
   58  *            religious faith or conviction <the heroic witness to divine
   59  *            life -- Pilot>
   60  *      6 capitalized : a member of the Jehovah's Witnesses 
   61  */
   62 
   63 /*
   64  * Special rules concerning Giant and lock orders:
   65  *
   66  * 1) Giant must be acquired before any other mutexes.  Stated another way,
   67  *    no other mutex may be held when Giant is acquired.
   68  *
   69  * 2) Giant must be released when blocking on a sleepable lock.
   70  *
   71  * This rule is less obvious, but is a result of Giant providing the same
   72  * semantics as spl().  Basically, when a thread sleeps, it must release
   73  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
   74  * 2).
   75  *
   76  * 3) Giant may be acquired before or after sleepable locks.
   77  *
   78  * This rule is also not quite as obvious.  Giant may be acquired after
   79  * a sleepable lock because it is a non-sleepable lock and non-sleepable
   80  * locks may always be acquired while holding a sleepable lock.  The second
   81  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
   82  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
   83  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
   84  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
   85  * execute.  Thus, acquiring Giant both before and after a sleepable lock
   86  * will not result in a lock order reversal.
   87  */
   88 
   89 #include <sys/cdefs.h>
   90 __FBSDID("$FreeBSD$");
   91 
   92 #include "opt_ddb.h"
   93 #include "opt_hwpmc_hooks.h"
   94 #include "opt_stack.h"
   95 #include "opt_witness.h"
   96 
   97 #include <sys/param.h>
   98 #include <sys/bus.h>
   99 #include <sys/kdb.h>
  100 #include <sys/kernel.h>
  101 #include <sys/ktr.h>
  102 #include <sys/lock.h>
  103 #include <sys/malloc.h>
  104 #include <sys/mutex.h>
  105 #include <sys/priv.h>
  106 #include <sys/proc.h>
  107 #include <sys/sbuf.h>
  108 #include <sys/sched.h>
  109 #include <sys/stack.h>
  110 #include <sys/sysctl.h>
  111 #include <sys/syslog.h>
  112 #include <sys/systm.h>
  113 
  114 #ifdef DDB
  115 #include <ddb/ddb.h>
  116 #endif
  117 
  118 #include <machine/stdarg.h>
  119 
  120 #if !defined(DDB) && !defined(STACK)
  121 #error "DDB or STACK options are required for WITNESS"
  122 #endif
  123 
  124 /* Note that these traces do not work with KTR_ALQ. */
  125 #if 0
  126 #define KTR_WITNESS     KTR_SUBSYS
  127 #else
  128 #define KTR_WITNESS     0
  129 #endif
  130 
  131 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
  132 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
  133 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
  134 #define LI_SLEEPABLE    0x00040000      /* Lock may be held while sleeping. */
  135 
  136 #ifndef WITNESS_COUNT
  137 #define WITNESS_COUNT           1536
  138 #endif
  139 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
  140 #define WITNESS_PENDLIST        (512 + (MAXCPU * 4))
  141 
  142 /* Allocate 256 KB of stack data space */
  143 #define WITNESS_LO_DATA_COUNT   2048
  144 
  145 /* Prime, gives load factor of ~2 at full load */
  146 #define WITNESS_LO_HASH_SIZE    1021
  147 
  148 /*
  149  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
  150  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
  151  * probably be safe for the most part, but it's still a SWAG.
  152  */
  153 #define LOCK_NCHILDREN  5
  154 #define LOCK_CHILDCOUNT 2048
  155 
  156 #define MAX_W_NAME      64
  157 
  158 #define FULLGRAPH_SBUF_SIZE     512
  159 
  160 /*
  161  * These flags go in the witness relationship matrix and describe the
  162  * relationship between any two struct witness objects.
  163  */
  164 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
  165 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
  166 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
  167 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
  168 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
  169 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
  170 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
  171 #define WITNESS_RELATED_MASK                                            \
  172         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
  173 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
  174                                           * observed. */
  175 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
  176 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
  177 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
  178 
  179 /* Descendant to ancestor flags */
  180 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
  181 
  182 /* Ancestor to descendant flags */
  183 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
  184 
  185 #define WITNESS_INDEX_ASSERT(i)                                         \
  186         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
  187 
  188 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
  189 
  190 /*
  191  * Lock instances.  A lock instance is the data associated with a lock while
  192  * it is held by witness.  For example, a lock instance will hold the
  193  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
  194  * are held in a per-cpu list while sleep locks are held in per-thread list.
  195  */
  196 struct lock_instance {
  197         struct lock_object      *li_lock;
  198         const char              *li_file;
  199         int                     li_line;
  200         u_int                   li_flags;
  201 };
  202 
  203 /*
  204  * A simple list type used to build the list of locks held by a thread
  205  * or CPU.  We can't simply embed the list in struct lock_object since a
  206  * lock may be held by more than one thread if it is a shared lock.  Locks
  207  * are added to the head of the list, so we fill up each list entry from
  208  * "the back" logically.  To ease some of the arithmetic, we actually fill
  209  * in each list entry the normal way (children[0] then children[1], etc.) but
  210  * when we traverse the list we read children[count-1] as the first entry
  211  * down to children[0] as the final entry.
  212  */
  213 struct lock_list_entry {
  214         struct lock_list_entry  *ll_next;
  215         struct lock_instance    ll_children[LOCK_NCHILDREN];
  216         u_int                   ll_count;
  217 };
  218 
  219 /*
  220  * The main witness structure. One of these per named lock type in the system
  221  * (for example, "vnode interlock").
  222  */
  223 struct witness {
  224         char                    w_name[MAX_W_NAME];
  225         uint32_t                w_index;  /* Index in the relationship matrix */
  226         struct lock_class       *w_class;
  227         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
  228         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
  229         struct witness          *w_hash_next; /* Linked list in hash buckets. */
  230         const char              *w_file; /* File where last acquired */
  231         uint32_t                w_line; /* Line where last acquired */
  232         uint32_t                w_refcount;
  233         uint16_t                w_num_ancestors; /* direct/indirect
  234                                                   * ancestor count */
  235         uint16_t                w_num_descendants; /* direct/indirect
  236                                                     * descendant count */
  237         int16_t                 w_ddb_level;
  238         unsigned                w_displayed:1;
  239         unsigned                w_reversed:1;
  240 };
  241 
  242 STAILQ_HEAD(witness_list, witness);
  243 
  244 /*
  245  * The witness hash table. Keys are witness names (const char *), elements are
  246  * witness objects (struct witness *).
  247  */
  248 struct witness_hash {
  249         struct witness  *wh_array[WITNESS_HASH_SIZE];
  250         uint32_t        wh_size;
  251         uint32_t        wh_count;
  252 };
  253 
  254 /*
  255  * Key type for the lock order data hash table.
  256  */
  257 struct witness_lock_order_key {
  258         uint16_t        from;
  259         uint16_t        to;
  260 };
  261 
  262 struct witness_lock_order_data {
  263         struct stack                    wlod_stack;
  264         struct witness_lock_order_key   wlod_key;
  265         struct witness_lock_order_data  *wlod_next;
  266 };
  267 
  268 /*
  269  * The witness lock order data hash table. Keys are witness index tuples
  270  * (struct witness_lock_order_key), elements are lock order data objects
  271  * (struct witness_lock_order_data). 
  272  */
  273 struct witness_lock_order_hash {
  274         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
  275         u_int   wloh_size;
  276         u_int   wloh_count;
  277 };
  278 
  279 struct witness_blessed {
  280         const char      *b_lock1;
  281         const char      *b_lock2;
  282 };
  283 
  284 struct witness_pendhelp {
  285         const char              *wh_type;
  286         struct lock_object      *wh_lock;
  287 };
  288 
  289 struct witness_order_list_entry {
  290         const char              *w_name;
  291         struct lock_class       *w_class;
  292 };
  293 
  294 /*
  295  * Returns 0 if one of the locks is a spin lock and the other is not.
  296  * Returns 1 otherwise.
  297  */
  298 static __inline int
  299 witness_lock_type_equal(struct witness *w1, struct witness *w2)
  300 {
  301 
  302         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
  303                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
  304 }
  305 
  306 static __inline int
  307 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
  308     const struct witness_lock_order_key *b)
  309 {
  310 
  311         return (a->from == b->from && a->to == b->to);
  312 }
  313 
  314 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
  315                     const char *fname);
  316 static void     adopt(struct witness *parent, struct witness *child);
  317 static int      blessed(struct witness *, struct witness *);
  318 static void     depart(struct witness *w);
  319 static struct witness   *enroll(const char *description,
  320                             struct lock_class *lock_class);
  321 static struct lock_instance     *find_instance(struct lock_list_entry *list,
  322                                     const struct lock_object *lock);
  323 static int      isitmychild(struct witness *parent, struct witness *child);
  324 static int      isitmydescendant(struct witness *parent, struct witness *child);
  325 static void     itismychild(struct witness *parent, struct witness *child);
  326 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
  327 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
  328 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
  329 static int      sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
  330 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
  331 #ifdef DDB
  332 static void     witness_ddb_compute_levels(void);
  333 static void     witness_ddb_display(int(*)(const char *fmt, ...));
  334 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
  335                     struct witness *, int indent);
  336 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
  337                     struct witness_list *list);
  338 static void     witness_ddb_level_descendants(struct witness *parent, int l);
  339 static void     witness_ddb_list(struct thread *td);
  340 #endif
  341 static void     witness_enter_debugger(const char *msg);
  342 static void     witness_debugger(int cond, const char *msg);
  343 static void     witness_free(struct witness *m);
  344 static struct witness   *witness_get(void);
  345 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
  346 static struct witness   *witness_hash_get(const char *key);
  347 static void     witness_hash_put(struct witness *w);
  348 static void     witness_init_hash_tables(void);
  349 static void     witness_increment_graph_generation(void);
  350 static void     witness_lock_list_free(struct lock_list_entry *lle);
  351 static struct lock_list_entry   *witness_lock_list_get(void);
  352 static int      witness_lock_order_add(struct witness *parent,
  353                     struct witness *child);
  354 static int      witness_lock_order_check(struct witness *parent,
  355                     struct witness *child);
  356 static struct witness_lock_order_data   *witness_lock_order_get(
  357                                             struct witness *parent,
  358                                             struct witness *child);
  359 static void     witness_list_lock(struct lock_instance *instance,
  360                     int (*prnt)(const char *fmt, ...));
  361 static int      witness_output(const char *fmt, ...) __printflike(1, 2);
  362 static int      witness_output_drain(void *arg __unused, const char *data,
  363                     int len);
  364 static int      witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
  365 static void     witness_setflag(struct lock_object *lock, int flag, int set);
  366 
  367 FEATURE(witness, "kernel has witness(9) support");
  368 
  369 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
  370     "Witness Locking");
  371 
  372 /*
  373  * If set to 0, lock order checking is disabled.  If set to -1,
  374  * witness is completely disabled.  Otherwise witness performs full
  375  * lock order checking for all locks.  At runtime, lock order checking
  376  * may be toggled.  However, witness cannot be reenabled once it is
  377  * completely disabled.
  378  */
  379 static int witness_watch = 1;
  380 SYSCTL_PROC(_debug_witness, OID_AUTO, watch,
  381     CTLFLAG_RWTUN | CTLTYPE_INT | CTLFLAG_MPSAFE, NULL, 0,
  382     sysctl_debug_witness_watch, "I",
  383     "witness is watching lock operations");
  384 
  385 #ifdef KDB
  386 /*
  387  * When KDB is enabled and witness_kdb is 1, it will cause the system
  388  * to drop into kdebug() when:
  389  *      - a lock hierarchy violation occurs
  390  *      - locks are held when going to sleep.
  391  */
  392 #ifdef WITNESS_KDB
  393 int     witness_kdb = 1;
  394 #else
  395 int     witness_kdb = 0;
  396 #endif
  397 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
  398 #endif /* KDB */
  399 
  400 #if defined(DDB) || defined(KDB)
  401 /*
  402  * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
  403  * to print a stack trace:
  404  *      - a lock hierarchy violation occurs
  405  *      - locks are held when going to sleep.
  406  */
  407 int     witness_trace = 1;
  408 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
  409 #endif /* DDB || KDB */
  410 
  411 #ifdef WITNESS_SKIPSPIN
  412 int     witness_skipspin = 1;
  413 #else
  414 int     witness_skipspin = 0;
  415 #endif
  416 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
  417 
  418 int badstack_sbuf_size;
  419 
  420 int witness_count = WITNESS_COUNT;
  421 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN, 
  422     &witness_count, 0, "");
  423 
  424 /*
  425  * Output channel for witness messages.  By default we print to the console.
  426  */
  427 enum witness_channel {
  428         WITNESS_CONSOLE,
  429         WITNESS_LOG,
  430         WITNESS_NONE,
  431 };
  432 
  433 static enum witness_channel witness_channel = WITNESS_CONSOLE;
  434 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel,
  435     CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL, 0,
  436     sysctl_debug_witness_channel, "A",
  437     "Output channel for warnings");
  438 
  439 /*
  440  * Call this to print out the relations between locks.
  441  */
  442 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph,
  443     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
  444     sysctl_debug_witness_fullgraph, "A",
  445     "Show locks relation graphs");
  446 
  447 /*
  448  * Call this to print out the witness faulty stacks.
  449  */
  450 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks,
  451     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
  452     sysctl_debug_witness_badstacks, "A",
  453     "Show bad witness stacks");
  454 
  455 static struct mtx w_mtx;
  456 
  457 /* w_list */
  458 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
  459 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
  460 
  461 /* w_typelist */
  462 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
  463 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
  464 
  465 /* lock list */
  466 static struct lock_list_entry *w_lock_list_free = NULL;
  467 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
  468 static u_int pending_cnt;
  469 
  470 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
  471 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
  472 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
  473 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
  474     "");
  475 
  476 static struct witness *w_data;
  477 static uint8_t **w_rmatrix;
  478 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
  479 static struct witness_hash w_hash;      /* The witness hash table. */
  480 
  481 /* The lock order data hash */
  482 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
  483 static struct witness_lock_order_data *w_lofree = NULL;
  484 static struct witness_lock_order_hash w_lohash;
  485 static int w_max_used_index = 0;
  486 static unsigned int w_generation = 0;
  487 static const char w_notrunning[] = "Witness not running\n";
  488 static const char w_stillcold[] = "Witness is still cold\n";
  489 #ifdef __i386__
  490 static const char w_notallowed[] = "The sysctl is disabled on the arch\n";
  491 #endif
  492 
  493 static struct witness_order_list_entry order_lists[] = {
  494         /*
  495          * sx locks
  496          */
  497         { "proctree", &lock_class_sx },
  498         { "allproc", &lock_class_sx },
  499         { "allprison", &lock_class_sx },
  500         { NULL, NULL },
  501         /*
  502          * Various mutexes
  503          */
  504         { "Giant", &lock_class_mtx_sleep },
  505         { "pipe mutex", &lock_class_mtx_sleep },
  506         { "sigio lock", &lock_class_mtx_sleep },
  507         { "process group", &lock_class_mtx_sleep },
  508 #ifdef  HWPMC_HOOKS
  509         { "pmc-sleep", &lock_class_mtx_sleep },
  510 #endif
  511         { "process lock", &lock_class_mtx_sleep },
  512         { "session", &lock_class_mtx_sleep },
  513         { "uidinfo hash", &lock_class_rw },
  514         { "time lock", &lock_class_mtx_sleep },
  515         { NULL, NULL },
  516         /*
  517          * umtx
  518          */
  519         { "umtx lock", &lock_class_mtx_sleep },
  520         { NULL, NULL },
  521         /*
  522          * Sockets
  523          */
  524         { "accept", &lock_class_mtx_sleep },
  525         { "so_snd", &lock_class_mtx_sleep },
  526         { "so_rcv", &lock_class_mtx_sleep },
  527         { "sellck", &lock_class_mtx_sleep },
  528         { NULL, NULL },
  529         /*
  530          * Routing
  531          */
  532         { "so_rcv", &lock_class_mtx_sleep },
  533         { "radix node head", &lock_class_rm },
  534         { "ifaddr", &lock_class_mtx_sleep },
  535         { NULL, NULL },
  536         /*
  537          * IPv4 multicast:
  538          * protocol locks before interface locks, after UDP locks.
  539          */
  540         { "in_multi_sx", &lock_class_sx },
  541         { "udpinp", &lock_class_rw },
  542         { "in_multi_list_mtx", &lock_class_mtx_sleep },
  543         { "igmp_mtx", &lock_class_mtx_sleep },
  544         { "ifnet_rw", &lock_class_rw },
  545         { "if_addr_lock", &lock_class_mtx_sleep },
  546         { NULL, NULL },
  547         /*
  548          * IPv6 multicast:
  549          * protocol locks before interface locks, after UDP locks.
  550          */
  551         { "in6_multi_sx", &lock_class_sx },
  552         { "udpinp", &lock_class_rw },
  553         { "in6_multi_list_mtx", &lock_class_mtx_sleep },
  554         { "mld_mtx", &lock_class_mtx_sleep },
  555         { "ifnet_rw", &lock_class_rw },
  556         { "if_addr_lock", &lock_class_mtx_sleep },
  557         { NULL, NULL },
  558         /*
  559          * UNIX Domain Sockets
  560          */
  561         { "unp_link_rwlock", &lock_class_rw },
  562         { "unp_list_lock", &lock_class_mtx_sleep },
  563         { "unp", &lock_class_mtx_sleep },
  564         { "so_snd", &lock_class_mtx_sleep },
  565         { NULL, NULL },
  566         /*
  567          * UDP/IP
  568          */
  569         { "udp", &lock_class_mtx_sleep },
  570         { "udpinp", &lock_class_rw },
  571         { "so_snd", &lock_class_mtx_sleep },
  572         { NULL, NULL },
  573         /*
  574          * TCP/IP
  575          */
  576         { "tcp", &lock_class_mtx_sleep },
  577         { "tcpinp", &lock_class_rw },
  578         { "so_snd", &lock_class_mtx_sleep },
  579         { NULL, NULL },
  580         /*
  581          * BPF
  582          */
  583         { "bpf global lock", &lock_class_sx },
  584         { "bpf cdev lock", &lock_class_mtx_sleep },
  585         { NULL, NULL },
  586         /*
  587          * NFS server
  588          */
  589         { "nfsd_mtx", &lock_class_mtx_sleep },
  590         { "so_snd", &lock_class_mtx_sleep },
  591         { NULL, NULL },
  592 
  593         /*
  594          * IEEE 802.11
  595          */
  596         { "802.11 com lock", &lock_class_mtx_sleep},
  597         { NULL, NULL },
  598         /*
  599          * Network drivers
  600          */
  601         { "network driver", &lock_class_mtx_sleep},
  602         { NULL, NULL },
  603 
  604         /*
  605          * Netgraph
  606          */
  607         { "ng_node", &lock_class_mtx_sleep },
  608         { "ng_worklist", &lock_class_mtx_sleep },
  609         { NULL, NULL },
  610         /*
  611          * CDEV
  612          */
  613         { "vm map (system)", &lock_class_mtx_sleep },
  614         { "vnode interlock", &lock_class_mtx_sleep },
  615         { "cdev", &lock_class_mtx_sleep },
  616         { "devthrd", &lock_class_mtx_sleep },
  617         { NULL, NULL },
  618         /*
  619          * VM
  620          */
  621         { "vm map (user)", &lock_class_sx },
  622         { "vm object", &lock_class_rw },
  623         { "vm page", &lock_class_mtx_sleep },
  624         { "pmap pv global", &lock_class_rw },
  625         { "pmap", &lock_class_mtx_sleep },
  626         { "pmap pv list", &lock_class_rw },
  627         { "vm page free queue", &lock_class_mtx_sleep },
  628         { "vm pagequeue", &lock_class_mtx_sleep },
  629         { NULL, NULL },
  630         /*
  631          * kqueue/VFS interaction
  632          */
  633         { "kqueue", &lock_class_mtx_sleep },
  634         { "struct mount mtx", &lock_class_mtx_sleep },
  635         { "vnode interlock", &lock_class_mtx_sleep },
  636         { NULL, NULL },
  637         /*
  638          * VFS namecache
  639          */
  640         { "ncvn", &lock_class_mtx_sleep },
  641         { "ncbuc", &lock_class_mtx_sleep },
  642         { "vnode interlock", &lock_class_mtx_sleep },
  643         { "ncneg", &lock_class_mtx_sleep },
  644         { NULL, NULL },
  645         /*
  646          * ZFS locking
  647          */
  648         { "dn->dn_mtx", &lock_class_sx },
  649         { "dr->dt.di.dr_mtx", &lock_class_sx },
  650         { "db->db_mtx", &lock_class_sx },
  651         { NULL, NULL },
  652         /*
  653          * TCP log locks
  654          */
  655         { "TCP ID tree", &lock_class_rw },
  656         { "tcp log id bucket", &lock_class_mtx_sleep },
  657         { "tcpinp", &lock_class_rw },
  658         { "TCP log expireq", &lock_class_mtx_sleep },
  659         { NULL, NULL },
  660         /*
  661          * spin locks
  662          */
  663 #ifdef SMP
  664         { "ap boot", &lock_class_mtx_spin },
  665 #endif
  666         { "rm.mutex_mtx", &lock_class_mtx_spin },
  667         { "sio", &lock_class_mtx_spin },
  668 #ifdef __i386__
  669         { "cy", &lock_class_mtx_spin },
  670 #endif
  671         { "scc_hwmtx", &lock_class_mtx_spin },
  672         { "uart_hwmtx", &lock_class_mtx_spin },
  673         { "fast_taskqueue", &lock_class_mtx_spin },
  674         { "intr table", &lock_class_mtx_spin },
  675         { "process slock", &lock_class_mtx_spin },
  676         { "syscons video lock", &lock_class_mtx_spin },
  677         { "sleepq chain", &lock_class_mtx_spin },
  678         { "rm_spinlock", &lock_class_mtx_spin },
  679         { "turnstile chain", &lock_class_mtx_spin },
  680         { "turnstile lock", &lock_class_mtx_spin },
  681         { "sched lock", &lock_class_mtx_spin },
  682         { "td_contested", &lock_class_mtx_spin },
  683         { "callout", &lock_class_mtx_spin },
  684         { "entropy harvest mutex", &lock_class_mtx_spin },
  685 #ifdef SMP
  686         { "smp rendezvous", &lock_class_mtx_spin },
  687 #endif
  688 #ifdef __powerpc__
  689         { "tlb0", &lock_class_mtx_spin },
  690 #endif
  691         { NULL, NULL },
  692         { "sched lock", &lock_class_mtx_spin },
  693 #ifdef  HWPMC_HOOKS
  694         { "pmc-per-proc", &lock_class_mtx_spin },
  695 #endif
  696         { NULL, NULL },
  697         /*
  698          * leaf locks
  699          */
  700         { "intrcnt", &lock_class_mtx_spin },
  701         { "icu", &lock_class_mtx_spin },
  702 #ifdef __i386__
  703         { "allpmaps", &lock_class_mtx_spin },
  704         { "descriptor tables", &lock_class_mtx_spin },
  705 #endif
  706         { "clk", &lock_class_mtx_spin },
  707         { "cpuset", &lock_class_mtx_spin },
  708         { "mprof lock", &lock_class_mtx_spin },
  709         { "zombie lock", &lock_class_mtx_spin },
  710         { "ALD Queue", &lock_class_mtx_spin },
  711 #if defined(__i386__) || defined(__amd64__)
  712         { "pcicfg", &lock_class_mtx_spin },
  713         { "NDIS thread lock", &lock_class_mtx_spin },
  714 #endif
  715         { "tw_osl_io_lock", &lock_class_mtx_spin },
  716         { "tw_osl_q_lock", &lock_class_mtx_spin },
  717         { "tw_cl_io_lock", &lock_class_mtx_spin },
  718         { "tw_cl_intr_lock", &lock_class_mtx_spin },
  719         { "tw_cl_gen_lock", &lock_class_mtx_spin },
  720 #ifdef  HWPMC_HOOKS
  721         { "pmc-leaf", &lock_class_mtx_spin },
  722 #endif
  723         { "blocked lock", &lock_class_mtx_spin },
  724         { NULL, NULL },
  725         { NULL, NULL }
  726 };
  727 
  728 /*
  729  * Pairs of locks which have been blessed.  Witness does not complain about
  730  * order problems with blessed lock pairs.  Please do not add an entry to the
  731  * table without an explanatory comment.
  732  */
  733 static struct witness_blessed blessed_list[] = {
  734         /*
  735          * See the comment in ufs_dirhash.c.  Basically, a vnode lock serializes
  736          * both lock orders, so a deadlock cannot happen as a result of this
  737          * LOR.
  738          */
  739         { "dirhash",    "bufwait" },
  740 
  741         /*
  742          * A UFS vnode may be locked in vget() while a buffer belonging to the
  743          * parent directory vnode is locked.
  744          */
  745         { "ufs",        "bufwait" },
  746 };
  747 
  748 /*
  749  * This global is set to 0 once it becomes safe to use the witness code.
  750  */
  751 static int witness_cold = 1;
  752 
  753 /*
  754  * This global is set to 1 once the static lock orders have been enrolled
  755  * so that a warning can be issued for any spin locks enrolled later.
  756  */
  757 static int witness_spin_warn = 0;
  758 
  759 /* Trim useless garbage from filenames. */
  760 static const char *
  761 fixup_filename(const char *file)
  762 {
  763 
  764         if (file == NULL)
  765                 return (NULL);
  766         while (strncmp(file, "../", 3) == 0)
  767                 file += 3;
  768         return (file);
  769 }
  770 
  771 /*
  772  * Calculate the size of early witness structures.
  773  */
  774 int
  775 witness_startup_count(void)
  776 {
  777         int sz;
  778 
  779         sz = sizeof(struct witness) * witness_count;
  780         sz += sizeof(*w_rmatrix) * (witness_count + 1);
  781         sz += sizeof(*w_rmatrix[0]) * (witness_count + 1) *
  782             (witness_count + 1);
  783 
  784         return (sz);
  785 }
  786 
  787 /*
  788  * The WITNESS-enabled diagnostic code.  Note that the witness code does
  789  * assume that the early boot is single-threaded at least until after this
  790  * routine is completed.
  791  */
  792 void
  793 witness_startup(void *mem)
  794 {
  795         struct lock_object *lock;
  796         struct witness_order_list_entry *order;
  797         struct witness *w, *w1;
  798         uintptr_t p;
  799         int i;
  800 
  801         p = (uintptr_t)mem;
  802         w_data = (void *)p;
  803         p += sizeof(struct witness) * witness_count;
  804 
  805         w_rmatrix = (void *)p;
  806         p += sizeof(*w_rmatrix) * (witness_count + 1);
  807 
  808         for (i = 0; i < witness_count + 1; i++) {
  809                 w_rmatrix[i] = (void *)p;
  810                 p += sizeof(*w_rmatrix[i]) * (witness_count + 1);
  811         }
  812         badstack_sbuf_size = witness_count * 256;
  813 
  814         /*
  815          * We have to release Giant before initializing its witness
  816          * structure so that WITNESS doesn't get confused.
  817          */
  818         mtx_unlock(&Giant);
  819         mtx_assert(&Giant, MA_NOTOWNED);
  820 
  821         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
  822         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
  823             MTX_NOWITNESS | MTX_NOPROFILE);
  824         for (i = witness_count - 1; i >= 0; i--) {
  825                 w = &w_data[i];
  826                 memset(w, 0, sizeof(*w));
  827                 w_data[i].w_index = i;  /* Witness index never changes. */
  828                 witness_free(w);
  829         }
  830         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
  831             ("%s: Invalid list of free witness objects", __func__));
  832 
  833         /* Witness with index 0 is not used to aid in debugging. */
  834         STAILQ_REMOVE_HEAD(&w_free, w_list);
  835         w_free_cnt--;
  836 
  837         for (i = 0; i < witness_count; i++) {
  838                 memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) * 
  839                     (witness_count + 1));
  840         }
  841 
  842         for (i = 0; i < LOCK_CHILDCOUNT; i++)
  843                 witness_lock_list_free(&w_locklistdata[i]);
  844         witness_init_hash_tables();
  845 
  846         /* First add in all the specified order lists. */
  847         for (order = order_lists; order->w_name != NULL; order++) {
  848                 w = enroll(order->w_name, order->w_class);
  849                 if (w == NULL)
  850                         continue;
  851                 w->w_file = "order list";
  852                 for (order++; order->w_name != NULL; order++) {
  853                         w1 = enroll(order->w_name, order->w_class);
  854                         if (w1 == NULL)
  855                                 continue;
  856                         w1->w_file = "order list";
  857                         itismychild(w, w1);
  858                         w = w1;
  859                 }
  860         }
  861         witness_spin_warn = 1;
  862 
  863         /* Iterate through all locks and add them to witness. */
  864         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
  865                 lock = pending_locks[i].wh_lock;
  866                 KASSERT(lock->lo_flags & LO_WITNESS,
  867                     ("%s: lock %s is on pending list but not LO_WITNESS",
  868                     __func__, lock->lo_name));
  869                 lock->lo_witness = enroll(pending_locks[i].wh_type,
  870                     LOCK_CLASS(lock));
  871         }
  872 
  873         /* Mark the witness code as being ready for use. */
  874         witness_cold = 0;
  875 
  876         mtx_lock(&Giant);
  877 }
  878 
  879 void
  880 witness_init(struct lock_object *lock, const char *type)
  881 {
  882         struct lock_class *class;
  883 
  884         /* Various sanity checks. */
  885         class = LOCK_CLASS(lock);
  886         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
  887             (class->lc_flags & LC_RECURSABLE) == 0)
  888                 kassert_panic("%s: lock (%s) %s can not be recursable",
  889                     __func__, class->lc_name, lock->lo_name);
  890         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
  891             (class->lc_flags & LC_SLEEPABLE) == 0)
  892                 kassert_panic("%s: lock (%s) %s can not be sleepable",
  893                     __func__, class->lc_name, lock->lo_name);
  894         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
  895             (class->lc_flags & LC_UPGRADABLE) == 0)
  896                 kassert_panic("%s: lock (%s) %s can not be upgradable",
  897                     __func__, class->lc_name, lock->lo_name);
  898 
  899         /*
  900          * If we shouldn't watch this lock, then just clear lo_witness.
  901          * Otherwise, if witness_cold is set, then it is too early to
  902          * enroll this lock, so defer it to witness_initialize() by adding
  903          * it to the pending_locks list.  If it is not too early, then enroll
  904          * the lock now.
  905          */
  906         if (witness_watch < 1 || KERNEL_PANICKED() ||
  907             (lock->lo_flags & LO_WITNESS) == 0)
  908                 lock->lo_witness = NULL;
  909         else if (witness_cold) {
  910                 pending_locks[pending_cnt].wh_lock = lock;
  911                 pending_locks[pending_cnt++].wh_type = type;
  912                 if (pending_cnt > WITNESS_PENDLIST)
  913                         panic("%s: pending locks list is too small, "
  914                             "increase WITNESS_PENDLIST\n",
  915                             __func__);
  916         } else
  917                 lock->lo_witness = enroll(type, class);
  918 }
  919 
  920 void
  921 witness_destroy(struct lock_object *lock)
  922 {
  923         struct lock_class *class;
  924         struct witness *w;
  925 
  926         class = LOCK_CLASS(lock);
  927 
  928         if (witness_cold)
  929                 panic("lock (%s) %s destroyed while witness_cold",
  930                     class->lc_name, lock->lo_name);
  931 
  932         /* XXX: need to verify that no one holds the lock */
  933         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
  934                 return;
  935         w = lock->lo_witness;
  936 
  937         mtx_lock_spin(&w_mtx);
  938         MPASS(w->w_refcount > 0);
  939         w->w_refcount--;
  940 
  941         if (w->w_refcount == 0)
  942                 depart(w);
  943         mtx_unlock_spin(&w_mtx);
  944 }
  945 
  946 #ifdef DDB
  947 static void
  948 witness_ddb_compute_levels(void)
  949 {
  950         struct witness *w;
  951 
  952         /*
  953          * First clear all levels.
  954          */
  955         STAILQ_FOREACH(w, &w_all, w_list)
  956                 w->w_ddb_level = -1;
  957 
  958         /*
  959          * Look for locks with no parents and level all their descendants.
  960          */
  961         STAILQ_FOREACH(w, &w_all, w_list) {
  962                 /* If the witness has ancestors (is not a root), skip it. */
  963                 if (w->w_num_ancestors > 0)
  964                         continue;
  965                 witness_ddb_level_descendants(w, 0);
  966         }
  967 }
  968 
  969 static void
  970 witness_ddb_level_descendants(struct witness *w, int l)
  971 {
  972         int i;
  973 
  974         if (w->w_ddb_level >= l)
  975                 return;
  976 
  977         w->w_ddb_level = l;
  978         l++;
  979 
  980         for (i = 1; i <= w_max_used_index; i++) {
  981                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
  982                         witness_ddb_level_descendants(&w_data[i], l);
  983         }
  984 }
  985 
  986 static void
  987 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
  988     struct witness *w, int indent)
  989 {
  990         int i;
  991 
  992         for (i = 0; i < indent; i++)
  993                 prnt(" ");
  994         prnt("%s (type: %s, depth: %d, active refs: %d)",
  995              w->w_name, w->w_class->lc_name,
  996              w->w_ddb_level, w->w_refcount);
  997         if (w->w_displayed) {
  998                 prnt(" -- (already displayed)\n");
  999                 return;
 1000         }
 1001         w->w_displayed = 1;
 1002         if (w->w_file != NULL && w->w_line != 0)
 1003                 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
 1004                     w->w_line);
 1005         else
 1006                 prnt(" -- never acquired\n");
 1007         indent++;
 1008         WITNESS_INDEX_ASSERT(w->w_index);
 1009         for (i = 1; i <= w_max_used_index; i++) {
 1010                 if (db_pager_quit)
 1011                         return;
 1012                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
 1013                         witness_ddb_display_descendants(prnt, &w_data[i],
 1014                             indent);
 1015         }
 1016 }
 1017 
 1018 static void
 1019 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
 1020     struct witness_list *list)
 1021 {
 1022         struct witness *w;
 1023 
 1024         STAILQ_FOREACH(w, list, w_typelist) {
 1025                 if (w->w_file == NULL || w->w_ddb_level > 0)
 1026                         continue;
 1027 
 1028                 /* This lock has no anscestors - display its descendants. */
 1029                 witness_ddb_display_descendants(prnt, w, 0);
 1030                 if (db_pager_quit)
 1031                         return;
 1032         }
 1033 }
 1034 
 1035 static void
 1036 witness_ddb_display(int(*prnt)(const char *fmt, ...))
 1037 {
 1038         struct witness *w;
 1039 
 1040         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 1041         witness_ddb_compute_levels();
 1042 
 1043         /* Clear all the displayed flags. */
 1044         STAILQ_FOREACH(w, &w_all, w_list)
 1045                 w->w_displayed = 0;
 1046 
 1047         /*
 1048          * First, handle sleep locks which have been acquired at least
 1049          * once.
 1050          */
 1051         prnt("Sleep locks:\n");
 1052         witness_ddb_display_list(prnt, &w_sleep);
 1053         if (db_pager_quit)
 1054                 return;
 1055 
 1056         /*
 1057          * Now do spin locks which have been acquired at least once.
 1058          */
 1059         prnt("\nSpin locks:\n");
 1060         witness_ddb_display_list(prnt, &w_spin);
 1061         if (db_pager_quit)
 1062                 return;
 1063 
 1064         /*
 1065          * Finally, any locks which have not been acquired yet.
 1066          */
 1067         prnt("\nLocks which were never acquired:\n");
 1068         STAILQ_FOREACH(w, &w_all, w_list) {
 1069                 if (w->w_file != NULL || w->w_refcount == 0)
 1070                         continue;
 1071                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
 1072                     w->w_class->lc_name, w->w_ddb_level);
 1073                 if (db_pager_quit)
 1074                         return;
 1075         }
 1076 }
 1077 #endif /* DDB */
 1078 
 1079 int
 1080 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
 1081 {
 1082 
 1083         if (witness_watch == -1 || KERNEL_PANICKED())
 1084                 return (0);
 1085 
 1086         /* Require locks that witness knows about. */
 1087         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
 1088             lock2->lo_witness == NULL)
 1089                 return (EINVAL);
 1090 
 1091         mtx_assert(&w_mtx, MA_NOTOWNED);
 1092         mtx_lock_spin(&w_mtx);
 1093 
 1094         /*
 1095          * If we already have either an explicit or implied lock order that
 1096          * is the other way around, then return an error.
 1097          */
 1098         if (witness_watch &&
 1099             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
 1100                 mtx_unlock_spin(&w_mtx);
 1101                 return (EDOOFUS);
 1102         }
 1103 
 1104         /* Try to add the new order. */
 1105         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
 1106             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
 1107         itismychild(lock1->lo_witness, lock2->lo_witness);
 1108         mtx_unlock_spin(&w_mtx);
 1109         return (0);
 1110 }
 1111 
 1112 void
 1113 witness_checkorder(struct lock_object *lock, int flags, const char *file,
 1114     int line, struct lock_object *interlock)
 1115 {
 1116         struct lock_list_entry *lock_list, *lle;
 1117         struct lock_instance *lock1, *lock2, *plock;
 1118         struct lock_class *class, *iclass;
 1119         struct witness *w, *w1;
 1120         struct thread *td;
 1121         int i, j;
 1122 
 1123         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
 1124             KERNEL_PANICKED())
 1125                 return;
 1126 
 1127         w = lock->lo_witness;
 1128         class = LOCK_CLASS(lock);
 1129         td = curthread;
 1130 
 1131         if (class->lc_flags & LC_SLEEPLOCK) {
 1132                 /*
 1133                  * Since spin locks include a critical section, this check
 1134                  * implicitly enforces a lock order of all sleep locks before
 1135                  * all spin locks.
 1136                  */
 1137                 if (td->td_critnest != 0 && !kdb_active)
 1138                         kassert_panic("acquiring blockable sleep lock with "
 1139                             "spinlock or critical section held (%s) %s @ %s:%d",
 1140                             class->lc_name, lock->lo_name,
 1141                             fixup_filename(file), line);
 1142 
 1143                 /*
 1144                  * If this is the first lock acquired then just return as
 1145                  * no order checking is needed.
 1146                  */
 1147                 lock_list = td->td_sleeplocks;
 1148                 if (lock_list == NULL || lock_list->ll_count == 0)
 1149                         return;
 1150         } else {
 1151                 /*
 1152                  * If this is the first lock, just return as no order
 1153                  * checking is needed.  Avoid problems with thread
 1154                  * migration pinning the thread while checking if
 1155                  * spinlocks are held.  If at least one spinlock is held
 1156                  * the thread is in a safe path and it is allowed to
 1157                  * unpin it.
 1158                  */
 1159                 sched_pin();
 1160                 lock_list = PCPU_GET(spinlocks);
 1161                 if (lock_list == NULL || lock_list->ll_count == 0) {
 1162                         sched_unpin();
 1163                         return;
 1164                 }
 1165                 sched_unpin();
 1166         }
 1167 
 1168         /*
 1169          * Check to see if we are recursing on a lock we already own.  If
 1170          * so, make sure that we don't mismatch exclusive and shared lock
 1171          * acquires.
 1172          */
 1173         lock1 = find_instance(lock_list, lock);
 1174         if (lock1 != NULL) {
 1175                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
 1176                     (flags & LOP_EXCLUSIVE) == 0) {
 1177                         witness_output("shared lock of (%s) %s @ %s:%d\n",
 1178                             class->lc_name, lock->lo_name,
 1179                             fixup_filename(file), line);
 1180                         witness_output("while exclusively locked from %s:%d\n",
 1181                             fixup_filename(lock1->li_file), lock1->li_line);
 1182                         kassert_panic("excl->share");
 1183                 }
 1184                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
 1185                     (flags & LOP_EXCLUSIVE) != 0) {
 1186                         witness_output("exclusive lock of (%s) %s @ %s:%d\n",
 1187                             class->lc_name, lock->lo_name,
 1188                             fixup_filename(file), line);
 1189                         witness_output("while share locked from %s:%d\n",
 1190                             fixup_filename(lock1->li_file), lock1->li_line);
 1191                         kassert_panic("share->excl");
 1192                 }
 1193                 return;
 1194         }
 1195 
 1196         /* Warn if the interlock is not locked exactly once. */
 1197         if (interlock != NULL) {
 1198                 iclass = LOCK_CLASS(interlock);
 1199                 lock1 = find_instance(lock_list, interlock);
 1200                 if (lock1 == NULL)
 1201                         kassert_panic("interlock (%s) %s not locked @ %s:%d",
 1202                             iclass->lc_name, interlock->lo_name,
 1203                             fixup_filename(file), line);
 1204                 else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
 1205                         kassert_panic("interlock (%s) %s recursed @ %s:%d",
 1206                             iclass->lc_name, interlock->lo_name,
 1207                             fixup_filename(file), line);
 1208         }
 1209 
 1210         /*
 1211          * Find the previously acquired lock, but ignore interlocks.
 1212          */
 1213         plock = &lock_list->ll_children[lock_list->ll_count - 1];
 1214         if (interlock != NULL && plock->li_lock == interlock) {
 1215                 if (lock_list->ll_count > 1)
 1216                         plock =
 1217                             &lock_list->ll_children[lock_list->ll_count - 2];
 1218                 else {
 1219                         lle = lock_list->ll_next;
 1220 
 1221                         /*
 1222                          * The interlock is the only lock we hold, so
 1223                          * simply return.
 1224                          */
 1225                         if (lle == NULL)
 1226                                 return;
 1227                         plock = &lle->ll_children[lle->ll_count - 1];
 1228                 }
 1229         }
 1230 
 1231         /*
 1232          * Try to perform most checks without a lock.  If this succeeds we
 1233          * can skip acquiring the lock and return success.  Otherwise we redo
 1234          * the check with the lock held to handle races with concurrent updates.
 1235          */
 1236         w1 = plock->li_lock->lo_witness;
 1237         if (witness_lock_order_check(w1, w))
 1238                 return;
 1239 
 1240         mtx_lock_spin(&w_mtx);
 1241         if (witness_lock_order_check(w1, w)) {
 1242                 mtx_unlock_spin(&w_mtx);
 1243                 return;
 1244         }
 1245         witness_lock_order_add(w1, w);
 1246 
 1247         /*
 1248          * Check for duplicate locks of the same type.  Note that we only
 1249          * have to check for this on the last lock we just acquired.  Any
 1250          * other cases will be caught as lock order violations.
 1251          */
 1252         if (w1 == w) {
 1253                 i = w->w_index;
 1254                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
 1255                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
 1256                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
 1257                         w->w_reversed = 1;
 1258                         mtx_unlock_spin(&w_mtx);
 1259                         witness_output(
 1260                             "acquiring duplicate lock of same type: \"%s\"\n", 
 1261                             w->w_name);
 1262                         witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
 1263                             fixup_filename(plock->li_file), plock->li_line);
 1264                         witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
 1265                             fixup_filename(file), line);
 1266                         witness_debugger(1, __func__);
 1267                 } else
 1268                         mtx_unlock_spin(&w_mtx);
 1269                 return;
 1270         }
 1271         mtx_assert(&w_mtx, MA_OWNED);
 1272 
 1273         /*
 1274          * If we know that the lock we are acquiring comes after
 1275          * the lock we most recently acquired in the lock order tree,
 1276          * then there is no need for any further checks.
 1277          */
 1278         if (isitmychild(w1, w))
 1279                 goto out;
 1280 
 1281         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
 1282                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
 1283                         struct stack pstack;
 1284                         bool pstackv, trace;
 1285 
 1286                         MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
 1287                         lock1 = &lle->ll_children[i];
 1288 
 1289                         /*
 1290                          * Ignore the interlock.
 1291                          */
 1292                         if (interlock == lock1->li_lock)
 1293                                 continue;
 1294 
 1295                         /*
 1296                          * If this lock doesn't undergo witness checking,
 1297                          * then skip it.
 1298                          */
 1299                         w1 = lock1->li_lock->lo_witness;
 1300                         if (w1 == NULL) {
 1301                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
 1302                                     ("lock missing witness structure"));
 1303                                 continue;
 1304                         }
 1305 
 1306                         /*
 1307                          * If we are locking Giant and this is a sleepable
 1308                          * lock, then skip it.
 1309                          */
 1310                         if ((lock1->li_flags & LI_SLEEPABLE) != 0 &&
 1311                             lock == &Giant.lock_object)
 1312                                 continue;
 1313 
 1314                         /*
 1315                          * If we are locking a sleepable lock and this lock
 1316                          * is Giant, then skip it.
 1317                          */
 1318                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1319                             (flags & LOP_NOSLEEP) == 0 &&
 1320                             lock1->li_lock == &Giant.lock_object)
 1321                                 continue;
 1322 
 1323                         /*
 1324                          * If we are locking a sleepable lock and this lock
 1325                          * isn't sleepable, we want to treat it as a lock
 1326                          * order violation to enfore a general lock order of
 1327                          * sleepable locks before non-sleepable locks.
 1328                          */
 1329                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1330                             (flags & LOP_NOSLEEP) == 0 &&
 1331                             (lock1->li_flags & LI_SLEEPABLE) == 0)
 1332                                 goto reversal;
 1333 
 1334                         /*
 1335                          * If we are locking Giant and this is a non-sleepable
 1336                          * lock, then treat it as a reversal.
 1337                          */
 1338                         if ((lock1->li_flags & LI_SLEEPABLE) == 0 &&
 1339                             lock == &Giant.lock_object)
 1340                                 goto reversal;
 1341 
 1342                         /*
 1343                          * Check the lock order hierarchy for a reveresal.
 1344                          */
 1345                         if (!isitmydescendant(w, w1))
 1346                                 continue;
 1347                 reversal:
 1348 
 1349                         /*
 1350                          * We have a lock order violation, check to see if it
 1351                          * is allowed or has already been yelled about.
 1352                          */
 1353 
 1354                         /* Bail if this violation is known */
 1355                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
 1356                                 goto out;
 1357 
 1358                         /* Record this as a violation */
 1359                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
 1360                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
 1361                         w->w_reversed = w1->w_reversed = 1;
 1362                         witness_increment_graph_generation();
 1363 
 1364                         /*
 1365                          * If the lock order is blessed, bail before logging
 1366                          * anything.  We don't look for other lock order
 1367                          * violations though, which may be a bug.
 1368                          */
 1369                         if (blessed(w, w1))
 1370                                 goto out;
 1371 
 1372                         trace = atomic_load_int(&witness_trace);
 1373                         if (trace) {
 1374                                 struct witness_lock_order_data *data;
 1375 
 1376                                 pstackv = false;
 1377                                 data = witness_lock_order_get(w, w1);
 1378                                 if (data != NULL) {
 1379                                         stack_copy(&data->wlod_stack,
 1380                                             &pstack);
 1381                                         pstackv = true;
 1382                                 }
 1383                         }
 1384                         mtx_unlock_spin(&w_mtx);
 1385 
 1386 #ifdef WITNESS_NO_VNODE
 1387                         /*
 1388                          * There are known LORs between VNODE locks. They are
 1389                          * not an indication of a bug. VNODE locks are flagged
 1390                          * as such (LO_IS_VNODE) and we don't yell if the LOR
 1391                          * is between 2 VNODE locks.
 1392                          */
 1393                         if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
 1394                             (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
 1395                                 return;
 1396 #endif
 1397 
 1398                         /*
 1399                          * Ok, yell about it.
 1400                          */
 1401                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1402                             (flags & LOP_NOSLEEP) == 0 &&
 1403                             (lock1->li_flags & LI_SLEEPABLE) == 0)
 1404                                 witness_output(
 1405                 "lock order reversal: (sleepable after non-sleepable)\n");
 1406                         else if ((lock1->li_flags & LI_SLEEPABLE) == 0
 1407                             && lock == &Giant.lock_object)
 1408                                 witness_output(
 1409                 "lock order reversal: (Giant after non-sleepable)\n");
 1410                         else
 1411                                 witness_output("lock order reversal:\n");
 1412 
 1413                         /*
 1414                          * Try to locate an earlier lock with
 1415                          * witness w in our list.
 1416                          */
 1417                         do {
 1418                                 lock2 = &lle->ll_children[i];
 1419                                 MPASS(lock2->li_lock != NULL);
 1420                                 if (lock2->li_lock->lo_witness == w)
 1421                                         break;
 1422                                 if (i == 0 && lle->ll_next != NULL) {
 1423                                         lle = lle->ll_next;
 1424                                         i = lle->ll_count - 1;
 1425                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
 1426                                 } else
 1427                                         i--;
 1428                         } while (i >= 0);
 1429                         if (i < 0) {
 1430                                 witness_output(" 1st %p %s (%s, %s) @ %s:%d\n",
 1431                                     lock1->li_lock, lock1->li_lock->lo_name,
 1432                                     w1->w_name, w1->w_class->lc_name,
 1433                                     fixup_filename(lock1->li_file),
 1434                                     lock1->li_line);
 1435                                 witness_output(" 2nd %p %s (%s, %s) @ %s:%d\n",
 1436                                     lock, lock->lo_name, w->w_name,
 1437                                     w->w_class->lc_name, fixup_filename(file),
 1438                                     line);
 1439                         } else {
 1440                                 struct witness *w2 = lock2->li_lock->lo_witness;
 1441 
 1442                                 witness_output(" 1st %p %s (%s, %s) @ %s:%d\n",
 1443                                     lock2->li_lock, lock2->li_lock->lo_name,
 1444                                     w2->w_name, w2->w_class->lc_name,
 1445                                     fixup_filename(lock2->li_file),
 1446                                     lock2->li_line);
 1447                                 witness_output(" 2nd %p %s (%s, %s) @ %s:%d\n",
 1448                                     lock1->li_lock, lock1->li_lock->lo_name,
 1449                                     w1->w_name, w1->w_class->lc_name,
 1450                                     fixup_filename(lock1->li_file),
 1451                                     lock1->li_line);
 1452                                 witness_output(" 3rd %p %s (%s, %s) @ %s:%d\n", lock,
 1453                                     lock->lo_name, w->w_name,
 1454                                     w->w_class->lc_name, fixup_filename(file),
 1455                                     line);
 1456                         }
 1457                         if (trace) {
 1458                                 char buf[64];
 1459                                 struct sbuf sb;
 1460 
 1461                                 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 1462                                 sbuf_set_drain(&sb, witness_output_drain,
 1463                                     NULL);
 1464 
 1465                                 if (pstackv) {
 1466                                         sbuf_printf(&sb,
 1467                                     "lock order %s -> %s established at:\n",
 1468                                             w->w_name, w1->w_name);
 1469                                         stack_sbuf_print_flags(&sb, &pstack,
 1470                                             M_NOWAIT, STACK_SBUF_FMT_LONG);
 1471                                 }
 1472 
 1473                                 sbuf_printf(&sb,
 1474                                     "lock order %s -> %s attempted at:\n",
 1475                                     w1->w_name, w->w_name);
 1476                                 stack_save(&pstack);
 1477                                 stack_sbuf_print_flags(&sb, &pstack, M_NOWAIT,
 1478                                     STACK_SBUF_FMT_LONG);
 1479 
 1480                                 sbuf_finish(&sb);
 1481                                 sbuf_delete(&sb);
 1482                         }
 1483                         witness_enter_debugger(__func__);
 1484                         return;
 1485                 }
 1486         }
 1487 
 1488         /*
 1489          * If requested, build a new lock order.  However, don't build a new
 1490          * relationship between a sleepable lock and Giant if it is in the
 1491          * wrong direction.  The correct lock order is that sleepable locks
 1492          * always come before Giant.
 1493          */
 1494         if (flags & LOP_NEWORDER &&
 1495             !(plock->li_lock == &Giant.lock_object &&
 1496             (lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1497             (flags & LOP_NOSLEEP) == 0)) {
 1498                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
 1499                     w->w_name, plock->li_lock->lo_witness->w_name);
 1500                 itismychild(plock->li_lock->lo_witness, w);
 1501         }
 1502 out:
 1503         mtx_unlock_spin(&w_mtx);
 1504 }
 1505 
 1506 void
 1507 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
 1508 {
 1509         struct lock_list_entry **lock_list, *lle;
 1510         struct lock_instance *instance;
 1511         struct witness *w;
 1512         struct thread *td;
 1513 
 1514         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
 1515             KERNEL_PANICKED())
 1516                 return;
 1517         w = lock->lo_witness;
 1518         td = curthread;
 1519 
 1520         /* Determine lock list for this lock. */
 1521         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
 1522                 lock_list = &td->td_sleeplocks;
 1523         else
 1524                 lock_list = PCPU_PTR(spinlocks);
 1525 
 1526         /* Check to see if we are recursing on a lock we already own. */
 1527         instance = find_instance(*lock_list, lock);
 1528         if (instance != NULL) {
 1529                 instance->li_flags++;
 1530                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
 1531                     td->td_proc->p_pid, lock->lo_name,
 1532                     instance->li_flags & LI_RECURSEMASK);
 1533                 instance->li_file = file;
 1534                 instance->li_line = line;
 1535                 return;
 1536         }
 1537 
 1538         /* Update per-witness last file and line acquire. */
 1539         w->w_file = file;
 1540         w->w_line = line;
 1541 
 1542         /* Find the next open lock instance in the list and fill it. */
 1543         lle = *lock_list;
 1544         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
 1545                 lle = witness_lock_list_get();
 1546                 if (lle == NULL)
 1547                         return;
 1548                 lle->ll_next = *lock_list;
 1549                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
 1550                     td->td_proc->p_pid, lle);
 1551                 *lock_list = lle;
 1552         }
 1553         instance = &lle->ll_children[lle->ll_count++];
 1554         instance->li_lock = lock;
 1555         instance->li_line = line;
 1556         instance->li_file = file;
 1557         instance->li_flags = 0;
 1558         if ((flags & LOP_EXCLUSIVE) != 0)
 1559                 instance->li_flags |= LI_EXCLUSIVE;
 1560         if ((lock->lo_flags & LO_SLEEPABLE) != 0 && (flags & LOP_NOSLEEP) == 0)
 1561                 instance->li_flags |= LI_SLEEPABLE;
 1562         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
 1563             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
 1564 }
 1565 
 1566 void
 1567 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
 1568 {
 1569         struct lock_instance *instance;
 1570         struct lock_class *class;
 1571 
 1572         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 1573         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
 1574                 return;
 1575         class = LOCK_CLASS(lock);
 1576         if (witness_watch) {
 1577                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
 1578                         kassert_panic(
 1579                             "upgrade of non-upgradable lock (%s) %s @ %s:%d",
 1580                             class->lc_name, lock->lo_name,
 1581                             fixup_filename(file), line);
 1582                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
 1583                         kassert_panic(
 1584                             "upgrade of non-sleep lock (%s) %s @ %s:%d",
 1585                             class->lc_name, lock->lo_name,
 1586                             fixup_filename(file), line);
 1587         }
 1588         instance = find_instance(curthread->td_sleeplocks, lock);
 1589         if (instance == NULL) {
 1590                 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
 1591                     class->lc_name, lock->lo_name,
 1592                     fixup_filename(file), line);
 1593                 return;
 1594         }
 1595         if (witness_watch) {
 1596                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
 1597                         kassert_panic(
 1598                             "upgrade of exclusive lock (%s) %s @ %s:%d",
 1599                             class->lc_name, lock->lo_name,
 1600                             fixup_filename(file), line);
 1601                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
 1602                         kassert_panic(
 1603                             "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
 1604                             class->lc_name, lock->lo_name,
 1605                             instance->li_flags & LI_RECURSEMASK,
 1606                             fixup_filename(file), line);
 1607         }
 1608         instance->li_flags |= LI_EXCLUSIVE;
 1609 }
 1610 
 1611 void
 1612 witness_downgrade(struct lock_object *lock, int flags, const char *file,
 1613     int line)
 1614 {
 1615         struct lock_instance *instance;
 1616         struct lock_class *class;
 1617 
 1618         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 1619         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
 1620                 return;
 1621         class = LOCK_CLASS(lock);
 1622         if (witness_watch) {
 1623                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
 1624                         kassert_panic(
 1625                             "downgrade of non-upgradable lock (%s) %s @ %s:%d",
 1626                             class->lc_name, lock->lo_name,
 1627                             fixup_filename(file), line);
 1628                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
 1629                         kassert_panic(
 1630                             "downgrade of non-sleep lock (%s) %s @ %s:%d",
 1631                             class->lc_name, lock->lo_name,
 1632                             fixup_filename(file), line);
 1633         }
 1634         instance = find_instance(curthread->td_sleeplocks, lock);
 1635         if (instance == NULL) {
 1636                 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
 1637                     class->lc_name, lock->lo_name,
 1638                     fixup_filename(file), line);
 1639                 return;
 1640         }
 1641         if (witness_watch) {
 1642                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
 1643                         kassert_panic(
 1644                             "downgrade of shared lock (%s) %s @ %s:%d",
 1645                             class->lc_name, lock->lo_name,
 1646                             fixup_filename(file), line);
 1647                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
 1648                         kassert_panic(
 1649                             "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
 1650                             class->lc_name, lock->lo_name,
 1651                             instance->li_flags & LI_RECURSEMASK,
 1652                             fixup_filename(file), line);
 1653         }
 1654         instance->li_flags &= ~LI_EXCLUSIVE;
 1655 }
 1656 
 1657 void
 1658 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
 1659 {
 1660         struct lock_list_entry **lock_list, *lle;
 1661         struct lock_instance *instance;
 1662         struct lock_class *class;
 1663         struct thread *td;
 1664         register_t s;
 1665         int i, j;
 1666 
 1667         if (witness_cold || lock->lo_witness == NULL || KERNEL_PANICKED())
 1668                 return;
 1669         td = curthread;
 1670         class = LOCK_CLASS(lock);
 1671 
 1672         /* Find lock instance associated with this lock. */
 1673         if (class->lc_flags & LC_SLEEPLOCK)
 1674                 lock_list = &td->td_sleeplocks;
 1675         else
 1676                 lock_list = PCPU_PTR(spinlocks);
 1677         lle = *lock_list;
 1678         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
 1679                 for (i = 0; i < (*lock_list)->ll_count; i++) {
 1680                         instance = &(*lock_list)->ll_children[i];
 1681                         if (instance->li_lock == lock)
 1682                                 goto found;
 1683                 }
 1684 
 1685         /*
 1686          * When disabling WITNESS through witness_watch we could end up in
 1687          * having registered locks in the td_sleeplocks queue.
 1688          * We have to make sure we flush these queues, so just search for
 1689          * eventual register locks and remove them.
 1690          */
 1691         if (witness_watch > 0) {
 1692                 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
 1693                     lock->lo_name, fixup_filename(file), line);
 1694                 return;
 1695         } else {
 1696                 return;
 1697         }
 1698 found:
 1699 
 1700         /* First, check for shared/exclusive mismatches. */
 1701         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
 1702             (flags & LOP_EXCLUSIVE) == 0) {
 1703                 witness_output("shared unlock of (%s) %s @ %s:%d\n",
 1704                     class->lc_name, lock->lo_name, fixup_filename(file), line);
 1705                 witness_output("while exclusively locked from %s:%d\n",
 1706                     fixup_filename(instance->li_file), instance->li_line);
 1707                 kassert_panic("excl->ushare");
 1708         }
 1709         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
 1710             (flags & LOP_EXCLUSIVE) != 0) {
 1711                 witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
 1712                     class->lc_name, lock->lo_name, fixup_filename(file), line);
 1713                 witness_output("while share locked from %s:%d\n",
 1714                     fixup_filename(instance->li_file),
 1715                     instance->li_line);
 1716                 kassert_panic("share->uexcl");
 1717         }
 1718         /* If we are recursed, unrecurse. */
 1719         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
 1720                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
 1721                     td->td_proc->p_pid, instance->li_lock->lo_name,
 1722                     instance->li_flags);
 1723                 instance->li_flags--;
 1724                 return;
 1725         }
 1726         /* The lock is now being dropped, check for NORELEASE flag */
 1727         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
 1728                 witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
 1729                     class->lc_name, lock->lo_name, fixup_filename(file), line);
 1730                 kassert_panic("lock marked norelease");
 1731         }
 1732 
 1733         /* Otherwise, remove this item from the list. */
 1734         s = intr_disable();
 1735         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
 1736             td->td_proc->p_pid, instance->li_lock->lo_name,
 1737             (*lock_list)->ll_count - 1);
 1738         for (j = i; j < (*lock_list)->ll_count - 1; j++)
 1739                 (*lock_list)->ll_children[j] =
 1740                     (*lock_list)->ll_children[j + 1];
 1741         (*lock_list)->ll_count--;
 1742         intr_restore(s);
 1743 
 1744         /*
 1745          * In order to reduce contention on w_mtx, we want to keep always an
 1746          * head object into lists so that frequent allocation from the 
 1747          * free witness pool (and subsequent locking) is avoided.
 1748          * In order to maintain the current code simple, when the head
 1749          * object is totally unloaded it means also that we do not have
 1750          * further objects in the list, so the list ownership needs to be
 1751          * hand over to another object if the current head needs to be freed.
 1752          */
 1753         if ((*lock_list)->ll_count == 0) {
 1754                 if (*lock_list == lle) {
 1755                         if (lle->ll_next == NULL)
 1756                                 return;
 1757                 } else
 1758                         lle = *lock_list;
 1759                 *lock_list = lle->ll_next;
 1760                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
 1761                     td->td_proc->p_pid, lle);
 1762                 witness_lock_list_free(lle);
 1763         }
 1764 }
 1765 
 1766 void
 1767 witness_thread_exit(struct thread *td)
 1768 {
 1769         struct lock_list_entry *lle;
 1770         int i, n;
 1771 
 1772         lle = td->td_sleeplocks;
 1773         if (lle == NULL || KERNEL_PANICKED())
 1774                 return;
 1775         if (lle->ll_count != 0) {
 1776                 for (n = 0; lle != NULL; lle = lle->ll_next)
 1777                         for (i = lle->ll_count - 1; i >= 0; i--) {
 1778                                 if (n == 0)
 1779                                         witness_output(
 1780                     "Thread %p exiting with the following locks held:\n", td);
 1781                                 n++;
 1782                                 witness_list_lock(&lle->ll_children[i],
 1783                                     witness_output);
 1784                                 
 1785                         }
 1786                 kassert_panic(
 1787                     "Thread %p cannot exit while holding sleeplocks\n", td);
 1788         }
 1789         witness_lock_list_free(lle);
 1790 }
 1791 
 1792 /*
 1793  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
 1794  * exempt Giant and sleepable locks from the checks as well.  If any
 1795  * non-exempt locks are held, then a supplied message is printed to the
 1796  * output channel along with a list of the offending locks.  If indicated in the
 1797  * flags then a failure results in a panic as well.
 1798  */
 1799 int
 1800 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
 1801 {
 1802         struct lock_list_entry *lock_list, *lle;
 1803         struct lock_instance *lock1;
 1804         struct thread *td;
 1805         va_list ap;
 1806         int i, n;
 1807 
 1808         if (witness_cold || witness_watch < 1 || KERNEL_PANICKED())
 1809                 return (0);
 1810         n = 0;
 1811         td = curthread;
 1812         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
 1813                 for (i = lle->ll_count - 1; i >= 0; i--) {
 1814                         lock1 = &lle->ll_children[i];
 1815                         if (lock1->li_lock == lock)
 1816                                 continue;
 1817                         if (flags & WARN_GIANTOK &&
 1818                             lock1->li_lock == &Giant.lock_object)
 1819                                 continue;
 1820                         if (flags & WARN_SLEEPOK &&
 1821                             (lock1->li_flags & LI_SLEEPABLE) != 0)
 1822                                 continue;
 1823                         if (n == 0) {
 1824                                 va_start(ap, fmt);
 1825                                 vprintf(fmt, ap);
 1826                                 va_end(ap);
 1827                                 printf(" with the following %slocks held:\n",
 1828                                     (flags & WARN_SLEEPOK) != 0 ?
 1829                                     "non-sleepable " : "");
 1830                         }
 1831                         n++;
 1832                         witness_list_lock(lock1, printf);
 1833                 }
 1834 
 1835         /*
 1836          * Pin the thread in order to avoid problems with thread migration.
 1837          * Once that all verifies are passed about spinlocks ownership,
 1838          * the thread is in a safe path and it can be unpinned.
 1839          */
 1840         sched_pin();
 1841         lock_list = PCPU_GET(spinlocks);
 1842         if (lock_list != NULL && lock_list->ll_count != 0) {
 1843                 sched_unpin();
 1844 
 1845                 /*
 1846                  * We should only have one spinlock and as long as
 1847                  * the flags cannot match for this locks class,
 1848                  * check if the first spinlock is the one curthread
 1849                  * should hold.
 1850                  */
 1851                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
 1852                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
 1853                     lock1->li_lock == lock && n == 0)
 1854                         return (0);
 1855 
 1856                 va_start(ap, fmt);
 1857                 vprintf(fmt, ap);
 1858                 va_end(ap);
 1859                 printf(" with the following %slocks held:\n",
 1860                     (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
 1861                 n += witness_list_locks(&lock_list, printf);
 1862         } else
 1863                 sched_unpin();
 1864         if (flags & WARN_PANIC && n)
 1865                 kassert_panic("%s", __func__);
 1866         else
 1867                 witness_debugger(n, __func__);
 1868         return (n);
 1869 }
 1870 
 1871 const char *
 1872 witness_file(struct lock_object *lock)
 1873 {
 1874         struct witness *w;
 1875 
 1876         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
 1877                 return ("?");
 1878         w = lock->lo_witness;
 1879         return (w->w_file);
 1880 }
 1881 
 1882 int
 1883 witness_line(struct lock_object *lock)
 1884 {
 1885         struct witness *w;
 1886 
 1887         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
 1888                 return (0);
 1889         w = lock->lo_witness;
 1890         return (w->w_line);
 1891 }
 1892 
 1893 static struct witness *
 1894 enroll(const char *description, struct lock_class *lock_class)
 1895 {
 1896         struct witness *w;
 1897 
 1898         MPASS(description != NULL);
 1899 
 1900         if (witness_watch == -1 || KERNEL_PANICKED())
 1901                 return (NULL);
 1902         if ((lock_class->lc_flags & LC_SPINLOCK)) {
 1903                 if (witness_skipspin)
 1904                         return (NULL);
 1905         } else if ((lock_class->lc_flags & LC_SLEEPLOCK) == 0) {
 1906                 kassert_panic("lock class %s is not sleep or spin",
 1907                     lock_class->lc_name);
 1908                 return (NULL);
 1909         }
 1910 
 1911         mtx_lock_spin(&w_mtx);
 1912         w = witness_hash_get(description);
 1913         if (w)
 1914                 goto found;
 1915         if ((w = witness_get()) == NULL)
 1916                 return (NULL);
 1917         MPASS(strlen(description) < MAX_W_NAME);
 1918         strcpy(w->w_name, description);
 1919         w->w_class = lock_class;
 1920         w->w_refcount = 1;
 1921         STAILQ_INSERT_HEAD(&w_all, w, w_list);
 1922         if (lock_class->lc_flags & LC_SPINLOCK) {
 1923                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
 1924                 w_spin_cnt++;
 1925         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
 1926                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
 1927                 w_sleep_cnt++;
 1928         }
 1929 
 1930         /* Insert new witness into the hash */
 1931         witness_hash_put(w);
 1932         witness_increment_graph_generation();
 1933         mtx_unlock_spin(&w_mtx);
 1934         return (w);
 1935 found:
 1936         w->w_refcount++;
 1937         if (w->w_refcount == 1)
 1938                 w->w_class = lock_class;
 1939         mtx_unlock_spin(&w_mtx);
 1940         if (lock_class != w->w_class)
 1941                 kassert_panic(
 1942                     "lock (%s) %s does not match earlier (%s) lock",
 1943                     description, lock_class->lc_name,
 1944                     w->w_class->lc_name);
 1945         return (w);
 1946 }
 1947 
 1948 static void
 1949 depart(struct witness *w)
 1950 {
 1951 
 1952         MPASS(w->w_refcount == 0);
 1953         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
 1954                 w_sleep_cnt--;
 1955         } else {
 1956                 w_spin_cnt--;
 1957         }
 1958         /*
 1959          * Set file to NULL as it may point into a loadable module.
 1960          */
 1961         w->w_file = NULL;
 1962         w->w_line = 0;
 1963         witness_increment_graph_generation();
 1964 }
 1965 
 1966 static void
 1967 adopt(struct witness *parent, struct witness *child)
 1968 {
 1969         int pi, ci, i, j;
 1970 
 1971         if (witness_cold == 0)
 1972                 mtx_assert(&w_mtx, MA_OWNED);
 1973 
 1974         /* If the relationship is already known, there's no work to be done. */
 1975         if (isitmychild(parent, child))
 1976                 return;
 1977 
 1978         /* When the structure of the graph changes, bump up the generation. */
 1979         witness_increment_graph_generation();
 1980 
 1981         /*
 1982          * The hard part ... create the direct relationship, then propagate all
 1983          * indirect relationships.
 1984          */
 1985         pi = parent->w_index;
 1986         ci = child->w_index;
 1987         WITNESS_INDEX_ASSERT(pi);
 1988         WITNESS_INDEX_ASSERT(ci);
 1989         MPASS(pi != ci);
 1990         w_rmatrix[pi][ci] |= WITNESS_PARENT;
 1991         w_rmatrix[ci][pi] |= WITNESS_CHILD;
 1992 
 1993         /*
 1994          * If parent was not already an ancestor of child,
 1995          * then we increment the descendant and ancestor counters.
 1996          */
 1997         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
 1998                 parent->w_num_descendants++;
 1999                 child->w_num_ancestors++;
 2000         }
 2001 
 2002         /* 
 2003          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
 2004          * an ancestor of 'pi' during this loop.
 2005          */
 2006         for (i = 1; i <= w_max_used_index; i++) {
 2007                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
 2008                     (i != pi))
 2009                         continue;
 2010 
 2011                 /* Find each descendant of 'i' and mark it as a descendant. */
 2012                 for (j = 1; j <= w_max_used_index; j++) {
 2013                         /* 
 2014                          * Skip children that are already marked as
 2015                          * descendants of 'i'.
 2016                          */
 2017                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
 2018                                 continue;
 2019 
 2020                         /*
 2021                          * We are only interested in descendants of 'ci'. Note
 2022                          * that 'ci' itself is counted as a descendant of 'ci'.
 2023                          */
 2024                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
 2025                             (j != ci))
 2026                                 continue;
 2027                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
 2028                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
 2029                         w_data[i].w_num_descendants++;
 2030                         w_data[j].w_num_ancestors++;
 2031 
 2032                         /* 
 2033                          * Make sure we aren't marking a node as both an
 2034                          * ancestor and descendant. We should have caught 
 2035                          * this as a lock order reversal earlier.
 2036                          */
 2037                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
 2038                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
 2039                                 printf("witness rmatrix paradox! [%d][%d]=%d "
 2040                                     "both ancestor and descendant\n",
 2041                                     i, j, w_rmatrix[i][j]); 
 2042                                 kdb_backtrace();
 2043                                 printf("Witness disabled.\n");
 2044                                 witness_watch = -1;
 2045                         }
 2046                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
 2047                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
 2048                                 printf("witness rmatrix paradox! [%d][%d]=%d "
 2049                                     "both ancestor and descendant\n",
 2050                                     j, i, w_rmatrix[j][i]); 
 2051                                 kdb_backtrace();
 2052                                 printf("Witness disabled.\n");
 2053                                 witness_watch = -1;
 2054                         }
 2055                 }
 2056         }
 2057 }
 2058 
 2059 static void
 2060 itismychild(struct witness *parent, struct witness *child)
 2061 {
 2062         int unlocked;
 2063 
 2064         MPASS(child != NULL && parent != NULL);
 2065         if (witness_cold == 0)
 2066                 mtx_assert(&w_mtx, MA_OWNED);
 2067 
 2068         if (!witness_lock_type_equal(parent, child)) {
 2069                 if (witness_cold == 0) {
 2070                         unlocked = 1;
 2071                         mtx_unlock_spin(&w_mtx);
 2072                 } else {
 2073                         unlocked = 0;
 2074                 }
 2075                 kassert_panic(
 2076                     "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
 2077                     "the same lock type", __func__, parent->w_name,
 2078                     parent->w_class->lc_name, child->w_name,
 2079                     child->w_class->lc_name);
 2080                 if (unlocked)
 2081                         mtx_lock_spin(&w_mtx);
 2082         }
 2083         adopt(parent, child);
 2084 }
 2085 
 2086 /*
 2087  * Generic code for the isitmy*() functions. The rmask parameter is the
 2088  * expected relationship of w1 to w2.
 2089  */
 2090 static int
 2091 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
 2092 {
 2093         unsigned char r1, r2;
 2094         int i1, i2;
 2095 
 2096         i1 = w1->w_index;
 2097         i2 = w2->w_index;
 2098         WITNESS_INDEX_ASSERT(i1);
 2099         WITNESS_INDEX_ASSERT(i2);
 2100         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
 2101         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
 2102 
 2103         /* The flags on one better be the inverse of the flags on the other */
 2104         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
 2105             (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
 2106                 /* Don't squawk if we're potentially racing with an update. */
 2107                 if (!mtx_owned(&w_mtx))
 2108                         return (0);
 2109                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
 2110                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
 2111                     "w_rmatrix[%d][%d] == %hhx\n",
 2112                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
 2113                     i2, i1, r2);
 2114                 kdb_backtrace();
 2115                 printf("Witness disabled.\n");
 2116                 witness_watch = -1;
 2117         }
 2118         return (r1 & rmask);
 2119 }
 2120 
 2121 /*
 2122  * Checks if @child is a direct child of @parent.
 2123  */
 2124 static int
 2125 isitmychild(struct witness *parent, struct witness *child)
 2126 {
 2127 
 2128         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
 2129 }
 2130 
 2131 /*
 2132  * Checks if @descendant is a direct or inderect descendant of @ancestor.
 2133  */
 2134 static int
 2135 isitmydescendant(struct witness *ancestor, struct witness *descendant)
 2136 {
 2137 
 2138         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
 2139             __func__));
 2140 }
 2141 
 2142 static int
 2143 blessed(struct witness *w1, struct witness *w2)
 2144 {
 2145         int i;
 2146         struct witness_blessed *b;
 2147 
 2148         for (i = 0; i < nitems(blessed_list); i++) {
 2149                 b = &blessed_list[i];
 2150                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
 2151                         if (strcmp(w2->w_name, b->b_lock2) == 0)
 2152                                 return (1);
 2153                         continue;
 2154                 }
 2155                 if (strcmp(w1->w_name, b->b_lock2) == 0)
 2156                         if (strcmp(w2->w_name, b->b_lock1) == 0)
 2157                                 return (1);
 2158         }
 2159         return (0);
 2160 }
 2161 
 2162 static struct witness *
 2163 witness_get(void)
 2164 {
 2165         struct witness *w;
 2166         int index;
 2167 
 2168         if (witness_cold == 0)
 2169                 mtx_assert(&w_mtx, MA_OWNED);
 2170 
 2171         if (witness_watch == -1) {
 2172                 mtx_unlock_spin(&w_mtx);
 2173                 return (NULL);
 2174         }
 2175         if (STAILQ_EMPTY(&w_free)) {
 2176                 witness_watch = -1;
 2177                 mtx_unlock_spin(&w_mtx);
 2178                 printf("WITNESS: unable to allocate a new witness object\n");
 2179                 return (NULL);
 2180         }
 2181         w = STAILQ_FIRST(&w_free);
 2182         STAILQ_REMOVE_HEAD(&w_free, w_list);
 2183         w_free_cnt--;
 2184         index = w->w_index;
 2185         MPASS(index > 0 && index == w_max_used_index+1 &&
 2186             index < witness_count);
 2187         bzero(w, sizeof(*w));
 2188         w->w_index = index;
 2189         if (index > w_max_used_index)
 2190                 w_max_used_index = index;
 2191         return (w);
 2192 }
 2193 
 2194 static void
 2195 witness_free(struct witness *w)
 2196 {
 2197 
 2198         STAILQ_INSERT_HEAD(&w_free, w, w_list);
 2199         w_free_cnt++;
 2200 }
 2201 
 2202 static struct lock_list_entry *
 2203 witness_lock_list_get(void)
 2204 {
 2205         struct lock_list_entry *lle;
 2206 
 2207         if (witness_watch == -1)
 2208                 return (NULL);
 2209         mtx_lock_spin(&w_mtx);
 2210         lle = w_lock_list_free;
 2211         if (lle == NULL) {
 2212                 witness_watch = -1;
 2213                 mtx_unlock_spin(&w_mtx);
 2214                 printf("%s: witness exhausted\n", __func__);
 2215                 return (NULL);
 2216         }
 2217         w_lock_list_free = lle->ll_next;
 2218         mtx_unlock_spin(&w_mtx);
 2219         bzero(lle, sizeof(*lle));
 2220         return (lle);
 2221 }
 2222                 
 2223 static void
 2224 witness_lock_list_free(struct lock_list_entry *lle)
 2225 {
 2226 
 2227         mtx_lock_spin(&w_mtx);
 2228         lle->ll_next = w_lock_list_free;
 2229         w_lock_list_free = lle;
 2230         mtx_unlock_spin(&w_mtx);
 2231 }
 2232 
 2233 static struct lock_instance *
 2234 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
 2235 {
 2236         struct lock_list_entry *lle;
 2237         struct lock_instance *instance;
 2238         int i;
 2239 
 2240         for (lle = list; lle != NULL; lle = lle->ll_next)
 2241                 for (i = lle->ll_count - 1; i >= 0; i--) {
 2242                         instance = &lle->ll_children[i];
 2243                         if (instance->li_lock == lock)
 2244                                 return (instance);
 2245                 }
 2246         return (NULL);
 2247 }
 2248 
 2249 static void
 2250 witness_list_lock(struct lock_instance *instance,
 2251     int (*prnt)(const char *fmt, ...))
 2252 {
 2253         struct lock_object *lock;
 2254 
 2255         lock = instance->li_lock;
 2256         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
 2257             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
 2258         if (lock->lo_witness->w_name != lock->lo_name)
 2259                 prnt(" (%s)", lock->lo_witness->w_name);
 2260         prnt(" r = %d (%p) locked @ %s:%d\n",
 2261             instance->li_flags & LI_RECURSEMASK, lock,
 2262             fixup_filename(instance->li_file), instance->li_line);
 2263 }
 2264 
 2265 static int
 2266 witness_output(const char *fmt, ...)
 2267 {
 2268         va_list ap;
 2269         int ret;
 2270 
 2271         va_start(ap, fmt);
 2272         ret = witness_voutput(fmt, ap);
 2273         va_end(ap);
 2274         return (ret);
 2275 }
 2276 
 2277 static int
 2278 witness_voutput(const char *fmt, va_list ap)
 2279 {
 2280         int ret;
 2281 
 2282         ret = 0;
 2283         switch (witness_channel) {
 2284         case WITNESS_CONSOLE:
 2285                 ret = vprintf(fmt, ap);
 2286                 break;
 2287         case WITNESS_LOG:
 2288                 vlog(LOG_NOTICE, fmt, ap);
 2289                 break;
 2290         case WITNESS_NONE:
 2291                 break;
 2292         }
 2293         return (ret);
 2294 }
 2295 
 2296 #ifdef DDB
 2297 static int
 2298 witness_thread_has_locks(struct thread *td)
 2299 {
 2300 
 2301         if (td->td_sleeplocks == NULL)
 2302                 return (0);
 2303         return (td->td_sleeplocks->ll_count != 0);
 2304 }
 2305 
 2306 static int
 2307 witness_proc_has_locks(struct proc *p)
 2308 {
 2309         struct thread *td;
 2310 
 2311         FOREACH_THREAD_IN_PROC(p, td) {
 2312                 if (witness_thread_has_locks(td))
 2313                         return (1);
 2314         }
 2315         return (0);
 2316 }
 2317 #endif
 2318 
 2319 int
 2320 witness_list_locks(struct lock_list_entry **lock_list,
 2321     int (*prnt)(const char *fmt, ...))
 2322 {
 2323         struct lock_list_entry *lle;
 2324         int i, nheld;
 2325 
 2326         nheld = 0;
 2327         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
 2328                 for (i = lle->ll_count - 1; i >= 0; i--) {
 2329                         witness_list_lock(&lle->ll_children[i], prnt);
 2330                         nheld++;
 2331                 }
 2332         return (nheld);
 2333 }
 2334 
 2335 /*
 2336  * This is a bit risky at best.  We call this function when we have timed
 2337  * out acquiring a spin lock, and we assume that the other CPU is stuck
 2338  * with this lock held.  So, we go groveling around in the other CPU's
 2339  * per-cpu data to try to find the lock instance for this spin lock to
 2340  * see when it was last acquired.
 2341  */
 2342 void
 2343 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
 2344     int (*prnt)(const char *fmt, ...))
 2345 {
 2346         struct lock_instance *instance;
 2347         struct pcpu *pc;
 2348 
 2349         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
 2350                 return;
 2351         pc = pcpu_find(owner->td_oncpu);
 2352         instance = find_instance(pc->pc_spinlocks, lock);
 2353         if (instance != NULL)
 2354                 witness_list_lock(instance, prnt);
 2355 }
 2356 
 2357 void
 2358 witness_save(struct lock_object *lock, const char **filep, int *linep)
 2359 {
 2360         struct lock_list_entry *lock_list;
 2361         struct lock_instance *instance;
 2362         struct lock_class *class;
 2363 
 2364         /*
 2365          * This function is used independently in locking code to deal with
 2366          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
 2367          * is gone.
 2368          */
 2369         if (SCHEDULER_STOPPED())
 2370                 return;
 2371         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2372         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
 2373                 return;
 2374         class = LOCK_CLASS(lock);
 2375         if (class->lc_flags & LC_SLEEPLOCK)
 2376                 lock_list = curthread->td_sleeplocks;
 2377         else {
 2378                 if (witness_skipspin)
 2379                         return;
 2380                 lock_list = PCPU_GET(spinlocks);
 2381         }
 2382         instance = find_instance(lock_list, lock);
 2383         if (instance == NULL) {
 2384                 kassert_panic("%s: lock (%s) %s not locked", __func__,
 2385                     class->lc_name, lock->lo_name);
 2386                 return;
 2387         }
 2388         *filep = instance->li_file;
 2389         *linep = instance->li_line;
 2390 }
 2391 
 2392 void
 2393 witness_restore(struct lock_object *lock, const char *file, int line)
 2394 {
 2395         struct lock_list_entry *lock_list;
 2396         struct lock_instance *instance;
 2397         struct lock_class *class;
 2398 
 2399         /*
 2400          * This function is used independently in locking code to deal with
 2401          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
 2402          * is gone.
 2403          */
 2404         if (SCHEDULER_STOPPED())
 2405                 return;
 2406         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2407         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
 2408                 return;
 2409         class = LOCK_CLASS(lock);
 2410         if (class->lc_flags & LC_SLEEPLOCK)
 2411                 lock_list = curthread->td_sleeplocks;
 2412         else {
 2413                 if (witness_skipspin)
 2414                         return;
 2415                 lock_list = PCPU_GET(spinlocks);
 2416         }
 2417         instance = find_instance(lock_list, lock);
 2418         if (instance == NULL)
 2419                 kassert_panic("%s: lock (%s) %s not locked", __func__,
 2420                     class->lc_name, lock->lo_name);
 2421         lock->lo_witness->w_file = file;
 2422         lock->lo_witness->w_line = line;
 2423         if (instance == NULL)
 2424                 return;
 2425         instance->li_file = file;
 2426         instance->li_line = line;
 2427 }
 2428 
 2429 void
 2430 witness_assert(const struct lock_object *lock, int flags, const char *file,
 2431     int line)
 2432 {
 2433 #ifdef INVARIANT_SUPPORT
 2434         struct lock_instance *instance;
 2435         struct lock_class *class;
 2436 
 2437         if (lock->lo_witness == NULL || witness_watch < 1 || KERNEL_PANICKED())
 2438                 return;
 2439         class = LOCK_CLASS(lock);
 2440         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
 2441                 instance = find_instance(curthread->td_sleeplocks, lock);
 2442         else if ((class->lc_flags & LC_SPINLOCK) != 0)
 2443                 instance = find_instance(PCPU_GET(spinlocks), lock);
 2444         else {
 2445                 kassert_panic("Lock (%s) %s is not sleep or spin!",
 2446                     class->lc_name, lock->lo_name);
 2447                 return;
 2448         }
 2449         switch (flags) {
 2450         case LA_UNLOCKED:
 2451                 if (instance != NULL)
 2452                         kassert_panic("Lock (%s) %s locked @ %s:%d.",
 2453                             class->lc_name, lock->lo_name,
 2454                             fixup_filename(file), line);
 2455                 break;
 2456         case LA_LOCKED:
 2457         case LA_LOCKED | LA_RECURSED:
 2458         case LA_LOCKED | LA_NOTRECURSED:
 2459         case LA_SLOCKED:
 2460         case LA_SLOCKED | LA_RECURSED:
 2461         case LA_SLOCKED | LA_NOTRECURSED:
 2462         case LA_XLOCKED:
 2463         case LA_XLOCKED | LA_RECURSED:
 2464         case LA_XLOCKED | LA_NOTRECURSED:
 2465                 if (instance == NULL) {
 2466                         kassert_panic("Lock (%s) %s not locked @ %s:%d.",
 2467                             class->lc_name, lock->lo_name,
 2468                             fixup_filename(file), line);
 2469                         break;
 2470                 }
 2471                 if ((flags & LA_XLOCKED) != 0 &&
 2472                     (instance->li_flags & LI_EXCLUSIVE) == 0)
 2473                         kassert_panic(
 2474                             "Lock (%s) %s not exclusively locked @ %s:%d.",
 2475                             class->lc_name, lock->lo_name,
 2476                             fixup_filename(file), line);
 2477                 if ((flags & LA_SLOCKED) != 0 &&
 2478                     (instance->li_flags & LI_EXCLUSIVE) != 0)
 2479                         kassert_panic(
 2480                             "Lock (%s) %s exclusively locked @ %s:%d.",
 2481                             class->lc_name, lock->lo_name,
 2482                             fixup_filename(file), line);
 2483                 if ((flags & LA_RECURSED) != 0 &&
 2484                     (instance->li_flags & LI_RECURSEMASK) == 0)
 2485                         kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
 2486                             class->lc_name, lock->lo_name,
 2487                             fixup_filename(file), line);
 2488                 if ((flags & LA_NOTRECURSED) != 0 &&
 2489                     (instance->li_flags & LI_RECURSEMASK) != 0)
 2490                         kassert_panic("Lock (%s) %s recursed @ %s:%d.",
 2491                             class->lc_name, lock->lo_name,
 2492                             fixup_filename(file), line);
 2493                 break;
 2494         default:
 2495                 kassert_panic("Invalid lock assertion at %s:%d.",
 2496                     fixup_filename(file), line);
 2497         }
 2498 #endif  /* INVARIANT_SUPPORT */
 2499 }
 2500 
 2501 static void
 2502 witness_setflag(struct lock_object *lock, int flag, int set)
 2503 {
 2504         struct lock_list_entry *lock_list;
 2505         struct lock_instance *instance;
 2506         struct lock_class *class;
 2507 
 2508         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
 2509                 return;
 2510         class = LOCK_CLASS(lock);
 2511         if (class->lc_flags & LC_SLEEPLOCK)
 2512                 lock_list = curthread->td_sleeplocks;
 2513         else {
 2514                 if (witness_skipspin)
 2515                         return;
 2516                 lock_list = PCPU_GET(spinlocks);
 2517         }
 2518         instance = find_instance(lock_list, lock);
 2519         if (instance == NULL) {
 2520                 kassert_panic("%s: lock (%s) %s not locked", __func__,
 2521                     class->lc_name, lock->lo_name);
 2522                 return;
 2523         }
 2524 
 2525         if (set)
 2526                 instance->li_flags |= flag;
 2527         else
 2528                 instance->li_flags &= ~flag;
 2529 }
 2530 
 2531 void
 2532 witness_norelease(struct lock_object *lock)
 2533 {
 2534 
 2535         witness_setflag(lock, LI_NORELEASE, 1);
 2536 }
 2537 
 2538 void
 2539 witness_releaseok(struct lock_object *lock)
 2540 {
 2541 
 2542         witness_setflag(lock, LI_NORELEASE, 0);
 2543 }
 2544 
 2545 #ifdef DDB
 2546 static void
 2547 witness_ddb_list(struct thread *td)
 2548 {
 2549 
 2550         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2551         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
 2552 
 2553         if (witness_watch < 1)
 2554                 return;
 2555 
 2556         witness_list_locks(&td->td_sleeplocks, db_printf);
 2557 
 2558         /*
 2559          * We only handle spinlocks if td == curthread.  This is somewhat broken
 2560          * if td is currently executing on some other CPU and holds spin locks
 2561          * as we won't display those locks.  If we had a MI way of getting
 2562          * the per-cpu data for a given cpu then we could use
 2563          * td->td_oncpu to get the list of spinlocks for this thread
 2564          * and "fix" this.
 2565          *
 2566          * That still wouldn't really fix this unless we locked the scheduler
 2567          * lock or stopped the other CPU to make sure it wasn't changing the
 2568          * list out from under us.  It is probably best to just not try to
 2569          * handle threads on other CPU's for now.
 2570          */
 2571         if (td == curthread && PCPU_GET(spinlocks) != NULL)
 2572                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
 2573 }
 2574 
 2575 DB_SHOW_COMMAND(locks, db_witness_list)
 2576 {
 2577         struct thread *td;
 2578 
 2579         if (have_addr)
 2580                 td = db_lookup_thread(addr, true);
 2581         else
 2582                 td = kdb_thread;
 2583         witness_ddb_list(td);
 2584 }
 2585 
 2586 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
 2587 {
 2588         struct thread *td;
 2589         struct proc *p;
 2590 
 2591         /*
 2592          * It would be nice to list only threads and processes that actually
 2593          * held sleep locks, but that information is currently not exported
 2594          * by WITNESS.
 2595          */
 2596         FOREACH_PROC_IN_SYSTEM(p) {
 2597                 if (!witness_proc_has_locks(p))
 2598                         continue;
 2599                 FOREACH_THREAD_IN_PROC(p, td) {
 2600                         if (!witness_thread_has_locks(td))
 2601                                 continue;
 2602                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
 2603                             p->p_comm, td, td->td_tid);
 2604                         witness_ddb_list(td);
 2605                         if (db_pager_quit)
 2606                                 return;
 2607                 }
 2608         }
 2609 }
 2610 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
 2611 
 2612 DB_SHOW_COMMAND(witness, db_witness_display)
 2613 {
 2614 
 2615         witness_ddb_display(db_printf);
 2616 }
 2617 #endif
 2618 
 2619 static void
 2620 sbuf_print_witness_badstacks(struct sbuf *sb, size_t *oldidx)
 2621 {
 2622         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
 2623         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
 2624         int generation, i, j;
 2625 
 2626         tmp_data1 = NULL;
 2627         tmp_data2 = NULL;
 2628         tmp_w1 = NULL;
 2629         tmp_w2 = NULL;
 2630 
 2631         /* Allocate and init temporary storage space. */
 2632         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
 2633         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
 2634         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
 2635             M_WAITOK | M_ZERO);
 2636         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
 2637             M_WAITOK | M_ZERO);
 2638         stack_zero(&tmp_data1->wlod_stack);
 2639         stack_zero(&tmp_data2->wlod_stack);
 2640 
 2641 restart:
 2642         mtx_lock_spin(&w_mtx);
 2643         generation = w_generation;
 2644         mtx_unlock_spin(&w_mtx);
 2645         sbuf_printf(sb, "Number of known direct relationships is %d\n",
 2646             w_lohash.wloh_count);
 2647         for (i = 1; i < w_max_used_index; i++) {
 2648                 mtx_lock_spin(&w_mtx);
 2649                 if (generation != w_generation) {
 2650                         mtx_unlock_spin(&w_mtx);
 2651 
 2652                         /* The graph has changed, try again. */
 2653                         *oldidx = 0;
 2654                         sbuf_clear(sb);
 2655                         goto restart;
 2656                 }
 2657 
 2658                 w1 = &w_data[i];
 2659                 if (w1->w_reversed == 0) {
 2660                         mtx_unlock_spin(&w_mtx);
 2661                         continue;
 2662                 }
 2663 
 2664                 /* Copy w1 locally so we can release the spin lock. */
 2665                 *tmp_w1 = *w1;
 2666                 mtx_unlock_spin(&w_mtx);
 2667 
 2668                 if (tmp_w1->w_reversed == 0)
 2669                         continue;
 2670                 for (j = 1; j < w_max_used_index; j++) {
 2671                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
 2672                                 continue;
 2673 
 2674                         mtx_lock_spin(&w_mtx);
 2675                         if (generation != w_generation) {
 2676                                 mtx_unlock_spin(&w_mtx);
 2677 
 2678                                 /* The graph has changed, try again. */
 2679                                 *oldidx = 0;
 2680                                 sbuf_clear(sb);
 2681                                 goto restart;
 2682                         }
 2683 
 2684                         w2 = &w_data[j];
 2685                         data1 = witness_lock_order_get(w1, w2);
 2686                         data2 = witness_lock_order_get(w2, w1);
 2687 
 2688                         /*
 2689                          * Copy information locally so we can release the
 2690                          * spin lock.
 2691                          */
 2692                         *tmp_w2 = *w2;
 2693 
 2694                         if (data1) {
 2695                                 stack_zero(&tmp_data1->wlod_stack);
 2696                                 stack_copy(&data1->wlod_stack,
 2697                                     &tmp_data1->wlod_stack);
 2698                         }
 2699                         if (data2 && data2 != data1) {
 2700                                 stack_zero(&tmp_data2->wlod_stack);
 2701                                 stack_copy(&data2->wlod_stack,
 2702                                     &tmp_data2->wlod_stack);
 2703                         }
 2704                         mtx_unlock_spin(&w_mtx);
 2705 
 2706                         if (blessed(tmp_w1, tmp_w2))
 2707                                 continue;
 2708 
 2709                         sbuf_printf(sb,
 2710             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
 2711                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
 2712                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
 2713                         if (data1) {
 2714                                 sbuf_printf(sb,
 2715                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
 2716                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
 2717                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
 2718                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
 2719                                 sbuf_printf(sb, "\n");
 2720                         }
 2721                         if (data2 && data2 != data1) {
 2722                                 sbuf_printf(sb,
 2723                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
 2724                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
 2725                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
 2726                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
 2727                                 sbuf_printf(sb, "\n");
 2728                         }
 2729                 }
 2730         }
 2731         mtx_lock_spin(&w_mtx);
 2732         if (generation != w_generation) {
 2733                 mtx_unlock_spin(&w_mtx);
 2734 
 2735                 /*
 2736                  * The graph changed while we were printing stack data,
 2737                  * try again.
 2738                  */
 2739                 *oldidx = 0;
 2740                 sbuf_clear(sb);
 2741                 goto restart;
 2742         }
 2743         mtx_unlock_spin(&w_mtx);
 2744 
 2745         /* Free temporary storage space. */
 2746         free(tmp_data1, M_TEMP);
 2747         free(tmp_data2, M_TEMP);
 2748         free(tmp_w1, M_TEMP);
 2749         free(tmp_w2, M_TEMP);
 2750 }
 2751 
 2752 static int
 2753 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
 2754 {
 2755         struct sbuf *sb;
 2756         int error;
 2757 
 2758         if (witness_watch < 1) {
 2759                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
 2760                 return (error);
 2761         }
 2762         if (witness_cold) {
 2763                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
 2764                 return (error);
 2765         }
 2766         error = 0;
 2767         sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
 2768         if (sb == NULL)
 2769                 return (ENOMEM);
 2770 
 2771         sbuf_print_witness_badstacks(sb, &req->oldidx);
 2772 
 2773         sbuf_finish(sb);
 2774         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
 2775         sbuf_delete(sb);
 2776 
 2777         return (error);
 2778 }
 2779 
 2780 #ifdef DDB
 2781 static int
 2782 sbuf_db_printf_drain(void *arg __unused, const char *data, int len)
 2783 {
 2784 
 2785         return (db_printf("%.*s", len, data));
 2786 }
 2787 
 2788 DB_SHOW_COMMAND(badstacks, db_witness_badstacks)
 2789 {
 2790         struct sbuf sb;
 2791         char buffer[128];
 2792         size_t dummy;
 2793 
 2794         sbuf_new(&sb, buffer, sizeof(buffer), SBUF_FIXEDLEN);
 2795         sbuf_set_drain(&sb, sbuf_db_printf_drain, NULL);
 2796         sbuf_print_witness_badstacks(&sb, &dummy);
 2797         sbuf_finish(&sb);
 2798 }
 2799 #endif
 2800 
 2801 static int
 2802 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
 2803 {
 2804         static const struct {
 2805                 enum witness_channel channel;
 2806                 const char *name;
 2807         } channels[] = {
 2808                 { WITNESS_CONSOLE, "console" },
 2809                 { WITNESS_LOG, "log" },
 2810                 { WITNESS_NONE, "none" },
 2811         };
 2812         char buf[16];
 2813         u_int i;
 2814         int error;
 2815 
 2816         buf[0] = '\0';
 2817         for (i = 0; i < nitems(channels); i++)
 2818                 if (witness_channel == channels[i].channel) {
 2819                         snprintf(buf, sizeof(buf), "%s", channels[i].name);
 2820                         break;
 2821                 }
 2822 
 2823         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
 2824         if (error != 0 || req->newptr == NULL)
 2825                 return (error);
 2826 
 2827         error = EINVAL;
 2828         for (i = 0; i < nitems(channels); i++)
 2829                 if (strcmp(channels[i].name, buf) == 0) {
 2830                         witness_channel = channels[i].channel;
 2831                         error = 0;
 2832                         break;
 2833                 }
 2834         return (error);
 2835 }
 2836 
 2837 static int
 2838 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
 2839 {
 2840         struct witness *w;
 2841         struct sbuf *sb;
 2842         int error;
 2843 
 2844 #ifdef __i386__
 2845         error = SYSCTL_OUT(req, w_notallowed, sizeof(w_notallowed));
 2846         return (error);
 2847 #endif
 2848 
 2849         if (witness_watch < 1) {
 2850                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
 2851                 return (error);
 2852         }
 2853         if (witness_cold) {
 2854                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
 2855                 return (error);
 2856         }
 2857         error = 0;
 2858 
 2859         error = sysctl_wire_old_buffer(req, 0);
 2860         if (error != 0)
 2861                 return (error);
 2862         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
 2863         if (sb == NULL)
 2864                 return (ENOMEM);
 2865         sbuf_printf(sb, "\n");
 2866 
 2867         mtx_lock_spin(&w_mtx);
 2868         STAILQ_FOREACH(w, &w_all, w_list)
 2869                 w->w_displayed = 0;
 2870         STAILQ_FOREACH(w, &w_all, w_list)
 2871                 witness_add_fullgraph(sb, w);
 2872         mtx_unlock_spin(&w_mtx);
 2873 
 2874         /*
 2875          * Close the sbuf and return to userland.
 2876          */
 2877         error = sbuf_finish(sb);
 2878         sbuf_delete(sb);
 2879 
 2880         return (error);
 2881 }
 2882 
 2883 static int
 2884 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
 2885 {
 2886         int error, value;
 2887 
 2888         value = witness_watch;
 2889         error = sysctl_handle_int(oidp, &value, 0, req);
 2890         if (error != 0 || req->newptr == NULL)
 2891                 return (error);
 2892         if (value > 1 || value < -1 ||
 2893             (witness_watch == -1 && value != witness_watch))
 2894                 return (EINVAL);
 2895         witness_watch = value;
 2896         return (0);
 2897 }
 2898 
 2899 static void
 2900 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
 2901 {
 2902         int i;
 2903 
 2904         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
 2905                 return;
 2906         w->w_displayed = 1;
 2907 
 2908         WITNESS_INDEX_ASSERT(w->w_index);
 2909         for (i = 1; i <= w_max_used_index; i++) {
 2910                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
 2911                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
 2912                             w_data[i].w_name);
 2913                         witness_add_fullgraph(sb, &w_data[i]);
 2914                 }
 2915         }
 2916 }
 2917 
 2918 /*
 2919  * A simple hash function. Takes a key pointer and a key size. If size == 0,
 2920  * interprets the key as a string and reads until the null
 2921  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
 2922  * hash value computed from the key.
 2923  */
 2924 static uint32_t
 2925 witness_hash_djb2(const uint8_t *key, uint32_t size)
 2926 {
 2927         unsigned int hash = 5381;
 2928         int i;
 2929 
 2930         /* hash = hash * 33 + key[i] */
 2931         if (size)
 2932                 for (i = 0; i < size; i++)
 2933                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
 2934         else
 2935                 for (i = 0; key[i] != 0; i++)
 2936                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
 2937 
 2938         return (hash);
 2939 }
 2940 
 2941 /*
 2942  * Initializes the two witness hash tables. Called exactly once from
 2943  * witness_initialize().
 2944  */
 2945 static void
 2946 witness_init_hash_tables(void)
 2947 {
 2948         int i;
 2949 
 2950         MPASS(witness_cold);
 2951 
 2952         /* Initialize the hash tables. */
 2953         for (i = 0; i < WITNESS_HASH_SIZE; i++)
 2954                 w_hash.wh_array[i] = NULL;
 2955 
 2956         w_hash.wh_size = WITNESS_HASH_SIZE;
 2957         w_hash.wh_count = 0;
 2958 
 2959         /* Initialize the lock order data hash. */
 2960         w_lofree = NULL;
 2961         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
 2962                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
 2963                 w_lodata[i].wlod_next = w_lofree;
 2964                 w_lofree = &w_lodata[i];
 2965         }
 2966         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
 2967         w_lohash.wloh_count = 0;
 2968         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
 2969                 w_lohash.wloh_array[i] = NULL;
 2970 }
 2971 
 2972 static struct witness *
 2973 witness_hash_get(const char *key)
 2974 {
 2975         struct witness *w;
 2976         uint32_t hash;
 2977 
 2978         MPASS(key != NULL);
 2979         if (witness_cold == 0)
 2980                 mtx_assert(&w_mtx, MA_OWNED);
 2981         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
 2982         w = w_hash.wh_array[hash];
 2983         while (w != NULL) {
 2984                 if (strcmp(w->w_name, key) == 0)
 2985                         goto out;
 2986                 w = w->w_hash_next;
 2987         }
 2988 
 2989 out:
 2990         return (w);
 2991 }
 2992 
 2993 static void
 2994 witness_hash_put(struct witness *w)
 2995 {
 2996         uint32_t hash;
 2997 
 2998         MPASS(w != NULL);
 2999         MPASS(w->w_name != NULL);
 3000         if (witness_cold == 0)
 3001                 mtx_assert(&w_mtx, MA_OWNED);
 3002         KASSERT(witness_hash_get(w->w_name) == NULL,
 3003             ("%s: trying to add a hash entry that already exists!", __func__));
 3004         KASSERT(w->w_hash_next == NULL,
 3005             ("%s: w->w_hash_next != NULL", __func__));
 3006 
 3007         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
 3008         w->w_hash_next = w_hash.wh_array[hash];
 3009         w_hash.wh_array[hash] = w;
 3010         w_hash.wh_count++;
 3011 }
 3012 
 3013 static struct witness_lock_order_data *
 3014 witness_lock_order_get(struct witness *parent, struct witness *child)
 3015 {
 3016         struct witness_lock_order_data *data = NULL;
 3017         struct witness_lock_order_key key;
 3018         unsigned int hash;
 3019 
 3020         MPASS(parent != NULL && child != NULL);
 3021         key.from = parent->w_index;
 3022         key.to = child->w_index;
 3023         WITNESS_INDEX_ASSERT(key.from);
 3024         WITNESS_INDEX_ASSERT(key.to);
 3025         if ((w_rmatrix[parent->w_index][child->w_index]
 3026             & WITNESS_LOCK_ORDER_KNOWN) == 0)
 3027                 goto out;
 3028 
 3029         hash = witness_hash_djb2((const char*)&key,
 3030             sizeof(key)) % w_lohash.wloh_size;
 3031         data = w_lohash.wloh_array[hash];
 3032         while (data != NULL) {
 3033                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
 3034                         break;
 3035                 data = data->wlod_next;
 3036         }
 3037 
 3038 out:
 3039         return (data);
 3040 }
 3041 
 3042 /*
 3043  * Verify that parent and child have a known relationship, are not the same,
 3044  * and child is actually a child of parent.  This is done without w_mtx
 3045  * to avoid contention in the common case.
 3046  */
 3047 static int
 3048 witness_lock_order_check(struct witness *parent, struct witness *child)
 3049 {
 3050 
 3051         if (parent != child &&
 3052             w_rmatrix[parent->w_index][child->w_index]
 3053             & WITNESS_LOCK_ORDER_KNOWN &&
 3054             isitmychild(parent, child))
 3055                 return (1);
 3056 
 3057         return (0);
 3058 }
 3059 
 3060 static int
 3061 witness_lock_order_add(struct witness *parent, struct witness *child)
 3062 {
 3063         struct witness_lock_order_data *data = NULL;
 3064         struct witness_lock_order_key key;
 3065         unsigned int hash;
 3066 
 3067         MPASS(parent != NULL && child != NULL);
 3068         key.from = parent->w_index;
 3069         key.to = child->w_index;
 3070         WITNESS_INDEX_ASSERT(key.from);
 3071         WITNESS_INDEX_ASSERT(key.to);
 3072         if (w_rmatrix[parent->w_index][child->w_index]
 3073             & WITNESS_LOCK_ORDER_KNOWN)
 3074                 return (1);
 3075 
 3076         hash = witness_hash_djb2((const char*)&key,
 3077             sizeof(key)) % w_lohash.wloh_size;
 3078         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
 3079         data = w_lofree;
 3080         if (data == NULL)
 3081                 return (0);
 3082         w_lofree = data->wlod_next;
 3083         data->wlod_next = w_lohash.wloh_array[hash];
 3084         data->wlod_key = key;
 3085         w_lohash.wloh_array[hash] = data;
 3086         w_lohash.wloh_count++;
 3087         stack_zero(&data->wlod_stack);
 3088         stack_save(&data->wlod_stack);
 3089         return (1);
 3090 }
 3091 
 3092 /* Call this whenever the structure of the witness graph changes. */
 3093 static void
 3094 witness_increment_graph_generation(void)
 3095 {
 3096 
 3097         if (witness_cold == 0)
 3098                 mtx_assert(&w_mtx, MA_OWNED);
 3099         w_generation++;
 3100 }
 3101 
 3102 static int
 3103 witness_output_drain(void *arg __unused, const char *data, int len)
 3104 {
 3105 
 3106         witness_output("%.*s", len, data);
 3107         return (len);
 3108 }
 3109 
 3110 static void
 3111 witness_debugger(int cond, const char *msg)
 3112 {
 3113         char buf[32];
 3114         struct sbuf sb;
 3115         struct stack st;
 3116 
 3117         if (!cond)
 3118                 return;
 3119 
 3120         if (witness_trace) {
 3121                 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 3122                 sbuf_set_drain(&sb, witness_output_drain, NULL);
 3123 
 3124                 stack_zero(&st);
 3125                 stack_save(&st);
 3126                 witness_output("stack backtrace:\n");
 3127                 stack_sbuf_print_ddb(&sb, &st);
 3128 
 3129                 sbuf_finish(&sb);
 3130         }
 3131 
 3132         witness_enter_debugger(msg);
 3133 }
 3134 
 3135 static void
 3136 witness_enter_debugger(const char *msg)
 3137 {
 3138 #ifdef KDB
 3139         if (witness_kdb)
 3140                 kdb_enter(KDB_WHY_WITNESS, msg);
 3141 #endif
 3142 }

Cache object: 661878e35da75d90120874cbb67fbbf1


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.