The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_witness.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. Redistributions in binary form must reproduce the above copyright
   10  *    notice, this list of conditions and the following disclaimer in the
   11  *    documentation and/or other materials provided with the distribution.
   12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
   13  *    promote products derived from this software without specific prior
   14  *    written permission.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  *
   28  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
   29  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
   30  */
   31 
   32 /*
   33  * Implementation of the `witness' lock verifier.  Originally implemented for
   34  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
   35  * classes in FreeBSD.
   36  */
   37 
   38 /*
   39  *      Main Entry: witness
   40  *      Pronunciation: 'wit-n&s
   41  *      Function: noun
   42  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
   43  *          testimony, witness, from 2wit
   44  *      Date: before 12th century
   45  *      1 : attestation of a fact or event : TESTIMONY
   46  *      2 : one that gives evidence; specifically : one who testifies in
   47  *          a cause or before a judicial tribunal
   48  *      3 : one asked to be present at a transaction so as to be able to
   49  *          testify to its having taken place
   50  *      4 : one who has personal knowledge of something
   51  *      5 a : something serving as evidence or proof : SIGN
   52  *        b : public affirmation by word or example of usually
   53  *            religious faith or conviction <the heroic witness to divine
   54  *            life -- Pilot>
   55  *      6 capitalized : a member of the Jehovah's Witnesses 
   56  */
   57 
   58 /*
   59  * Special rules concerning Giant and lock orders:
   60  *
   61  * 1) Giant must be acquired before any other mutexes.  Stated another way,
   62  *    no other mutex may be held when Giant is acquired.
   63  *
   64  * 2) Giant must be released when blocking on a sleepable lock.
   65  *
   66  * This rule is less obvious, but is a result of Giant providing the same
   67  * semantics as spl().  Basically, when a thread sleeps, it must release
   68  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
   69  * 2).
   70  *
   71  * 3) Giant may be acquired before or after sleepable locks.
   72  *
   73  * This rule is also not quite as obvious.  Giant may be acquired after
   74  * a sleepable lock because it is a non-sleepable lock and non-sleepable
   75  * locks may always be acquired while holding a sleepable lock.  The second
   76  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
   77  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
   78  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
   79  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
   80  * execute.  Thus, acquiring Giant both before and after a sleepable lock
   81  * will not result in a lock order reversal.
   82  */
   83 
   84 #include <sys/cdefs.h>
   85 __FBSDID("$FreeBSD$");
   86 
   87 #include "opt_ddb.h"
   88 #include "opt_hwpmc_hooks.h"
   89 #include "opt_witness.h"
   90 
   91 #include <sys/param.h>
   92 #include <sys/bus.h>
   93 #include <sys/kdb.h>
   94 #include <sys/kernel.h>
   95 #include <sys/ktr.h>
   96 #include <sys/lock.h>
   97 #include <sys/malloc.h>
   98 #include <sys/mutex.h>
   99 #include <sys/priv.h>
  100 #include <sys/proc.h>
  101 #include <sys/sysctl.h>
  102 #include <sys/systm.h>
  103 
  104 #include <ddb/ddb.h>
  105 
  106 #include <machine/stdarg.h>
  107 
  108 /* Note that these traces do not work with KTR_ALQ. */
  109 #if 0
  110 #define KTR_WITNESS     KTR_SUBSYS
  111 #else
  112 #define KTR_WITNESS     0
  113 #endif
  114 
  115 /* Easier to stay with the old names. */
  116 #define lo_list         lo_witness_data.lod_list
  117 #define lo_witness      lo_witness_data.lod_witness
  118 
  119 /* Define this to check for blessed mutexes */
  120 #undef BLESSING
  121 
  122 #define WITNESS_COUNT 1024
  123 #define WITNESS_CHILDCOUNT (WITNESS_COUNT * 4)
  124 /*
  125  * XXX: This is somewhat bogus, as we assume here that at most 1024 threads
  126  * will hold LOCK_NCHILDREN * 2 locks.  We handle failure ok, and we should
  127  * probably be safe for the most part, but it's still a SWAG.
  128  */
  129 #define LOCK_CHILDCOUNT (MAXCPU + 1024) * 2
  130 
  131 #define WITNESS_NCHILDREN 6
  132 
  133 struct witness_child_list_entry;
  134 
  135 struct witness {
  136         const   char *w_name;
  137         struct  lock_class *w_class;
  138         STAILQ_ENTRY(witness) w_list;           /* List of all witnesses. */
  139         STAILQ_ENTRY(witness) w_typelist;       /* Witnesses of a type. */
  140         struct  witness_child_list_entry *w_children;   /* Great evilness... */
  141         const   char *w_file;
  142         int     w_line;
  143         u_int   w_level;
  144         u_int   w_refcount;
  145         u_char  w_Giant_squawked:1;
  146         u_char  w_other_squawked:1;
  147         u_char  w_same_squawked:1;
  148         u_char  w_displayed:1;
  149 };
  150 
  151 struct witness_child_list_entry {
  152         struct  witness_child_list_entry *wcl_next;
  153         struct  witness *wcl_children[WITNESS_NCHILDREN];
  154         u_int   wcl_count;
  155 };
  156 
  157 STAILQ_HEAD(witness_list, witness);
  158 
  159 #ifdef BLESSING
  160 struct witness_blessed {
  161         const   char *b_lock1;
  162         const   char *b_lock2;
  163 };
  164 #endif
  165 
  166 struct witness_order_list_entry {
  167         const   char *w_name;
  168         struct  lock_class *w_class;
  169 };
  170 
  171 #ifdef BLESSING
  172 static int      blessed(struct witness *, struct witness *);
  173 #endif
  174 static int      depart(struct witness *w);
  175 static struct   witness *enroll(const char *description,
  176                                 struct lock_class *lock_class);
  177 static int      insertchild(struct witness *parent, struct witness *child);
  178 static int      isitmychild(struct witness *parent, struct witness *child);
  179 static int      isitmydescendant(struct witness *parent, struct witness *child);
  180 static int      itismychild(struct witness *parent, struct witness *child);
  181 static void     removechild(struct witness *parent, struct witness *child);
  182 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
  183 static const char *fixup_filename(const char *file);
  184 static struct   witness *witness_get(void);
  185 static void     witness_free(struct witness *m);
  186 static struct   witness_child_list_entry *witness_child_get(void);
  187 static void     witness_child_free(struct witness_child_list_entry *wcl);
  188 static struct   lock_list_entry *witness_lock_list_get(void);
  189 static void     witness_lock_list_free(struct lock_list_entry *lle);
  190 static struct   lock_instance *find_instance(struct lock_list_entry *lock_list,
  191                                              struct lock_object *lock);
  192 static void     witness_list_lock(struct lock_instance *instance);
  193 #ifdef DDB
  194 static void     witness_leveldescendents(struct witness *parent, int level);
  195 static void     witness_levelall(void);
  196 static void     witness_displaydescendants(void(*)(const char *fmt, ...),
  197                                            struct witness *, int indent);
  198 static void     witness_display_list(void(*prnt)(const char *fmt, ...),
  199                                      struct witness_list *list);
  200 static void     witness_display(void(*)(const char *fmt, ...));
  201 static void     witness_list(struct thread *td);
  202 #endif
  203 
  204 SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, 0, "Witness Locking");
  205 
  206 /*
  207  * If set to 0, witness is disabled.  If set to a non-zero value, witness
  208  * performs full lock order checking for all locks.  At runtime, this
  209  * value may be set to 0 to turn off witness.  witness is not allowed be
  210  * turned on once it is turned off, however.
  211  */
  212 static int witness_watch = 1;
  213 TUNABLE_INT("debug.witness.watch", &witness_watch);
  214 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
  215     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
  216 
  217 #ifdef KDB
  218 /*
  219  * When KDB is enabled and witness_kdb is set to 1, it will cause the system
  220  * to drop into kdebug() when:
  221  *      - a lock hierarchy violation occurs
  222  *      - locks are held when going to sleep.
  223  */
  224 #ifdef WITNESS_KDB
  225 int     witness_kdb = 1;
  226 #else
  227 int     witness_kdb = 0;
  228 #endif
  229 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
  230 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
  231 
  232 /*
  233  * When KDB is enabled and witness_trace is set to 1, it will cause the system
  234  * to print a stack trace:
  235  *      - a lock hierarchy violation occurs
  236  *      - locks are held when going to sleep.
  237  */
  238 int     witness_trace = 1;
  239 TUNABLE_INT("debug.witness.trace", &witness_trace);
  240 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
  241 #endif /* KDB */
  242 
  243 #ifdef WITNESS_SKIPSPIN
  244 int     witness_skipspin = 1;
  245 #else
  246 int     witness_skipspin = 0;
  247 #endif
  248 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
  249 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN,
  250     &witness_skipspin, 0, "");
  251 
  252 static struct mtx w_mtx;
  253 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
  254 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
  255 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
  256 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
  257 static struct witness_child_list_entry *w_child_free = NULL;
  258 static struct lock_list_entry *w_lock_list_free = NULL;
  259 
  260 static int w_free_cnt, w_spin_cnt, w_sleep_cnt, w_child_free_cnt, w_child_cnt;
  261 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
  262 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
  263 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
  264     "");
  265 SYSCTL_INT(_debug_witness, OID_AUTO, child_free_cnt, CTLFLAG_RD,
  266     &w_child_free_cnt, 0, "");
  267 SYSCTL_INT(_debug_witness, OID_AUTO, child_cnt, CTLFLAG_RD, &w_child_cnt, 0,
  268     "");
  269 
  270 static struct witness w_data[WITNESS_COUNT];
  271 static struct witness_child_list_entry w_childdata[WITNESS_CHILDCOUNT];
  272 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
  273 
  274 static struct witness_order_list_entry order_lists[] = {
  275         /*
  276          * sx locks
  277          */
  278         { "proctree", &lock_class_sx },
  279         { "allproc", &lock_class_sx },
  280         { "allprison", &lock_class_sx },
  281         { NULL, NULL },
  282         /*
  283          * Various mutexes
  284          */
  285         { "Giant", &lock_class_mtx_sleep },
  286         { "pipe mutex", &lock_class_mtx_sleep },
  287         { "sigio lock", &lock_class_mtx_sleep },
  288         { "process group", &lock_class_mtx_sleep },
  289         { "process lock", &lock_class_mtx_sleep },
  290         { "session", &lock_class_mtx_sleep },
  291         { "uidinfo hash", &lock_class_mtx_sleep },
  292         { "uidinfo struct", &lock_class_mtx_sleep },
  293 #ifdef  HWPMC_HOOKS
  294         { "pmc-sleep", &lock_class_mtx_sleep },
  295 #endif
  296         { NULL, NULL },
  297         /*
  298          * Sockets
  299          */
  300         { "accept", &lock_class_mtx_sleep },
  301         { "so_snd", &lock_class_mtx_sleep },
  302         { "so_rcv", &lock_class_mtx_sleep },
  303         { "sellck", &lock_class_mtx_sleep },
  304         { NULL, NULL },
  305         /*
  306          * Routing
  307          */
  308         { "so_rcv", &lock_class_mtx_sleep },
  309         { "radix node head", &lock_class_mtx_sleep },
  310         { "rtentry", &lock_class_mtx_sleep },
  311         { "ifaddr", &lock_class_mtx_sleep },
  312         { NULL, NULL },
  313         /*
  314          * Multicast - protocol locks before interface locks, after UDP locks.
  315          */
  316         { "udpinp", &lock_class_rw },
  317         { "in_multi_mtx", &lock_class_mtx_sleep },
  318         { "igmp_mtx", &lock_class_mtx_sleep },
  319         { "if_addr_mtx", &lock_class_mtx_sleep },
  320         { NULL, NULL },
  321         /*
  322          * UNIX Domain Sockets
  323          */
  324         { "unp", &lock_class_mtx_sleep },
  325         { "so_snd", &lock_class_mtx_sleep },
  326         { NULL, NULL },
  327         /*
  328          * UDP/IP
  329          */
  330         { "udp", &lock_class_rw },
  331         { "udpinp", &lock_class_rw },
  332         { "so_snd", &lock_class_mtx_sleep },
  333         { NULL, NULL },
  334         /*
  335          * TCP/IP
  336          */
  337         { "tcp", &lock_class_rw },
  338         { "tcpinp", &lock_class_rw },
  339         { "so_snd", &lock_class_mtx_sleep },
  340         { NULL, NULL },
  341         /*
  342          * SLIP
  343          */
  344         { "slip_mtx", &lock_class_mtx_sleep },
  345         { "slip sc_mtx", &lock_class_mtx_sleep },
  346         { NULL, NULL },
  347         /*
  348          * netatalk
  349          */
  350         { "ddp_list_mtx", &lock_class_mtx_sleep },
  351         { "ddp_mtx", &lock_class_mtx_sleep },
  352         { NULL, NULL },
  353         /*
  354          * BPF
  355          */
  356         { "bpf global lock", &lock_class_mtx_sleep },
  357         { "bpf interface lock", &lock_class_mtx_sleep },
  358         { "bpf cdev lock", &lock_class_mtx_sleep },
  359         { NULL, NULL },
  360         /*
  361          * NFS server
  362          */
  363         { "nfsd_mtx", &lock_class_mtx_sleep },
  364         { "so_snd", &lock_class_mtx_sleep },
  365         { NULL, NULL },
  366 
  367         /*
  368          * IEEE 802.11
  369          */
  370         { "802.11 com lock", &lock_class_mtx_sleep},
  371         { NULL, NULL },
  372         /*
  373          * Network drivers
  374          */
  375         { "network driver", &lock_class_mtx_sleep},
  376         { NULL, NULL },
  377 
  378         /*
  379          * Netgraph
  380          */
  381         { "ng_node", &lock_class_mtx_sleep },
  382         { "ng_worklist", &lock_class_mtx_sleep },
  383         { NULL, NULL },
  384         /*
  385          * CDEV
  386          */
  387         { "system map", &lock_class_mtx_sleep },
  388         { "vm page queue mutex", &lock_class_mtx_sleep },
  389         { "vnode interlock", &lock_class_mtx_sleep },
  390         { "cdev", &lock_class_mtx_sleep },
  391         { NULL, NULL },
  392         /*
  393          * kqueue/VFS interaction
  394          */
  395         { "kqueue", &lock_class_mtx_sleep },
  396         { "struct mount mtx", &lock_class_mtx_sleep },
  397         { "vnode interlock", &lock_class_mtx_sleep },
  398         { NULL, NULL },
  399         /*
  400          * spin locks
  401          */
  402 #ifdef SMP
  403         { "ap boot", &lock_class_mtx_spin },
  404 #endif
  405         { "rm.mutex_mtx", &lock_class_mtx_spin },
  406         { "sio", &lock_class_mtx_spin },
  407         { "scrlock", &lock_class_mtx_spin },
  408 #ifdef __i386__
  409         { "cy", &lock_class_mtx_spin },
  410 #endif
  411 #ifdef __sparc64__
  412         { "pcib_mtx", &lock_class_mtx_spin },
  413         { "rtc_mtx", &lock_class_mtx_spin },
  414 #endif
  415         { "scc_hwmtx", &lock_class_mtx_spin },
  416         { "uart_hwmtx", &lock_class_mtx_spin },
  417         { "fast_taskqueue", &lock_class_mtx_spin },
  418         { "intr table", &lock_class_mtx_spin },
  419 #ifdef  HWPMC_HOOKS
  420         { "pmc-per-proc", &lock_class_mtx_spin },
  421 #endif
  422         { "process slock", &lock_class_mtx_spin },
  423         { "sleepq chain", &lock_class_mtx_spin },
  424         { "umtx lock", &lock_class_mtx_spin },
  425         { "turnstile chain", &lock_class_mtx_spin },
  426         { "turnstile lock", &lock_class_mtx_spin },
  427         { "sched lock", &lock_class_mtx_spin },
  428         { "td_contested", &lock_class_mtx_spin },
  429         { "callout", &lock_class_mtx_spin },
  430         { "entropy harvest mutex", &lock_class_mtx_spin },
  431         { "syscons video lock", &lock_class_mtx_spin },
  432         { "time lock", &lock_class_mtx_spin },
  433 #ifdef SMP
  434         { "smp rendezvous", &lock_class_mtx_spin },
  435 #endif
  436         /*
  437          * leaf locks
  438          */
  439         { "icu", &lock_class_mtx_spin },
  440 #if defined(SMP) && defined(__sparc64__)
  441         { "ipi", &lock_class_mtx_spin },
  442 #endif
  443 #ifdef __i386__
  444         { "allpmaps", &lock_class_mtx_spin },
  445         { "descriptor tables", &lock_class_mtx_spin },
  446 #endif
  447         { "clk", &lock_class_mtx_spin },
  448         { "mprof lock", &lock_class_mtx_spin },
  449         { "kse lock", &lock_class_mtx_spin },
  450         { "zombie lock", &lock_class_mtx_spin },
  451         { "ALD Queue", &lock_class_mtx_spin },
  452 #ifdef __ia64__
  453         { "MCA spin lock", &lock_class_mtx_spin },
  454 #endif
  455 #if defined(__i386__) || defined(__amd64__)
  456         { "pcicfg", &lock_class_mtx_spin },
  457         { "NDIS thread lock", &lock_class_mtx_spin },
  458 #endif
  459         { "tw_osl_io_lock", &lock_class_mtx_spin },
  460         { "tw_osl_q_lock", &lock_class_mtx_spin },
  461         { "tw_cl_io_lock", &lock_class_mtx_spin },
  462         { "tw_cl_intr_lock", &lock_class_mtx_spin },
  463         { "tw_cl_gen_lock", &lock_class_mtx_spin },
  464 #ifdef  HWPMC_HOOKS
  465         { "pmc-leaf", &lock_class_mtx_spin },
  466 #endif
  467         { "blocked lock", &lock_class_mtx_spin },
  468         { NULL, NULL },
  469         { NULL, NULL }
  470 };
  471 
  472 #ifdef BLESSING
  473 /*
  474  * Pairs of locks which have been blessed
  475  * Don't complain about order problems with blessed locks
  476  */
  477 static struct witness_blessed blessed_list[] = {
  478 };
  479 static int blessed_count =
  480         sizeof(blessed_list) / sizeof(struct witness_blessed);
  481 #endif
  482 
  483 /*
  484  * List of locks initialized prior to witness being initialized whose
  485  * enrollment is currently deferred.
  486  */
  487 STAILQ_HEAD(, lock_object) pending_locks =
  488     STAILQ_HEAD_INITIALIZER(pending_locks);
  489 
  490 /*
  491  * This global is set to 0 once it becomes safe to use the witness code.
  492  */
  493 static int witness_cold = 1;
  494 
  495 /*
  496  * This global is set to 1 once the static lock orders have been enrolled
  497  * so that a warning can be issued for any spin locks enrolled later.
  498  */
  499 static int witness_spin_warn = 0;
  500 
  501 /*
  502  * The WITNESS-enabled diagnostic code.  Note that the witness code does
  503  * assume that the early boot is single-threaded at least until after this
  504  * routine is completed.
  505  */
  506 static void
  507 witness_initialize(void *dummy __unused)
  508 {
  509         struct lock_object *lock;
  510         struct witness_order_list_entry *order;
  511         struct witness *w, *w1;
  512         int i;
  513 
  514         /*
  515          * We have to release Giant before initializing its witness
  516          * structure so that WITNESS doesn't get confused.
  517          */
  518         mtx_unlock(&Giant);
  519         mtx_assert(&Giant, MA_NOTOWNED);
  520 
  521         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
  522         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
  523             MTX_NOWITNESS | MTX_NOPROFILE);
  524         for (i = 0; i < WITNESS_COUNT; i++)
  525                 witness_free(&w_data[i]);
  526         for (i = 0; i < WITNESS_CHILDCOUNT; i++)
  527                 witness_child_free(&w_childdata[i]);
  528         for (i = 0; i < LOCK_CHILDCOUNT; i++)
  529                 witness_lock_list_free(&w_locklistdata[i]);
  530 
  531         /* First add in all the specified order lists. */
  532         for (order = order_lists; order->w_name != NULL; order++) {
  533                 w = enroll(order->w_name, order->w_class);
  534                 if (w == NULL)
  535                         continue;
  536                 w->w_file = "order list";
  537                 for (order++; order->w_name != NULL; order++) {
  538                         w1 = enroll(order->w_name, order->w_class);
  539                         if (w1 == NULL)
  540                                 continue;
  541                         w1->w_file = "order list";
  542                         if (!itismychild(w, w1))
  543                                 panic("Not enough memory for static orders!");
  544                         w = w1;
  545                 }
  546         }
  547         witness_spin_warn = 1;
  548 
  549         /* Iterate through all locks and add them to witness. */
  550         while (!STAILQ_EMPTY(&pending_locks)) {
  551                 lock = STAILQ_FIRST(&pending_locks);
  552                 STAILQ_REMOVE_HEAD(&pending_locks, lo_list);
  553                 KASSERT(lock->lo_flags & LO_WITNESS,
  554                     ("%s: lock %s is on pending list but not LO_WITNESS",
  555                     __func__, lock->lo_name));
  556                 lock->lo_witness = enroll(lock->lo_type, LOCK_CLASS(lock));
  557         }
  558 
  559         /* Mark the witness code as being ready for use. */
  560         witness_cold = 0;
  561 
  562         mtx_lock(&Giant);
  563 }
  564 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
  565     NULL);
  566 
  567 static int
  568 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
  569 {
  570         int error, value;
  571 
  572         value = witness_watch;
  573         error = sysctl_handle_int(oidp, &value, 0, req);
  574         if (error != 0 || req->newptr == NULL)
  575                 return (error);
  576         if (value == witness_watch)
  577                 return (0);
  578         if (value != 0)
  579                 return (EINVAL);
  580         witness_watch = 0;
  581         return (0);
  582 }
  583 
  584 void
  585 witness_init(struct lock_object *lock)
  586 {
  587         struct lock_class *class;
  588 
  589         /* Various sanity checks. */
  590         class = LOCK_CLASS(lock);
  591         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
  592             (class->lc_flags & LC_RECURSABLE) == 0)
  593                 panic("%s: lock (%s) %s can not be recursable", __func__,
  594                     class->lc_name, lock->lo_name);
  595         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
  596             (class->lc_flags & LC_SLEEPABLE) == 0)
  597                 panic("%s: lock (%s) %s can not be sleepable", __func__,
  598                     class->lc_name, lock->lo_name);
  599         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
  600             (class->lc_flags & LC_UPGRADABLE) == 0)
  601                 panic("%s: lock (%s) %s can not be upgradable", __func__,
  602                     class->lc_name, lock->lo_name);
  603 
  604         /*
  605          * If we shouldn't watch this lock, then just clear lo_witness.
  606          * Otherwise, if witness_cold is set, then it is too early to
  607          * enroll this lock, so defer it to witness_initialize() by adding
  608          * it to the pending_locks list.  If it is not too early, then enroll
  609          * the lock now.
  610          */
  611         if (witness_watch == 0 || panicstr != NULL ||
  612             (lock->lo_flags & LO_WITNESS) == 0)
  613                 lock->lo_witness = NULL;
  614         else if (witness_cold) {
  615                 STAILQ_INSERT_TAIL(&pending_locks, lock, lo_list);
  616                 lock->lo_flags |= LO_ENROLLPEND;
  617         } else
  618                 lock->lo_witness = enroll(lock->lo_type, class);
  619 }
  620 
  621 void
  622 witness_destroy(struct lock_object *lock)
  623 {
  624         struct lock_class *class;
  625         struct witness *w;
  626 
  627         class = LOCK_CLASS(lock);
  628         if (witness_cold)
  629                 panic("lock (%s) %s destroyed while witness_cold",
  630                     class->lc_name, lock->lo_name);
  631 
  632         /* XXX: need to verify that no one holds the lock */
  633         if ((lock->lo_flags & (LO_WITNESS | LO_ENROLLPEND)) == LO_WITNESS &&
  634             lock->lo_witness != NULL) {
  635                 w = lock->lo_witness;
  636                 mtx_lock_spin(&w_mtx);
  637                 MPASS(w->w_refcount > 0);
  638                 w->w_refcount--;
  639 
  640                 /*
  641                  * Lock is already released if we have an allocation failure
  642                  * and depart() fails.
  643                  */
  644                 if (w->w_refcount != 0 || depart(w))
  645                         mtx_unlock_spin(&w_mtx);
  646         }
  647 
  648         /*
  649          * If this lock is destroyed before witness is up and running,
  650          * remove it from the pending list.
  651          */
  652         if (lock->lo_flags & LO_ENROLLPEND) {
  653                 STAILQ_REMOVE(&pending_locks, lock, lock_object, lo_list);
  654                 lock->lo_flags &= ~LO_ENROLLPEND;
  655         }
  656 }
  657 
  658 #ifdef DDB
  659 static void
  660 witness_levelall (void)
  661 {
  662         struct witness_list *list;
  663         struct witness *w, *w1;
  664 
  665         /*
  666          * First clear all levels.
  667          */
  668         STAILQ_FOREACH(w, &w_all, w_list) {
  669                 w->w_level = 0;
  670         }
  671 
  672         /*
  673          * Look for locks with no parent and level all their descendants.
  674          */
  675         STAILQ_FOREACH(w, &w_all, w_list) {
  676                 /*
  677                  * This is just an optimization, technically we could get
  678                  * away just walking the all list each time.
  679                  */
  680                 if (w->w_class->lc_flags & LC_SLEEPLOCK)
  681                         list = &w_sleep;
  682                 else
  683                         list = &w_spin;
  684                 STAILQ_FOREACH(w1, list, w_typelist) {
  685                         if (isitmychild(w1, w))
  686                                 goto skip;
  687                 }
  688                 witness_leveldescendents(w, 0);
  689         skip:
  690                 ;       /* silence GCC 3.x */
  691         }
  692 }
  693 
  694 static void
  695 witness_leveldescendents(struct witness *parent, int level)
  696 {
  697         struct witness_child_list_entry *wcl;
  698         int i;
  699 
  700         if (parent->w_level < level)
  701                 parent->w_level = level;
  702         level++;
  703         for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
  704                 for (i = 0; i < wcl->wcl_count; i++)
  705                         witness_leveldescendents(wcl->wcl_children[i], level);
  706 }
  707 
  708 static void
  709 witness_displaydescendants(void(*prnt)(const char *fmt, ...),
  710                            struct witness *parent, int indent)
  711 {
  712         struct witness_child_list_entry *wcl;
  713         int i, level;
  714 
  715         level = parent->w_level;
  716         prnt("%-2d", level);
  717         for (i = 0; i < indent; i++)
  718                 prnt(" ");
  719         if (parent->w_refcount > 0)
  720                 prnt("%s", parent->w_name);
  721         else
  722                 prnt("(dead)");
  723         if (parent->w_displayed) {
  724                 prnt(" -- (already displayed)\n");
  725                 return;
  726         }
  727         parent->w_displayed = 1;
  728         if (parent->w_refcount > 0) {
  729                 if (parent->w_file != NULL)
  730                         prnt(" -- last acquired @ %s:%d", parent->w_file,
  731                             parent->w_line);
  732         }
  733         prnt("\n");
  734         for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
  735                 for (i = 0; i < wcl->wcl_count; i++)
  736                             witness_displaydescendants(prnt,
  737                                 wcl->wcl_children[i], indent + 1);
  738 }
  739 
  740 static void
  741 witness_display_list(void(*prnt)(const char *fmt, ...),
  742                      struct witness_list *list)
  743 {
  744         struct witness *w;
  745 
  746         STAILQ_FOREACH(w, list, w_typelist) {
  747                 if (w->w_file == NULL || w->w_level > 0)
  748                         continue;
  749                 /*
  750                  * This lock has no anscestors, display its descendants. 
  751                  */
  752                 witness_displaydescendants(prnt, w, 0);
  753         }
  754 }
  755         
  756 static void
  757 witness_display(void(*prnt)(const char *fmt, ...))
  758 {
  759         struct witness *w;
  760 
  761         KASSERT(!witness_cold, ("%s: witness_cold", __func__));
  762         witness_levelall();
  763 
  764         /* Clear all the displayed flags. */
  765         STAILQ_FOREACH(w, &w_all, w_list) {
  766                 w->w_displayed = 0;
  767         }
  768 
  769         /*
  770          * First, handle sleep locks which have been acquired at least
  771          * once.
  772          */
  773         prnt("Sleep locks:\n");
  774         witness_display_list(prnt, &w_sleep);
  775         
  776         /*
  777          * Now do spin locks which have been acquired at least once.
  778          */
  779         prnt("\nSpin locks:\n");
  780         witness_display_list(prnt, &w_spin);
  781         
  782         /*
  783          * Finally, any locks which have not been acquired yet.
  784          */
  785         prnt("\nLocks which were never acquired:\n");
  786         STAILQ_FOREACH(w, &w_all, w_list) {
  787                 if (w->w_file != NULL || w->w_refcount == 0)
  788                         continue;
  789                 prnt("%s\n", w->w_name);
  790         }
  791 }
  792 #endif /* DDB */
  793 
  794 /* Trim useless garbage from filenames. */
  795 static const char *
  796 fixup_filename(const char *file)
  797 {
  798 
  799         if (file == NULL)
  800                 return (NULL);
  801         while (strncmp(file, "../", 3) == 0)
  802                 file += 3;
  803         return (file);
  804 }
  805 
  806 int
  807 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
  808 {
  809 
  810         if (witness_watch == 0 || panicstr != NULL)
  811                 return (0);
  812 
  813         /* Require locks that witness knows about. */
  814         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
  815             lock2->lo_witness == NULL)
  816                 return (EINVAL);
  817 
  818         MPASS(!mtx_owned(&w_mtx));
  819         mtx_lock_spin(&w_mtx);
  820 
  821         /*
  822          * If we already have either an explicit or implied lock order that
  823          * is the other way around, then return an error.
  824          */
  825         if (isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
  826                 mtx_unlock_spin(&w_mtx);
  827                 return (EDOOFUS);
  828         }
  829         
  830         /* Try to add the new order. */
  831         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
  832             lock2->lo_type, lock1->lo_type);
  833         if (!itismychild(lock1->lo_witness, lock2->lo_witness))
  834                 return (ENOMEM);
  835         mtx_unlock_spin(&w_mtx);
  836         return (0);
  837 }
  838 
  839 void
  840 witness_checkorder(struct lock_object *lock, int flags, const char *file,
  841     int line)
  842 {
  843         struct lock_list_entry **lock_list, *lle;
  844         struct lock_instance *lock1, *lock2;
  845         struct lock_class *class;
  846         struct witness *w, *w1;
  847         struct thread *td;
  848         int i, j;
  849 
  850         if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
  851             panicstr != NULL)
  852                 return;
  853 
  854         /*
  855          * Try locks do not block if they fail to acquire the lock, thus
  856          * there is no danger of deadlocks or of switching while holding a
  857          * spin lock if we acquire a lock via a try operation.  This
  858          * function shouldn't even be called for try locks, so panic if
  859          * that happens.
  860          */
  861         if (flags & LOP_TRYLOCK)
  862                 panic("%s should not be called for try lock operations",
  863                     __func__);
  864 
  865         w = lock->lo_witness;
  866         class = LOCK_CLASS(lock);
  867         td = curthread;
  868         file = fixup_filename(file);
  869 
  870         if (class->lc_flags & LC_SLEEPLOCK) {
  871                 /*
  872                  * Since spin locks include a critical section, this check
  873                  * implicitly enforces a lock order of all sleep locks before
  874                  * all spin locks.
  875                  */
  876                 if (td->td_critnest != 0 && !kdb_active)
  877                         panic("blockable sleep lock (%s) %s @ %s:%d",
  878                             class->lc_name, lock->lo_name, file, line);
  879 
  880                 /*
  881                  * If this is the first lock acquired then just return as
  882                  * no order checking is needed.
  883                  */
  884                 if (td->td_sleeplocks == NULL)
  885                         return;
  886                 lock_list = &td->td_sleeplocks;
  887         } else {
  888                 /*
  889                  * If this is the first lock, just return as no order
  890                  * checking is needed.  We check this in both if clauses
  891                  * here as unifying the check would require us to use a
  892                  * critical section to ensure we don't migrate while doing
  893                  * the check.  Note that if this is not the first lock, we
  894                  * are already in a critical section and are safe for the
  895                  * rest of the check.
  896                  */
  897                 if (PCPU_GET(spinlocks) == NULL)
  898                         return;
  899                 lock_list = PCPU_PTR(spinlocks);
  900         }
  901 
  902         /*
  903          * Check to see if we are recursing on a lock we already own.  If
  904          * so, make sure that we don't mismatch exclusive and shared lock
  905          * acquires.
  906          */
  907         lock1 = find_instance(*lock_list, lock);
  908         if (lock1 != NULL) {
  909                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
  910                     (flags & LOP_EXCLUSIVE) == 0) {
  911                         printf("shared lock of (%s) %s @ %s:%d\n",
  912                             class->lc_name, lock->lo_name, file, line);
  913                         printf("while exclusively locked from %s:%d\n",
  914                             lock1->li_file, lock1->li_line);
  915                         panic("share->excl");
  916                 }
  917                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
  918                     (flags & LOP_EXCLUSIVE) != 0) {
  919                         printf("exclusive lock of (%s) %s @ %s:%d\n",
  920                             class->lc_name, lock->lo_name, file, line);
  921                         printf("while share locked from %s:%d\n",
  922                             lock1->li_file, lock1->li_line);
  923                         panic("excl->share");
  924                 }
  925                 return;
  926         }
  927 
  928         /*
  929          * Try locks do not block if they fail to acquire the lock, thus
  930          * there is no danger of deadlocks or of switching while holding a
  931          * spin lock if we acquire a lock via a try operation.
  932          */
  933         if (flags & LOP_TRYLOCK)
  934                 return;
  935 
  936         /*
  937          * Check for duplicate locks of the same type.  Note that we only
  938          * have to check for this on the last lock we just acquired.  Any
  939          * other cases will be caught as lock order violations.
  940          */
  941         lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
  942         w1 = lock1->li_lock->lo_witness;
  943         if (w1 == w) {
  944                 if (w->w_same_squawked || (lock->lo_flags & LO_DUPOK) ||
  945                     (flags & LOP_DUPOK))
  946                         return;
  947                 w->w_same_squawked = 1;
  948                 printf("acquiring duplicate lock of same type: \"%s\"\n", 
  949                         lock->lo_type);
  950                 printf(" 1st %s @ %s:%d\n", lock1->li_lock->lo_name,
  951                     lock1->li_file, lock1->li_line);
  952                 printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
  953 #ifdef KDB
  954                 goto debugger;
  955 #else
  956                 return;
  957 #endif
  958         }
  959         MPASS(!mtx_owned(&w_mtx));
  960         mtx_lock_spin(&w_mtx);
  961         /*
  962          * If we know that the the lock we are acquiring comes after
  963          * the lock we most recently acquired in the lock order tree,
  964          * then there is no need for any further checks.
  965          */
  966         if (isitmychild(w1, w)) {
  967                 mtx_unlock_spin(&w_mtx);
  968                 return;
  969         }
  970         for (j = 0, lle = *lock_list; lle != NULL; lle = lle->ll_next) {
  971                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
  972 
  973                         MPASS(j < WITNESS_COUNT);
  974                         lock1 = &lle->ll_children[i];
  975                         w1 = lock1->li_lock->lo_witness;
  976 
  977                         /*
  978                          * If this lock doesn't undergo witness checking,
  979                          * then skip it.
  980                          */
  981                         if (w1 == NULL) {
  982                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
  983                                     ("lock missing witness structure"));
  984                                 continue;
  985                         }
  986                         /*
  987                          * If we are locking Giant and this is a sleepable
  988                          * lock, then skip it.
  989                          */
  990                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
  991                             lock == &Giant.lock_object)
  992                                 continue;
  993                         /*
  994                          * If we are locking a sleepable lock and this lock
  995                          * is Giant, then skip it.
  996                          */
  997                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
  998                             lock1->li_lock == &Giant.lock_object)
  999                                 continue;
 1000                         /*
 1001                          * If we are locking a sleepable lock and this lock
 1002                          * isn't sleepable, we want to treat it as a lock
 1003                          * order violation to enfore a general lock order of
 1004                          * sleepable locks before non-sleepable locks.
 1005                          */
 1006                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1007                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
 1008                                 goto reversal;
 1009                         /*
 1010                          * If we are locking Giant and this is a non-sleepable
 1011                          * lock, then treat it as a reversal.
 1012                          */
 1013                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
 1014                             lock == &Giant.lock_object)
 1015                                 goto reversal;
 1016                         /*
 1017                          * Check the lock order hierarchy for a reveresal.
 1018                          */
 1019                         if (!isitmydescendant(w, w1))
 1020                                 continue;
 1021                 reversal:
 1022                         /*
 1023                          * We have a lock order violation, check to see if it
 1024                          * is allowed or has already been yelled about.
 1025                          */
 1026                         mtx_unlock_spin(&w_mtx);
 1027 #ifdef BLESSING
 1028                         /*
 1029                          * If the lock order is blessed, just bail.  We don't
 1030                          * look for other lock order violations though, which
 1031                          * may be a bug.
 1032                          */
 1033                         if (blessed(w, w1))
 1034                                 return;
 1035 #endif
 1036                         if (lock1->li_lock == &Giant.lock_object) {
 1037                                 if (w1->w_Giant_squawked)
 1038                                         return;
 1039                                 else
 1040                                         w1->w_Giant_squawked = 1;
 1041                         } else {
 1042                                 if (w1->w_other_squawked)
 1043                                         return;
 1044                                 else
 1045                                         w1->w_other_squawked = 1;
 1046                         }
 1047                         /*
 1048                          * Ok, yell about it.
 1049                          */
 1050                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1051                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
 1052                                 printf(
 1053                 "lock order reversal: (sleepable after non-sleepable)\n");
 1054                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
 1055                             && lock == &Giant.lock_object)
 1056                                 printf(
 1057                 "lock order reversal: (Giant after non-sleepable)\n");
 1058                         else
 1059                                 printf("lock order reversal:\n");
 1060                         /*
 1061                          * Try to locate an earlier lock with
 1062                          * witness w in our list.
 1063                          */
 1064                         do {
 1065                                 lock2 = &lle->ll_children[i];
 1066                                 MPASS(lock2->li_lock != NULL);
 1067                                 if (lock2->li_lock->lo_witness == w)
 1068                                         break;
 1069                                 if (i == 0 && lle->ll_next != NULL) {
 1070                                         lle = lle->ll_next;
 1071                                         i = lle->ll_count - 1;
 1072                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
 1073                                 } else
 1074                                         i--;
 1075                         } while (i >= 0);
 1076                         if (i < 0) {
 1077                                 printf(" 1st %p %s (%s) @ %s:%d\n",
 1078                                     lock1->li_lock, lock1->li_lock->lo_name,
 1079                                     lock1->li_lock->lo_type, lock1->li_file,
 1080                                     lock1->li_line);
 1081                                 printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
 1082                                     lock->lo_name, lock->lo_type, file, line);
 1083                         } else {
 1084                                 printf(" 1st %p %s (%s) @ %s:%d\n",
 1085                                     lock2->li_lock, lock2->li_lock->lo_name,
 1086                                     lock2->li_lock->lo_type, lock2->li_file,
 1087                                     lock2->li_line);
 1088                                 printf(" 2nd %p %s (%s) @ %s:%d\n",
 1089                                     lock1->li_lock, lock1->li_lock->lo_name,
 1090                                     lock1->li_lock->lo_type, lock1->li_file,
 1091                                     lock1->li_line);
 1092                                 printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
 1093                                     lock->lo_name, lock->lo_type, file, line);
 1094                         }
 1095 #ifdef KDB
 1096                         goto debugger;
 1097 #else
 1098                         return;
 1099 #endif
 1100                 }
 1101         }
 1102         lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
 1103         /*
 1104          * If requested, build a new lock order.  However, don't build a new
 1105          * relationship between a sleepable lock and Giant if it is in the
 1106          * wrong direction.  The correct lock order is that sleepable locks
 1107          * always come before Giant.
 1108          */
 1109         if (flags & LOP_NEWORDER &&
 1110             !(lock1->li_lock == &Giant.lock_object &&
 1111             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
 1112                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
 1113                     lock->lo_type, lock1->li_lock->lo_type);
 1114                 if (!itismychild(lock1->li_lock->lo_witness, w))
 1115                         /* Witness is dead. */
 1116                         return;
 1117         } 
 1118         mtx_unlock_spin(&w_mtx);
 1119         return;
 1120 
 1121 #ifdef KDB
 1122 debugger:
 1123         if (witness_trace)
 1124                 kdb_backtrace();
 1125         if (witness_kdb)
 1126                 kdb_enter_why(KDB_WHY_WITNESS, __func__);
 1127 #endif
 1128 }
 1129 
 1130 void
 1131 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
 1132 {
 1133         struct lock_list_entry **lock_list, *lle;
 1134         struct lock_instance *instance;
 1135         struct witness *w;
 1136         struct thread *td;
 1137 
 1138         if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
 1139             panicstr != NULL)
 1140                 return;
 1141         w = lock->lo_witness;
 1142         td = curthread;
 1143         file = fixup_filename(file);
 1144 
 1145         /* Determine lock list for this lock. */
 1146         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
 1147                 lock_list = &td->td_sleeplocks;
 1148         else
 1149                 lock_list = PCPU_PTR(spinlocks);
 1150 
 1151         /* Check to see if we are recursing on a lock we already own. */
 1152         instance = find_instance(*lock_list, lock);
 1153         if (instance != NULL) {
 1154                 instance->li_flags++;
 1155                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
 1156                     td->td_proc->p_pid, lock->lo_name,
 1157                     instance->li_flags & LI_RECURSEMASK);
 1158                 instance->li_file = file;
 1159                 instance->li_line = line;
 1160                 return;
 1161         }
 1162 
 1163         /* Update per-witness last file and line acquire. */
 1164         w->w_file = file;
 1165         w->w_line = line;
 1166 
 1167         /* Find the next open lock instance in the list and fill it. */
 1168         lle = *lock_list;
 1169         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
 1170                 lle = witness_lock_list_get();
 1171                 if (lle == NULL)
 1172                         return;
 1173                 lle->ll_next = *lock_list;
 1174                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
 1175                     td->td_proc->p_pid, lle);
 1176                 *lock_list = lle;
 1177         }
 1178         instance = &lle->ll_children[lle->ll_count++];
 1179         instance->li_lock = lock;
 1180         instance->li_line = line;
 1181         instance->li_file = file;
 1182         if ((flags & LOP_EXCLUSIVE) != 0)
 1183                 instance->li_flags = LI_EXCLUSIVE;
 1184         else
 1185                 instance->li_flags = 0;
 1186         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
 1187             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
 1188 }
 1189 
 1190 void
 1191 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
 1192 {
 1193         struct lock_instance *instance;
 1194         struct lock_class *class;
 1195 
 1196         KASSERT(!witness_cold, ("%s: witness_cold", __func__));
 1197         if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
 1198                 return;
 1199         class = LOCK_CLASS(lock);
 1200         file = fixup_filename(file);
 1201         if ((lock->lo_flags & LO_UPGRADABLE) == 0)
 1202                 panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
 1203                     class->lc_name, lock->lo_name, file, line);
 1204         if ((flags & LOP_TRYLOCK) == 0)
 1205                 panic("non-try upgrade of lock (%s) %s @ %s:%d", class->lc_name,
 1206                     lock->lo_name, file, line);
 1207         if ((class->lc_flags & LC_SLEEPLOCK) == 0)
 1208                 panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
 1209                     class->lc_name, lock->lo_name, file, line);
 1210         instance = find_instance(curthread->td_sleeplocks, lock);
 1211         if (instance == NULL)
 1212                 panic("upgrade of unlocked lock (%s) %s @ %s:%d",
 1213                     class->lc_name, lock->lo_name, file, line);
 1214         if ((instance->li_flags & LI_EXCLUSIVE) != 0)
 1215                 panic("upgrade of exclusive lock (%s) %s @ %s:%d",
 1216                     class->lc_name, lock->lo_name, file, line);
 1217         if ((instance->li_flags & LI_RECURSEMASK) != 0)
 1218                 panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
 1219                     class->lc_name, lock->lo_name,
 1220                     instance->li_flags & LI_RECURSEMASK, file, line);
 1221         instance->li_flags |= LI_EXCLUSIVE;
 1222 }
 1223 
 1224 void
 1225 witness_downgrade(struct lock_object *lock, int flags, const char *file,
 1226     int line)
 1227 {
 1228         struct lock_instance *instance;
 1229         struct lock_class *class;
 1230 
 1231         KASSERT(!witness_cold, ("%s: witness_cold", __func__));
 1232         if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
 1233                 return;
 1234         class = LOCK_CLASS(lock);
 1235         file = fixup_filename(file);
 1236         if ((lock->lo_flags & LO_UPGRADABLE) == 0)
 1237                 panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
 1238                     class->lc_name, lock->lo_name, file, line);
 1239         if ((class->lc_flags & LC_SLEEPLOCK) == 0)
 1240                 panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
 1241                     class->lc_name, lock->lo_name, file, line);
 1242         instance = find_instance(curthread->td_sleeplocks, lock);
 1243         if (instance == NULL)
 1244                 panic("downgrade of unlocked lock (%s) %s @ %s:%d",
 1245                     class->lc_name, lock->lo_name, file, line);
 1246         if ((instance->li_flags & LI_EXCLUSIVE) == 0)
 1247                 panic("downgrade of shared lock (%s) %s @ %s:%d",
 1248                     class->lc_name, lock->lo_name, file, line);
 1249         if ((instance->li_flags & LI_RECURSEMASK) != 0)
 1250                 panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
 1251                     class->lc_name, lock->lo_name,
 1252                     instance->li_flags & LI_RECURSEMASK, file, line);
 1253         instance->li_flags &= ~LI_EXCLUSIVE;
 1254 }
 1255 
 1256 void
 1257 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
 1258 {
 1259         struct lock_list_entry **lock_list, *lle;
 1260         struct lock_instance *instance;
 1261         struct lock_class *class;
 1262         struct thread *td;
 1263         register_t s;
 1264         int i, j;
 1265 
 1266         if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
 1267             panicstr != NULL)
 1268                 return;
 1269         td = curthread;
 1270         class = LOCK_CLASS(lock);
 1271         file = fixup_filename(file);
 1272 
 1273         /* Find lock instance associated with this lock. */
 1274         if (class->lc_flags & LC_SLEEPLOCK)
 1275                 lock_list = &td->td_sleeplocks;
 1276         else
 1277                 lock_list = PCPU_PTR(spinlocks);
 1278         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
 1279                 for (i = 0; i < (*lock_list)->ll_count; i++) {
 1280                         instance = &(*lock_list)->ll_children[i];
 1281                         if (instance->li_lock == lock)
 1282                                 goto found;
 1283                 }
 1284         panic("lock (%s) %s not locked @ %s:%d", class->lc_name, lock->lo_name,
 1285             file, line);
 1286 found:
 1287 
 1288         /* First, check for shared/exclusive mismatches. */
 1289         if ((instance->li_flags & LI_EXCLUSIVE) != 0 &&
 1290             (flags & LOP_EXCLUSIVE) == 0) {
 1291                 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
 1292                     lock->lo_name, file, line);
 1293                 printf("while exclusively locked from %s:%d\n",
 1294                     instance->li_file, instance->li_line);
 1295                 panic("excl->ushare");
 1296         }
 1297         if ((instance->li_flags & LI_EXCLUSIVE) == 0 &&
 1298             (flags & LOP_EXCLUSIVE) != 0) {
 1299                 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
 1300                     lock->lo_name, file, line);
 1301                 printf("while share locked from %s:%d\n", instance->li_file,
 1302                     instance->li_line);
 1303                 panic("share->uexcl");
 1304         }
 1305 
 1306         /* If we are recursed, unrecurse. */
 1307         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
 1308                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
 1309                     td->td_proc->p_pid, instance->li_lock->lo_name,
 1310                     instance->li_flags);
 1311                 instance->li_flags--;
 1312                 return;
 1313         }
 1314 
 1315         /* Otherwise, remove this item from the list. */
 1316         s = intr_disable();
 1317         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
 1318             td->td_proc->p_pid, instance->li_lock->lo_name,
 1319             (*lock_list)->ll_count - 1);
 1320         for (j = i; j < (*lock_list)->ll_count - 1; j++)
 1321                 (*lock_list)->ll_children[j] =
 1322                     (*lock_list)->ll_children[j + 1];
 1323         (*lock_list)->ll_count--;
 1324         intr_restore(s);
 1325 
 1326         /* If this lock list entry is now empty, free it. */
 1327         if ((*lock_list)->ll_count == 0) {
 1328                 lle = *lock_list;
 1329                 *lock_list = lle->ll_next;
 1330                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
 1331                     td->td_proc->p_pid, lle);
 1332                 witness_lock_list_free(lle);
 1333         }
 1334 }
 1335 
 1336 /*
 1337  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
 1338  * exempt Giant and sleepable locks from the checks as well.  If any
 1339  * non-exempt locks are held, then a supplied message is printed to the
 1340  * console along with a list of the offending locks.  If indicated in the
 1341  * flags then a failure results in a panic as well.
 1342  */
 1343 int
 1344 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
 1345 {
 1346         struct lock_list_entry *lle;
 1347         struct lock_instance *lock1;
 1348         struct thread *td;
 1349         va_list ap;
 1350         int i, n;
 1351 
 1352         if (witness_cold || witness_watch == 0 || panicstr != NULL)
 1353                 return (0);
 1354         n = 0;
 1355         td = curthread;
 1356         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
 1357                 for (i = lle->ll_count - 1; i >= 0; i--) {
 1358                         lock1 = &lle->ll_children[i];
 1359                         if (lock1->li_lock == lock)
 1360                                 continue;
 1361                         if (flags & WARN_GIANTOK &&
 1362                             lock1->li_lock == &Giant.lock_object)
 1363                                 continue;
 1364                         if (flags & WARN_SLEEPOK &&
 1365                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
 1366                                 continue;
 1367                         if (n == 0) {
 1368                                 va_start(ap, fmt);
 1369                                 vprintf(fmt, ap);
 1370                                 va_end(ap);
 1371                                 printf(" with the following");
 1372                                 if (flags & WARN_SLEEPOK)
 1373                                         printf(" non-sleepable");
 1374                                 printf(" locks held:\n");
 1375                         }
 1376                         n++;
 1377                         witness_list_lock(lock1);
 1378                 }
 1379         if (PCPU_GET(spinlocks) != NULL) {
 1380                 /*
 1381                  * Since we already hold a spinlock preemption is
 1382                  * already blocked.
 1383                  */
 1384                 if (n == 0) {
 1385                         va_start(ap, fmt);
 1386                         vprintf(fmt, ap);
 1387                         va_end(ap);
 1388                         printf(" with the following");
 1389                         if (flags & WARN_SLEEPOK)
 1390                                 printf(" non-sleepable");
 1391                         printf(" locks held:\n");
 1392                 }
 1393                 n += witness_list_locks(PCPU_PTR(spinlocks));
 1394         }
 1395         if (flags & WARN_PANIC && n)
 1396                 panic("witness_warn");
 1397 #ifdef KDB
 1398         else if (witness_kdb && n)
 1399                 kdb_enter_why(KDB_WHY_WITNESS, __func__);
 1400         else if (witness_trace && n)
 1401                 kdb_backtrace();
 1402 #endif
 1403         return (n);
 1404 }
 1405 
 1406 const char *
 1407 witness_file(struct lock_object *lock)
 1408 {
 1409         struct witness *w;
 1410 
 1411         if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
 1412                 return ("?");
 1413         w = lock->lo_witness;
 1414         return (w->w_file);
 1415 }
 1416 
 1417 int
 1418 witness_line(struct lock_object *lock)
 1419 {
 1420         struct witness *w;
 1421 
 1422         if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
 1423                 return (0);
 1424         w = lock->lo_witness;
 1425         return (w->w_line);
 1426 }
 1427 
 1428 static struct witness *
 1429 enroll(const char *description, struct lock_class *lock_class)
 1430 {
 1431         struct witness *w;
 1432 
 1433         if (witness_watch == 0 || panicstr != NULL)
 1434                 return (NULL);
 1435         if ((lock_class->lc_flags & LC_SPINLOCK) && witness_skipspin)
 1436                 return (NULL);
 1437         mtx_lock_spin(&w_mtx);
 1438         STAILQ_FOREACH(w, &w_all, w_list) {
 1439                 if (w->w_name == description || (w->w_refcount > 0 &&
 1440                     strcmp(description, w->w_name) == 0)) {
 1441                         w->w_refcount++;
 1442                         mtx_unlock_spin(&w_mtx);
 1443                         if (lock_class != w->w_class)
 1444                                 panic(
 1445                                 "lock (%s) %s does not match earlier (%s) lock",
 1446                                     description, lock_class->lc_name,
 1447                                     w->w_class->lc_name);
 1448                         return (w);
 1449                 }
 1450         }
 1451         if ((w = witness_get()) == NULL)
 1452                 goto out;
 1453         w->w_name = description;
 1454         w->w_class = lock_class;
 1455         w->w_refcount = 1;
 1456         STAILQ_INSERT_HEAD(&w_all, w, w_list);
 1457         if (lock_class->lc_flags & LC_SPINLOCK) {
 1458                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
 1459                 w_spin_cnt++;
 1460         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
 1461                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
 1462                 w_sleep_cnt++;
 1463         } else {
 1464                 mtx_unlock_spin(&w_mtx);
 1465                 panic("lock class %s is not sleep or spin",
 1466                     lock_class->lc_name);
 1467         }
 1468         mtx_unlock_spin(&w_mtx);
 1469 out:
 1470         /*
 1471          * We issue a warning for any spin locks not defined in the static
 1472          * order list as a way to discourage their use (folks should really
 1473          * be using non-spin mutexes most of the time).  However, several
 1474          * 3rd part device drivers use spin locks because that is all they
 1475          * have available on Windows and Linux and they think that normal
 1476          * mutexes are insufficient.
 1477          */
 1478         if ((lock_class->lc_flags & LC_SPINLOCK) && witness_spin_warn)
 1479                 printf("WITNESS: spin lock %s not in order list\n",
 1480                     description);
 1481         return (w);
 1482 }
 1483 
 1484 /* Don't let the door bang you on the way out... */
 1485 static int
 1486 depart(struct witness *w)
 1487 {
 1488         struct witness_child_list_entry *wcl, *nwcl;
 1489         struct witness_list *list;
 1490         struct witness *parent;
 1491 
 1492         MPASS(w->w_refcount == 0);
 1493         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
 1494                 list = &w_sleep;
 1495                 w_sleep_cnt--;
 1496         } else {
 1497                 list = &w_spin;
 1498                 w_spin_cnt--;
 1499         }
 1500         /*
 1501          * First, we run through the entire tree looking for any
 1502          * witnesses that the outgoing witness is a child of.  For
 1503          * each parent that we find, we reparent all the direct
 1504          * children of the outgoing witness to its parent.
 1505          */
 1506         STAILQ_FOREACH(parent, list, w_typelist) {
 1507                 if (!isitmychild(parent, w))
 1508                         continue;
 1509                 removechild(parent, w);
 1510         }
 1511 
 1512         /*
 1513          * Now we go through and free up the child list of the
 1514          * outgoing witness.
 1515          */
 1516         for (wcl = w->w_children; wcl != NULL; wcl = nwcl) {
 1517                 nwcl = wcl->wcl_next;
 1518                 w_child_cnt--;
 1519                 witness_child_free(wcl);
 1520         }
 1521 
 1522         /*
 1523          * Detach from various lists and free.
 1524          */
 1525         STAILQ_REMOVE(list, w, witness, w_typelist);
 1526         STAILQ_REMOVE(&w_all, w, witness, w_list);
 1527         witness_free(w);
 1528 
 1529         return (1);
 1530 }
 1531 
 1532 /*
 1533  * Add "child" as a direct child of "parent".  Returns false if
 1534  * we fail due to out of memory.
 1535  */
 1536 static int
 1537 insertchild(struct witness *parent, struct witness *child)
 1538 {
 1539         struct witness_child_list_entry **wcl;
 1540 
 1541         MPASS(child != NULL && parent != NULL);
 1542 
 1543         /*
 1544          * Insert "child" after "parent"
 1545          */
 1546         wcl = &parent->w_children;
 1547         while (*wcl != NULL && (*wcl)->wcl_count == WITNESS_NCHILDREN)
 1548                 wcl = &(*wcl)->wcl_next;
 1549         if (*wcl == NULL) {
 1550                 *wcl = witness_child_get();
 1551                 if (*wcl == NULL)
 1552                         return (0);
 1553                 w_child_cnt++;
 1554         }
 1555         (*wcl)->wcl_children[(*wcl)->wcl_count++] = child;
 1556 
 1557         return (1);
 1558 }
 1559 
 1560 
 1561 static int
 1562 itismychild(struct witness *parent, struct witness *child)
 1563 {
 1564         struct witness_list *list;
 1565 
 1566         MPASS(child != NULL && parent != NULL);
 1567         if ((parent->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) !=
 1568             (child->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)))
 1569                 panic(
 1570                 "%s: parent (%s) and child (%s) are not the same lock type",
 1571                     __func__, parent->w_class->lc_name,
 1572                     child->w_class->lc_name);
 1573 
 1574         if (!insertchild(parent, child))
 1575                 return (0);
 1576 
 1577         if (parent->w_class->lc_flags & LC_SLEEPLOCK)
 1578                 list = &w_sleep;
 1579         else
 1580                 list = &w_spin;
 1581         return (1);
 1582 }
 1583 
 1584 static void
 1585 removechild(struct witness *parent, struct witness *child)
 1586 {
 1587         struct witness_child_list_entry **wcl, *wcl1;
 1588         int i;
 1589 
 1590         for (wcl = &parent->w_children; *wcl != NULL; wcl = &(*wcl)->wcl_next)
 1591                 for (i = 0; i < (*wcl)->wcl_count; i++)
 1592                         if ((*wcl)->wcl_children[i] == child)
 1593                                 goto found;
 1594         return;
 1595 found:
 1596         (*wcl)->wcl_count--;
 1597         if ((*wcl)->wcl_count > i)
 1598                 (*wcl)->wcl_children[i] =
 1599                     (*wcl)->wcl_children[(*wcl)->wcl_count];
 1600         MPASS((*wcl)->wcl_children[i] != NULL);
 1601         if ((*wcl)->wcl_count != 0)
 1602                 return;
 1603         wcl1 = *wcl;
 1604         *wcl = wcl1->wcl_next;
 1605         w_child_cnt--;
 1606         witness_child_free(wcl1);
 1607 }
 1608 
 1609 static int
 1610 isitmychild(struct witness *parent, struct witness *child)
 1611 {
 1612         struct witness_child_list_entry *wcl;
 1613         int i;
 1614 
 1615         for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
 1616                 for (i = 0; i < wcl->wcl_count; i++) {
 1617                         if (wcl->wcl_children[i] == child)
 1618                                 return (1);
 1619                 }
 1620         }
 1621         return (0);
 1622 }
 1623 
 1624 static int
 1625 isitmydescendant(struct witness *parent, struct witness *child)
 1626 {
 1627         struct witness_child_list_entry *wcl;
 1628         int i, j;
 1629 
 1630         if (isitmychild(parent, child))
 1631                 return (1);
 1632         j = 0;
 1633         for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
 1634                 MPASS(j < 1000);
 1635                 for (i = 0; i < wcl->wcl_count; i++) {
 1636                         if (isitmydescendant(wcl->wcl_children[i], child))
 1637                                 return (1);
 1638                 }
 1639                 j++;
 1640         }
 1641         return (0);
 1642 }
 1643 
 1644 #ifdef BLESSING
 1645 static int
 1646 blessed(struct witness *w1, struct witness *w2)
 1647 {
 1648         int i;
 1649         struct witness_blessed *b;
 1650 
 1651         for (i = 0; i < blessed_count; i++) {
 1652                 b = &blessed_list[i];
 1653                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
 1654                         if (strcmp(w2->w_name, b->b_lock2) == 0)
 1655                                 return (1);
 1656                         continue;
 1657                 }
 1658                 if (strcmp(w1->w_name, b->b_lock2) == 0)
 1659                         if (strcmp(w2->w_name, b->b_lock1) == 0)
 1660                                 return (1);
 1661         }
 1662         return (0);
 1663 }
 1664 #endif
 1665 
 1666 static struct witness *
 1667 witness_get(void)
 1668 {
 1669         struct witness *w;
 1670 
 1671         if (witness_watch == 0) {
 1672                 mtx_unlock_spin(&w_mtx);
 1673                 return (NULL);
 1674         }
 1675         if (STAILQ_EMPTY(&w_free)) {
 1676                 witness_watch = 0;
 1677                 mtx_unlock_spin(&w_mtx);
 1678                 printf("%s: witness exhausted\n", __func__);
 1679                 return (NULL);
 1680         }
 1681         w = STAILQ_FIRST(&w_free);
 1682         STAILQ_REMOVE_HEAD(&w_free, w_list);
 1683         w_free_cnt--;
 1684         bzero(w, sizeof(*w));
 1685         return (w);
 1686 }
 1687 
 1688 static void
 1689 witness_free(struct witness *w)
 1690 {
 1691 
 1692         STAILQ_INSERT_HEAD(&w_free, w, w_list);
 1693         w_free_cnt++;
 1694 }
 1695 
 1696 static struct witness_child_list_entry *
 1697 witness_child_get(void)
 1698 {
 1699         struct witness_child_list_entry *wcl;
 1700 
 1701         if (witness_watch == 0) {
 1702                 mtx_unlock_spin(&w_mtx);
 1703                 return (NULL);
 1704         }
 1705         wcl = w_child_free;
 1706         if (wcl == NULL) {
 1707                 witness_watch = 0;
 1708                 mtx_unlock_spin(&w_mtx);
 1709                 printf("%s: witness exhausted\n", __func__);
 1710                 return (NULL);
 1711         }
 1712         w_child_free = wcl->wcl_next;
 1713         w_child_free_cnt--;
 1714         bzero(wcl, sizeof(*wcl));
 1715         return (wcl);
 1716 }
 1717 
 1718 static void
 1719 witness_child_free(struct witness_child_list_entry *wcl)
 1720 {
 1721 
 1722         wcl->wcl_next = w_child_free;
 1723         w_child_free = wcl;
 1724         w_child_free_cnt++;
 1725 }
 1726 
 1727 static struct lock_list_entry *
 1728 witness_lock_list_get(void)
 1729 {
 1730         struct lock_list_entry *lle;
 1731 
 1732         if (witness_watch == 0)
 1733                 return (NULL);
 1734         mtx_lock_spin(&w_mtx);
 1735         lle = w_lock_list_free;
 1736         if (lle == NULL) {
 1737                 witness_watch = 0;
 1738                 mtx_unlock_spin(&w_mtx);
 1739                 printf("%s: witness exhausted\n", __func__);
 1740                 return (NULL);
 1741         }
 1742         w_lock_list_free = lle->ll_next;
 1743         mtx_unlock_spin(&w_mtx);
 1744         bzero(lle, sizeof(*lle));
 1745         return (lle);
 1746 }
 1747                 
 1748 static void
 1749 witness_lock_list_free(struct lock_list_entry *lle)
 1750 {
 1751 
 1752         mtx_lock_spin(&w_mtx);
 1753         lle->ll_next = w_lock_list_free;
 1754         w_lock_list_free = lle;
 1755         mtx_unlock_spin(&w_mtx);
 1756 }
 1757 
 1758 static struct lock_instance *
 1759 find_instance(struct lock_list_entry *lock_list, struct lock_object *lock)
 1760 {
 1761         struct lock_list_entry *lle;
 1762         struct lock_instance *instance;
 1763         int i;
 1764 
 1765         for (lle = lock_list; lle != NULL; lle = lle->ll_next)
 1766                 for (i = lle->ll_count - 1; i >= 0; i--) {
 1767                         instance = &lle->ll_children[i];
 1768                         if (instance->li_lock == lock)
 1769                                 return (instance);
 1770                 }
 1771         return (NULL);
 1772 }
 1773 
 1774 static void
 1775 witness_list_lock(struct lock_instance *instance)
 1776 {
 1777         struct lock_object *lock;
 1778 
 1779         lock = instance->li_lock;
 1780         printf("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
 1781             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
 1782         if (lock->lo_type != lock->lo_name)
 1783                 printf(" (%s)", lock->lo_type);
 1784         printf(" r = %d (%p) locked @ %s:%d\n",
 1785             instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
 1786             instance->li_line);
 1787 }
 1788 
 1789 #ifdef DDB
 1790 static int
 1791 witness_thread_has_locks(struct thread *td)
 1792 {
 1793 
 1794         return (td->td_sleeplocks != NULL);
 1795 }
 1796 
 1797 static int
 1798 witness_proc_has_locks(struct proc *p)
 1799 {
 1800         struct thread *td;
 1801 
 1802         FOREACH_THREAD_IN_PROC(p, td) {
 1803                 if (witness_thread_has_locks(td))
 1804                         return (1);
 1805         }
 1806         return (0);
 1807 }
 1808 #endif
 1809 
 1810 int
 1811 witness_list_locks(struct lock_list_entry **lock_list)
 1812 {
 1813         struct lock_list_entry *lle;
 1814         int i, nheld;
 1815 
 1816         nheld = 0;
 1817         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
 1818                 for (i = lle->ll_count - 1; i >= 0; i--) {
 1819                         witness_list_lock(&lle->ll_children[i]);
 1820                         nheld++;
 1821                 }
 1822         return (nheld);
 1823 }
 1824 
 1825 /*
 1826  * This is a bit risky at best.  We call this function when we have timed
 1827  * out acquiring a spin lock, and we assume that the other CPU is stuck
 1828  * with this lock held.  So, we go groveling around in the other CPU's
 1829  * per-cpu data to try to find the lock instance for this spin lock to
 1830  * see when it was last acquired.
 1831  */
 1832 void
 1833 witness_display_spinlock(struct lock_object *lock, struct thread *owner)
 1834 {
 1835         struct lock_instance *instance;
 1836         struct pcpu *pc;
 1837 
 1838         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
 1839                 return;
 1840         pc = pcpu_find(owner->td_oncpu);
 1841         instance = find_instance(pc->pc_spinlocks, lock);
 1842         if (instance != NULL)
 1843                 witness_list_lock(instance);
 1844 }
 1845 
 1846 void
 1847 witness_save(struct lock_object *lock, const char **filep, int *linep)
 1848 {
 1849         struct lock_list_entry *lock_list;
 1850         struct lock_instance *instance;
 1851         struct lock_class *class;
 1852 
 1853         KASSERT(!witness_cold, ("%s: witness_cold", __func__));
 1854         if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
 1855                 return;
 1856         class = LOCK_CLASS(lock);
 1857         if (class->lc_flags & LC_SLEEPLOCK)
 1858                 lock_list = curthread->td_sleeplocks;
 1859         else {
 1860                 if (witness_skipspin)
 1861                         return;
 1862                 lock_list = PCPU_GET(spinlocks);
 1863         }
 1864         instance = find_instance(lock_list, lock);
 1865         if (instance == NULL)
 1866                 panic("%s: lock (%s) %s not locked", __func__,
 1867                     class->lc_name, lock->lo_name);
 1868         *filep = instance->li_file;
 1869         *linep = instance->li_line;
 1870 }
 1871 
 1872 void
 1873 witness_restore(struct lock_object *lock, const char *file, int line)
 1874 {
 1875         struct lock_list_entry *lock_list;
 1876         struct lock_instance *instance;
 1877         struct lock_class *class;
 1878 
 1879         KASSERT(!witness_cold, ("%s: witness_cold", __func__));
 1880         if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
 1881                 return;
 1882         class = LOCK_CLASS(lock);
 1883         if (class->lc_flags & LC_SLEEPLOCK)
 1884                 lock_list = curthread->td_sleeplocks;
 1885         else {
 1886                 if (witness_skipspin)
 1887                         return;
 1888                 lock_list = PCPU_GET(spinlocks);
 1889         }
 1890         instance = find_instance(lock_list, lock);
 1891         if (instance == NULL)
 1892                 panic("%s: lock (%s) %s not locked", __func__,
 1893                     class->lc_name, lock->lo_name);
 1894         lock->lo_witness->w_file = file;
 1895         lock->lo_witness->w_line = line;
 1896         instance->li_file = file;
 1897         instance->li_line = line;
 1898 }
 1899 
 1900 void
 1901 witness_assert(struct lock_object *lock, int flags, const char *file, int line)
 1902 {
 1903 #ifdef INVARIANT_SUPPORT
 1904         struct lock_instance *instance;
 1905         struct lock_class *class;
 1906 
 1907         if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
 1908                 return;
 1909         class = LOCK_CLASS(lock);
 1910         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
 1911                 instance = find_instance(curthread->td_sleeplocks, lock);
 1912         else if ((class->lc_flags & LC_SPINLOCK) != 0)
 1913                 instance = find_instance(PCPU_GET(spinlocks), lock);
 1914         else {
 1915                 panic("Lock (%s) %s is not sleep or spin!",
 1916                     class->lc_name, lock->lo_name);
 1917         }
 1918         file = fixup_filename(file);
 1919         switch (flags) {
 1920         case LA_UNLOCKED:
 1921                 if (instance != NULL)
 1922                         panic("Lock (%s) %s locked @ %s:%d.",
 1923                             class->lc_name, lock->lo_name, file, line);
 1924                 break;
 1925         case LA_LOCKED:
 1926         case LA_LOCKED | LA_RECURSED:
 1927         case LA_LOCKED | LA_NOTRECURSED:
 1928         case LA_SLOCKED:
 1929         case LA_SLOCKED | LA_RECURSED:
 1930         case LA_SLOCKED | LA_NOTRECURSED:
 1931         case LA_XLOCKED:
 1932         case LA_XLOCKED | LA_RECURSED:
 1933         case LA_XLOCKED | LA_NOTRECURSED:
 1934                 if (instance == NULL) {
 1935                         panic("Lock (%s) %s not locked @ %s:%d.",
 1936                             class->lc_name, lock->lo_name, file, line);
 1937                         break;
 1938                 }
 1939                 if ((flags & LA_XLOCKED) != 0 &&
 1940                     (instance->li_flags & LI_EXCLUSIVE) == 0)
 1941                         panic("Lock (%s) %s not exclusively locked @ %s:%d.",
 1942                             class->lc_name, lock->lo_name, file, line);
 1943                 if ((flags & LA_SLOCKED) != 0 &&
 1944                     (instance->li_flags & LI_EXCLUSIVE) != 0)
 1945                         panic("Lock (%s) %s exclusively locked @ %s:%d.",
 1946                             class->lc_name, lock->lo_name, file, line);
 1947                 if ((flags & LA_RECURSED) != 0 &&
 1948                     (instance->li_flags & LI_RECURSEMASK) == 0)
 1949                         panic("Lock (%s) %s not recursed @ %s:%d.",
 1950                             class->lc_name, lock->lo_name, file, line);
 1951                 if ((flags & LA_NOTRECURSED) != 0 &&
 1952                     (instance->li_flags & LI_RECURSEMASK) != 0)
 1953                         panic("Lock (%s) %s recursed @ %s:%d.",
 1954                             class->lc_name, lock->lo_name, file, line);
 1955                 break;
 1956         default:
 1957                 panic("Invalid lock assertion at %s:%d.", file, line);
 1958 
 1959         }
 1960 #endif  /* INVARIANT_SUPPORT */
 1961 }
 1962 
 1963 #ifdef DDB
 1964 static void
 1965 witness_list(struct thread *td)
 1966 {
 1967 
 1968         KASSERT(!witness_cold, ("%s: witness_cold", __func__));
 1969         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
 1970 
 1971         if (witness_watch == 0)
 1972                 return;
 1973 
 1974         witness_list_locks(&td->td_sleeplocks);
 1975 
 1976         /*
 1977          * We only handle spinlocks if td == curthread.  This is somewhat broken
 1978          * if td is currently executing on some other CPU and holds spin locks
 1979          * as we won't display those locks.  If we had a MI way of getting
 1980          * the per-cpu data for a given cpu then we could use
 1981          * td->td_oncpu to get the list of spinlocks for this thread
 1982          * and "fix" this.
 1983          *
 1984          * That still wouldn't really fix this unless we locked the scheduler
 1985          * lock or stopped the other CPU to make sure it wasn't changing the
 1986          * list out from under us.  It is probably best to just not try to
 1987          * handle threads on other CPU's for now.
 1988          */
 1989         if (td == curthread && PCPU_GET(spinlocks) != NULL)
 1990                 witness_list_locks(PCPU_PTR(spinlocks));
 1991 }
 1992 
 1993 DB_SHOW_COMMAND(locks, db_witness_list)
 1994 {
 1995         struct thread *td;
 1996 
 1997         if (have_addr)
 1998                 td = db_lookup_thread(addr, TRUE);
 1999         else
 2000                 td = kdb_thread;
 2001         witness_list(td);
 2002 }
 2003 
 2004 DB_SHOW_COMMAND(alllocks, db_witness_list_all)
 2005 {
 2006         struct thread *td;
 2007         struct proc *p;
 2008 
 2009         /*
 2010          * It would be nice to list only threads and processes that actually
 2011          * held sleep locks, but that information is currently not exported
 2012          * by WITNESS.
 2013          */
 2014         FOREACH_PROC_IN_SYSTEM(p) {
 2015                 if (!witness_proc_has_locks(p))
 2016                         continue;
 2017                 FOREACH_THREAD_IN_PROC(p, td) {
 2018                         if (!witness_thread_has_locks(td))
 2019                                 continue;
 2020                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
 2021                             p->p_comm, td, td->td_tid);
 2022                         witness_list(td);
 2023                 }
 2024         }
 2025 }
 2026 
 2027 DB_SHOW_COMMAND(witness, db_witness_display)
 2028 {
 2029 
 2030         witness_display(db_printf);
 2031 }
 2032 #endif

Cache object: 018d1fb9363927a18322e6ab6c7ebfdf


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.