The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_witness.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2008 Isilon Systems, Inc.
    3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
    4  * Copyright (c) 1998 Berkeley Software Design, Inc.
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
   16  *    promote products derived from this software without specific prior
   17  *    written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
   32  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
   33  */
   34 
   35 /*
   36  * Implementation of the `witness' lock verifier.  Originally implemented for
   37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
   38  * classes in FreeBSD.
   39  */
   40 
   41 /*
   42  *      Main Entry: witness
   43  *      Pronunciation: 'wit-n&s
   44  *      Function: noun
   45  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
   46  *          testimony, witness, from 2wit
   47  *      Date: before 12th century
   48  *      1 : attestation of a fact or event : TESTIMONY
   49  *      2 : one that gives evidence; specifically : one who testifies in
   50  *          a cause or before a judicial tribunal
   51  *      3 : one asked to be present at a transaction so as to be able to
   52  *          testify to its having taken place
   53  *      4 : one who has personal knowledge of something
   54  *      5 a : something serving as evidence or proof : SIGN
   55  *        b : public affirmation by word or example of usually
   56  *            religious faith or conviction <the heroic witness to divine
   57  *            life -- Pilot>
   58  *      6 capitalized : a member of the Jehovah's Witnesses 
   59  */
   60 
   61 /*
   62  * Special rules concerning Giant and lock orders:
   63  *
   64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
   65  *    no other mutex may be held when Giant is acquired.
   66  *
   67  * 2) Giant must be released when blocking on a sleepable lock.
   68  *
   69  * This rule is less obvious, but is a result of Giant providing the same
   70  * semantics as spl().  Basically, when a thread sleeps, it must release
   71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
   72  * 2).
   73  *
   74  * 3) Giant may be acquired before or after sleepable locks.
   75  *
   76  * This rule is also not quite as obvious.  Giant may be acquired after
   77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
   78  * locks may always be acquired while holding a sleepable lock.  The second
   79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
   80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
   81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
   82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
   83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
   84  * will not result in a lock order reversal.
   85  */
   86 
   87 #include <sys/cdefs.h>
   88 __FBSDID("$FreeBSD: releng/8.0/sys/kern/subr_witness.c 192416 2009-05-20 02:51:48Z kmacy $");
   89 
   90 #include "opt_ddb.h"
   91 #include "opt_hwpmc_hooks.h"
   92 #include "opt_stack.h"
   93 #include "opt_witness.h"
   94 
   95 #include <sys/param.h>
   96 #include <sys/bus.h>
   97 #include <sys/kdb.h>
   98 #include <sys/kernel.h>
   99 #include <sys/ktr.h>
  100 #include <sys/lock.h>
  101 #include <sys/malloc.h>
  102 #include <sys/mutex.h>
  103 #include <sys/priv.h>
  104 #include <sys/proc.h>
  105 #include <sys/sbuf.h>
  106 #include <sys/sched.h>
  107 #include <sys/stack.h>
  108 #include <sys/sysctl.h>
  109 #include <sys/systm.h>
  110 
  111 #ifdef DDB
  112 #include <ddb/ddb.h>
  113 #endif
  114 
  115 #include <machine/stdarg.h>
  116 
  117 #if !defined(DDB) && !defined(STACK)
  118 #error "DDB or STACK options are required for WITNESS"
  119 #endif
  120 
  121 /* Note that these traces do not work with KTR_ALQ. */
  122 #if 0
  123 #define KTR_WITNESS     KTR_SUBSYS
  124 #else
  125 #define KTR_WITNESS     0
  126 #endif
  127 
  128 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
  129 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
  130 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
  131 
  132 /* Define this to check for blessed mutexes */
  133 #undef BLESSING
  134 
  135 #define WITNESS_COUNT           1024
  136 #define WITNESS_CHILDCOUNT      (WITNESS_COUNT * 4)
  137 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
  138 #define WITNESS_PENDLIST        512
  139 
  140 /* Allocate 256 KB of stack data space */
  141 #define WITNESS_LO_DATA_COUNT   2048
  142 
  143 /* Prime, gives load factor of ~2 at full load */
  144 #define WITNESS_LO_HASH_SIZE    1021
  145 
  146 /*
  147  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
  148  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
  149  * probably be safe for the most part, but it's still a SWAG.
  150  */
  151 #define LOCK_NCHILDREN  5
  152 #define LOCK_CHILDCOUNT 2048
  153 
  154 #define MAX_W_NAME      64
  155 
  156 #define BADSTACK_SBUF_SIZE      (256 * WITNESS_COUNT)
  157 #define CYCLEGRAPH_SBUF_SIZE    8192
  158 #define FULLGRAPH_SBUF_SIZE     32768
  159 
  160 /*
  161  * These flags go in the witness relationship matrix and describe the
  162  * relationship between any two struct witness objects.
  163  */
  164 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
  165 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
  166 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
  167 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
  168 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
  169 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
  170 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
  171 #define WITNESS_RELATED_MASK                                            \
  172         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
  173 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
  174                                           * observed. */
  175 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
  176 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
  177 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
  178 
  179 /* Descendant to ancestor flags */
  180 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
  181 
  182 /* Ancestor to descendant flags */
  183 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
  184 
  185 #define WITNESS_INDEX_ASSERT(i)                                         \
  186         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
  187 
  188 MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
  189 
  190 /*
  191  * Lock instances.  A lock instance is the data associated with a lock while
  192  * it is held by witness.  For example, a lock instance will hold the
  193  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
  194  * are held in a per-cpu list while sleep locks are held in per-thread list.
  195  */
  196 struct lock_instance {
  197         struct lock_object      *li_lock;
  198         const char              *li_file;
  199         int                     li_line;
  200         u_int                   li_flags;
  201 };
  202 
  203 /*
  204  * A simple list type used to build the list of locks held by a thread
  205  * or CPU.  We can't simply embed the list in struct lock_object since a
  206  * lock may be held by more than one thread if it is a shared lock.  Locks
  207  * are added to the head of the list, so we fill up each list entry from
  208  * "the back" logically.  To ease some of the arithmetic, we actually fill
  209  * in each list entry the normal way (children[0] then children[1], etc.) but
  210  * when we traverse the list we read children[count-1] as the first entry
  211  * down to children[0] as the final entry.
  212  */
  213 struct lock_list_entry {
  214         struct lock_list_entry  *ll_next;
  215         struct lock_instance    ll_children[LOCK_NCHILDREN];
  216         u_int                   ll_count;
  217 };
  218 
  219 /*
  220  * The main witness structure. One of these per named lock type in the system
  221  * (for example, "vnode interlock").
  222  */
  223 struct witness {
  224         char                    w_name[MAX_W_NAME];
  225         uint32_t                w_index;  /* Index in the relationship matrix */
  226         struct lock_class       *w_class;
  227         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
  228         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
  229         struct witness          *w_hash_next; /* Linked list in hash buckets. */
  230         const char              *w_file; /* File where last acquired */
  231         uint32_t                w_line; /* Line where last acquired */
  232         uint32_t                w_refcount;
  233         uint16_t                w_num_ancestors; /* direct/indirect
  234                                                   * ancestor count */
  235         uint16_t                w_num_descendants; /* direct/indirect
  236                                                     * descendant count */
  237         int16_t                 w_ddb_level;
  238         unsigned                w_displayed:1;
  239         unsigned                w_reversed:1;
  240 };
  241 
  242 STAILQ_HEAD(witness_list, witness);
  243 
  244 /*
  245  * The witness hash table. Keys are witness names (const char *), elements are
  246  * witness objects (struct witness *).
  247  */
  248 struct witness_hash {
  249         struct witness  *wh_array[WITNESS_HASH_SIZE];
  250         uint32_t        wh_size;
  251         uint32_t        wh_count;
  252 };
  253 
  254 /*
  255  * Key type for the lock order data hash table.
  256  */
  257 struct witness_lock_order_key {
  258         uint16_t        from;
  259         uint16_t        to;
  260 };
  261 
  262 struct witness_lock_order_data {
  263         struct stack                    wlod_stack;
  264         struct witness_lock_order_key   wlod_key;
  265         struct witness_lock_order_data  *wlod_next;
  266 };
  267 
  268 /*
  269  * The witness lock order data hash table. Keys are witness index tuples
  270  * (struct witness_lock_order_key), elements are lock order data objects
  271  * (struct witness_lock_order_data). 
  272  */
  273 struct witness_lock_order_hash {
  274         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
  275         u_int   wloh_size;
  276         u_int   wloh_count;
  277 };
  278 
  279 #ifdef BLESSING
  280 struct witness_blessed {
  281         const char      *b_lock1;
  282         const char      *b_lock2;
  283 };
  284 #endif
  285 
  286 struct witness_pendhelp {
  287         const char              *wh_type;
  288         struct lock_object      *wh_lock;
  289 };
  290 
  291 struct witness_order_list_entry {
  292         const char              *w_name;
  293         struct lock_class       *w_class;
  294 };
  295 
  296 /*
  297  * Returns 0 if one of the locks is a spin lock and the other is not.
  298  * Returns 1 otherwise.
  299  */
  300 static __inline int
  301 witness_lock_type_equal(struct witness *w1, struct witness *w2)
  302 {
  303 
  304         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
  305                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
  306 }
  307 
  308 static __inline int
  309 witness_lock_order_key_empty(const struct witness_lock_order_key *key)
  310 {
  311 
  312         return (key->from == 0 && key->to == 0);
  313 }
  314 
  315 static __inline int
  316 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
  317     const struct witness_lock_order_key *b)
  318 {
  319 
  320         return (a->from == b->from && a->to == b->to);
  321 }
  322 
  323 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
  324                     const char *fname);
  325 #ifdef KDB
  326 static void     _witness_debugger(int cond, const char *msg);
  327 #endif
  328 static void     adopt(struct witness *parent, struct witness *child);
  329 #ifdef BLESSING
  330 static int      blessed(struct witness *, struct witness *);
  331 #endif
  332 static void     depart(struct witness *w);
  333 static struct witness   *enroll(const char *description,
  334                             struct lock_class *lock_class);
  335 static struct lock_instance     *find_instance(struct lock_list_entry *list,
  336                                     struct lock_object *lock);
  337 static int      isitmychild(struct witness *parent, struct witness *child);
  338 static int      isitmydescendant(struct witness *parent, struct witness *child);
  339 static void     itismychild(struct witness *parent, struct witness *child);
  340 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
  341 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
  342 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
  343 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
  344 #ifdef DDB
  345 static void     witness_ddb_compute_levels(void);
  346 static void     witness_ddb_display(void(*)(const char *fmt, ...));
  347 static void     witness_ddb_display_descendants(void(*)(const char *fmt, ...),
  348                     struct witness *, int indent);
  349 static void     witness_ddb_display_list(void(*prnt)(const char *fmt, ...),
  350                     struct witness_list *list);
  351 static void     witness_ddb_level_descendants(struct witness *parent, int l);
  352 static void     witness_ddb_list(struct thread *td);
  353 #endif
  354 static void     witness_free(struct witness *m);
  355 static struct witness   *witness_get(void);
  356 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
  357 static struct witness   *witness_hash_get(const char *key);
  358 static void     witness_hash_put(struct witness *w);
  359 static void     witness_init_hash_tables(void);
  360 static void     witness_increment_graph_generation(void);
  361 static void     witness_lock_list_free(struct lock_list_entry *lle);
  362 static struct lock_list_entry   *witness_lock_list_get(void);
  363 static int      witness_lock_order_add(struct witness *parent,
  364                     struct witness *child);
  365 static int      witness_lock_order_check(struct witness *parent,
  366                     struct witness *child);
  367 static struct witness_lock_order_data   *witness_lock_order_get(
  368                                             struct witness *parent,
  369                                             struct witness *child);
  370 static void     witness_list_lock(struct lock_instance *instance);
  371 static void     witness_setflag(struct lock_object *lock, int flag, int set);
  372 
  373 #ifdef KDB
  374 #define witness_debugger(c)     _witness_debugger(c, __func__)
  375 #else
  376 #define witness_debugger(c)
  377 #endif
  378 
  379 SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL, "Witness Locking");
  380 
  381 /*
  382  * If set to 0, lock order checking is disabled.  If set to -1,
  383  * witness is completely disabled.  Otherwise witness performs full
  384  * lock order checking for all locks.  At runtime, lock order checking
  385  * may be toggled.  However, witness cannot be reenabled once it is
  386  * completely disabled.
  387  */
  388 static int witness_watch = 1;
  389 TUNABLE_INT("debug.witness.watch", &witness_watch);
  390 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
  391     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
  392 
  393 #ifdef KDB
  394 /*
  395  * When KDB is enabled and witness_kdb is 1, it will cause the system
  396  * to drop into kdebug() when:
  397  *      - a lock hierarchy violation occurs
  398  *      - locks are held when going to sleep.
  399  */
  400 #ifdef WITNESS_KDB
  401 int     witness_kdb = 1;
  402 #else
  403 int     witness_kdb = 0;
  404 #endif
  405 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
  406 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
  407 
  408 /*
  409  * When KDB is enabled and witness_trace is 1, it will cause the system
  410  * to print a stack trace:
  411  *      - a lock hierarchy violation occurs
  412  *      - locks are held when going to sleep.
  413  */
  414 int     witness_trace = 1;
  415 TUNABLE_INT("debug.witness.trace", &witness_trace);
  416 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
  417 #endif /* KDB */
  418 
  419 #ifdef WITNESS_SKIPSPIN
  420 int     witness_skipspin = 1;
  421 #else
  422 int     witness_skipspin = 0;
  423 #endif
  424 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
  425 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
  426     0, "");
  427 
  428 /*
  429  * Call this to print out the relations between locks.
  430  */
  431 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
  432     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
  433 
  434 /*
  435  * Call this to print out the witness faulty stacks.
  436  */
  437 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
  438     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
  439 
  440 static struct mtx w_mtx;
  441 
  442 /* w_list */
  443 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
  444 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
  445 
  446 /* w_typelist */
  447 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
  448 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
  449 
  450 /* lock list */
  451 static struct lock_list_entry *w_lock_list_free = NULL;
  452 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
  453 static u_int pending_cnt;
  454 
  455 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
  456 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
  457 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
  458 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
  459     "");
  460 
  461 static struct witness *w_data;
  462 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
  463 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
  464 static struct witness_hash w_hash;      /* The witness hash table. */
  465 
  466 /* The lock order data hash */
  467 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
  468 static struct witness_lock_order_data *w_lofree = NULL;
  469 static struct witness_lock_order_hash w_lohash;
  470 static int w_max_used_index = 0;
  471 static unsigned int w_generation = 0;
  472 static const char *w_notrunning = "Witness not running\n";
  473 static const char *w_stillcold = "Witness is still cold\n";
  474 
  475 
  476 static struct witness_order_list_entry order_lists[] = {
  477         /*
  478          * sx locks
  479          */
  480         { "proctree", &lock_class_sx },
  481         { "allproc", &lock_class_sx },
  482         { "allprison", &lock_class_sx },
  483         { NULL, NULL },
  484         /*
  485          * Various mutexes
  486          */
  487         { "Giant", &lock_class_mtx_sleep },
  488         { "pipe mutex", &lock_class_mtx_sleep },
  489         { "sigio lock", &lock_class_mtx_sleep },
  490         { "process group", &lock_class_mtx_sleep },
  491         { "process lock", &lock_class_mtx_sleep },
  492         { "session", &lock_class_mtx_sleep },
  493         { "uidinfo hash", &lock_class_rw },
  494 #ifdef  HWPMC_HOOKS
  495         { "pmc-sleep", &lock_class_mtx_sleep },
  496 #endif
  497         { NULL, NULL },
  498         /*
  499          * Sockets
  500          */
  501         { "accept", &lock_class_mtx_sleep },
  502         { "so_snd", &lock_class_mtx_sleep },
  503         { "so_rcv", &lock_class_mtx_sleep },
  504         { "sellck", &lock_class_mtx_sleep },
  505         { NULL, NULL },
  506         /*
  507          * Routing
  508          */
  509         { "so_rcv", &lock_class_mtx_sleep },
  510         { "radix node head", &lock_class_rw },
  511         { "rtentry", &lock_class_mtx_sleep },
  512         { "ifaddr", &lock_class_mtx_sleep },
  513         { NULL, NULL },
  514         /*
  515          * IPv4 multicast:
  516          * protocol locks before interface locks, after UDP locks.
  517          */
  518         { "udpinp", &lock_class_rw },
  519         { "in_multi_mtx", &lock_class_mtx_sleep },
  520         { "igmp_mtx", &lock_class_mtx_sleep },
  521         { "if_addr_mtx", &lock_class_mtx_sleep },
  522         { NULL, NULL },
  523         /*
  524          * IPv6 multicast:
  525          * protocol locks before interface locks, after UDP locks.
  526          */
  527         { "udpinp", &lock_class_rw },
  528         { "in6_multi_mtx", &lock_class_mtx_sleep },
  529         { "mld_mtx", &lock_class_mtx_sleep },
  530         { "if_addr_mtx", &lock_class_mtx_sleep },
  531         { NULL, NULL },
  532         /*
  533          * UNIX Domain Sockets
  534          */
  535         { "unp_global_rwlock", &lock_class_rw },
  536         { "unp_list_lock", &lock_class_mtx_sleep },
  537         { "unp", &lock_class_mtx_sleep },
  538         { "so_snd", &lock_class_mtx_sleep },
  539         { NULL, NULL },
  540         /*
  541          * UDP/IP
  542          */
  543         { "udp", &lock_class_rw },
  544         { "udpinp", &lock_class_rw },
  545         { "so_snd", &lock_class_mtx_sleep },
  546         { NULL, NULL },
  547         /*
  548          * TCP/IP
  549          */
  550         { "tcp", &lock_class_rw },
  551         { "tcpinp", &lock_class_rw },
  552         { "so_snd", &lock_class_mtx_sleep },
  553         { NULL, NULL },
  554         /*
  555          * SLIP
  556          */
  557         { "slip_mtx", &lock_class_mtx_sleep },
  558         { "slip sc_mtx", &lock_class_mtx_sleep },
  559         { NULL, NULL },
  560         /*
  561          * netatalk
  562          */
  563         { "ddp_list_mtx", &lock_class_mtx_sleep },
  564         { "ddp_mtx", &lock_class_mtx_sleep },
  565         { NULL, NULL },
  566         /*
  567          * BPF
  568          */
  569         { "bpf global lock", &lock_class_mtx_sleep },
  570         { "bpf interface lock", &lock_class_mtx_sleep },
  571         { "bpf cdev lock", &lock_class_mtx_sleep },
  572         { NULL, NULL },
  573         /*
  574          * NFS server
  575          */
  576         { "nfsd_mtx", &lock_class_mtx_sleep },
  577         { "so_snd", &lock_class_mtx_sleep },
  578         { NULL, NULL },
  579 
  580         /*
  581          * IEEE 802.11
  582          */
  583         { "802.11 com lock", &lock_class_mtx_sleep},
  584         { NULL, NULL },
  585         /*
  586          * Network drivers
  587          */
  588         { "network driver", &lock_class_mtx_sleep},
  589         { NULL, NULL },
  590 
  591         /*
  592          * Netgraph
  593          */
  594         { "ng_node", &lock_class_mtx_sleep },
  595         { "ng_worklist", &lock_class_mtx_sleep },
  596         { NULL, NULL },
  597         /*
  598          * CDEV
  599          */
  600         { "system map", &lock_class_mtx_sleep },
  601         { "vm page queue mutex", &lock_class_mtx_sleep },
  602         { "vnode interlock", &lock_class_mtx_sleep },
  603         { "cdev", &lock_class_mtx_sleep },
  604         { NULL, NULL },
  605         /*
  606          * kqueue/VFS interaction
  607          */
  608         { "kqueue", &lock_class_mtx_sleep },
  609         { "struct mount mtx", &lock_class_mtx_sleep },
  610         { "vnode interlock", &lock_class_mtx_sleep },
  611         { NULL, NULL },
  612         /*
  613          * ZFS locking
  614          */
  615         { "dn->dn_mtx", &lock_class_sx },
  616         { "dr->dt.di.dr_mtx", &lock_class_sx },
  617         { "db->db_mtx", &lock_class_sx },
  618         { NULL, NULL },
  619         /*
  620          * spin locks
  621          */
  622 #ifdef SMP
  623         { "ap boot", &lock_class_mtx_spin },
  624 #endif
  625         { "rm.mutex_mtx", &lock_class_mtx_spin },
  626         { "sio", &lock_class_mtx_spin },
  627         { "scrlock", &lock_class_mtx_spin },
  628 #ifdef __i386__
  629         { "cy", &lock_class_mtx_spin },
  630 #endif
  631 #ifdef __sparc64__
  632         { "pcib_mtx", &lock_class_mtx_spin },
  633         { "rtc_mtx", &lock_class_mtx_spin },
  634 #endif
  635         { "scc_hwmtx", &lock_class_mtx_spin },
  636         { "uart_hwmtx", &lock_class_mtx_spin },
  637         { "fast_taskqueue", &lock_class_mtx_spin },
  638         { "intr table", &lock_class_mtx_spin },
  639 #ifdef  HWPMC_HOOKS
  640         { "pmc-per-proc", &lock_class_mtx_spin },
  641 #endif
  642         { "process slock", &lock_class_mtx_spin },
  643         { "sleepq chain", &lock_class_mtx_spin },
  644         { "umtx lock", &lock_class_mtx_spin },
  645         { "rm_spinlock", &lock_class_mtx_spin },
  646         { "turnstile chain", &lock_class_mtx_spin },
  647         { "turnstile lock", &lock_class_mtx_spin },
  648         { "sched lock", &lock_class_mtx_spin },
  649         { "td_contested", &lock_class_mtx_spin },
  650         { "callout", &lock_class_mtx_spin },
  651         { "entropy harvest mutex", &lock_class_mtx_spin },
  652         { "syscons video lock", &lock_class_mtx_spin },
  653         { "time lock", &lock_class_mtx_spin },
  654 #ifdef SMP
  655         { "smp rendezvous", &lock_class_mtx_spin },
  656 #endif
  657 #ifdef __powerpc__
  658         { "tlb0", &lock_class_mtx_spin },
  659 #endif
  660         /*
  661          * leaf locks
  662          */
  663         { "intrcnt", &lock_class_mtx_spin },
  664         { "icu", &lock_class_mtx_spin },
  665 #if defined(SMP) && defined(__sparc64__)
  666         { "ipi", &lock_class_mtx_spin },
  667 #endif
  668 #ifdef __i386__
  669         { "allpmaps", &lock_class_mtx_spin },
  670         { "descriptor tables", &lock_class_mtx_spin },
  671 #endif
  672         { "clk", &lock_class_mtx_spin },
  673         { "cpuset", &lock_class_mtx_spin },
  674         { "mprof lock", &lock_class_mtx_spin },
  675         { "zombie lock", &lock_class_mtx_spin },
  676         { "ALD Queue", &lock_class_mtx_spin },
  677 #ifdef __ia64__
  678         { "MCA spin lock", &lock_class_mtx_spin },
  679 #endif
  680 #if defined(__i386__) || defined(__amd64__)
  681         { "pcicfg", &lock_class_mtx_spin },
  682         { "NDIS thread lock", &lock_class_mtx_spin },
  683 #endif
  684         { "tw_osl_io_lock", &lock_class_mtx_spin },
  685         { "tw_osl_q_lock", &lock_class_mtx_spin },
  686         { "tw_cl_io_lock", &lock_class_mtx_spin },
  687         { "tw_cl_intr_lock", &lock_class_mtx_spin },
  688         { "tw_cl_gen_lock", &lock_class_mtx_spin },
  689 #ifdef  HWPMC_HOOKS
  690         { "pmc-leaf", &lock_class_mtx_spin },
  691 #endif
  692         { "blocked lock", &lock_class_mtx_spin },
  693         { NULL, NULL },
  694         { NULL, NULL }
  695 };
  696 
  697 #ifdef BLESSING
  698 /*
  699  * Pairs of locks which have been blessed
  700  * Don't complain about order problems with blessed locks
  701  */
  702 static struct witness_blessed blessed_list[] = {
  703 };
  704 static int blessed_count =
  705         sizeof(blessed_list) / sizeof(struct witness_blessed);
  706 #endif
  707 
  708 /*
  709  * This global is set to 0 once it becomes safe to use the witness code.
  710  */
  711 static int witness_cold = 1;
  712 
  713 /*
  714  * This global is set to 1 once the static lock orders have been enrolled
  715  * so that a warning can be issued for any spin locks enrolled later.
  716  */
  717 static int witness_spin_warn = 0;
  718 
  719 /*
  720  * The WITNESS-enabled diagnostic code.  Note that the witness code does
  721  * assume that the early boot is single-threaded at least until after this
  722  * routine is completed.
  723  */
  724 static void
  725 witness_initialize(void *dummy __unused)
  726 {
  727         struct lock_object *lock;
  728         struct witness_order_list_entry *order;
  729         struct witness *w, *w1;
  730         int i;
  731 
  732         w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
  733             M_NOWAIT | M_ZERO);
  734 
  735         /*
  736          * We have to release Giant before initializing its witness
  737          * structure so that WITNESS doesn't get confused.
  738          */
  739         mtx_unlock(&Giant);
  740         mtx_assert(&Giant, MA_NOTOWNED);
  741 
  742         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
  743         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
  744             MTX_NOWITNESS | MTX_NOPROFILE);
  745         for (i = WITNESS_COUNT - 1; i >= 0; i--) {
  746                 w = &w_data[i];
  747                 memset(w, 0, sizeof(*w));
  748                 w_data[i].w_index = i;  /* Witness index never changes. */
  749                 witness_free(w);
  750         }
  751         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
  752             ("%s: Invalid list of free witness objects", __func__));
  753 
  754         /* Witness with index 0 is not used to aid in debugging. */
  755         STAILQ_REMOVE_HEAD(&w_free, w_list);
  756         w_free_cnt--;
  757 
  758         memset(w_rmatrix, 0,
  759             (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
  760 
  761         for (i = 0; i < LOCK_CHILDCOUNT; i++)
  762                 witness_lock_list_free(&w_locklistdata[i]);
  763         witness_init_hash_tables();
  764 
  765         /* First add in all the specified order lists. */
  766         for (order = order_lists; order->w_name != NULL; order++) {
  767                 w = enroll(order->w_name, order->w_class);
  768                 if (w == NULL)
  769                         continue;
  770                 w->w_file = "order list";
  771                 for (order++; order->w_name != NULL; order++) {
  772                         w1 = enroll(order->w_name, order->w_class);
  773                         if (w1 == NULL)
  774                                 continue;
  775                         w1->w_file = "order list";
  776                         itismychild(w, w1);
  777                         w = w1;
  778                 }
  779         }
  780         witness_spin_warn = 1;
  781 
  782         /* Iterate through all locks and add them to witness. */
  783         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
  784                 lock = pending_locks[i].wh_lock;
  785                 KASSERT(lock->lo_flags & LO_WITNESS,
  786                     ("%s: lock %s is on pending list but not LO_WITNESS",
  787                     __func__, lock->lo_name));
  788                 lock->lo_witness = enroll(pending_locks[i].wh_type,
  789                     LOCK_CLASS(lock));
  790         }
  791 
  792         /* Mark the witness code as being ready for use. */
  793         witness_cold = 0;
  794 
  795         mtx_lock(&Giant);
  796 }
  797 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
  798     NULL);
  799 
  800 void
  801 witness_init(struct lock_object *lock, const char *type)
  802 {
  803         struct lock_class *class;
  804 
  805         /* Various sanity checks. */
  806         class = LOCK_CLASS(lock);
  807         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
  808             (class->lc_flags & LC_RECURSABLE) == 0)
  809                 panic("%s: lock (%s) %s can not be recursable", __func__,
  810                     class->lc_name, lock->lo_name);
  811         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
  812             (class->lc_flags & LC_SLEEPABLE) == 0)
  813                 panic("%s: lock (%s) %s can not be sleepable", __func__,
  814                     class->lc_name, lock->lo_name);
  815         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
  816             (class->lc_flags & LC_UPGRADABLE) == 0)
  817                 panic("%s: lock (%s) %s can not be upgradable", __func__,
  818                     class->lc_name, lock->lo_name);
  819 
  820         /*
  821          * If we shouldn't watch this lock, then just clear lo_witness.
  822          * Otherwise, if witness_cold is set, then it is too early to
  823          * enroll this lock, so defer it to witness_initialize() by adding
  824          * it to the pending_locks list.  If it is not too early, then enroll
  825          * the lock now.
  826          */
  827         if (witness_watch < 1 || panicstr != NULL ||
  828             (lock->lo_flags & LO_WITNESS) == 0)
  829                 lock->lo_witness = NULL;
  830         else if (witness_cold) {
  831                 pending_locks[pending_cnt].wh_lock = lock;
  832                 pending_locks[pending_cnt++].wh_type = type;
  833                 if (pending_cnt > WITNESS_PENDLIST)
  834                         panic("%s: pending locks list is too small, bump it\n",
  835                             __func__);
  836         } else
  837                 lock->lo_witness = enroll(type, class);
  838 }
  839 
  840 void
  841 witness_destroy(struct lock_object *lock)
  842 {
  843         struct lock_class *class;
  844         struct witness *w;
  845 
  846         class = LOCK_CLASS(lock);
  847 
  848         if (witness_cold)
  849                 panic("lock (%s) %s destroyed while witness_cold",
  850                     class->lc_name, lock->lo_name);
  851 
  852         /* XXX: need to verify that no one holds the lock */
  853         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
  854                 return;
  855         w = lock->lo_witness;
  856 
  857         mtx_lock_spin(&w_mtx);
  858         MPASS(w->w_refcount > 0);
  859         w->w_refcount--;
  860 
  861         if (w->w_refcount == 0)
  862                 depart(w);
  863         mtx_unlock_spin(&w_mtx);
  864 }
  865 
  866 #ifdef DDB
  867 static void
  868 witness_ddb_compute_levels(void)
  869 {
  870         struct witness *w;
  871 
  872         /*
  873          * First clear all levels.
  874          */
  875         STAILQ_FOREACH(w, &w_all, w_list)
  876                 w->w_ddb_level = -1;
  877 
  878         /*
  879          * Look for locks with no parents and level all their descendants.
  880          */
  881         STAILQ_FOREACH(w, &w_all, w_list) {
  882 
  883                 /* If the witness has ancestors (is not a root), skip it. */
  884                 if (w->w_num_ancestors > 0)
  885                         continue;
  886                 witness_ddb_level_descendants(w, 0);
  887         }
  888 }
  889 
  890 static void
  891 witness_ddb_level_descendants(struct witness *w, int l)
  892 {
  893         int i;
  894 
  895         if (w->w_ddb_level >= l)
  896                 return;
  897 
  898         w->w_ddb_level = l;
  899         l++;
  900 
  901         for (i = 1; i <= w_max_used_index; i++) {
  902                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
  903                         witness_ddb_level_descendants(&w_data[i], l);
  904         }
  905 }
  906 
  907 static void
  908 witness_ddb_display_descendants(void(*prnt)(const char *fmt, ...),
  909     struct witness *w, int indent)
  910 {
  911         int i;
  912 
  913         for (i = 0; i < indent; i++)
  914                 prnt(" ");
  915         prnt("%s (type: %s, depth: %d, active refs: %d)",
  916              w->w_name, w->w_class->lc_name,
  917              w->w_ddb_level, w->w_refcount);
  918         if (w->w_displayed) {
  919                 prnt(" -- (already displayed)\n");
  920                 return;
  921         }
  922         w->w_displayed = 1;
  923         if (w->w_file != NULL && w->w_line != 0)
  924                 prnt(" -- last acquired @ %s:%d\n", w->w_file,
  925                     w->w_line);
  926         else
  927                 prnt(" -- never acquired\n");
  928         indent++;
  929         WITNESS_INDEX_ASSERT(w->w_index);
  930         for (i = 1; i <= w_max_used_index; i++) {
  931                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
  932                         witness_ddb_display_descendants(prnt, &w_data[i],
  933                             indent);
  934         }
  935 }
  936 
  937 static void
  938 witness_ddb_display_list(void(*prnt)(const char *fmt, ...),
  939     struct witness_list *list)
  940 {
  941         struct witness *w;
  942 
  943         STAILQ_FOREACH(w, list, w_typelist) {
  944                 if (w->w_file == NULL || w->w_ddb_level > 0)
  945                         continue;
  946 
  947                 /* This lock has no anscestors - display its descendants. */
  948                 witness_ddb_display_descendants(prnt, w, 0);
  949         }
  950 }
  951         
  952 static void
  953 witness_ddb_display(void(*prnt)(const char *fmt, ...))
  954 {
  955         struct witness *w;
  956 
  957         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
  958         witness_ddb_compute_levels();
  959 
  960         /* Clear all the displayed flags. */
  961         STAILQ_FOREACH(w, &w_all, w_list)
  962                 w->w_displayed = 0;
  963 
  964         /*
  965          * First, handle sleep locks which have been acquired at least
  966          * once.
  967          */
  968         prnt("Sleep locks:\n");
  969         witness_ddb_display_list(prnt, &w_sleep);
  970         
  971         /*
  972          * Now do spin locks which have been acquired at least once.
  973          */
  974         prnt("\nSpin locks:\n");
  975         witness_ddb_display_list(prnt, &w_spin);
  976         
  977         /*
  978          * Finally, any locks which have not been acquired yet.
  979          */
  980         prnt("\nLocks which were never acquired:\n");
  981         STAILQ_FOREACH(w, &w_all, w_list) {
  982                 if (w->w_file != NULL || w->w_refcount == 0)
  983                         continue;
  984                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
  985                     w->w_class->lc_name, w->w_ddb_level);
  986         }
  987 }
  988 #endif /* DDB */
  989 
  990 /* Trim useless garbage from filenames. */
  991 static const char *
  992 fixup_filename(const char *file)
  993 {
  994 
  995         if (file == NULL)
  996                 return (NULL);
  997         while (strncmp(file, "../", 3) == 0)
  998                 file += 3;
  999         return (file);
 1000 }
 1001 
 1002 int
 1003 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
 1004 {
 1005 
 1006         if (witness_watch == -1 || panicstr != NULL)
 1007                 return (0);
 1008 
 1009         /* Require locks that witness knows about. */
 1010         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
 1011             lock2->lo_witness == NULL)
 1012                 return (EINVAL);
 1013 
 1014         mtx_assert(&w_mtx, MA_NOTOWNED);
 1015         mtx_lock_spin(&w_mtx);
 1016 
 1017         /*
 1018          * If we already have either an explicit or implied lock order that
 1019          * is the other way around, then return an error.
 1020          */
 1021         if (witness_watch &&
 1022             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
 1023                 mtx_unlock_spin(&w_mtx);
 1024                 return (EDOOFUS);
 1025         }
 1026         
 1027         /* Try to add the new order. */
 1028         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
 1029             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
 1030         itismychild(lock1->lo_witness, lock2->lo_witness);
 1031         mtx_unlock_spin(&w_mtx);
 1032         return (0);
 1033 }
 1034 
 1035 void
 1036 witness_checkorder(struct lock_object *lock, int flags, const char *file,
 1037     int line, struct lock_object *interlock)
 1038 {
 1039         struct lock_list_entry *lock_list, *lle;
 1040         struct lock_instance *lock1, *lock2, *plock;
 1041         struct lock_class *class;
 1042         struct witness *w, *w1;
 1043         struct thread *td;
 1044         int i, j;
 1045 
 1046         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
 1047             panicstr != NULL)
 1048                 return;
 1049 
 1050         w = lock->lo_witness;
 1051         class = LOCK_CLASS(lock);
 1052         td = curthread;
 1053         file = fixup_filename(file);
 1054 
 1055         if (class->lc_flags & LC_SLEEPLOCK) {
 1056 
 1057                 /*
 1058                  * Since spin locks include a critical section, this check
 1059                  * implicitly enforces a lock order of all sleep locks before
 1060                  * all spin locks.
 1061                  */
 1062                 if (td->td_critnest != 0 && !kdb_active)
 1063                         panic("blockable sleep lock (%s) %s @ %s:%d",
 1064                             class->lc_name, lock->lo_name, file, line);
 1065 
 1066                 /*
 1067                  * If this is the first lock acquired then just return as
 1068                  * no order checking is needed.
 1069                  */
 1070                 lock_list = td->td_sleeplocks;
 1071                 if (lock_list == NULL || lock_list->ll_count == 0)
 1072                         return;
 1073         } else {
 1074 
 1075                 /*
 1076                  * If this is the first lock, just return as no order
 1077                  * checking is needed.  Avoid problems with thread
 1078                  * migration pinning the thread while checking if
 1079                  * spinlocks are held.  If at least one spinlock is held
 1080                  * the thread is in a safe path and it is allowed to
 1081                  * unpin it.
 1082                  */
 1083                 sched_pin();
 1084                 lock_list = PCPU_GET(spinlocks);
 1085                 if (lock_list == NULL || lock_list->ll_count == 0) {
 1086                         sched_unpin();
 1087                         return;
 1088                 }
 1089                 sched_unpin();
 1090         }
 1091 
 1092         /*
 1093          * Check to see if we are recursing on a lock we already own.  If
 1094          * so, make sure that we don't mismatch exclusive and shared lock
 1095          * acquires.
 1096          */
 1097         lock1 = find_instance(lock_list, lock);
 1098         if (lock1 != NULL) {
 1099                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
 1100                     (flags & LOP_EXCLUSIVE) == 0) {
 1101                         printf("shared lock of (%s) %s @ %s:%d\n",
 1102                             class->lc_name, lock->lo_name, file, line);
 1103                         printf("while exclusively locked from %s:%d\n",
 1104                             lock1->li_file, lock1->li_line);
 1105                         panic("share->excl");
 1106                 }
 1107                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
 1108                     (flags & LOP_EXCLUSIVE) != 0) {
 1109                         printf("exclusive lock of (%s) %s @ %s:%d\n",
 1110                             class->lc_name, lock->lo_name, file, line);
 1111                         printf("while share locked from %s:%d\n",
 1112                             lock1->li_file, lock1->li_line);
 1113                         panic("excl->share");
 1114                 }
 1115                 return;
 1116         }
 1117 
 1118         /*
 1119          * Find the previously acquired lock, but ignore interlocks.
 1120          */
 1121         plock = &lock_list->ll_children[lock_list->ll_count - 1];
 1122         if (interlock != NULL && plock->li_lock == interlock) {
 1123                 if (lock_list->ll_count > 1)
 1124                         plock =
 1125                             &lock_list->ll_children[lock_list->ll_count - 2];
 1126                 else {
 1127                         lle = lock_list->ll_next;
 1128 
 1129                         /*
 1130                          * The interlock is the only lock we hold, so
 1131                          * simply return.
 1132                          */
 1133                         if (lle == NULL)
 1134                                 return;
 1135                         plock = &lle->ll_children[lle->ll_count - 1];
 1136                 }
 1137         }
 1138         
 1139         /*
 1140          * Try to perform most checks without a lock.  If this succeeds we
 1141          * can skip acquiring the lock and return success.
 1142          */
 1143         w1 = plock->li_lock->lo_witness;
 1144         if (witness_lock_order_check(w1, w))
 1145                 return;
 1146 
 1147         /*
 1148          * Check for duplicate locks of the same type.  Note that we only
 1149          * have to check for this on the last lock we just acquired.  Any
 1150          * other cases will be caught as lock order violations.
 1151          */
 1152         mtx_lock_spin(&w_mtx);
 1153         witness_lock_order_add(w1, w);
 1154         if (w1 == w) {
 1155                 i = w->w_index;
 1156                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
 1157                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
 1158                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
 1159                         w->w_reversed = 1;
 1160                         mtx_unlock_spin(&w_mtx);
 1161                         printf(
 1162                             "acquiring duplicate lock of same type: \"%s\"\n", 
 1163                             w->w_name);
 1164                         printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
 1165                                plock->li_file, plock->li_line);
 1166                         printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
 1167                         witness_debugger(1);
 1168                     } else
 1169                             mtx_unlock_spin(&w_mtx);
 1170                 return;
 1171         }
 1172         mtx_assert(&w_mtx, MA_OWNED);
 1173 
 1174         /*
 1175          * If we know that the the lock we are acquiring comes after
 1176          * the lock we most recently acquired in the lock order tree,
 1177          * then there is no need for any further checks.
 1178          */
 1179         if (isitmychild(w1, w))
 1180                 goto out;
 1181 
 1182         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
 1183                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
 1184 
 1185                         MPASS(j < WITNESS_COUNT);
 1186                         lock1 = &lle->ll_children[i];
 1187 
 1188                         /*
 1189                          * Ignore the interlock the first time we see it.
 1190                          */
 1191                         if (interlock != NULL && interlock == lock1->li_lock) {
 1192                                 interlock = NULL;
 1193                                 continue;
 1194                         }
 1195 
 1196                         /*
 1197                          * If this lock doesn't undergo witness checking,
 1198                          * then skip it.
 1199                          */
 1200                         w1 = lock1->li_lock->lo_witness;
 1201                         if (w1 == NULL) {
 1202                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
 1203                                     ("lock missing witness structure"));
 1204                                 continue;
 1205                         }
 1206 
 1207                         /*
 1208                          * If we are locking Giant and this is a sleepable
 1209                          * lock, then skip it.
 1210                          */
 1211                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1212                             lock == &Giant.lock_object)
 1213                                 continue;
 1214 
 1215                         /*
 1216                          * If we are locking a sleepable lock and this lock
 1217                          * is Giant, then skip it.
 1218                          */
 1219                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1220                             lock1->li_lock == &Giant.lock_object)
 1221                                 continue;
 1222 
 1223                         /*
 1224                          * If we are locking a sleepable lock and this lock
 1225                          * isn't sleepable, we want to treat it as a lock
 1226                          * order violation to enfore a general lock order of
 1227                          * sleepable locks before non-sleepable locks.
 1228                          */
 1229                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1230                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
 1231                                 goto reversal;
 1232 
 1233                         /*
 1234                          * If we are locking Giant and this is a non-sleepable
 1235                          * lock, then treat it as a reversal.
 1236                          */
 1237                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
 1238                             lock == &Giant.lock_object)
 1239                                 goto reversal;
 1240 
 1241                         /*
 1242                          * Check the lock order hierarchy for a reveresal.
 1243                          */
 1244                         if (!isitmydescendant(w, w1))
 1245                                 continue;
 1246                 reversal:
 1247 
 1248                         /*
 1249                          * We have a lock order violation, check to see if it
 1250                          * is allowed or has already been yelled about.
 1251                          */
 1252 #ifdef BLESSING
 1253 
 1254                         /*
 1255                          * If the lock order is blessed, just bail.  We don't
 1256                          * look for other lock order violations though, which
 1257                          * may be a bug.
 1258                          */
 1259                         if (blessed(w, w1))
 1260                                 goto out;
 1261 #endif
 1262 
 1263                         /* Bail if this violation is known */
 1264                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
 1265                                 goto out;
 1266 
 1267                         /* Record this as a violation */
 1268                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
 1269                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
 1270                         w->w_reversed = w1->w_reversed = 1;
 1271                         witness_increment_graph_generation();
 1272                         mtx_unlock_spin(&w_mtx);
 1273                         
 1274                         /*
 1275                          * Ok, yell about it.
 1276                          */
 1277                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1278                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
 1279                                 printf(
 1280                 "lock order reversal: (sleepable after non-sleepable)\n");
 1281                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
 1282                             && lock == &Giant.lock_object)
 1283                                 printf(
 1284                 "lock order reversal: (Giant after non-sleepable)\n");
 1285                         else
 1286                                 printf("lock order reversal:\n");
 1287 
 1288                         /*
 1289                          * Try to locate an earlier lock with
 1290                          * witness w in our list.
 1291                          */
 1292                         do {
 1293                                 lock2 = &lle->ll_children[i];
 1294                                 MPASS(lock2->li_lock != NULL);
 1295                                 if (lock2->li_lock->lo_witness == w)
 1296                                         break;
 1297                                 if (i == 0 && lle->ll_next != NULL) {
 1298                                         lle = lle->ll_next;
 1299                                         i = lle->ll_count - 1;
 1300                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
 1301                                 } else
 1302                                         i--;
 1303                         } while (i >= 0);
 1304                         if (i < 0) {
 1305                                 printf(" 1st %p %s (%s) @ %s:%d\n",
 1306                                     lock1->li_lock, lock1->li_lock->lo_name,
 1307                                     w1->w_name, lock1->li_file, lock1->li_line);
 1308                                 printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
 1309                                     lock->lo_name, w->w_name, file, line);
 1310                         } else {
 1311                                 printf(" 1st %p %s (%s) @ %s:%d\n",
 1312                                     lock2->li_lock, lock2->li_lock->lo_name,
 1313                                     lock2->li_lock->lo_witness->w_name,
 1314                                     lock2->li_file, lock2->li_line);
 1315                                 printf(" 2nd %p %s (%s) @ %s:%d\n",
 1316                                     lock1->li_lock, lock1->li_lock->lo_name,
 1317                                     w1->w_name, lock1->li_file, lock1->li_line);
 1318                                 printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
 1319                                     lock->lo_name, w->w_name, file, line);
 1320                         }
 1321                         witness_debugger(1);
 1322                         return;
 1323                 }
 1324         }
 1325 
 1326         /*
 1327          * If requested, build a new lock order.  However, don't build a new
 1328          * relationship between a sleepable lock and Giant if it is in the
 1329          * wrong direction.  The correct lock order is that sleepable locks
 1330          * always come before Giant.
 1331          */
 1332         if (flags & LOP_NEWORDER &&
 1333             !(plock->li_lock == &Giant.lock_object &&
 1334             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
 1335                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
 1336                     w->w_name, plock->li_lock->lo_witness->w_name);
 1337                 itismychild(plock->li_lock->lo_witness, w);
 1338         }
 1339 out:
 1340         mtx_unlock_spin(&w_mtx);
 1341 }
 1342 
 1343 void
 1344 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
 1345 {
 1346         struct lock_list_entry **lock_list, *lle;
 1347         struct lock_instance *instance;
 1348         struct witness *w;
 1349         struct thread *td;
 1350 
 1351         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
 1352             panicstr != NULL)
 1353                 return;
 1354         w = lock->lo_witness;
 1355         td = curthread;
 1356         file = fixup_filename(file);
 1357 
 1358         /* Determine lock list for this lock. */
 1359         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
 1360                 lock_list = &td->td_sleeplocks;
 1361         else
 1362                 lock_list = PCPU_PTR(spinlocks);
 1363 
 1364         /* Check to see if we are recursing on a lock we already own. */
 1365         instance = find_instance(*lock_list, lock);
 1366         if (instance != NULL) {
 1367                 instance->li_flags++;
 1368                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
 1369                     td->td_proc->p_pid, lock->lo_name,
 1370                     instance->li_flags & LI_RECURSEMASK);
 1371                 instance->li_file = file;
 1372                 instance->li_line = line;
 1373                 return;
 1374         }
 1375 
 1376         /* Update per-witness last file and line acquire. */
 1377         w->w_file = file;
 1378         w->w_line = line;
 1379 
 1380         /* Find the next open lock instance in the list and fill it. */
 1381         lle = *lock_list;
 1382         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
 1383                 lle = witness_lock_list_get();
 1384                 if (lle == NULL)
 1385                         return;
 1386                 lle->ll_next = *lock_list;
 1387                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
 1388                     td->td_proc->p_pid, lle);
 1389                 *lock_list = lle;
 1390         }
 1391         instance = &lle->ll_children[lle->ll_count++];
 1392         instance->li_lock = lock;
 1393         instance->li_line = line;
 1394         instance->li_file = file;
 1395         if ((flags & LOP_EXCLUSIVE) != 0)
 1396                 instance->li_flags = LI_EXCLUSIVE;
 1397         else
 1398                 instance->li_flags = 0;
 1399         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
 1400             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
 1401 }
 1402 
 1403 void
 1404 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
 1405 {
 1406         struct lock_instance *instance;
 1407         struct lock_class *class;
 1408 
 1409         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 1410         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 1411                 return;
 1412         class = LOCK_CLASS(lock);
 1413         file = fixup_filename(file);
 1414         if (witness_watch) {
 1415                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
 1416                         panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
 1417                             class->lc_name, lock->lo_name, file, line);
 1418                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
 1419                         panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
 1420                             class->lc_name, lock->lo_name, file, line);
 1421         }
 1422         instance = find_instance(curthread->td_sleeplocks, lock);
 1423         if (instance == NULL)
 1424                 panic("upgrade of unlocked lock (%s) %s @ %s:%d",
 1425                     class->lc_name, lock->lo_name, file, line);
 1426         if (witness_watch) {
 1427                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
 1428                         panic("upgrade of exclusive lock (%s) %s @ %s:%d",
 1429                             class->lc_name, lock->lo_name, file, line);
 1430                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
 1431                         panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
 1432                             class->lc_name, lock->lo_name,
 1433                             instance->li_flags & LI_RECURSEMASK, file, line);
 1434         }
 1435         instance->li_flags |= LI_EXCLUSIVE;
 1436 }
 1437 
 1438 void
 1439 witness_downgrade(struct lock_object *lock, int flags, const char *file,
 1440     int line)
 1441 {
 1442         struct lock_instance *instance;
 1443         struct lock_class *class;
 1444 
 1445         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 1446         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 1447                 return;
 1448         class = LOCK_CLASS(lock);
 1449         file = fixup_filename(file);
 1450         if (witness_watch) {
 1451                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
 1452                 panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
 1453                             class->lc_name, lock->lo_name, file, line);
 1454                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
 1455                         panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
 1456                             class->lc_name, lock->lo_name, file, line);
 1457         }
 1458         instance = find_instance(curthread->td_sleeplocks, lock);
 1459         if (instance == NULL)
 1460                 panic("downgrade of unlocked lock (%s) %s @ %s:%d",
 1461                     class->lc_name, lock->lo_name, file, line);
 1462         if (witness_watch) {
 1463                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
 1464                         panic("downgrade of shared lock (%s) %s @ %s:%d",
 1465                             class->lc_name, lock->lo_name, file, line);
 1466                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
 1467                         panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
 1468                             class->lc_name, lock->lo_name,
 1469                             instance->li_flags & LI_RECURSEMASK, file, line);
 1470         }
 1471         instance->li_flags &= ~LI_EXCLUSIVE;
 1472 }
 1473 
 1474 void
 1475 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
 1476 {
 1477         struct lock_list_entry **lock_list, *lle;
 1478         struct lock_instance *instance;
 1479         struct lock_class *class;
 1480         struct thread *td;
 1481         register_t s;
 1482         int i, j;
 1483 
 1484         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
 1485                 return;
 1486         td = curthread;
 1487         class = LOCK_CLASS(lock);
 1488         file = fixup_filename(file);
 1489 
 1490         /* Find lock instance associated with this lock. */
 1491         if (class->lc_flags & LC_SLEEPLOCK)
 1492                 lock_list = &td->td_sleeplocks;
 1493         else
 1494                 lock_list = PCPU_PTR(spinlocks);
 1495         lle = *lock_list;
 1496         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
 1497                 for (i = 0; i < (*lock_list)->ll_count; i++) {
 1498                         instance = &(*lock_list)->ll_children[i];
 1499                         if (instance->li_lock == lock)
 1500                                 goto found;
 1501                 }
 1502 
 1503         /*
 1504          * When disabling WITNESS through witness_watch we could end up in
 1505          * having registered locks in the td_sleeplocks queue.
 1506          * We have to make sure we flush these queues, so just search for
 1507          * eventual register locks and remove them.
 1508          */
 1509         if (witness_watch > 0)
 1510                 panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
 1511                     lock->lo_name, file, line);
 1512         else
 1513                 return;
 1514 found:
 1515 
 1516         /* First, check for shared/exclusive mismatches. */
 1517         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
 1518             (flags & LOP_EXCLUSIVE) == 0) {
 1519                 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
 1520                     lock->lo_name, file, line);
 1521                 printf("while exclusively locked from %s:%d\n",
 1522                     instance->li_file, instance->li_line);
 1523                 panic("excl->ushare");
 1524         }
 1525         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
 1526             (flags & LOP_EXCLUSIVE) != 0) {
 1527                 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
 1528                     lock->lo_name, file, line);
 1529                 printf("while share locked from %s:%d\n", instance->li_file,
 1530                     instance->li_line);
 1531                 panic("share->uexcl");
 1532         }
 1533         /* If we are recursed, unrecurse. */
 1534         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
 1535                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
 1536                     td->td_proc->p_pid, instance->li_lock->lo_name,
 1537                     instance->li_flags);
 1538                 instance->li_flags--;
 1539                 return;
 1540         }
 1541         /* The lock is now being dropped, check for NORELEASE flag */
 1542         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
 1543                 printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
 1544                     lock->lo_name, file, line);
 1545                 panic("lock marked norelease");
 1546         }
 1547 
 1548         /* Otherwise, remove this item from the list. */
 1549         s = intr_disable();
 1550         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
 1551             td->td_proc->p_pid, instance->li_lock->lo_name,
 1552             (*lock_list)->ll_count - 1);
 1553         for (j = i; j < (*lock_list)->ll_count - 1; j++)
 1554                 (*lock_list)->ll_children[j] =
 1555                     (*lock_list)->ll_children[j + 1];
 1556         (*lock_list)->ll_count--;
 1557         intr_restore(s);
 1558 
 1559         /*
 1560          * In order to reduce contention on w_mtx, we want to keep always an
 1561          * head object into lists so that frequent allocation from the 
 1562          * free witness pool (and subsequent locking) is avoided.
 1563          * In order to maintain the current code simple, when the head
 1564          * object is totally unloaded it means also that we do not have
 1565          * further objects in the list, so the list ownership needs to be
 1566          * hand over to another object if the current head needs to be freed.
 1567          */
 1568         if ((*lock_list)->ll_count == 0) {
 1569                 if (*lock_list == lle) {
 1570                         if (lle->ll_next == NULL)
 1571                                 return;
 1572                 } else
 1573                         lle = *lock_list;
 1574                 *lock_list = lle->ll_next;
 1575                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
 1576                     td->td_proc->p_pid, lle);
 1577                 witness_lock_list_free(lle);
 1578         }
 1579 }
 1580 
 1581 void
 1582 witness_thread_exit(struct thread *td)
 1583 {
 1584         struct lock_list_entry *lle;
 1585         int i, n;
 1586 
 1587         lle = td->td_sleeplocks;
 1588         if (lle == NULL || panicstr != NULL)
 1589                 return;
 1590         if (lle->ll_count != 0) {
 1591                 for (n = 0; lle != NULL; lle = lle->ll_next)
 1592                         for (i = lle->ll_count - 1; i >= 0; i--) {
 1593                                 if (n == 0)
 1594                 printf("Thread %p exiting with the following locks held:\n",
 1595                                             td);
 1596                                 n++;
 1597                                 witness_list_lock(&lle->ll_children[i]);
 1598                                 
 1599                         }
 1600                 panic("Thread %p cannot exit while holding sleeplocks\n", td);
 1601         }
 1602         witness_lock_list_free(lle);
 1603 }
 1604 
 1605 /*
 1606  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
 1607  * exempt Giant and sleepable locks from the checks as well.  If any
 1608  * non-exempt locks are held, then a supplied message is printed to the
 1609  * console along with a list of the offending locks.  If indicated in the
 1610  * flags then a failure results in a panic as well.
 1611  */
 1612 int
 1613 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
 1614 {
 1615         struct lock_list_entry *lock_list, *lle;
 1616         struct lock_instance *lock1;
 1617         struct thread *td;
 1618         va_list ap;
 1619         int i, n;
 1620 
 1621         if (witness_cold || witness_watch < 1 || panicstr != NULL)
 1622                 return (0);
 1623         n = 0;
 1624         td = curthread;
 1625         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
 1626                 for (i = lle->ll_count - 1; i >= 0; i--) {
 1627                         lock1 = &lle->ll_children[i];
 1628                         if (lock1->li_lock == lock)
 1629                                 continue;
 1630                         if (flags & WARN_GIANTOK &&
 1631                             lock1->li_lock == &Giant.lock_object)
 1632                                 continue;
 1633                         if (flags & WARN_SLEEPOK &&
 1634                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
 1635                                 continue;
 1636                         if (n == 0) {
 1637                                 va_start(ap, fmt);
 1638                                 vprintf(fmt, ap);
 1639                                 va_end(ap);
 1640                                 printf(" with the following");
 1641                                 if (flags & WARN_SLEEPOK)
 1642                                         printf(" non-sleepable");
 1643                                 printf(" locks held:\n");
 1644                         }
 1645                         n++;
 1646                         witness_list_lock(lock1);
 1647                 }
 1648 
 1649         /*
 1650          * Pin the thread in order to avoid problems with thread migration.
 1651          * Once that all verifies are passed about spinlocks ownership,
 1652          * the thread is in a safe path and it can be unpinned.
 1653          */
 1654         sched_pin();
 1655         lock_list = PCPU_GET(spinlocks);
 1656         if (lock_list != NULL && lock_list->ll_count != 0) {
 1657                 sched_unpin();
 1658 
 1659                 /*
 1660                  * We should only have one spinlock and as long as
 1661                  * the flags cannot match for this locks class,
 1662                  * check if the first spinlock is the one curthread
 1663                  * should hold.
 1664                  */
 1665                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
 1666                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
 1667                     lock1->li_lock == lock && n == 0)
 1668                         return (0);
 1669 
 1670                 va_start(ap, fmt);
 1671                 vprintf(fmt, ap);
 1672                 va_end(ap);
 1673                 printf(" with the following");
 1674                 if (flags & WARN_SLEEPOK)
 1675                         printf(" non-sleepable");
 1676                 printf(" locks held:\n");
 1677                 n += witness_list_locks(&lock_list);
 1678         } else
 1679                 sched_unpin();
 1680         if (flags & WARN_PANIC && n)
 1681                 panic("%s", __func__);
 1682         else
 1683                 witness_debugger(n);
 1684         return (n);
 1685 }
 1686 
 1687 const char *
 1688 witness_file(struct lock_object *lock)
 1689 {
 1690         struct witness *w;
 1691 
 1692         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
 1693                 return ("?");
 1694         w = lock->lo_witness;
 1695         return (w->w_file);
 1696 }
 1697 
 1698 int
 1699 witness_line(struct lock_object *lock)
 1700 {
 1701         struct witness *w;
 1702 
 1703         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
 1704                 return (0);
 1705         w = lock->lo_witness;
 1706         return (w->w_line);
 1707 }
 1708 
 1709 static struct witness *
 1710 enroll(const char *description, struct lock_class *lock_class)
 1711 {
 1712         struct witness *w;
 1713         struct witness_list *typelist;
 1714 
 1715         MPASS(description != NULL);
 1716 
 1717         if (witness_watch == -1 || panicstr != NULL)
 1718                 return (NULL);
 1719         if ((lock_class->lc_flags & LC_SPINLOCK)) {
 1720                 if (witness_skipspin)
 1721                         return (NULL);
 1722                 else
 1723                         typelist = &w_spin;
 1724         } else if ((lock_class->lc_flags & LC_SLEEPLOCK))
 1725                 typelist = &w_sleep;
 1726         else
 1727                 panic("lock class %s is not sleep or spin",
 1728                     lock_class->lc_name);
 1729 
 1730         mtx_lock_spin(&w_mtx);
 1731         w = witness_hash_get(description);
 1732         if (w)
 1733                 goto found;
 1734         if ((w = witness_get()) == NULL)
 1735                 return (NULL);
 1736         MPASS(strlen(description) < MAX_W_NAME);
 1737         strcpy(w->w_name, description);
 1738         w->w_class = lock_class;
 1739         w->w_refcount = 1;
 1740         STAILQ_INSERT_HEAD(&w_all, w, w_list);
 1741         if (lock_class->lc_flags & LC_SPINLOCK) {
 1742                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
 1743                 w_spin_cnt++;
 1744         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
 1745                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
 1746                 w_sleep_cnt++;
 1747         }
 1748 
 1749         /* Insert new witness into the hash */
 1750         witness_hash_put(w);
 1751         witness_increment_graph_generation();
 1752         mtx_unlock_spin(&w_mtx);
 1753         return (w);
 1754 found:
 1755         w->w_refcount++;
 1756         mtx_unlock_spin(&w_mtx);
 1757         if (lock_class != w->w_class)
 1758                 panic(
 1759                         "lock (%s) %s does not match earlier (%s) lock",
 1760                         description, lock_class->lc_name,
 1761                         w->w_class->lc_name);
 1762         return (w);
 1763 }
 1764 
 1765 static void
 1766 depart(struct witness *w)
 1767 {
 1768         struct witness_list *list;
 1769 
 1770         MPASS(w->w_refcount == 0);
 1771         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
 1772                 list = &w_sleep;
 1773                 w_sleep_cnt--;
 1774         } else {
 1775                 list = &w_spin;
 1776                 w_spin_cnt--;
 1777         }
 1778         /*
 1779          * Set file to NULL as it may point into a loadable module.
 1780          */
 1781         w->w_file = NULL;
 1782         w->w_line = 0;
 1783         witness_increment_graph_generation();
 1784 }
 1785 
 1786 
 1787 static void
 1788 adopt(struct witness *parent, struct witness *child)
 1789 {
 1790         int pi, ci, i, j;
 1791 
 1792         if (witness_cold == 0)
 1793                 mtx_assert(&w_mtx, MA_OWNED);
 1794 
 1795         /* If the relationship is already known, there's no work to be done. */
 1796         if (isitmychild(parent, child))
 1797                 return;
 1798 
 1799         /* When the structure of the graph changes, bump up the generation. */
 1800         witness_increment_graph_generation();
 1801 
 1802         /*
 1803          * The hard part ... create the direct relationship, then propagate all
 1804          * indirect relationships.
 1805          */
 1806         pi = parent->w_index;
 1807         ci = child->w_index;
 1808         WITNESS_INDEX_ASSERT(pi);
 1809         WITNESS_INDEX_ASSERT(ci);
 1810         MPASS(pi != ci);
 1811         w_rmatrix[pi][ci] |= WITNESS_PARENT;
 1812         w_rmatrix[ci][pi] |= WITNESS_CHILD;
 1813 
 1814         /*
 1815          * If parent was not already an ancestor of child,
 1816          * then we increment the descendant and ancestor counters.
 1817          */
 1818         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
 1819                 parent->w_num_descendants++;
 1820                 child->w_num_ancestors++;
 1821         }
 1822 
 1823         /* 
 1824          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
 1825          * an ancestor of 'pi' during this loop.
 1826          */
 1827         for (i = 1; i <= w_max_used_index; i++) {
 1828                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
 1829                     (i != pi))
 1830                         continue;
 1831 
 1832                 /* Find each descendant of 'i' and mark it as a descendant. */
 1833                 for (j = 1; j <= w_max_used_index; j++) {
 1834 
 1835                         /* 
 1836                          * Skip children that are already marked as
 1837                          * descendants of 'i'.
 1838                          */
 1839                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
 1840                                 continue;
 1841 
 1842                         /*
 1843                          * We are only interested in descendants of 'ci'. Note
 1844                          * that 'ci' itself is counted as a descendant of 'ci'.
 1845                          */
 1846                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
 1847                             (j != ci))
 1848                                 continue;
 1849                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
 1850                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
 1851                         w_data[i].w_num_descendants++;
 1852                         w_data[j].w_num_ancestors++;
 1853 
 1854                         /* 
 1855                          * Make sure we aren't marking a node as both an
 1856                          * ancestor and descendant. We should have caught 
 1857                          * this as a lock order reversal earlier.
 1858                          */
 1859                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
 1860                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
 1861                                 printf("witness rmatrix paradox! [%d][%d]=%d "
 1862                                     "both ancestor and descendant\n",
 1863                                     i, j, w_rmatrix[i][j]); 
 1864                                 kdb_backtrace();
 1865                                 printf("Witness disabled.\n");
 1866                                 witness_watch = -1;
 1867                         }
 1868                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
 1869                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
 1870                                 printf("witness rmatrix paradox! [%d][%d]=%d "
 1871                                     "both ancestor and descendant\n",
 1872                                     j, i, w_rmatrix[j][i]); 
 1873                                 kdb_backtrace();
 1874                                 printf("Witness disabled.\n");
 1875                                 witness_watch = -1;
 1876                         }
 1877                 }
 1878         }
 1879 }
 1880 
 1881 static void
 1882 itismychild(struct witness *parent, struct witness *child)
 1883 {
 1884 
 1885         MPASS(child != NULL && parent != NULL);
 1886         if (witness_cold == 0)
 1887                 mtx_assert(&w_mtx, MA_OWNED);
 1888 
 1889         if (!witness_lock_type_equal(parent, child)) {
 1890                 if (witness_cold == 0)
 1891                         mtx_unlock_spin(&w_mtx);
 1892                 panic("%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
 1893                     "the same lock type", __func__, parent->w_name,
 1894                     parent->w_class->lc_name, child->w_name,
 1895                     child->w_class->lc_name);
 1896         }
 1897         adopt(parent, child);
 1898 }
 1899 
 1900 /*
 1901  * Generic code for the isitmy*() functions. The rmask parameter is the
 1902  * expected relationship of w1 to w2.
 1903  */
 1904 static int
 1905 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
 1906 {
 1907         unsigned char r1, r2;
 1908         int i1, i2;
 1909 
 1910         i1 = w1->w_index;
 1911         i2 = w2->w_index;
 1912         WITNESS_INDEX_ASSERT(i1);
 1913         WITNESS_INDEX_ASSERT(i2);
 1914         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
 1915         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
 1916 
 1917         /* The flags on one better be the inverse of the flags on the other */
 1918         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
 1919                 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
 1920                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
 1921                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
 1922                     "w_rmatrix[%d][%d] == %hhx\n",
 1923                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
 1924                     i2, i1, r2);
 1925                 kdb_backtrace();
 1926                 printf("Witness disabled.\n");
 1927                 witness_watch = -1;
 1928         }
 1929         return (r1 & rmask);
 1930 }
 1931 
 1932 /*
 1933  * Checks if @child is a direct child of @parent.
 1934  */
 1935 static int
 1936 isitmychild(struct witness *parent, struct witness *child)
 1937 {
 1938 
 1939         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
 1940 }
 1941 
 1942 /*
 1943  * Checks if @descendant is a direct or inderect descendant of @ancestor.
 1944  */
 1945 static int
 1946 isitmydescendant(struct witness *ancestor, struct witness *descendant)
 1947 {
 1948 
 1949         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
 1950             __func__));
 1951 }
 1952 
 1953 #ifdef BLESSING
 1954 static int
 1955 blessed(struct witness *w1, struct witness *w2)
 1956 {
 1957         int i;
 1958         struct witness_blessed *b;
 1959 
 1960         for (i = 0; i < blessed_count; i++) {
 1961                 b = &blessed_list[i];
 1962                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
 1963                         if (strcmp(w2->w_name, b->b_lock2) == 0)
 1964                                 return (1);
 1965                         continue;
 1966                 }
 1967                 if (strcmp(w1->w_name, b->b_lock2) == 0)
 1968                         if (strcmp(w2->w_name, b->b_lock1) == 0)
 1969                                 return (1);
 1970         }
 1971         return (0);
 1972 }
 1973 #endif
 1974 
 1975 static struct witness *
 1976 witness_get(void)
 1977 {
 1978         struct witness *w;
 1979         int index;
 1980 
 1981         if (witness_cold == 0)
 1982                 mtx_assert(&w_mtx, MA_OWNED);
 1983 
 1984         if (witness_watch == -1) {
 1985                 mtx_unlock_spin(&w_mtx);
 1986                 return (NULL);
 1987         }
 1988         if (STAILQ_EMPTY(&w_free)) {
 1989                 witness_watch = -1;
 1990                 mtx_unlock_spin(&w_mtx);
 1991                 printf("WITNESS: unable to allocate a new witness object\n");
 1992                 return (NULL);
 1993         }
 1994         w = STAILQ_FIRST(&w_free);
 1995         STAILQ_REMOVE_HEAD(&w_free, w_list);
 1996         w_free_cnt--;
 1997         index = w->w_index;
 1998         MPASS(index > 0 && index == w_max_used_index+1 &&
 1999             index < WITNESS_COUNT);
 2000         bzero(w, sizeof(*w));
 2001         w->w_index = index;
 2002         if (index > w_max_used_index)
 2003                 w_max_used_index = index;
 2004         return (w);
 2005 }
 2006 
 2007 static void
 2008 witness_free(struct witness *w)
 2009 {
 2010 
 2011         STAILQ_INSERT_HEAD(&w_free, w, w_list);
 2012         w_free_cnt++;
 2013 }
 2014 
 2015 static struct lock_list_entry *
 2016 witness_lock_list_get(void)
 2017 {
 2018         struct lock_list_entry *lle;
 2019 
 2020         if (witness_watch == -1)
 2021                 return (NULL);
 2022         mtx_lock_spin(&w_mtx);
 2023         lle = w_lock_list_free;
 2024         if (lle == NULL) {
 2025                 witness_watch = -1;
 2026                 mtx_unlock_spin(&w_mtx);
 2027                 printf("%s: witness exhausted\n", __func__);
 2028                 return (NULL);
 2029         }
 2030         w_lock_list_free = lle->ll_next;
 2031         mtx_unlock_spin(&w_mtx);
 2032         bzero(lle, sizeof(*lle));
 2033         return (lle);
 2034 }
 2035                 
 2036 static void
 2037 witness_lock_list_free(struct lock_list_entry *lle)
 2038 {
 2039 
 2040         mtx_lock_spin(&w_mtx);
 2041         lle->ll_next = w_lock_list_free;
 2042         w_lock_list_free = lle;
 2043         mtx_unlock_spin(&w_mtx);
 2044 }
 2045 
 2046 static struct lock_instance *
 2047 find_instance(struct lock_list_entry *list, struct lock_object *lock)
 2048 {
 2049         struct lock_list_entry *lle;
 2050         struct lock_instance *instance;
 2051         int i;
 2052 
 2053         for (lle = list; lle != NULL; lle = lle->ll_next)
 2054                 for (i = lle->ll_count - 1; i >= 0; i--) {
 2055                         instance = &lle->ll_children[i];
 2056                         if (instance->li_lock == lock)
 2057                                 return (instance);
 2058                 }
 2059         return (NULL);
 2060 }
 2061 
 2062 static void
 2063 witness_list_lock(struct lock_instance *instance)
 2064 {
 2065         struct lock_object *lock;
 2066 
 2067         lock = instance->li_lock;
 2068         printf("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
 2069             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
 2070         if (lock->lo_witness->w_name != lock->lo_name)
 2071                 printf(" (%s)", lock->lo_witness->w_name);
 2072         printf(" r = %d (%p) locked @ %s:%d\n",
 2073             instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
 2074             instance->li_line);
 2075 }
 2076 
 2077 #ifdef DDB
 2078 static int
 2079 witness_thread_has_locks(struct thread *td)
 2080 {
 2081 
 2082         if (td->td_sleeplocks == NULL)
 2083                 return (0);
 2084         return (td->td_sleeplocks->ll_count != 0);
 2085 }
 2086 
 2087 static int
 2088 witness_proc_has_locks(struct proc *p)
 2089 {
 2090         struct thread *td;
 2091 
 2092         FOREACH_THREAD_IN_PROC(p, td) {
 2093                 if (witness_thread_has_locks(td))
 2094                         return (1);
 2095         }
 2096         return (0);
 2097 }
 2098 #endif
 2099 
 2100 int
 2101 witness_list_locks(struct lock_list_entry **lock_list)
 2102 {
 2103         struct lock_list_entry *lle;
 2104         int i, nheld;
 2105 
 2106         nheld = 0;
 2107         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
 2108                 for (i = lle->ll_count - 1; i >= 0; i--) {
 2109                         witness_list_lock(&lle->ll_children[i]);
 2110                         nheld++;
 2111                 }
 2112         return (nheld);
 2113 }
 2114 
 2115 /*
 2116  * This is a bit risky at best.  We call this function when we have timed
 2117  * out acquiring a spin lock, and we assume that the other CPU is stuck
 2118  * with this lock held.  So, we go groveling around in the other CPU's
 2119  * per-cpu data to try to find the lock instance for this spin lock to
 2120  * see when it was last acquired.
 2121  */
 2122 void
 2123 witness_display_spinlock(struct lock_object *lock, struct thread *owner)
 2124 {
 2125         struct lock_instance *instance;
 2126         struct pcpu *pc;
 2127 
 2128         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
 2129                 return;
 2130         pc = pcpu_find(owner->td_oncpu);
 2131         instance = find_instance(pc->pc_spinlocks, lock);
 2132         if (instance != NULL)
 2133                 witness_list_lock(instance);
 2134 }
 2135 
 2136 void
 2137 witness_save(struct lock_object *lock, const char **filep, int *linep)
 2138 {
 2139         struct lock_list_entry *lock_list;
 2140         struct lock_instance *instance;
 2141         struct lock_class *class;
 2142 
 2143         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2144         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 2145                 return;
 2146         class = LOCK_CLASS(lock);
 2147         if (class->lc_flags & LC_SLEEPLOCK)
 2148                 lock_list = curthread->td_sleeplocks;
 2149         else {
 2150                 if (witness_skipspin)
 2151                         return;
 2152                 lock_list = PCPU_GET(spinlocks);
 2153         }
 2154         instance = find_instance(lock_list, lock);
 2155         if (instance == NULL)
 2156                 panic("%s: lock (%s) %s not locked", __func__,
 2157                     class->lc_name, lock->lo_name);
 2158         *filep = instance->li_file;
 2159         *linep = instance->li_line;
 2160 }
 2161 
 2162 void
 2163 witness_restore(struct lock_object *lock, const char *file, int line)
 2164 {
 2165         struct lock_list_entry *lock_list;
 2166         struct lock_instance *instance;
 2167         struct lock_class *class;
 2168 
 2169         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2170         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 2171                 return;
 2172         class = LOCK_CLASS(lock);
 2173         if (class->lc_flags & LC_SLEEPLOCK)
 2174                 lock_list = curthread->td_sleeplocks;
 2175         else {
 2176                 if (witness_skipspin)
 2177                         return;
 2178                 lock_list = PCPU_GET(spinlocks);
 2179         }
 2180         instance = find_instance(lock_list, lock);
 2181         if (instance == NULL)
 2182                 panic("%s: lock (%s) %s not locked", __func__,
 2183                     class->lc_name, lock->lo_name);
 2184         lock->lo_witness->w_file = file;
 2185         lock->lo_witness->w_line = line;
 2186         instance->li_file = file;
 2187         instance->li_line = line;
 2188 }
 2189 
 2190 void
 2191 witness_assert(struct lock_object *lock, int flags, const char *file, int line)
 2192 {
 2193 #ifdef INVARIANT_SUPPORT
 2194         struct lock_instance *instance;
 2195         struct lock_class *class;
 2196 
 2197         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
 2198                 return;
 2199         class = LOCK_CLASS(lock);
 2200         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
 2201                 instance = find_instance(curthread->td_sleeplocks, lock);
 2202         else if ((class->lc_flags & LC_SPINLOCK) != 0)
 2203                 instance = find_instance(PCPU_GET(spinlocks), lock);
 2204         else {
 2205                 panic("Lock (%s) %s is not sleep or spin!",
 2206                     class->lc_name, lock->lo_name);
 2207         }
 2208         file = fixup_filename(file);
 2209         switch (flags) {
 2210         case LA_UNLOCKED:
 2211                 if (instance != NULL)
 2212                         panic("Lock (%s) %s locked @ %s:%d.",
 2213                             class->lc_name, lock->lo_name, file, line);
 2214                 break;
 2215         case LA_LOCKED:
 2216         case LA_LOCKED | LA_RECURSED:
 2217         case LA_LOCKED | LA_NOTRECURSED:
 2218         case LA_SLOCKED:
 2219         case LA_SLOCKED | LA_RECURSED:
 2220         case LA_SLOCKED | LA_NOTRECURSED:
 2221         case LA_XLOCKED:
 2222         case LA_XLOCKED | LA_RECURSED:
 2223         case LA_XLOCKED | LA_NOTRECURSED:
 2224                 if (instance == NULL) {
 2225                         panic("Lock (%s) %s not locked @ %s:%d.",
 2226                             class->lc_name, lock->lo_name, file, line);
 2227                         break;
 2228                 }
 2229                 if ((flags & LA_XLOCKED) != 0 &&
 2230                     (instance->li_flags & LI_EXCLUSIVE) == 0)
 2231                         panic("Lock (%s) %s not exclusively locked @ %s:%d.",
 2232                             class->lc_name, lock->lo_name, file, line);
 2233                 if ((flags & LA_SLOCKED) != 0 &&
 2234                     (instance->li_flags & LI_EXCLUSIVE) != 0)
 2235                         panic("Lock (%s) %s exclusively locked @ %s:%d.",
 2236                             class->lc_name, lock->lo_name, file, line);
 2237                 if ((flags & LA_RECURSED) != 0 &&
 2238                     (instance->li_flags & LI_RECURSEMASK) == 0)
 2239                         panic("Lock (%s) %s not recursed @ %s:%d.",
 2240                             class->lc_name, lock->lo_name, file, line);
 2241                 if ((flags & LA_NOTRECURSED) != 0 &&
 2242                     (instance->li_flags & LI_RECURSEMASK) != 0)
 2243                         panic("Lock (%s) %s recursed @ %s:%d.",
 2244                             class->lc_name, lock->lo_name, file, line);
 2245                 break;
 2246         default:
 2247                 panic("Invalid lock assertion at %s:%d.", file, line);
 2248 
 2249         }
 2250 #endif  /* INVARIANT_SUPPORT */
 2251 }
 2252 
 2253 static void
 2254 witness_setflag(struct lock_object *lock, int flag, int set)
 2255 {
 2256         struct lock_list_entry *lock_list;
 2257         struct lock_instance *instance;
 2258         struct lock_class *class;
 2259 
 2260         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 2261                 return;
 2262         class = LOCK_CLASS(lock);
 2263         if (class->lc_flags & LC_SLEEPLOCK)
 2264                 lock_list = curthread->td_sleeplocks;
 2265         else {
 2266                 if (witness_skipspin)
 2267                         return;
 2268                 lock_list = PCPU_GET(spinlocks);
 2269         }
 2270         instance = find_instance(lock_list, lock);
 2271         if (instance == NULL)
 2272                 panic("%s: lock (%s) %s not locked", __func__,
 2273                     class->lc_name, lock->lo_name);
 2274 
 2275         if (set)
 2276                 instance->li_flags |= flag;
 2277         else
 2278                 instance->li_flags &= ~flag;
 2279 }
 2280 
 2281 void
 2282 witness_norelease(struct lock_object *lock)
 2283 {
 2284 
 2285         witness_setflag(lock, LI_NORELEASE, 1);
 2286 }
 2287 
 2288 void
 2289 witness_releaseok(struct lock_object *lock)
 2290 {
 2291 
 2292         witness_setflag(lock, LI_NORELEASE, 0);
 2293 }
 2294 
 2295 #ifdef DDB
 2296 static void
 2297 witness_ddb_list(struct thread *td)
 2298 {
 2299 
 2300         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2301         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
 2302 
 2303         if (witness_watch < 1)
 2304                 return;
 2305 
 2306         witness_list_locks(&td->td_sleeplocks);
 2307 
 2308         /*
 2309          * We only handle spinlocks if td == curthread.  This is somewhat broken
 2310          * if td is currently executing on some other CPU and holds spin locks
 2311          * as we won't display those locks.  If we had a MI way of getting
 2312          * the per-cpu data for a given cpu then we could use
 2313          * td->td_oncpu to get the list of spinlocks for this thread
 2314          * and "fix" this.
 2315          *
 2316          * That still wouldn't really fix this unless we locked the scheduler
 2317          * lock or stopped the other CPU to make sure it wasn't changing the
 2318          * list out from under us.  It is probably best to just not try to
 2319          * handle threads on other CPU's for now.
 2320          */
 2321         if (td == curthread && PCPU_GET(spinlocks) != NULL)
 2322                 witness_list_locks(PCPU_PTR(spinlocks));
 2323 }
 2324 
 2325 DB_SHOW_COMMAND(locks, db_witness_list)
 2326 {
 2327         struct thread *td;
 2328 
 2329         if (have_addr)
 2330                 td = db_lookup_thread(addr, TRUE);
 2331         else
 2332                 td = kdb_thread;
 2333         witness_ddb_list(td);
 2334 }
 2335 
 2336 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
 2337 {
 2338         struct thread *td;
 2339         struct proc *p;
 2340 
 2341         /*
 2342          * It would be nice to list only threads and processes that actually
 2343          * held sleep locks, but that information is currently not exported
 2344          * by WITNESS.
 2345          */
 2346         FOREACH_PROC_IN_SYSTEM(p) {
 2347                 if (!witness_proc_has_locks(p))
 2348                         continue;
 2349                 FOREACH_THREAD_IN_PROC(p, td) {
 2350                         if (!witness_thread_has_locks(td))
 2351                                 continue;
 2352                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
 2353                             p->p_comm, td, td->td_tid);
 2354                         witness_ddb_list(td);
 2355                 }
 2356         }
 2357 }
 2358 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
 2359 
 2360 DB_SHOW_COMMAND(witness, db_witness_display)
 2361 {
 2362 
 2363         witness_ddb_display(db_printf);
 2364 }
 2365 #endif
 2366 
 2367 static int
 2368 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
 2369 {
 2370         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
 2371         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
 2372         struct sbuf *sb;
 2373         u_int w_rmatrix1, w_rmatrix2;
 2374         int error, generation, i, j;
 2375 
 2376         tmp_data1 = NULL;
 2377         tmp_data2 = NULL;
 2378         tmp_w1 = NULL;
 2379         tmp_w2 = NULL;
 2380         if (witness_watch < 1) {
 2381                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
 2382                 return (error);
 2383         }
 2384         if (witness_cold) {
 2385                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
 2386                 return (error);
 2387         }
 2388         error = 0;
 2389         sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
 2390         if (sb == NULL)
 2391                 return (ENOMEM);
 2392 
 2393         /* Allocate and init temporary storage space. */
 2394         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
 2395         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
 2396         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
 2397             M_WAITOK | M_ZERO);
 2398         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
 2399             M_WAITOK | M_ZERO);
 2400         stack_zero(&tmp_data1->wlod_stack);
 2401         stack_zero(&tmp_data2->wlod_stack);
 2402 
 2403 restart:
 2404         mtx_lock_spin(&w_mtx);
 2405         generation = w_generation;
 2406         mtx_unlock_spin(&w_mtx);
 2407         sbuf_printf(sb, "Number of known direct relationships is %d\n",
 2408             w_lohash.wloh_count);
 2409         for (i = 1; i < w_max_used_index; i++) {
 2410                 mtx_lock_spin(&w_mtx);
 2411                 if (generation != w_generation) {
 2412                         mtx_unlock_spin(&w_mtx);
 2413 
 2414                         /* The graph has changed, try again. */
 2415                         req->oldidx = 0;
 2416                         sbuf_clear(sb);
 2417                         goto restart;
 2418                 }
 2419 
 2420                 w1 = &w_data[i];
 2421                 if (w1->w_reversed == 0) {
 2422                         mtx_unlock_spin(&w_mtx);
 2423                         continue;
 2424                 }
 2425 
 2426                 /* Copy w1 locally so we can release the spin lock. */
 2427                 *tmp_w1 = *w1;
 2428                 mtx_unlock_spin(&w_mtx);
 2429 
 2430                 if (tmp_w1->w_reversed == 0)
 2431                         continue;
 2432                 for (j = 1; j < w_max_used_index; j++) {
 2433                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
 2434                                 continue;
 2435 
 2436                         mtx_lock_spin(&w_mtx);
 2437                         if (generation != w_generation) {
 2438                                 mtx_unlock_spin(&w_mtx);
 2439 
 2440                                 /* The graph has changed, try again. */
 2441                                 req->oldidx = 0;
 2442                                 sbuf_clear(sb);
 2443                                 goto restart;
 2444                         }
 2445 
 2446                         w2 = &w_data[j];
 2447                         data1 = witness_lock_order_get(w1, w2);
 2448                         data2 = witness_lock_order_get(w2, w1);
 2449 
 2450                         /*
 2451                          * Copy information locally so we can release the
 2452                          * spin lock.
 2453                          */
 2454                         *tmp_w2 = *w2;
 2455                         w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
 2456                         w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
 2457 
 2458                         if (data1) {
 2459                                 stack_zero(&tmp_data1->wlod_stack);
 2460                                 stack_copy(&data1->wlod_stack,
 2461                                     &tmp_data1->wlod_stack);
 2462                         }
 2463                         if (data2 && data2 != data1) {
 2464                                 stack_zero(&tmp_data2->wlod_stack);
 2465                                 stack_copy(&data2->wlod_stack,
 2466                                     &tmp_data2->wlod_stack);
 2467                         }
 2468                         mtx_unlock_spin(&w_mtx);
 2469 
 2470                         sbuf_printf(sb,
 2471             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
 2472                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
 2473                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
 2474 #if 0
 2475                         sbuf_printf(sb,
 2476                         "w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
 2477                             tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
 2478                             tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
 2479 #endif
 2480                         if (data1) {
 2481                                 sbuf_printf(sb,
 2482                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
 2483                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
 2484                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
 2485                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
 2486                                 sbuf_printf(sb, "\n");
 2487                         }
 2488                         if (data2 && data2 != data1) {
 2489                                 sbuf_printf(sb,
 2490                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
 2491                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
 2492                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
 2493                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
 2494                                 sbuf_printf(sb, "\n");
 2495                         }
 2496                 }
 2497         }
 2498         mtx_lock_spin(&w_mtx);
 2499         if (generation != w_generation) {
 2500                 mtx_unlock_spin(&w_mtx);
 2501 
 2502                 /*
 2503                  * The graph changed while we were printing stack data,
 2504                  * try again.
 2505                  */
 2506                 req->oldidx = 0;
 2507                 sbuf_clear(sb);
 2508                 goto restart;
 2509         }
 2510         mtx_unlock_spin(&w_mtx);
 2511 
 2512         /* Free temporary storage space. */
 2513         free(tmp_data1, M_TEMP);
 2514         free(tmp_data2, M_TEMP);
 2515         free(tmp_w1, M_TEMP);
 2516         free(tmp_w2, M_TEMP);
 2517 
 2518         sbuf_finish(sb);
 2519         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
 2520         sbuf_delete(sb);
 2521 
 2522         return (error);
 2523 }
 2524 
 2525 static int
 2526 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
 2527 {
 2528         struct witness *w;
 2529         struct sbuf *sb;
 2530         int error;
 2531 
 2532         if (witness_watch < 1) {
 2533                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
 2534                 return (error);
 2535         }
 2536         if (witness_cold) {
 2537                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
 2538                 return (error);
 2539         }
 2540         error = 0;
 2541         sb = sbuf_new(NULL, NULL, FULLGRAPH_SBUF_SIZE, SBUF_FIXEDLEN);
 2542         if (sb == NULL)
 2543                 return (ENOMEM);
 2544         sbuf_printf(sb, "\n");
 2545 
 2546         mtx_lock_spin(&w_mtx);
 2547         STAILQ_FOREACH(w, &w_all, w_list)
 2548                 w->w_displayed = 0;
 2549         STAILQ_FOREACH(w, &w_all, w_list)
 2550                 witness_add_fullgraph(sb, w);
 2551         mtx_unlock_spin(&w_mtx);
 2552 
 2553         /*
 2554          * While using SBUF_FIXEDLEN, check if the sbuf overflowed.
 2555          */
 2556         if (sbuf_overflowed(sb)) {
 2557                 sbuf_delete(sb);
 2558                 panic("%s: sbuf overflowed, bump FULLGRAPH_SBUF_SIZE value\n",
 2559                     __func__);
 2560         }
 2561 
 2562         /*
 2563          * Close the sbuf and return to userland.
 2564          */
 2565         sbuf_finish(sb);
 2566         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
 2567         sbuf_delete(sb);
 2568 
 2569         return (error);
 2570 }
 2571 
 2572 static int
 2573 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
 2574 {
 2575         int error, value;
 2576 
 2577         value = witness_watch;
 2578         error = sysctl_handle_int(oidp, &value, 0, req);
 2579         if (error != 0 || req->newptr == NULL)
 2580                 return (error);
 2581         if (value > 1 || value < -1 ||
 2582             (witness_watch == -1 && value != witness_watch))
 2583                 return (EINVAL);
 2584         witness_watch = value;
 2585         return (0);
 2586 }
 2587 
 2588 static void
 2589 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
 2590 {
 2591         int i;
 2592 
 2593         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
 2594                 return;
 2595         w->w_displayed = 1;
 2596 
 2597         WITNESS_INDEX_ASSERT(w->w_index);
 2598         for (i = 1; i <= w_max_used_index; i++) {
 2599                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
 2600                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
 2601                             w_data[i].w_name);
 2602                         witness_add_fullgraph(sb, &w_data[i]);
 2603                 }
 2604         }
 2605 }
 2606 
 2607 /*
 2608  * A simple hash function. Takes a key pointer and a key size. If size == 0,
 2609  * interprets the key as a string and reads until the null
 2610  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
 2611  * hash value computed from the key.
 2612  */
 2613 static uint32_t
 2614 witness_hash_djb2(const uint8_t *key, uint32_t size)
 2615 {
 2616         unsigned int hash = 5381;
 2617         int i;
 2618 
 2619         /* hash = hash * 33 + key[i] */
 2620         if (size)
 2621                 for (i = 0; i < size; i++)
 2622                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
 2623         else
 2624                 for (i = 0; key[i] != 0; i++)
 2625                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
 2626 
 2627         return (hash);
 2628 }
 2629 
 2630 
 2631 /*
 2632  * Initializes the two witness hash tables. Called exactly once from
 2633  * witness_initialize().
 2634  */
 2635 static void
 2636 witness_init_hash_tables(void)
 2637 {
 2638         int i;
 2639 
 2640         MPASS(witness_cold);
 2641 
 2642         /* Initialize the hash tables. */
 2643         for (i = 0; i < WITNESS_HASH_SIZE; i++)
 2644                 w_hash.wh_array[i] = NULL;
 2645 
 2646         w_hash.wh_size = WITNESS_HASH_SIZE;
 2647         w_hash.wh_count = 0;
 2648 
 2649         /* Initialize the lock order data hash. */
 2650         w_lofree = NULL;
 2651         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
 2652                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
 2653                 w_lodata[i].wlod_next = w_lofree;
 2654                 w_lofree = &w_lodata[i];
 2655         }
 2656         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
 2657         w_lohash.wloh_count = 0;
 2658         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
 2659                 w_lohash.wloh_array[i] = NULL;
 2660 }
 2661 
 2662 static struct witness *
 2663 witness_hash_get(const char *key)
 2664 {
 2665         struct witness *w;
 2666         uint32_t hash;
 2667         
 2668         MPASS(key != NULL);
 2669         if (witness_cold == 0)
 2670                 mtx_assert(&w_mtx, MA_OWNED);
 2671         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
 2672         w = w_hash.wh_array[hash];
 2673         while (w != NULL) {
 2674                 if (strcmp(w->w_name, key) == 0)
 2675                         goto out;
 2676                 w = w->w_hash_next;
 2677         }
 2678 
 2679 out:
 2680         return (w);
 2681 }
 2682 
 2683 static void
 2684 witness_hash_put(struct witness *w)
 2685 {
 2686         uint32_t hash;
 2687 
 2688         MPASS(w != NULL);
 2689         MPASS(w->w_name != NULL);
 2690         if (witness_cold == 0)
 2691                 mtx_assert(&w_mtx, MA_OWNED);
 2692         KASSERT(witness_hash_get(w->w_name) == NULL,
 2693             ("%s: trying to add a hash entry that already exists!", __func__));
 2694         KASSERT(w->w_hash_next == NULL,
 2695             ("%s: w->w_hash_next != NULL", __func__));
 2696 
 2697         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
 2698         w->w_hash_next = w_hash.wh_array[hash];
 2699         w_hash.wh_array[hash] = w;
 2700         w_hash.wh_count++;
 2701 }
 2702 
 2703 
 2704 static struct witness_lock_order_data *
 2705 witness_lock_order_get(struct witness *parent, struct witness *child)
 2706 {
 2707         struct witness_lock_order_data *data = NULL;
 2708         struct witness_lock_order_key key;
 2709         unsigned int hash;
 2710 
 2711         MPASS(parent != NULL && child != NULL);
 2712         key.from = parent->w_index;
 2713         key.to = child->w_index;
 2714         WITNESS_INDEX_ASSERT(key.from);
 2715         WITNESS_INDEX_ASSERT(key.to);
 2716         if ((w_rmatrix[parent->w_index][child->w_index]
 2717             & WITNESS_LOCK_ORDER_KNOWN) == 0)
 2718                 goto out;
 2719 
 2720         hash = witness_hash_djb2((const char*)&key,
 2721             sizeof(key)) % w_lohash.wloh_size;
 2722         data = w_lohash.wloh_array[hash];
 2723         while (data != NULL) {
 2724                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
 2725                         break;
 2726                 data = data->wlod_next;
 2727         }
 2728 
 2729 out:
 2730         return (data);
 2731 }
 2732 
 2733 /*
 2734  * Verify that parent and child have a known relationship, are not the same,
 2735  * and child is actually a child of parent.  This is done without w_mtx
 2736  * to avoid contention in the common case.
 2737  */
 2738 static int
 2739 witness_lock_order_check(struct witness *parent, struct witness *child)
 2740 {
 2741 
 2742         if (parent != child &&
 2743             w_rmatrix[parent->w_index][child->w_index]
 2744             & WITNESS_LOCK_ORDER_KNOWN &&
 2745             isitmychild(parent, child))
 2746                 return (1);
 2747 
 2748         return (0);
 2749 }
 2750 
 2751 static int
 2752 witness_lock_order_add(struct witness *parent, struct witness *child)
 2753 {
 2754         struct witness_lock_order_data *data = NULL;
 2755         struct witness_lock_order_key key;
 2756         unsigned int hash;
 2757         
 2758         MPASS(parent != NULL && child != NULL);
 2759         key.from = parent->w_index;
 2760         key.to = child->w_index;
 2761         WITNESS_INDEX_ASSERT(key.from);
 2762         WITNESS_INDEX_ASSERT(key.to);
 2763         if (w_rmatrix[parent->w_index][child->w_index]
 2764             & WITNESS_LOCK_ORDER_KNOWN)
 2765                 return (1);
 2766 
 2767         hash = witness_hash_djb2((const char*)&key,
 2768             sizeof(key)) % w_lohash.wloh_size;
 2769         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
 2770         data = w_lofree;
 2771         if (data == NULL)
 2772                 return (0);
 2773         w_lofree = data->wlod_next;
 2774         data->wlod_next = w_lohash.wloh_array[hash];
 2775         data->wlod_key = key;
 2776         w_lohash.wloh_array[hash] = data;
 2777         w_lohash.wloh_count++;
 2778         stack_zero(&data->wlod_stack);
 2779         stack_save(&data->wlod_stack);
 2780         return (1);
 2781 }
 2782 
 2783 /* Call this whenver the structure of the witness graph changes. */
 2784 static void
 2785 witness_increment_graph_generation(void)
 2786 {
 2787 
 2788         if (witness_cold == 0)
 2789                 mtx_assert(&w_mtx, MA_OWNED);
 2790         w_generation++;
 2791 }
 2792 
 2793 #ifdef KDB
 2794 static void
 2795 _witness_debugger(int cond, const char *msg)
 2796 {
 2797 
 2798         if (witness_trace && cond)
 2799                 kdb_backtrace();
 2800         if (witness_kdb && cond)
 2801                 kdb_enter(KDB_WHY_WITNESS, msg);
 2802 }
 2803 #endif

Cache object: 493fa85b02f7d1df07570ebd0d9f6fc7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.