The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_witness.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2008 Isilon Systems, Inc.
    3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
    4  * Copyright (c) 1998 Berkeley Software Design, Inc.
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
   16  *    promote products derived from this software without specific prior
   17  *    written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
   32  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
   33  */
   34 
   35 /*
   36  * Implementation of the `witness' lock verifier.  Originally implemented for
   37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
   38  * classes in FreeBSD.
   39  */
   40 
   41 /*
   42  *      Main Entry: witness
   43  *      Pronunciation: 'wit-n&s
   44  *      Function: noun
   45  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
   46  *          testimony, witness, from 2wit
   47  *      Date: before 12th century
   48  *      1 : attestation of a fact or event : TESTIMONY
   49  *      2 : one that gives evidence; specifically : one who testifies in
   50  *          a cause or before a judicial tribunal
   51  *      3 : one asked to be present at a transaction so as to be able to
   52  *          testify to its having taken place
   53  *      4 : one who has personal knowledge of something
   54  *      5 a : something serving as evidence or proof : SIGN
   55  *        b : public affirmation by word or example of usually
   56  *            religious faith or conviction <the heroic witness to divine
   57  *            life -- Pilot>
   58  *      6 capitalized : a member of the Jehovah's Witnesses 
   59  */
   60 
   61 /*
   62  * Special rules concerning Giant and lock orders:
   63  *
   64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
   65  *    no other mutex may be held when Giant is acquired.
   66  *
   67  * 2) Giant must be released when blocking on a sleepable lock.
   68  *
   69  * This rule is less obvious, but is a result of Giant providing the same
   70  * semantics as spl().  Basically, when a thread sleeps, it must release
   71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
   72  * 2).
   73  *
   74  * 3) Giant may be acquired before or after sleepable locks.
   75  *
   76  * This rule is also not quite as obvious.  Giant may be acquired after
   77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
   78  * locks may always be acquired while holding a sleepable lock.  The second
   79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
   80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
   81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
   82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
   83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
   84  * will not result in a lock order reversal.
   85  */
   86 
   87 #include <sys/cdefs.h>
   88 __FBSDID("$FreeBSD: releng/9.2/sys/kern/subr_witness.c 249132 2013-04-05 08:22:11Z mav $");
   89 
   90 #include "opt_ddb.h"
   91 #include "opt_hwpmc_hooks.h"
   92 #include "opt_stack.h"
   93 #include "opt_witness.h"
   94 
   95 #include <sys/param.h>
   96 #include <sys/bus.h>
   97 #include <sys/kdb.h>
   98 #include <sys/kernel.h>
   99 #include <sys/ktr.h>
  100 #include <sys/lock.h>
  101 #include <sys/malloc.h>
  102 #include <sys/mutex.h>
  103 #include <sys/priv.h>
  104 #include <sys/proc.h>
  105 #include <sys/sbuf.h>
  106 #include <sys/sched.h>
  107 #include <sys/stack.h>
  108 #include <sys/sysctl.h>
  109 #include <sys/systm.h>
  110 
  111 #ifdef DDB
  112 #include <ddb/ddb.h>
  113 #endif
  114 
  115 #include <machine/stdarg.h>
  116 
  117 #if !defined(DDB) && !defined(STACK)
  118 #error "DDB or STACK options are required for WITNESS"
  119 #endif
  120 
  121 /* Note that these traces do not work with KTR_ALQ. */
  122 #if 0
  123 #define KTR_WITNESS     KTR_SUBSYS
  124 #else
  125 #define KTR_WITNESS     0
  126 #endif
  127 
  128 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
  129 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
  130 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
  131 
  132 /* Define this to check for blessed mutexes */
  133 #undef BLESSING
  134 
  135 #define WITNESS_COUNT           1024
  136 #define WITNESS_CHILDCOUNT      (WITNESS_COUNT * 4)
  137 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
  138 #define WITNESS_PENDLIST        768
  139 
  140 /* Allocate 256 KB of stack data space */
  141 #define WITNESS_LO_DATA_COUNT   2048
  142 
  143 /* Prime, gives load factor of ~2 at full load */
  144 #define WITNESS_LO_HASH_SIZE    1021
  145 
  146 /*
  147  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
  148  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
  149  * probably be safe for the most part, but it's still a SWAG.
  150  */
  151 #define LOCK_NCHILDREN  5
  152 #define LOCK_CHILDCOUNT 2048
  153 
  154 #define MAX_W_NAME      64
  155 
  156 #define BADSTACK_SBUF_SIZE      (256 * WITNESS_COUNT)
  157 #define FULLGRAPH_SBUF_SIZE     512
  158 
  159 /*
  160  * These flags go in the witness relationship matrix and describe the
  161  * relationship between any two struct witness objects.
  162  */
  163 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
  164 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
  165 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
  166 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
  167 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
  168 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
  169 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
  170 #define WITNESS_RELATED_MASK                                            \
  171         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
  172 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
  173                                           * observed. */
  174 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
  175 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
  176 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
  177 
  178 /* Descendant to ancestor flags */
  179 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
  180 
  181 /* Ancestor to descendant flags */
  182 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
  183 
  184 #define WITNESS_INDEX_ASSERT(i)                                         \
  185         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
  186 
  187 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
  188 
  189 /*
  190  * Lock instances.  A lock instance is the data associated with a lock while
  191  * it is held by witness.  For example, a lock instance will hold the
  192  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
  193  * are held in a per-cpu list while sleep locks are held in per-thread list.
  194  */
  195 struct lock_instance {
  196         struct lock_object      *li_lock;
  197         const char              *li_file;
  198         int                     li_line;
  199         u_int                   li_flags;
  200 };
  201 
  202 /*
  203  * A simple list type used to build the list of locks held by a thread
  204  * or CPU.  We can't simply embed the list in struct lock_object since a
  205  * lock may be held by more than one thread if it is a shared lock.  Locks
  206  * are added to the head of the list, so we fill up each list entry from
  207  * "the back" logically.  To ease some of the arithmetic, we actually fill
  208  * in each list entry the normal way (children[0] then children[1], etc.) but
  209  * when we traverse the list we read children[count-1] as the first entry
  210  * down to children[0] as the final entry.
  211  */
  212 struct lock_list_entry {
  213         struct lock_list_entry  *ll_next;
  214         struct lock_instance    ll_children[LOCK_NCHILDREN];
  215         u_int                   ll_count;
  216 };
  217 
  218 /*
  219  * The main witness structure. One of these per named lock type in the system
  220  * (for example, "vnode interlock").
  221  */
  222 struct witness {
  223         char                    w_name[MAX_W_NAME];
  224         uint32_t                w_index;  /* Index in the relationship matrix */
  225         struct lock_class       *w_class;
  226         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
  227         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
  228         struct witness          *w_hash_next; /* Linked list in hash buckets. */
  229         const char              *w_file; /* File where last acquired */
  230         uint32_t                w_line; /* Line where last acquired */
  231         uint32_t                w_refcount;
  232         uint16_t                w_num_ancestors; /* direct/indirect
  233                                                   * ancestor count */
  234         uint16_t                w_num_descendants; /* direct/indirect
  235                                                     * descendant count */
  236         int16_t                 w_ddb_level;
  237         unsigned                w_displayed:1;
  238         unsigned                w_reversed:1;
  239 };
  240 
  241 STAILQ_HEAD(witness_list, witness);
  242 
  243 /*
  244  * The witness hash table. Keys are witness names (const char *), elements are
  245  * witness objects (struct witness *).
  246  */
  247 struct witness_hash {
  248         struct witness  *wh_array[WITNESS_HASH_SIZE];
  249         uint32_t        wh_size;
  250         uint32_t        wh_count;
  251 };
  252 
  253 /*
  254  * Key type for the lock order data hash table.
  255  */
  256 struct witness_lock_order_key {
  257         uint16_t        from;
  258         uint16_t        to;
  259 };
  260 
  261 struct witness_lock_order_data {
  262         struct stack                    wlod_stack;
  263         struct witness_lock_order_key   wlod_key;
  264         struct witness_lock_order_data  *wlod_next;
  265 };
  266 
  267 /*
  268  * The witness lock order data hash table. Keys are witness index tuples
  269  * (struct witness_lock_order_key), elements are lock order data objects
  270  * (struct witness_lock_order_data). 
  271  */
  272 struct witness_lock_order_hash {
  273         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
  274         u_int   wloh_size;
  275         u_int   wloh_count;
  276 };
  277 
  278 #ifdef BLESSING
  279 struct witness_blessed {
  280         const char      *b_lock1;
  281         const char      *b_lock2;
  282 };
  283 #endif
  284 
  285 struct witness_pendhelp {
  286         const char              *wh_type;
  287         struct lock_object      *wh_lock;
  288 };
  289 
  290 struct witness_order_list_entry {
  291         const char              *w_name;
  292         struct lock_class       *w_class;
  293 };
  294 
  295 /*
  296  * Returns 0 if one of the locks is a spin lock and the other is not.
  297  * Returns 1 otherwise.
  298  */
  299 static __inline int
  300 witness_lock_type_equal(struct witness *w1, struct witness *w2)
  301 {
  302 
  303         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
  304                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
  305 }
  306 
  307 static __inline int
  308 witness_lock_order_key_empty(const struct witness_lock_order_key *key)
  309 {
  310 
  311         return (key->from == 0 && key->to == 0);
  312 }
  313 
  314 static __inline int
  315 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
  316     const struct witness_lock_order_key *b)
  317 {
  318 
  319         return (a->from == b->from && a->to == b->to);
  320 }
  321 
  322 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
  323                     const char *fname);
  324 #ifdef KDB
  325 static void     _witness_debugger(int cond, const char *msg);
  326 #endif
  327 static void     adopt(struct witness *parent, struct witness *child);
  328 #ifdef BLESSING
  329 static int      blessed(struct witness *, struct witness *);
  330 #endif
  331 static void     depart(struct witness *w);
  332 static struct witness   *enroll(const char *description,
  333                             struct lock_class *lock_class);
  334 static struct lock_instance     *find_instance(struct lock_list_entry *list,
  335                                     struct lock_object *lock);
  336 static int      isitmychild(struct witness *parent, struct witness *child);
  337 static int      isitmydescendant(struct witness *parent, struct witness *child);
  338 static void     itismychild(struct witness *parent, struct witness *child);
  339 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
  340 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
  341 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
  342 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
  343 #ifdef DDB
  344 static void     witness_ddb_compute_levels(void);
  345 static void     witness_ddb_display(int(*)(const char *fmt, ...));
  346 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
  347                     struct witness *, int indent);
  348 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
  349                     struct witness_list *list);
  350 static void     witness_ddb_level_descendants(struct witness *parent, int l);
  351 static void     witness_ddb_list(struct thread *td);
  352 #endif
  353 static void     witness_free(struct witness *m);
  354 static struct witness   *witness_get(void);
  355 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
  356 static struct witness   *witness_hash_get(const char *key);
  357 static void     witness_hash_put(struct witness *w);
  358 static void     witness_init_hash_tables(void);
  359 static void     witness_increment_graph_generation(void);
  360 static void     witness_lock_list_free(struct lock_list_entry *lle);
  361 static struct lock_list_entry   *witness_lock_list_get(void);
  362 static int      witness_lock_order_add(struct witness *parent,
  363                     struct witness *child);
  364 static int      witness_lock_order_check(struct witness *parent,
  365                     struct witness *child);
  366 static struct witness_lock_order_data   *witness_lock_order_get(
  367                                             struct witness *parent,
  368                                             struct witness *child);
  369 static void     witness_list_lock(struct lock_instance *instance,
  370                     int (*prnt)(const char *fmt, ...));
  371 static void     witness_setflag(struct lock_object *lock, int flag, int set);
  372 
  373 #ifdef KDB
  374 #define witness_debugger(c)     _witness_debugger(c, __func__)
  375 #else
  376 #define witness_debugger(c)
  377 #endif
  378 
  379 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
  380     "Witness Locking");
  381 
  382 /*
  383  * If set to 0, lock order checking is disabled.  If set to -1,
  384  * witness is completely disabled.  Otherwise witness performs full
  385  * lock order checking for all locks.  At runtime, lock order checking
  386  * may be toggled.  However, witness cannot be reenabled once it is
  387  * completely disabled.
  388  */
  389 static int witness_watch = 1;
  390 TUNABLE_INT("debug.witness.watch", &witness_watch);
  391 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
  392     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
  393 
  394 #ifdef KDB
  395 /*
  396  * When KDB is enabled and witness_kdb is 1, it will cause the system
  397  * to drop into kdebug() when:
  398  *      - a lock hierarchy violation occurs
  399  *      - locks are held when going to sleep.
  400  */
  401 #ifdef WITNESS_KDB
  402 int     witness_kdb = 1;
  403 #else
  404 int     witness_kdb = 0;
  405 #endif
  406 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
  407 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
  408 
  409 /*
  410  * When KDB is enabled and witness_trace is 1, it will cause the system
  411  * to print a stack trace:
  412  *      - a lock hierarchy violation occurs
  413  *      - locks are held when going to sleep.
  414  */
  415 int     witness_trace = 1;
  416 TUNABLE_INT("debug.witness.trace", &witness_trace);
  417 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
  418 #endif /* KDB */
  419 
  420 #ifdef WITNESS_SKIPSPIN
  421 int     witness_skipspin = 1;
  422 #else
  423 int     witness_skipspin = 0;
  424 #endif
  425 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
  426 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
  427     0, "");
  428 
  429 /*
  430  * Call this to print out the relations between locks.
  431  */
  432 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
  433     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
  434 
  435 /*
  436  * Call this to print out the witness faulty stacks.
  437  */
  438 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
  439     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
  440 
  441 static struct mtx w_mtx;
  442 
  443 /* w_list */
  444 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
  445 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
  446 
  447 /* w_typelist */
  448 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
  449 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
  450 
  451 /* lock list */
  452 static struct lock_list_entry *w_lock_list_free = NULL;
  453 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
  454 static u_int pending_cnt;
  455 
  456 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
  457 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
  458 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
  459 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
  460     "");
  461 
  462 static struct witness *w_data;
  463 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
  464 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
  465 static struct witness_hash w_hash;      /* The witness hash table. */
  466 
  467 /* The lock order data hash */
  468 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
  469 static struct witness_lock_order_data *w_lofree = NULL;
  470 static struct witness_lock_order_hash w_lohash;
  471 static int w_max_used_index = 0;
  472 static unsigned int w_generation = 0;
  473 static const char w_notrunning[] = "Witness not running\n";
  474 static const char w_stillcold[] = "Witness is still cold\n";
  475 
  476 
  477 static struct witness_order_list_entry order_lists[] = {
  478         /*
  479          * sx locks
  480          */
  481         { "proctree", &lock_class_sx },
  482         { "allproc", &lock_class_sx },
  483         { "allprison", &lock_class_sx },
  484         { NULL, NULL },
  485         /*
  486          * Various mutexes
  487          */
  488         { "Giant", &lock_class_mtx_sleep },
  489         { "pipe mutex", &lock_class_mtx_sleep },
  490         { "sigio lock", &lock_class_mtx_sleep },
  491         { "process group", &lock_class_mtx_sleep },
  492         { "process lock", &lock_class_mtx_sleep },
  493         { "session", &lock_class_mtx_sleep },
  494         { "uidinfo hash", &lock_class_rw },
  495 #ifdef  HWPMC_HOOKS
  496         { "pmc-sleep", &lock_class_mtx_sleep },
  497 #endif
  498         { "time lock", &lock_class_mtx_sleep },
  499         { NULL, NULL },
  500         /*
  501          * Sockets
  502          */
  503         { "accept", &lock_class_mtx_sleep },
  504         { "so_snd", &lock_class_mtx_sleep },
  505         { "so_rcv", &lock_class_mtx_sleep },
  506         { "sellck", &lock_class_mtx_sleep },
  507         { NULL, NULL },
  508         /*
  509          * Routing
  510          */
  511         { "so_rcv", &lock_class_mtx_sleep },
  512         { "radix node head", &lock_class_rw },
  513         { "rtentry", &lock_class_mtx_sleep },
  514         { "ifaddr", &lock_class_mtx_sleep },
  515         { NULL, NULL },
  516         /*
  517          * IPv4 multicast:
  518          * protocol locks before interface locks, after UDP locks.
  519          */
  520         { "udpinp", &lock_class_rw },
  521         { "in_multi_mtx", &lock_class_mtx_sleep },
  522         { "igmp_mtx", &lock_class_mtx_sleep },
  523         { "if_addr_mtx", &lock_class_mtx_sleep },
  524         { NULL, NULL },
  525         /*
  526          * IPv6 multicast:
  527          * protocol locks before interface locks, after UDP locks.
  528          */
  529         { "udpinp", &lock_class_rw },
  530         { "in6_multi_mtx", &lock_class_mtx_sleep },
  531         { "mld_mtx", &lock_class_mtx_sleep },
  532         { "if_addr_mtx", &lock_class_mtx_sleep },
  533         { NULL, NULL },
  534         /*
  535          * UNIX Domain Sockets
  536          */
  537         { "unp_global_rwlock", &lock_class_rw },
  538         { "unp_list_lock", &lock_class_mtx_sleep },
  539         { "unp", &lock_class_mtx_sleep },
  540         { "so_snd", &lock_class_mtx_sleep },
  541         { NULL, NULL },
  542         /*
  543          * UDP/IP
  544          */
  545         { "udp", &lock_class_rw },
  546         { "udpinp", &lock_class_rw },
  547         { "so_snd", &lock_class_mtx_sleep },
  548         { NULL, NULL },
  549         /*
  550          * TCP/IP
  551          */
  552         { "tcp", &lock_class_rw },
  553         { "tcpinp", &lock_class_rw },
  554         { "so_snd", &lock_class_mtx_sleep },
  555         { NULL, NULL },
  556         /*
  557          * netatalk
  558          */
  559         { "ddp_list_mtx", &lock_class_mtx_sleep },
  560         { "ddp_mtx", &lock_class_mtx_sleep },
  561         { NULL, NULL },
  562         /*
  563          * BPF
  564          */
  565         { "bpf global lock", &lock_class_mtx_sleep },
  566         { "bpf interface lock", &lock_class_rw },
  567         { "bpf cdev lock", &lock_class_mtx_sleep },
  568         { NULL, NULL },
  569         /*
  570          * NFS server
  571          */
  572         { "nfsd_mtx", &lock_class_mtx_sleep },
  573         { "so_snd", &lock_class_mtx_sleep },
  574         { NULL, NULL },
  575 
  576         /*
  577          * IEEE 802.11
  578          */
  579         { "802.11 com lock", &lock_class_mtx_sleep},
  580         { NULL, NULL },
  581         /*
  582          * Network drivers
  583          */
  584         { "network driver", &lock_class_mtx_sleep},
  585         { NULL, NULL },
  586 
  587         /*
  588          * Netgraph
  589          */
  590         { "ng_node", &lock_class_mtx_sleep },
  591         { "ng_worklist", &lock_class_mtx_sleep },
  592         { NULL, NULL },
  593         /*
  594          * CDEV
  595          */
  596         { "vm map (system)", &lock_class_mtx_sleep },
  597         { "vm page queue", &lock_class_mtx_sleep },
  598         { "vnode interlock", &lock_class_mtx_sleep },
  599         { "cdev", &lock_class_mtx_sleep },
  600         { NULL, NULL },
  601         /*
  602          * VM
  603          */
  604         { "vm map (user)", &lock_class_sx },
  605         { "vm object", &lock_class_mtx_sleep },
  606         { "vm page", &lock_class_mtx_sleep },
  607         { "vm page queue", &lock_class_mtx_sleep },
  608         { "pmap pv global", &lock_class_rw },
  609         { "pmap", &lock_class_mtx_sleep },
  610         { "pmap pv list", &lock_class_rw },
  611         { "vm page free queue", &lock_class_mtx_sleep },
  612         { NULL, NULL },
  613         /*
  614          * kqueue/VFS interaction
  615          */
  616         { "kqueue", &lock_class_mtx_sleep },
  617         { "struct mount mtx", &lock_class_mtx_sleep },
  618         { "vnode interlock", &lock_class_mtx_sleep },
  619         { NULL, NULL },
  620         /*
  621          * ZFS locking
  622          */
  623         { "dn->dn_mtx", &lock_class_sx },
  624         { "dr->dt.di.dr_mtx", &lock_class_sx },
  625         { "db->db_mtx", &lock_class_sx },
  626         { NULL, NULL },
  627         /*
  628          * spin locks
  629          */
  630 #ifdef SMP
  631         { "ap boot", &lock_class_mtx_spin },
  632 #endif
  633         { "rm.mutex_mtx", &lock_class_mtx_spin },
  634         { "sio", &lock_class_mtx_spin },
  635         { "scrlock", &lock_class_mtx_spin },
  636 #ifdef __i386__
  637         { "cy", &lock_class_mtx_spin },
  638 #endif
  639 #ifdef __sparc64__
  640         { "pcib_mtx", &lock_class_mtx_spin },
  641         { "rtc_mtx", &lock_class_mtx_spin },
  642 #endif
  643         { "scc_hwmtx", &lock_class_mtx_spin },
  644         { "uart_hwmtx", &lock_class_mtx_spin },
  645         { "fast_taskqueue", &lock_class_mtx_spin },
  646         { "intr table", &lock_class_mtx_spin },
  647 #ifdef  HWPMC_HOOKS
  648         { "pmc-per-proc", &lock_class_mtx_spin },
  649 #endif
  650         { "process slock", &lock_class_mtx_spin },
  651         { "sleepq chain", &lock_class_mtx_spin },
  652         { "umtx lock", &lock_class_mtx_spin },
  653         { "rm_spinlock", &lock_class_mtx_spin },
  654         { "turnstile chain", &lock_class_mtx_spin },
  655         { "turnstile lock", &lock_class_mtx_spin },
  656         { "sched lock", &lock_class_mtx_spin },
  657         { "td_contested", &lock_class_mtx_spin },
  658         { "callout", &lock_class_mtx_spin },
  659         { "entropy harvest mutex", &lock_class_mtx_spin },
  660         { "syscons video lock", &lock_class_mtx_spin },
  661 #ifdef SMP
  662         { "smp rendezvous", &lock_class_mtx_spin },
  663 #endif
  664 #ifdef __powerpc__
  665         { "tlb0", &lock_class_mtx_spin },
  666 #endif
  667         /*
  668          * leaf locks
  669          */
  670         { "intrcnt", &lock_class_mtx_spin },
  671         { "icu", &lock_class_mtx_spin },
  672 #ifdef __i386__
  673         { "allpmaps", &lock_class_mtx_spin },
  674         { "descriptor tables", &lock_class_mtx_spin },
  675 #endif
  676         { "clk", &lock_class_mtx_spin },
  677         { "cpuset", &lock_class_mtx_spin },
  678         { "mprof lock", &lock_class_mtx_spin },
  679         { "zombie lock", &lock_class_mtx_spin },
  680         { "ALD Queue", &lock_class_mtx_spin },
  681 #ifdef __ia64__
  682         { "MCA spin lock", &lock_class_mtx_spin },
  683 #endif
  684 #if defined(__i386__) || defined(__amd64__)
  685         { "pcicfg", &lock_class_mtx_spin },
  686         { "NDIS thread lock", &lock_class_mtx_spin },
  687 #endif
  688         { "tw_osl_io_lock", &lock_class_mtx_spin },
  689         { "tw_osl_q_lock", &lock_class_mtx_spin },
  690         { "tw_cl_io_lock", &lock_class_mtx_spin },
  691         { "tw_cl_intr_lock", &lock_class_mtx_spin },
  692         { "tw_cl_gen_lock", &lock_class_mtx_spin },
  693 #ifdef  HWPMC_HOOKS
  694         { "pmc-leaf", &lock_class_mtx_spin },
  695 #endif
  696         { "blocked lock", &lock_class_mtx_spin },
  697         { NULL, NULL },
  698         { NULL, NULL }
  699 };
  700 
  701 #ifdef BLESSING
  702 /*
  703  * Pairs of locks which have been blessed
  704  * Don't complain about order problems with blessed locks
  705  */
  706 static struct witness_blessed blessed_list[] = {
  707 };
  708 static int blessed_count =
  709         sizeof(blessed_list) / sizeof(struct witness_blessed);
  710 #endif
  711 
  712 /*
  713  * This global is set to 0 once it becomes safe to use the witness code.
  714  */
  715 static int witness_cold = 1;
  716 
  717 /*
  718  * This global is set to 1 once the static lock orders have been enrolled
  719  * so that a warning can be issued for any spin locks enrolled later.
  720  */
  721 static int witness_spin_warn = 0;
  722 
  723 /* Trim useless garbage from filenames. */
  724 static const char *
  725 fixup_filename(const char *file)
  726 {
  727 
  728         if (file == NULL)
  729                 return (NULL);
  730         while (strncmp(file, "../", 3) == 0)
  731                 file += 3;
  732         return (file);
  733 }
  734 
  735 /*
  736  * The WITNESS-enabled diagnostic code.  Note that the witness code does
  737  * assume that the early boot is single-threaded at least until after this
  738  * routine is completed.
  739  */
  740 static void
  741 witness_initialize(void *dummy __unused)
  742 {
  743         struct lock_object *lock;
  744         struct witness_order_list_entry *order;
  745         struct witness *w, *w1;
  746         int i;
  747 
  748         w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
  749             M_NOWAIT | M_ZERO);
  750 
  751         /*
  752          * We have to release Giant before initializing its witness
  753          * structure so that WITNESS doesn't get confused.
  754          */
  755         mtx_unlock(&Giant);
  756         mtx_assert(&Giant, MA_NOTOWNED);
  757 
  758         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
  759         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
  760             MTX_NOWITNESS | MTX_NOPROFILE);
  761         for (i = WITNESS_COUNT - 1; i >= 0; i--) {
  762                 w = &w_data[i];
  763                 memset(w, 0, sizeof(*w));
  764                 w_data[i].w_index = i;  /* Witness index never changes. */
  765                 witness_free(w);
  766         }
  767         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
  768             ("%s: Invalid list of free witness objects", __func__));
  769 
  770         /* Witness with index 0 is not used to aid in debugging. */
  771         STAILQ_REMOVE_HEAD(&w_free, w_list);
  772         w_free_cnt--;
  773 
  774         memset(w_rmatrix, 0,
  775             (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
  776 
  777         for (i = 0; i < LOCK_CHILDCOUNT; i++)
  778                 witness_lock_list_free(&w_locklistdata[i]);
  779         witness_init_hash_tables();
  780 
  781         /* First add in all the specified order lists. */
  782         for (order = order_lists; order->w_name != NULL; order++) {
  783                 w = enroll(order->w_name, order->w_class);
  784                 if (w == NULL)
  785                         continue;
  786                 w->w_file = "order list";
  787                 for (order++; order->w_name != NULL; order++) {
  788                         w1 = enroll(order->w_name, order->w_class);
  789                         if (w1 == NULL)
  790                                 continue;
  791                         w1->w_file = "order list";
  792                         itismychild(w, w1);
  793                         w = w1;
  794                 }
  795         }
  796         witness_spin_warn = 1;
  797 
  798         /* Iterate through all locks and add them to witness. */
  799         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
  800                 lock = pending_locks[i].wh_lock;
  801                 KASSERT(lock->lo_flags & LO_WITNESS,
  802                     ("%s: lock %s is on pending list but not LO_WITNESS",
  803                     __func__, lock->lo_name));
  804                 lock->lo_witness = enroll(pending_locks[i].wh_type,
  805                     LOCK_CLASS(lock));
  806         }
  807 
  808         /* Mark the witness code as being ready for use. */
  809         witness_cold = 0;
  810 
  811         mtx_lock(&Giant);
  812 }
  813 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
  814     NULL);
  815 
  816 void
  817 witness_init(struct lock_object *lock, const char *type)
  818 {
  819         struct lock_class *class;
  820 
  821         /* Various sanity checks. */
  822         class = LOCK_CLASS(lock);
  823         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
  824             (class->lc_flags & LC_RECURSABLE) == 0)
  825                 panic("%s: lock (%s) %s can not be recursable", __func__,
  826                     class->lc_name, lock->lo_name);
  827         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
  828             (class->lc_flags & LC_SLEEPABLE) == 0)
  829                 panic("%s: lock (%s) %s can not be sleepable", __func__,
  830                     class->lc_name, lock->lo_name);
  831         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
  832             (class->lc_flags & LC_UPGRADABLE) == 0)
  833                 panic("%s: lock (%s) %s can not be upgradable", __func__,
  834                     class->lc_name, lock->lo_name);
  835 
  836         /*
  837          * If we shouldn't watch this lock, then just clear lo_witness.
  838          * Otherwise, if witness_cold is set, then it is too early to
  839          * enroll this lock, so defer it to witness_initialize() by adding
  840          * it to the pending_locks list.  If it is not too early, then enroll
  841          * the lock now.
  842          */
  843         if (witness_watch < 1 || panicstr != NULL ||
  844             (lock->lo_flags & LO_WITNESS) == 0)
  845                 lock->lo_witness = NULL;
  846         else if (witness_cold) {
  847                 pending_locks[pending_cnt].wh_lock = lock;
  848                 pending_locks[pending_cnt++].wh_type = type;
  849                 if (pending_cnt > WITNESS_PENDLIST)
  850                         panic("%s: pending locks list is too small, bump it\n",
  851                             __func__);
  852         } else
  853                 lock->lo_witness = enroll(type, class);
  854 }
  855 
  856 void
  857 witness_destroy(struct lock_object *lock)
  858 {
  859         struct lock_class *class;
  860         struct witness *w;
  861 
  862         class = LOCK_CLASS(lock);
  863 
  864         if (witness_cold)
  865                 panic("lock (%s) %s destroyed while witness_cold",
  866                     class->lc_name, lock->lo_name);
  867 
  868         /* XXX: need to verify that no one holds the lock */
  869         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
  870                 return;
  871         w = lock->lo_witness;
  872 
  873         mtx_lock_spin(&w_mtx);
  874         MPASS(w->w_refcount > 0);
  875         w->w_refcount--;
  876 
  877         if (w->w_refcount == 0)
  878                 depart(w);
  879         mtx_unlock_spin(&w_mtx);
  880 }
  881 
  882 #ifdef DDB
  883 static void
  884 witness_ddb_compute_levels(void)
  885 {
  886         struct witness *w;
  887 
  888         /*
  889          * First clear all levels.
  890          */
  891         STAILQ_FOREACH(w, &w_all, w_list)
  892                 w->w_ddb_level = -1;
  893 
  894         /*
  895          * Look for locks with no parents and level all their descendants.
  896          */
  897         STAILQ_FOREACH(w, &w_all, w_list) {
  898 
  899                 /* If the witness has ancestors (is not a root), skip it. */
  900                 if (w->w_num_ancestors > 0)
  901                         continue;
  902                 witness_ddb_level_descendants(w, 0);
  903         }
  904 }
  905 
  906 static void
  907 witness_ddb_level_descendants(struct witness *w, int l)
  908 {
  909         int i;
  910 
  911         if (w->w_ddb_level >= l)
  912                 return;
  913 
  914         w->w_ddb_level = l;
  915         l++;
  916 
  917         for (i = 1; i <= w_max_used_index; i++) {
  918                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
  919                         witness_ddb_level_descendants(&w_data[i], l);
  920         }
  921 }
  922 
  923 static void
  924 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
  925     struct witness *w, int indent)
  926 {
  927         int i;
  928 
  929         for (i = 0; i < indent; i++)
  930                 prnt(" ");
  931         prnt("%s (type: %s, depth: %d, active refs: %d)",
  932              w->w_name, w->w_class->lc_name,
  933              w->w_ddb_level, w->w_refcount);
  934         if (w->w_displayed) {
  935                 prnt(" -- (already displayed)\n");
  936                 return;
  937         }
  938         w->w_displayed = 1;
  939         if (w->w_file != NULL && w->w_line != 0)
  940                 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
  941                     w->w_line);
  942         else
  943                 prnt(" -- never acquired\n");
  944         indent++;
  945         WITNESS_INDEX_ASSERT(w->w_index);
  946         for (i = 1; i <= w_max_used_index; i++) {
  947                 if (db_pager_quit)
  948                         return;
  949                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
  950                         witness_ddb_display_descendants(prnt, &w_data[i],
  951                             indent);
  952         }
  953 }
  954 
  955 static void
  956 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
  957     struct witness_list *list)
  958 {
  959         struct witness *w;
  960 
  961         STAILQ_FOREACH(w, list, w_typelist) {
  962                 if (w->w_file == NULL || w->w_ddb_level > 0)
  963                         continue;
  964 
  965                 /* This lock has no anscestors - display its descendants. */
  966                 witness_ddb_display_descendants(prnt, w, 0);
  967                 if (db_pager_quit)
  968                         return;
  969         }
  970 }
  971         
  972 static void
  973 witness_ddb_display(int(*prnt)(const char *fmt, ...))
  974 {
  975         struct witness *w;
  976 
  977         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
  978         witness_ddb_compute_levels();
  979 
  980         /* Clear all the displayed flags. */
  981         STAILQ_FOREACH(w, &w_all, w_list)
  982                 w->w_displayed = 0;
  983 
  984         /*
  985          * First, handle sleep locks which have been acquired at least
  986          * once.
  987          */
  988         prnt("Sleep locks:\n");
  989         witness_ddb_display_list(prnt, &w_sleep);
  990         if (db_pager_quit)
  991                 return;
  992         
  993         /*
  994          * Now do spin locks which have been acquired at least once.
  995          */
  996         prnt("\nSpin locks:\n");
  997         witness_ddb_display_list(prnt, &w_spin);
  998         if (db_pager_quit)
  999                 return;
 1000         
 1001         /*
 1002          * Finally, any locks which have not been acquired yet.
 1003          */
 1004         prnt("\nLocks which were never acquired:\n");
 1005         STAILQ_FOREACH(w, &w_all, w_list) {
 1006                 if (w->w_file != NULL || w->w_refcount == 0)
 1007                         continue;
 1008                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
 1009                     w->w_class->lc_name, w->w_ddb_level);
 1010                 if (db_pager_quit)
 1011                         return;
 1012         }
 1013 }
 1014 #endif /* DDB */
 1015 
 1016 int
 1017 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
 1018 {
 1019 
 1020         if (witness_watch == -1 || panicstr != NULL)
 1021                 return (0);
 1022 
 1023         /* Require locks that witness knows about. */
 1024         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
 1025             lock2->lo_witness == NULL)
 1026                 return (EINVAL);
 1027 
 1028         mtx_assert(&w_mtx, MA_NOTOWNED);
 1029         mtx_lock_spin(&w_mtx);
 1030 
 1031         /*
 1032          * If we already have either an explicit or implied lock order that
 1033          * is the other way around, then return an error.
 1034          */
 1035         if (witness_watch &&
 1036             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
 1037                 mtx_unlock_spin(&w_mtx);
 1038                 return (EDOOFUS);
 1039         }
 1040         
 1041         /* Try to add the new order. */
 1042         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
 1043             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
 1044         itismychild(lock1->lo_witness, lock2->lo_witness);
 1045         mtx_unlock_spin(&w_mtx);
 1046         return (0);
 1047 }
 1048 
 1049 void
 1050 witness_checkorder(struct lock_object *lock, int flags, const char *file,
 1051     int line, struct lock_object *interlock)
 1052 {
 1053         struct lock_list_entry *lock_list, *lle;
 1054         struct lock_instance *lock1, *lock2, *plock;
 1055         struct lock_class *class;
 1056         struct witness *w, *w1;
 1057         struct thread *td;
 1058         int i, j;
 1059 
 1060         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
 1061             panicstr != NULL)
 1062                 return;
 1063 
 1064         w = lock->lo_witness;
 1065         class = LOCK_CLASS(lock);
 1066         td = curthread;
 1067 
 1068         if (class->lc_flags & LC_SLEEPLOCK) {
 1069 
 1070                 /*
 1071                  * Since spin locks include a critical section, this check
 1072                  * implicitly enforces a lock order of all sleep locks before
 1073                  * all spin locks.
 1074                  */
 1075                 if (td->td_critnest != 0 && !kdb_active)
 1076                         panic("blockable sleep lock (%s) %s @ %s:%d",
 1077                             class->lc_name, lock->lo_name,
 1078                             fixup_filename(file), line);
 1079 
 1080                 /*
 1081                  * If this is the first lock acquired then just return as
 1082                  * no order checking is needed.
 1083                  */
 1084                 lock_list = td->td_sleeplocks;
 1085                 if (lock_list == NULL || lock_list->ll_count == 0)
 1086                         return;
 1087         } else {
 1088 
 1089                 /*
 1090                  * If this is the first lock, just return as no order
 1091                  * checking is needed.  Avoid problems with thread
 1092                  * migration pinning the thread while checking if
 1093                  * spinlocks are held.  If at least one spinlock is held
 1094                  * the thread is in a safe path and it is allowed to
 1095                  * unpin it.
 1096                  */
 1097                 sched_pin();
 1098                 lock_list = PCPU_GET(spinlocks);
 1099                 if (lock_list == NULL || lock_list->ll_count == 0) {
 1100                         sched_unpin();
 1101                         return;
 1102                 }
 1103                 sched_unpin();
 1104         }
 1105 
 1106         /*
 1107          * Check to see if we are recursing on a lock we already own.  If
 1108          * so, make sure that we don't mismatch exclusive and shared lock
 1109          * acquires.
 1110          */
 1111         lock1 = find_instance(lock_list, lock);
 1112         if (lock1 != NULL) {
 1113                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
 1114                     (flags & LOP_EXCLUSIVE) == 0) {
 1115                         printf("shared lock of (%s) %s @ %s:%d\n",
 1116                             class->lc_name, lock->lo_name,
 1117                             fixup_filename(file), line);
 1118                         printf("while exclusively locked from %s:%d\n",
 1119                             fixup_filename(lock1->li_file), lock1->li_line);
 1120                         panic("share->excl");
 1121                 }
 1122                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
 1123                     (flags & LOP_EXCLUSIVE) != 0) {
 1124                         printf("exclusive lock of (%s) %s @ %s:%d\n",
 1125                             class->lc_name, lock->lo_name,
 1126                             fixup_filename(file), line);
 1127                         printf("while share locked from %s:%d\n",
 1128                             fixup_filename(lock1->li_file), lock1->li_line);
 1129                         panic("excl->share");
 1130                 }
 1131                 return;
 1132         }
 1133 
 1134         /*
 1135          * Find the previously acquired lock, but ignore interlocks.
 1136          */
 1137         plock = &lock_list->ll_children[lock_list->ll_count - 1];
 1138         if (interlock != NULL && plock->li_lock == interlock) {
 1139                 if (lock_list->ll_count > 1)
 1140                         plock =
 1141                             &lock_list->ll_children[lock_list->ll_count - 2];
 1142                 else {
 1143                         lle = lock_list->ll_next;
 1144 
 1145                         /*
 1146                          * The interlock is the only lock we hold, so
 1147                          * simply return.
 1148                          */
 1149                         if (lle == NULL)
 1150                                 return;
 1151                         plock = &lle->ll_children[lle->ll_count - 1];
 1152                 }
 1153         }
 1154         
 1155         /*
 1156          * Try to perform most checks without a lock.  If this succeeds we
 1157          * can skip acquiring the lock and return success.
 1158          */
 1159         w1 = plock->li_lock->lo_witness;
 1160         if (witness_lock_order_check(w1, w))
 1161                 return;
 1162 
 1163         /*
 1164          * Check for duplicate locks of the same type.  Note that we only
 1165          * have to check for this on the last lock we just acquired.  Any
 1166          * other cases will be caught as lock order violations.
 1167          */
 1168         mtx_lock_spin(&w_mtx);
 1169         witness_lock_order_add(w1, w);
 1170         if (w1 == w) {
 1171                 i = w->w_index;
 1172                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
 1173                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
 1174                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
 1175                         w->w_reversed = 1;
 1176                         mtx_unlock_spin(&w_mtx);
 1177                         printf(
 1178                             "acquiring duplicate lock of same type: \"%s\"\n", 
 1179                             w->w_name);
 1180                         printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
 1181                             fixup_filename(plock->li_file), plock->li_line);
 1182                         printf(" 2nd %s @ %s:%d\n", lock->lo_name,
 1183                             fixup_filename(file), line);
 1184                         witness_debugger(1);
 1185                 } else
 1186                         mtx_unlock_spin(&w_mtx);
 1187                 return;
 1188         }
 1189         mtx_assert(&w_mtx, MA_OWNED);
 1190 
 1191         /*
 1192          * If we know that the lock we are acquiring comes after
 1193          * the lock we most recently acquired in the lock order tree,
 1194          * then there is no need for any further checks.
 1195          */
 1196         if (isitmychild(w1, w))
 1197                 goto out;
 1198 
 1199         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
 1200                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
 1201 
 1202                         MPASS(j < WITNESS_COUNT);
 1203                         lock1 = &lle->ll_children[i];
 1204 
 1205                         /*
 1206                          * Ignore the interlock the first time we see it.
 1207                          */
 1208                         if (interlock != NULL && interlock == lock1->li_lock) {
 1209                                 interlock = NULL;
 1210                                 continue;
 1211                         }
 1212 
 1213                         /*
 1214                          * If this lock doesn't undergo witness checking,
 1215                          * then skip it.
 1216                          */
 1217                         w1 = lock1->li_lock->lo_witness;
 1218                         if (w1 == NULL) {
 1219                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
 1220                                     ("lock missing witness structure"));
 1221                                 continue;
 1222                         }
 1223 
 1224                         /*
 1225                          * If we are locking Giant and this is a sleepable
 1226                          * lock, then skip it.
 1227                          */
 1228                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1229                             lock == &Giant.lock_object)
 1230                                 continue;
 1231 
 1232                         /*
 1233                          * If we are locking a sleepable lock and this lock
 1234                          * is Giant, then skip it.
 1235                          */
 1236                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1237                             lock1->li_lock == &Giant.lock_object)
 1238                                 continue;
 1239 
 1240                         /*
 1241                          * If we are locking a sleepable lock and this lock
 1242                          * isn't sleepable, we want to treat it as a lock
 1243                          * order violation to enfore a general lock order of
 1244                          * sleepable locks before non-sleepable locks.
 1245                          */
 1246                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1247                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
 1248                                 goto reversal;
 1249 
 1250                         /*
 1251                          * If we are locking Giant and this is a non-sleepable
 1252                          * lock, then treat it as a reversal.
 1253                          */
 1254                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
 1255                             lock == &Giant.lock_object)
 1256                                 goto reversal;
 1257 
 1258                         /*
 1259                          * Check the lock order hierarchy for a reveresal.
 1260                          */
 1261                         if (!isitmydescendant(w, w1))
 1262                                 continue;
 1263                 reversal:
 1264 
 1265                         /*
 1266                          * We have a lock order violation, check to see if it
 1267                          * is allowed or has already been yelled about.
 1268                          */
 1269 #ifdef BLESSING
 1270 
 1271                         /*
 1272                          * If the lock order is blessed, just bail.  We don't
 1273                          * look for other lock order violations though, which
 1274                          * may be a bug.
 1275                          */
 1276                         if (blessed(w, w1))
 1277                                 goto out;
 1278 #endif
 1279 
 1280                         /* Bail if this violation is known */
 1281                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
 1282                                 goto out;
 1283 
 1284                         /* Record this as a violation */
 1285                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
 1286                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
 1287                         w->w_reversed = w1->w_reversed = 1;
 1288                         witness_increment_graph_generation();
 1289                         mtx_unlock_spin(&w_mtx);
 1290                         
 1291                         /*
 1292                          * Ok, yell about it.
 1293                          */
 1294                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1295                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
 1296                                 printf(
 1297                 "lock order reversal: (sleepable after non-sleepable)\n");
 1298                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
 1299                             && lock == &Giant.lock_object)
 1300                                 printf(
 1301                 "lock order reversal: (Giant after non-sleepable)\n");
 1302                         else
 1303                                 printf("lock order reversal:\n");
 1304 
 1305                         /*
 1306                          * Try to locate an earlier lock with
 1307                          * witness w in our list.
 1308                          */
 1309                         do {
 1310                                 lock2 = &lle->ll_children[i];
 1311                                 MPASS(lock2->li_lock != NULL);
 1312                                 if (lock2->li_lock->lo_witness == w)
 1313                                         break;
 1314                                 if (i == 0 && lle->ll_next != NULL) {
 1315                                         lle = lle->ll_next;
 1316                                         i = lle->ll_count - 1;
 1317                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
 1318                                 } else
 1319                                         i--;
 1320                         } while (i >= 0);
 1321                         if (i < 0) {
 1322                                 printf(" 1st %p %s (%s) @ %s:%d\n",
 1323                                     lock1->li_lock, lock1->li_lock->lo_name,
 1324                                     w1->w_name, fixup_filename(lock1->li_file),
 1325                                     lock1->li_line);
 1326                                 printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
 1327                                     lock->lo_name, w->w_name,
 1328                                     fixup_filename(file), line);
 1329                         } else {
 1330                                 printf(" 1st %p %s (%s) @ %s:%d\n",
 1331                                     lock2->li_lock, lock2->li_lock->lo_name,
 1332                                     lock2->li_lock->lo_witness->w_name,
 1333                                     fixup_filename(lock2->li_file),
 1334                                     lock2->li_line);
 1335                                 printf(" 2nd %p %s (%s) @ %s:%d\n",
 1336                                     lock1->li_lock, lock1->li_lock->lo_name,
 1337                                     w1->w_name, fixup_filename(lock1->li_file),
 1338                                     lock1->li_line);
 1339                                 printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
 1340                                     lock->lo_name, w->w_name,
 1341                                     fixup_filename(file), line);
 1342                         }
 1343                         witness_debugger(1);
 1344                         return;
 1345                 }
 1346         }
 1347 
 1348         /*
 1349          * If requested, build a new lock order.  However, don't build a new
 1350          * relationship between a sleepable lock and Giant if it is in the
 1351          * wrong direction.  The correct lock order is that sleepable locks
 1352          * always come before Giant.
 1353          */
 1354         if (flags & LOP_NEWORDER &&
 1355             !(plock->li_lock == &Giant.lock_object &&
 1356             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
 1357                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
 1358                     w->w_name, plock->li_lock->lo_witness->w_name);
 1359                 itismychild(plock->li_lock->lo_witness, w);
 1360         }
 1361 out:
 1362         mtx_unlock_spin(&w_mtx);
 1363 }
 1364 
 1365 void
 1366 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
 1367 {
 1368         struct lock_list_entry **lock_list, *lle;
 1369         struct lock_instance *instance;
 1370         struct witness *w;
 1371         struct thread *td;
 1372 
 1373         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
 1374             panicstr != NULL)
 1375                 return;
 1376         w = lock->lo_witness;
 1377         td = curthread;
 1378 
 1379         /* Determine lock list for this lock. */
 1380         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
 1381                 lock_list = &td->td_sleeplocks;
 1382         else
 1383                 lock_list = PCPU_PTR(spinlocks);
 1384 
 1385         /* Check to see if we are recursing on a lock we already own. */
 1386         instance = find_instance(*lock_list, lock);
 1387         if (instance != NULL) {
 1388                 instance->li_flags++;
 1389                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
 1390                     td->td_proc->p_pid, lock->lo_name,
 1391                     instance->li_flags & LI_RECURSEMASK);
 1392                 instance->li_file = file;
 1393                 instance->li_line = line;
 1394                 return;
 1395         }
 1396 
 1397         /* Update per-witness last file and line acquire. */
 1398         w->w_file = file;
 1399         w->w_line = line;
 1400 
 1401         /* Find the next open lock instance in the list and fill it. */
 1402         lle = *lock_list;
 1403         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
 1404                 lle = witness_lock_list_get();
 1405                 if (lle == NULL)
 1406                         return;
 1407                 lle->ll_next = *lock_list;
 1408                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
 1409                     td->td_proc->p_pid, lle);
 1410                 *lock_list = lle;
 1411         }
 1412         instance = &lle->ll_children[lle->ll_count++];
 1413         instance->li_lock = lock;
 1414         instance->li_line = line;
 1415         instance->li_file = file;
 1416         if ((flags & LOP_EXCLUSIVE) != 0)
 1417                 instance->li_flags = LI_EXCLUSIVE;
 1418         else
 1419                 instance->li_flags = 0;
 1420         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
 1421             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
 1422 }
 1423 
 1424 void
 1425 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
 1426 {
 1427         struct lock_instance *instance;
 1428         struct lock_class *class;
 1429 
 1430         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 1431         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 1432                 return;
 1433         class = LOCK_CLASS(lock);
 1434         if (witness_watch) {
 1435                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
 1436                         panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
 1437                             class->lc_name, lock->lo_name,
 1438                             fixup_filename(file), line);
 1439                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
 1440                         panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
 1441                             class->lc_name, lock->lo_name,
 1442                             fixup_filename(file), line);
 1443         }
 1444         instance = find_instance(curthread->td_sleeplocks, lock);
 1445         if (instance == NULL)
 1446                 panic("upgrade of unlocked lock (%s) %s @ %s:%d",
 1447                     class->lc_name, lock->lo_name,
 1448                     fixup_filename(file), line);
 1449         if (witness_watch) {
 1450                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
 1451                         panic("upgrade of exclusive lock (%s) %s @ %s:%d",
 1452                             class->lc_name, lock->lo_name,
 1453                             fixup_filename(file), line);
 1454                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
 1455                         panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
 1456                             class->lc_name, lock->lo_name,
 1457                             instance->li_flags & LI_RECURSEMASK,
 1458                             fixup_filename(file), line);
 1459         }
 1460         instance->li_flags |= LI_EXCLUSIVE;
 1461 }
 1462 
 1463 void
 1464 witness_downgrade(struct lock_object *lock, int flags, const char *file,
 1465     int line)
 1466 {
 1467         struct lock_instance *instance;
 1468         struct lock_class *class;
 1469 
 1470         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 1471         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 1472                 return;
 1473         class = LOCK_CLASS(lock);
 1474         if (witness_watch) {
 1475                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
 1476                 panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
 1477                             class->lc_name, lock->lo_name,
 1478                             fixup_filename(file), line);
 1479                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
 1480                         panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
 1481                             class->lc_name, lock->lo_name,
 1482                             fixup_filename(file), line);
 1483         }
 1484         instance = find_instance(curthread->td_sleeplocks, lock);
 1485         if (instance == NULL)
 1486                 panic("downgrade of unlocked lock (%s) %s @ %s:%d",
 1487                     class->lc_name, lock->lo_name,
 1488                     fixup_filename(file), line);
 1489         if (witness_watch) {
 1490                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
 1491                         panic("downgrade of shared lock (%s) %s @ %s:%d",
 1492                             class->lc_name, lock->lo_name,
 1493                             fixup_filename(file), line);
 1494                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
 1495                         panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
 1496                             class->lc_name, lock->lo_name,
 1497                             instance->li_flags & LI_RECURSEMASK,
 1498                             fixup_filename(file), line);
 1499         }
 1500         instance->li_flags &= ~LI_EXCLUSIVE;
 1501 }
 1502 
 1503 void
 1504 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
 1505 {
 1506         struct lock_list_entry **lock_list, *lle;
 1507         struct lock_instance *instance;
 1508         struct lock_class *class;
 1509         struct thread *td;
 1510         register_t s;
 1511         int i, j;
 1512 
 1513         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
 1514                 return;
 1515         td = curthread;
 1516         class = LOCK_CLASS(lock);
 1517 
 1518         /* Find lock instance associated with this lock. */
 1519         if (class->lc_flags & LC_SLEEPLOCK)
 1520                 lock_list = &td->td_sleeplocks;
 1521         else
 1522                 lock_list = PCPU_PTR(spinlocks);
 1523         lle = *lock_list;
 1524         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
 1525                 for (i = 0; i < (*lock_list)->ll_count; i++) {
 1526                         instance = &(*lock_list)->ll_children[i];
 1527                         if (instance->li_lock == lock)
 1528                                 goto found;
 1529                 }
 1530 
 1531         /*
 1532          * When disabling WITNESS through witness_watch we could end up in
 1533          * having registered locks in the td_sleeplocks queue.
 1534          * We have to make sure we flush these queues, so just search for
 1535          * eventual register locks and remove them.
 1536          */
 1537         if (witness_watch > 0)
 1538                 panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
 1539                     lock->lo_name, fixup_filename(file), line);
 1540         else
 1541                 return;
 1542 found:
 1543 
 1544         /* First, check for shared/exclusive mismatches. */
 1545         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
 1546             (flags & LOP_EXCLUSIVE) == 0) {
 1547                 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
 1548                     lock->lo_name, fixup_filename(file), line);
 1549                 printf("while exclusively locked from %s:%d\n",
 1550                     fixup_filename(instance->li_file), instance->li_line);
 1551                 panic("excl->ushare");
 1552         }
 1553         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
 1554             (flags & LOP_EXCLUSIVE) != 0) {
 1555                 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
 1556                     lock->lo_name, fixup_filename(file), line);
 1557                 printf("while share locked from %s:%d\n",
 1558                     fixup_filename(instance->li_file),
 1559                     instance->li_line);
 1560                 panic("share->uexcl");
 1561         }
 1562         /* If we are recursed, unrecurse. */
 1563         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
 1564                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
 1565                     td->td_proc->p_pid, instance->li_lock->lo_name,
 1566                     instance->li_flags);
 1567                 instance->li_flags--;
 1568                 return;
 1569         }
 1570         /* The lock is now being dropped, check for NORELEASE flag */
 1571         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
 1572                 printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
 1573                     lock->lo_name, fixup_filename(file), line);
 1574                 panic("lock marked norelease");
 1575         }
 1576 
 1577         /* Otherwise, remove this item from the list. */
 1578         s = intr_disable();
 1579         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
 1580             td->td_proc->p_pid, instance->li_lock->lo_name,
 1581             (*lock_list)->ll_count - 1);
 1582         for (j = i; j < (*lock_list)->ll_count - 1; j++)
 1583                 (*lock_list)->ll_children[j] =
 1584                     (*lock_list)->ll_children[j + 1];
 1585         (*lock_list)->ll_count--;
 1586         intr_restore(s);
 1587 
 1588         /*
 1589          * In order to reduce contention on w_mtx, we want to keep always an
 1590          * head object into lists so that frequent allocation from the 
 1591          * free witness pool (and subsequent locking) is avoided.
 1592          * In order to maintain the current code simple, when the head
 1593          * object is totally unloaded it means also that we do not have
 1594          * further objects in the list, so the list ownership needs to be
 1595          * hand over to another object if the current head needs to be freed.
 1596          */
 1597         if ((*lock_list)->ll_count == 0) {
 1598                 if (*lock_list == lle) {
 1599                         if (lle->ll_next == NULL)
 1600                                 return;
 1601                 } else
 1602                         lle = *lock_list;
 1603                 *lock_list = lle->ll_next;
 1604                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
 1605                     td->td_proc->p_pid, lle);
 1606                 witness_lock_list_free(lle);
 1607         }
 1608 }
 1609 
 1610 void
 1611 witness_thread_exit(struct thread *td)
 1612 {
 1613         struct lock_list_entry *lle;
 1614         int i, n;
 1615 
 1616         lle = td->td_sleeplocks;
 1617         if (lle == NULL || panicstr != NULL)
 1618                 return;
 1619         if (lle->ll_count != 0) {
 1620                 for (n = 0; lle != NULL; lle = lle->ll_next)
 1621                         for (i = lle->ll_count - 1; i >= 0; i--) {
 1622                                 if (n == 0)
 1623                 printf("Thread %p exiting with the following locks held:\n",
 1624                                             td);
 1625                                 n++;
 1626                                 witness_list_lock(&lle->ll_children[i], printf);
 1627                                 
 1628                         }
 1629                 panic("Thread %p cannot exit while holding sleeplocks\n", td);
 1630         }
 1631         witness_lock_list_free(lle);
 1632 }
 1633 
 1634 /*
 1635  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
 1636  * exempt Giant and sleepable locks from the checks as well.  If any
 1637  * non-exempt locks are held, then a supplied message is printed to the
 1638  * console along with a list of the offending locks.  If indicated in the
 1639  * flags then a failure results in a panic as well.
 1640  */
 1641 int
 1642 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
 1643 {
 1644         struct lock_list_entry *lock_list, *lle;
 1645         struct lock_instance *lock1;
 1646         struct thread *td;
 1647         va_list ap;
 1648         int i, n;
 1649 
 1650         if (witness_cold || witness_watch < 1 || panicstr != NULL)
 1651                 return (0);
 1652         n = 0;
 1653         td = curthread;
 1654         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
 1655                 for (i = lle->ll_count - 1; i >= 0; i--) {
 1656                         lock1 = &lle->ll_children[i];
 1657                         if (lock1->li_lock == lock)
 1658                                 continue;
 1659                         if (flags & WARN_GIANTOK &&
 1660                             lock1->li_lock == &Giant.lock_object)
 1661                                 continue;
 1662                         if (flags & WARN_SLEEPOK &&
 1663                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
 1664                                 continue;
 1665                         if (n == 0) {
 1666                                 va_start(ap, fmt);
 1667                                 vprintf(fmt, ap);
 1668                                 va_end(ap);
 1669                                 printf(" with the following");
 1670                                 if (flags & WARN_SLEEPOK)
 1671                                         printf(" non-sleepable");
 1672                                 printf(" locks held:\n");
 1673                         }
 1674                         n++;
 1675                         witness_list_lock(lock1, printf);
 1676                 }
 1677 
 1678         /*
 1679          * Pin the thread in order to avoid problems with thread migration.
 1680          * Once that all verifies are passed about spinlocks ownership,
 1681          * the thread is in a safe path and it can be unpinned.
 1682          */
 1683         sched_pin();
 1684         lock_list = PCPU_GET(spinlocks);
 1685         if (lock_list != NULL && lock_list->ll_count != 0) {
 1686                 sched_unpin();
 1687 
 1688                 /*
 1689                  * We should only have one spinlock and as long as
 1690                  * the flags cannot match for this locks class,
 1691                  * check if the first spinlock is the one curthread
 1692                  * should hold.
 1693                  */
 1694                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
 1695                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
 1696                     lock1->li_lock == lock && n == 0)
 1697                         return (0);
 1698 
 1699                 va_start(ap, fmt);
 1700                 vprintf(fmt, ap);
 1701                 va_end(ap);
 1702                 printf(" with the following");
 1703                 if (flags & WARN_SLEEPOK)
 1704                         printf(" non-sleepable");
 1705                 printf(" locks held:\n");
 1706                 n += witness_list_locks(&lock_list, printf);
 1707         } else
 1708                 sched_unpin();
 1709         if (flags & WARN_PANIC && n)
 1710                 panic("%s", __func__);
 1711         else
 1712                 witness_debugger(n);
 1713         return (n);
 1714 }
 1715 
 1716 const char *
 1717 witness_file(struct lock_object *lock)
 1718 {
 1719         struct witness *w;
 1720 
 1721         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
 1722                 return ("?");
 1723         w = lock->lo_witness;
 1724         return (w->w_file);
 1725 }
 1726 
 1727 int
 1728 witness_line(struct lock_object *lock)
 1729 {
 1730         struct witness *w;
 1731 
 1732         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
 1733                 return (0);
 1734         w = lock->lo_witness;
 1735         return (w->w_line);
 1736 }
 1737 
 1738 static struct witness *
 1739 enroll(const char *description, struct lock_class *lock_class)
 1740 {
 1741         struct witness *w;
 1742         struct witness_list *typelist;
 1743 
 1744         MPASS(description != NULL);
 1745 
 1746         if (witness_watch == -1 || panicstr != NULL)
 1747                 return (NULL);
 1748         if ((lock_class->lc_flags & LC_SPINLOCK)) {
 1749                 if (witness_skipspin)
 1750                         return (NULL);
 1751                 else
 1752                         typelist = &w_spin;
 1753         } else if ((lock_class->lc_flags & LC_SLEEPLOCK))
 1754                 typelist = &w_sleep;
 1755         else
 1756                 panic("lock class %s is not sleep or spin",
 1757                     lock_class->lc_name);
 1758 
 1759         mtx_lock_spin(&w_mtx);
 1760         w = witness_hash_get(description);
 1761         if (w)
 1762                 goto found;
 1763         if ((w = witness_get()) == NULL)
 1764                 return (NULL);
 1765         MPASS(strlen(description) < MAX_W_NAME);
 1766         strcpy(w->w_name, description);
 1767         w->w_class = lock_class;
 1768         w->w_refcount = 1;
 1769         STAILQ_INSERT_HEAD(&w_all, w, w_list);
 1770         if (lock_class->lc_flags & LC_SPINLOCK) {
 1771                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
 1772                 w_spin_cnt++;
 1773         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
 1774                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
 1775                 w_sleep_cnt++;
 1776         }
 1777 
 1778         /* Insert new witness into the hash */
 1779         witness_hash_put(w);
 1780         witness_increment_graph_generation();
 1781         mtx_unlock_spin(&w_mtx);
 1782         return (w);
 1783 found:
 1784         w->w_refcount++;
 1785         mtx_unlock_spin(&w_mtx);
 1786         if (lock_class != w->w_class)
 1787                 panic(
 1788                         "lock (%s) %s does not match earlier (%s) lock",
 1789                         description, lock_class->lc_name,
 1790                         w->w_class->lc_name);
 1791         return (w);
 1792 }
 1793 
 1794 static void
 1795 depart(struct witness *w)
 1796 {
 1797         struct witness_list *list;
 1798 
 1799         MPASS(w->w_refcount == 0);
 1800         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
 1801                 list = &w_sleep;
 1802                 w_sleep_cnt--;
 1803         } else {
 1804                 list = &w_spin;
 1805                 w_spin_cnt--;
 1806         }
 1807         /*
 1808          * Set file to NULL as it may point into a loadable module.
 1809          */
 1810         w->w_file = NULL;
 1811         w->w_line = 0;
 1812         witness_increment_graph_generation();
 1813 }
 1814 
 1815 
 1816 static void
 1817 adopt(struct witness *parent, struct witness *child)
 1818 {
 1819         int pi, ci, i, j;
 1820 
 1821         if (witness_cold == 0)
 1822                 mtx_assert(&w_mtx, MA_OWNED);
 1823 
 1824         /* If the relationship is already known, there's no work to be done. */
 1825         if (isitmychild(parent, child))
 1826                 return;
 1827 
 1828         /* When the structure of the graph changes, bump up the generation. */
 1829         witness_increment_graph_generation();
 1830 
 1831         /*
 1832          * The hard part ... create the direct relationship, then propagate all
 1833          * indirect relationships.
 1834          */
 1835         pi = parent->w_index;
 1836         ci = child->w_index;
 1837         WITNESS_INDEX_ASSERT(pi);
 1838         WITNESS_INDEX_ASSERT(ci);
 1839         MPASS(pi != ci);
 1840         w_rmatrix[pi][ci] |= WITNESS_PARENT;
 1841         w_rmatrix[ci][pi] |= WITNESS_CHILD;
 1842 
 1843         /*
 1844          * If parent was not already an ancestor of child,
 1845          * then we increment the descendant and ancestor counters.
 1846          */
 1847         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
 1848                 parent->w_num_descendants++;
 1849                 child->w_num_ancestors++;
 1850         }
 1851 
 1852         /* 
 1853          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
 1854          * an ancestor of 'pi' during this loop.
 1855          */
 1856         for (i = 1; i <= w_max_used_index; i++) {
 1857                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
 1858                     (i != pi))
 1859                         continue;
 1860 
 1861                 /* Find each descendant of 'i' and mark it as a descendant. */
 1862                 for (j = 1; j <= w_max_used_index; j++) {
 1863 
 1864                         /* 
 1865                          * Skip children that are already marked as
 1866                          * descendants of 'i'.
 1867                          */
 1868                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
 1869                                 continue;
 1870 
 1871                         /*
 1872                          * We are only interested in descendants of 'ci'. Note
 1873                          * that 'ci' itself is counted as a descendant of 'ci'.
 1874                          */
 1875                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
 1876                             (j != ci))
 1877                                 continue;
 1878                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
 1879                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
 1880                         w_data[i].w_num_descendants++;
 1881                         w_data[j].w_num_ancestors++;
 1882 
 1883                         /* 
 1884                          * Make sure we aren't marking a node as both an
 1885                          * ancestor and descendant. We should have caught 
 1886                          * this as a lock order reversal earlier.
 1887                          */
 1888                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
 1889                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
 1890                                 printf("witness rmatrix paradox! [%d][%d]=%d "
 1891                                     "both ancestor and descendant\n",
 1892                                     i, j, w_rmatrix[i][j]); 
 1893                                 kdb_backtrace();
 1894                                 printf("Witness disabled.\n");
 1895                                 witness_watch = -1;
 1896                         }
 1897                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
 1898                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
 1899                                 printf("witness rmatrix paradox! [%d][%d]=%d "
 1900                                     "both ancestor and descendant\n",
 1901                                     j, i, w_rmatrix[j][i]); 
 1902                                 kdb_backtrace();
 1903                                 printf("Witness disabled.\n");
 1904                                 witness_watch = -1;
 1905                         }
 1906                 }
 1907         }
 1908 }
 1909 
 1910 static void
 1911 itismychild(struct witness *parent, struct witness *child)
 1912 {
 1913 
 1914         MPASS(child != NULL && parent != NULL);
 1915         if (witness_cold == 0)
 1916                 mtx_assert(&w_mtx, MA_OWNED);
 1917 
 1918         if (!witness_lock_type_equal(parent, child)) {
 1919                 if (witness_cold == 0)
 1920                         mtx_unlock_spin(&w_mtx);
 1921                 panic("%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
 1922                     "the same lock type", __func__, parent->w_name,
 1923                     parent->w_class->lc_name, child->w_name,
 1924                     child->w_class->lc_name);
 1925         }
 1926         adopt(parent, child);
 1927 }
 1928 
 1929 /*
 1930  * Generic code for the isitmy*() functions. The rmask parameter is the
 1931  * expected relationship of w1 to w2.
 1932  */
 1933 static int
 1934 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
 1935 {
 1936         unsigned char r1, r2;
 1937         int i1, i2;
 1938 
 1939         i1 = w1->w_index;
 1940         i2 = w2->w_index;
 1941         WITNESS_INDEX_ASSERT(i1);
 1942         WITNESS_INDEX_ASSERT(i2);
 1943         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
 1944         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
 1945 
 1946         /* The flags on one better be the inverse of the flags on the other */
 1947         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
 1948                 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
 1949                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
 1950                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
 1951                     "w_rmatrix[%d][%d] == %hhx\n",
 1952                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
 1953                     i2, i1, r2);
 1954                 kdb_backtrace();
 1955                 printf("Witness disabled.\n");
 1956                 witness_watch = -1;
 1957         }
 1958         return (r1 & rmask);
 1959 }
 1960 
 1961 /*
 1962  * Checks if @child is a direct child of @parent.
 1963  */
 1964 static int
 1965 isitmychild(struct witness *parent, struct witness *child)
 1966 {
 1967 
 1968         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
 1969 }
 1970 
 1971 /*
 1972  * Checks if @descendant is a direct or inderect descendant of @ancestor.
 1973  */
 1974 static int
 1975 isitmydescendant(struct witness *ancestor, struct witness *descendant)
 1976 {
 1977 
 1978         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
 1979             __func__));
 1980 }
 1981 
 1982 #ifdef BLESSING
 1983 static int
 1984 blessed(struct witness *w1, struct witness *w2)
 1985 {
 1986         int i;
 1987         struct witness_blessed *b;
 1988 
 1989         for (i = 0; i < blessed_count; i++) {
 1990                 b = &blessed_list[i];
 1991                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
 1992                         if (strcmp(w2->w_name, b->b_lock2) == 0)
 1993                                 return (1);
 1994                         continue;
 1995                 }
 1996                 if (strcmp(w1->w_name, b->b_lock2) == 0)
 1997                         if (strcmp(w2->w_name, b->b_lock1) == 0)
 1998                                 return (1);
 1999         }
 2000         return (0);
 2001 }
 2002 #endif
 2003 
 2004 static struct witness *
 2005 witness_get(void)
 2006 {
 2007         struct witness *w;
 2008         int index;
 2009 
 2010         if (witness_cold == 0)
 2011                 mtx_assert(&w_mtx, MA_OWNED);
 2012 
 2013         if (witness_watch == -1) {
 2014                 mtx_unlock_spin(&w_mtx);
 2015                 return (NULL);
 2016         }
 2017         if (STAILQ_EMPTY(&w_free)) {
 2018                 witness_watch = -1;
 2019                 mtx_unlock_spin(&w_mtx);
 2020                 printf("WITNESS: unable to allocate a new witness object\n");
 2021                 return (NULL);
 2022         }
 2023         w = STAILQ_FIRST(&w_free);
 2024         STAILQ_REMOVE_HEAD(&w_free, w_list);
 2025         w_free_cnt--;
 2026         index = w->w_index;
 2027         MPASS(index > 0 && index == w_max_used_index+1 &&
 2028             index < WITNESS_COUNT);
 2029         bzero(w, sizeof(*w));
 2030         w->w_index = index;
 2031         if (index > w_max_used_index)
 2032                 w_max_used_index = index;
 2033         return (w);
 2034 }
 2035 
 2036 static void
 2037 witness_free(struct witness *w)
 2038 {
 2039 
 2040         STAILQ_INSERT_HEAD(&w_free, w, w_list);
 2041         w_free_cnt++;
 2042 }
 2043 
 2044 static struct lock_list_entry *
 2045 witness_lock_list_get(void)
 2046 {
 2047         struct lock_list_entry *lle;
 2048 
 2049         if (witness_watch == -1)
 2050                 return (NULL);
 2051         mtx_lock_spin(&w_mtx);
 2052         lle = w_lock_list_free;
 2053         if (lle == NULL) {
 2054                 witness_watch = -1;
 2055                 mtx_unlock_spin(&w_mtx);
 2056                 printf("%s: witness exhausted\n", __func__);
 2057                 return (NULL);
 2058         }
 2059         w_lock_list_free = lle->ll_next;
 2060         mtx_unlock_spin(&w_mtx);
 2061         bzero(lle, sizeof(*lle));
 2062         return (lle);
 2063 }
 2064                 
 2065 static void
 2066 witness_lock_list_free(struct lock_list_entry *lle)
 2067 {
 2068 
 2069         mtx_lock_spin(&w_mtx);
 2070         lle->ll_next = w_lock_list_free;
 2071         w_lock_list_free = lle;
 2072         mtx_unlock_spin(&w_mtx);
 2073 }
 2074 
 2075 static struct lock_instance *
 2076 find_instance(struct lock_list_entry *list, struct lock_object *lock)
 2077 {
 2078         struct lock_list_entry *lle;
 2079         struct lock_instance *instance;
 2080         int i;
 2081 
 2082         for (lle = list; lle != NULL; lle = lle->ll_next)
 2083                 for (i = lle->ll_count - 1; i >= 0; i--) {
 2084                         instance = &lle->ll_children[i];
 2085                         if (instance->li_lock == lock)
 2086                                 return (instance);
 2087                 }
 2088         return (NULL);
 2089 }
 2090 
 2091 static void
 2092 witness_list_lock(struct lock_instance *instance,
 2093     int (*prnt)(const char *fmt, ...))
 2094 {
 2095         struct lock_object *lock;
 2096 
 2097         lock = instance->li_lock;
 2098         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
 2099             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
 2100         if (lock->lo_witness->w_name != lock->lo_name)
 2101                 prnt(" (%s)", lock->lo_witness->w_name);
 2102         prnt(" r = %d (%p) locked @ %s:%d\n",
 2103             instance->li_flags & LI_RECURSEMASK, lock,
 2104             fixup_filename(instance->li_file), instance->li_line);
 2105 }
 2106 
 2107 #ifdef DDB
 2108 static int
 2109 witness_thread_has_locks(struct thread *td)
 2110 {
 2111 
 2112         if (td->td_sleeplocks == NULL)
 2113                 return (0);
 2114         return (td->td_sleeplocks->ll_count != 0);
 2115 }
 2116 
 2117 static int
 2118 witness_proc_has_locks(struct proc *p)
 2119 {
 2120         struct thread *td;
 2121 
 2122         FOREACH_THREAD_IN_PROC(p, td) {
 2123                 if (witness_thread_has_locks(td))
 2124                         return (1);
 2125         }
 2126         return (0);
 2127 }
 2128 #endif
 2129 
 2130 int
 2131 witness_list_locks(struct lock_list_entry **lock_list,
 2132     int (*prnt)(const char *fmt, ...))
 2133 {
 2134         struct lock_list_entry *lle;
 2135         int i, nheld;
 2136 
 2137         nheld = 0;
 2138         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
 2139                 for (i = lle->ll_count - 1; i >= 0; i--) {
 2140                         witness_list_lock(&lle->ll_children[i], prnt);
 2141                         nheld++;
 2142                 }
 2143         return (nheld);
 2144 }
 2145 
 2146 /*
 2147  * This is a bit risky at best.  We call this function when we have timed
 2148  * out acquiring a spin lock, and we assume that the other CPU is stuck
 2149  * with this lock held.  So, we go groveling around in the other CPU's
 2150  * per-cpu data to try to find the lock instance for this spin lock to
 2151  * see when it was last acquired.
 2152  */
 2153 void
 2154 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
 2155     int (*prnt)(const char *fmt, ...))
 2156 {
 2157         struct lock_instance *instance;
 2158         struct pcpu *pc;
 2159 
 2160         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
 2161                 return;
 2162         pc = pcpu_find(owner->td_oncpu);
 2163         instance = find_instance(pc->pc_spinlocks, lock);
 2164         if (instance != NULL)
 2165                 witness_list_lock(instance, prnt);
 2166 }
 2167 
 2168 void
 2169 witness_save(struct lock_object *lock, const char **filep, int *linep)
 2170 {
 2171         struct lock_list_entry *lock_list;
 2172         struct lock_instance *instance;
 2173         struct lock_class *class;
 2174 
 2175         /*
 2176          * This function is used independently in locking code to deal with
 2177          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
 2178          * is gone.
 2179          */
 2180         if (SCHEDULER_STOPPED())
 2181                 return;
 2182         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2183         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 2184                 return;
 2185         class = LOCK_CLASS(lock);
 2186         if (class->lc_flags & LC_SLEEPLOCK)
 2187                 lock_list = curthread->td_sleeplocks;
 2188         else {
 2189                 if (witness_skipspin)
 2190                         return;
 2191                 lock_list = PCPU_GET(spinlocks);
 2192         }
 2193         instance = find_instance(lock_list, lock);
 2194         if (instance == NULL)
 2195                 panic("%s: lock (%s) %s not locked", __func__,
 2196                     class->lc_name, lock->lo_name);
 2197         *filep = instance->li_file;
 2198         *linep = instance->li_line;
 2199 }
 2200 
 2201 void
 2202 witness_restore(struct lock_object *lock, const char *file, int line)
 2203 {
 2204         struct lock_list_entry *lock_list;
 2205         struct lock_instance *instance;
 2206         struct lock_class *class;
 2207 
 2208         /*
 2209          * This function is used independently in locking code to deal with
 2210          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
 2211          * is gone.
 2212          */
 2213         if (SCHEDULER_STOPPED())
 2214                 return;
 2215         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2216         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 2217                 return;
 2218         class = LOCK_CLASS(lock);
 2219         if (class->lc_flags & LC_SLEEPLOCK)
 2220                 lock_list = curthread->td_sleeplocks;
 2221         else {
 2222                 if (witness_skipspin)
 2223                         return;
 2224                 lock_list = PCPU_GET(spinlocks);
 2225         }
 2226         instance = find_instance(lock_list, lock);
 2227         if (instance == NULL)
 2228                 panic("%s: lock (%s) %s not locked", __func__,
 2229                     class->lc_name, lock->lo_name);
 2230         lock->lo_witness->w_file = file;
 2231         lock->lo_witness->w_line = line;
 2232         instance->li_file = file;
 2233         instance->li_line = line;
 2234 }
 2235 
 2236 void
 2237 witness_assert(struct lock_object *lock, int flags, const char *file, int line)
 2238 {
 2239 #ifdef INVARIANT_SUPPORT
 2240         struct lock_instance *instance;
 2241         struct lock_class *class;
 2242 
 2243         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
 2244                 return;
 2245         class = LOCK_CLASS(lock);
 2246         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
 2247                 instance = find_instance(curthread->td_sleeplocks, lock);
 2248         else if ((class->lc_flags & LC_SPINLOCK) != 0)
 2249                 instance = find_instance(PCPU_GET(spinlocks), lock);
 2250         else {
 2251                 panic("Lock (%s) %s is not sleep or spin!",
 2252                     class->lc_name, lock->lo_name);
 2253         }
 2254         switch (flags) {
 2255         case LA_UNLOCKED:
 2256                 if (instance != NULL)
 2257                         panic("Lock (%s) %s locked @ %s:%d.",
 2258                             class->lc_name, lock->lo_name,
 2259                             fixup_filename(file), line);
 2260                 break;
 2261         case LA_LOCKED:
 2262         case LA_LOCKED | LA_RECURSED:
 2263         case LA_LOCKED | LA_NOTRECURSED:
 2264         case LA_SLOCKED:
 2265         case LA_SLOCKED | LA_RECURSED:
 2266         case LA_SLOCKED | LA_NOTRECURSED:
 2267         case LA_XLOCKED:
 2268         case LA_XLOCKED | LA_RECURSED:
 2269         case LA_XLOCKED | LA_NOTRECURSED:
 2270                 if (instance == NULL) {
 2271                         panic("Lock (%s) %s not locked @ %s:%d.",
 2272                             class->lc_name, lock->lo_name,
 2273                             fixup_filename(file), line);
 2274                         break;
 2275                 }
 2276                 if ((flags & LA_XLOCKED) != 0 &&
 2277                     (instance->li_flags & LI_EXCLUSIVE) == 0)
 2278                         panic("Lock (%s) %s not exclusively locked @ %s:%d.",
 2279                             class->lc_name, lock->lo_name,
 2280                             fixup_filename(file), line);
 2281                 if ((flags & LA_SLOCKED) != 0 &&
 2282                     (instance->li_flags & LI_EXCLUSIVE) != 0)
 2283                         panic("Lock (%s) %s exclusively locked @ %s:%d.",
 2284                             class->lc_name, lock->lo_name,
 2285                             fixup_filename(file), line);
 2286                 if ((flags & LA_RECURSED) != 0 &&
 2287                     (instance->li_flags & LI_RECURSEMASK) == 0)
 2288                         panic("Lock (%s) %s not recursed @ %s:%d.",
 2289                             class->lc_name, lock->lo_name,
 2290                             fixup_filename(file), line);
 2291                 if ((flags & LA_NOTRECURSED) != 0 &&
 2292                     (instance->li_flags & LI_RECURSEMASK) != 0)
 2293                         panic("Lock (%s) %s recursed @ %s:%d.",
 2294                             class->lc_name, lock->lo_name,
 2295                             fixup_filename(file), line);
 2296                 break;
 2297         default:
 2298                 panic("Invalid lock assertion at %s:%d.",
 2299                     fixup_filename(file), line);
 2300 
 2301         }
 2302 #endif  /* INVARIANT_SUPPORT */
 2303 }
 2304 
 2305 static void
 2306 witness_setflag(struct lock_object *lock, int flag, int set)
 2307 {
 2308         struct lock_list_entry *lock_list;
 2309         struct lock_instance *instance;
 2310         struct lock_class *class;
 2311 
 2312         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 2313                 return;
 2314         class = LOCK_CLASS(lock);
 2315         if (class->lc_flags & LC_SLEEPLOCK)
 2316                 lock_list = curthread->td_sleeplocks;
 2317         else {
 2318                 if (witness_skipspin)
 2319                         return;
 2320                 lock_list = PCPU_GET(spinlocks);
 2321         }
 2322         instance = find_instance(lock_list, lock);
 2323         if (instance == NULL)
 2324                 panic("%s: lock (%s) %s not locked", __func__,
 2325                     class->lc_name, lock->lo_name);
 2326 
 2327         if (set)
 2328                 instance->li_flags |= flag;
 2329         else
 2330                 instance->li_flags &= ~flag;
 2331 }
 2332 
 2333 void
 2334 witness_norelease(struct lock_object *lock)
 2335 {
 2336 
 2337         witness_setflag(lock, LI_NORELEASE, 1);
 2338 }
 2339 
 2340 void
 2341 witness_releaseok(struct lock_object *lock)
 2342 {
 2343 
 2344         witness_setflag(lock, LI_NORELEASE, 0);
 2345 }
 2346 
 2347 #ifdef DDB
 2348 static void
 2349 witness_ddb_list(struct thread *td)
 2350 {
 2351 
 2352         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2353         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
 2354 
 2355         if (witness_watch < 1)
 2356                 return;
 2357 
 2358         witness_list_locks(&td->td_sleeplocks, db_printf);
 2359 
 2360         /*
 2361          * We only handle spinlocks if td == curthread.  This is somewhat broken
 2362          * if td is currently executing on some other CPU and holds spin locks
 2363          * as we won't display those locks.  If we had a MI way of getting
 2364          * the per-cpu data for a given cpu then we could use
 2365          * td->td_oncpu to get the list of spinlocks for this thread
 2366          * and "fix" this.
 2367          *
 2368          * That still wouldn't really fix this unless we locked the scheduler
 2369          * lock or stopped the other CPU to make sure it wasn't changing the
 2370          * list out from under us.  It is probably best to just not try to
 2371          * handle threads on other CPU's for now.
 2372          */
 2373         if (td == curthread && PCPU_GET(spinlocks) != NULL)
 2374                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
 2375 }
 2376 
 2377 DB_SHOW_COMMAND(locks, db_witness_list)
 2378 {
 2379         struct thread *td;
 2380 
 2381         if (have_addr)
 2382                 td = db_lookup_thread(addr, TRUE);
 2383         else
 2384                 td = kdb_thread;
 2385         witness_ddb_list(td);
 2386 }
 2387 
 2388 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
 2389 {
 2390         struct thread *td;
 2391         struct proc *p;
 2392 
 2393         /*
 2394          * It would be nice to list only threads and processes that actually
 2395          * held sleep locks, but that information is currently not exported
 2396          * by WITNESS.
 2397          */
 2398         FOREACH_PROC_IN_SYSTEM(p) {
 2399                 if (!witness_proc_has_locks(p))
 2400                         continue;
 2401                 FOREACH_THREAD_IN_PROC(p, td) {
 2402                         if (!witness_thread_has_locks(td))
 2403                                 continue;
 2404                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
 2405                             p->p_comm, td, td->td_tid);
 2406                         witness_ddb_list(td);
 2407                         if (db_pager_quit)
 2408                                 return;
 2409                 }
 2410         }
 2411 }
 2412 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
 2413 
 2414 DB_SHOW_COMMAND(witness, db_witness_display)
 2415 {
 2416 
 2417         witness_ddb_display(db_printf);
 2418 }
 2419 #endif
 2420 
 2421 static int
 2422 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
 2423 {
 2424         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
 2425         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
 2426         struct sbuf *sb;
 2427         u_int w_rmatrix1, w_rmatrix2;
 2428         int error, generation, i, j;
 2429 
 2430         tmp_data1 = NULL;
 2431         tmp_data2 = NULL;
 2432         tmp_w1 = NULL;
 2433         tmp_w2 = NULL;
 2434         if (witness_watch < 1) {
 2435                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
 2436                 return (error);
 2437         }
 2438         if (witness_cold) {
 2439                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
 2440                 return (error);
 2441         }
 2442         error = 0;
 2443         sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
 2444         if (sb == NULL)
 2445                 return (ENOMEM);
 2446 
 2447         /* Allocate and init temporary storage space. */
 2448         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
 2449         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
 2450         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
 2451             M_WAITOK | M_ZERO);
 2452         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
 2453             M_WAITOK | M_ZERO);
 2454         stack_zero(&tmp_data1->wlod_stack);
 2455         stack_zero(&tmp_data2->wlod_stack);
 2456 
 2457 restart:
 2458         mtx_lock_spin(&w_mtx);
 2459         generation = w_generation;
 2460         mtx_unlock_spin(&w_mtx);
 2461         sbuf_printf(sb, "Number of known direct relationships is %d\n",
 2462             w_lohash.wloh_count);
 2463         for (i = 1; i < w_max_used_index; i++) {
 2464                 mtx_lock_spin(&w_mtx);
 2465                 if (generation != w_generation) {
 2466                         mtx_unlock_spin(&w_mtx);
 2467 
 2468                         /* The graph has changed, try again. */
 2469                         req->oldidx = 0;
 2470                         sbuf_clear(sb);
 2471                         goto restart;
 2472                 }
 2473 
 2474                 w1 = &w_data[i];
 2475                 if (w1->w_reversed == 0) {
 2476                         mtx_unlock_spin(&w_mtx);
 2477                         continue;
 2478                 }
 2479 
 2480                 /* Copy w1 locally so we can release the spin lock. */
 2481                 *tmp_w1 = *w1;
 2482                 mtx_unlock_spin(&w_mtx);
 2483 
 2484                 if (tmp_w1->w_reversed == 0)
 2485                         continue;
 2486                 for (j = 1; j < w_max_used_index; j++) {
 2487                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
 2488                                 continue;
 2489 
 2490                         mtx_lock_spin(&w_mtx);
 2491                         if (generation != w_generation) {
 2492                                 mtx_unlock_spin(&w_mtx);
 2493 
 2494                                 /* The graph has changed, try again. */
 2495                                 req->oldidx = 0;
 2496                                 sbuf_clear(sb);
 2497                                 goto restart;
 2498                         }
 2499 
 2500                         w2 = &w_data[j];
 2501                         data1 = witness_lock_order_get(w1, w2);
 2502                         data2 = witness_lock_order_get(w2, w1);
 2503 
 2504                         /*
 2505                          * Copy information locally so we can release the
 2506                          * spin lock.
 2507                          */
 2508                         *tmp_w2 = *w2;
 2509                         w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
 2510                         w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
 2511 
 2512                         if (data1) {
 2513                                 stack_zero(&tmp_data1->wlod_stack);
 2514                                 stack_copy(&data1->wlod_stack,
 2515                                     &tmp_data1->wlod_stack);
 2516                         }
 2517                         if (data2 && data2 != data1) {
 2518                                 stack_zero(&tmp_data2->wlod_stack);
 2519                                 stack_copy(&data2->wlod_stack,
 2520                                     &tmp_data2->wlod_stack);
 2521                         }
 2522                         mtx_unlock_spin(&w_mtx);
 2523 
 2524                         sbuf_printf(sb,
 2525             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
 2526                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
 2527                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
 2528 #if 0
 2529                         sbuf_printf(sb,
 2530                         "w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
 2531                             tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
 2532                             tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
 2533 #endif
 2534                         if (data1) {
 2535                                 sbuf_printf(sb,
 2536                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
 2537                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
 2538                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
 2539                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
 2540                                 sbuf_printf(sb, "\n");
 2541                         }
 2542                         if (data2 && data2 != data1) {
 2543                                 sbuf_printf(sb,
 2544                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
 2545                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
 2546                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
 2547                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
 2548                                 sbuf_printf(sb, "\n");
 2549                         }
 2550                 }
 2551         }
 2552         mtx_lock_spin(&w_mtx);
 2553         if (generation != w_generation) {
 2554                 mtx_unlock_spin(&w_mtx);
 2555 
 2556                 /*
 2557                  * The graph changed while we were printing stack data,
 2558                  * try again.
 2559                  */
 2560                 req->oldidx = 0;
 2561                 sbuf_clear(sb);
 2562                 goto restart;
 2563         }
 2564         mtx_unlock_spin(&w_mtx);
 2565 
 2566         /* Free temporary storage space. */
 2567         free(tmp_data1, M_TEMP);
 2568         free(tmp_data2, M_TEMP);
 2569         free(tmp_w1, M_TEMP);
 2570         free(tmp_w2, M_TEMP);
 2571 
 2572         sbuf_finish(sb);
 2573         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
 2574         sbuf_delete(sb);
 2575 
 2576         return (error);
 2577 }
 2578 
 2579 static int
 2580 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
 2581 {
 2582         struct witness *w;
 2583         struct sbuf *sb;
 2584         int error;
 2585 
 2586         if (witness_watch < 1) {
 2587                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
 2588                 return (error);
 2589         }
 2590         if (witness_cold) {
 2591                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
 2592                 return (error);
 2593         }
 2594         error = 0;
 2595 
 2596         error = sysctl_wire_old_buffer(req, 0);
 2597         if (error != 0)
 2598                 return (error);
 2599         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
 2600         if (sb == NULL)
 2601                 return (ENOMEM);
 2602         sbuf_printf(sb, "\n");
 2603 
 2604         mtx_lock_spin(&w_mtx);
 2605         STAILQ_FOREACH(w, &w_all, w_list)
 2606                 w->w_displayed = 0;
 2607         STAILQ_FOREACH(w, &w_all, w_list)
 2608                 witness_add_fullgraph(sb, w);
 2609         mtx_unlock_spin(&w_mtx);
 2610 
 2611         /*
 2612          * Close the sbuf and return to userland.
 2613          */
 2614         error = sbuf_finish(sb);
 2615         sbuf_delete(sb);
 2616 
 2617         return (error);
 2618 }
 2619 
 2620 static int
 2621 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
 2622 {
 2623         int error, value;
 2624 
 2625         value = witness_watch;
 2626         error = sysctl_handle_int(oidp, &value, 0, req);
 2627         if (error != 0 || req->newptr == NULL)
 2628                 return (error);
 2629         if (value > 1 || value < -1 ||
 2630             (witness_watch == -1 && value != witness_watch))
 2631                 return (EINVAL);
 2632         witness_watch = value;
 2633         return (0);
 2634 }
 2635 
 2636 static void
 2637 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
 2638 {
 2639         int i;
 2640 
 2641         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
 2642                 return;
 2643         w->w_displayed = 1;
 2644 
 2645         WITNESS_INDEX_ASSERT(w->w_index);
 2646         for (i = 1; i <= w_max_used_index; i++) {
 2647                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
 2648                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
 2649                             w_data[i].w_name);
 2650                         witness_add_fullgraph(sb, &w_data[i]);
 2651                 }
 2652         }
 2653 }
 2654 
 2655 /*
 2656  * A simple hash function. Takes a key pointer and a key size. If size == 0,
 2657  * interprets the key as a string and reads until the null
 2658  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
 2659  * hash value computed from the key.
 2660  */
 2661 static uint32_t
 2662 witness_hash_djb2(const uint8_t *key, uint32_t size)
 2663 {
 2664         unsigned int hash = 5381;
 2665         int i;
 2666 
 2667         /* hash = hash * 33 + key[i] */
 2668         if (size)
 2669                 for (i = 0; i < size; i++)
 2670                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
 2671         else
 2672                 for (i = 0; key[i] != 0; i++)
 2673                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
 2674 
 2675         return (hash);
 2676 }
 2677 
 2678 
 2679 /*
 2680  * Initializes the two witness hash tables. Called exactly once from
 2681  * witness_initialize().
 2682  */
 2683 static void
 2684 witness_init_hash_tables(void)
 2685 {
 2686         int i;
 2687 
 2688         MPASS(witness_cold);
 2689 
 2690         /* Initialize the hash tables. */
 2691         for (i = 0; i < WITNESS_HASH_SIZE; i++)
 2692                 w_hash.wh_array[i] = NULL;
 2693 
 2694         w_hash.wh_size = WITNESS_HASH_SIZE;
 2695         w_hash.wh_count = 0;
 2696 
 2697         /* Initialize the lock order data hash. */
 2698         w_lofree = NULL;
 2699         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
 2700                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
 2701                 w_lodata[i].wlod_next = w_lofree;
 2702                 w_lofree = &w_lodata[i];
 2703         }
 2704         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
 2705         w_lohash.wloh_count = 0;
 2706         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
 2707                 w_lohash.wloh_array[i] = NULL;
 2708 }
 2709 
 2710 static struct witness *
 2711 witness_hash_get(const char *key)
 2712 {
 2713         struct witness *w;
 2714         uint32_t hash;
 2715         
 2716         MPASS(key != NULL);
 2717         if (witness_cold == 0)
 2718                 mtx_assert(&w_mtx, MA_OWNED);
 2719         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
 2720         w = w_hash.wh_array[hash];
 2721         while (w != NULL) {
 2722                 if (strcmp(w->w_name, key) == 0)
 2723                         goto out;
 2724                 w = w->w_hash_next;
 2725         }
 2726 
 2727 out:
 2728         return (w);
 2729 }
 2730 
 2731 static void
 2732 witness_hash_put(struct witness *w)
 2733 {
 2734         uint32_t hash;
 2735 
 2736         MPASS(w != NULL);
 2737         MPASS(w->w_name != NULL);
 2738         if (witness_cold == 0)
 2739                 mtx_assert(&w_mtx, MA_OWNED);
 2740         KASSERT(witness_hash_get(w->w_name) == NULL,
 2741             ("%s: trying to add a hash entry that already exists!", __func__));
 2742         KASSERT(w->w_hash_next == NULL,
 2743             ("%s: w->w_hash_next != NULL", __func__));
 2744 
 2745         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
 2746         w->w_hash_next = w_hash.wh_array[hash];
 2747         w_hash.wh_array[hash] = w;
 2748         w_hash.wh_count++;
 2749 }
 2750 
 2751 
 2752 static struct witness_lock_order_data *
 2753 witness_lock_order_get(struct witness *parent, struct witness *child)
 2754 {
 2755         struct witness_lock_order_data *data = NULL;
 2756         struct witness_lock_order_key key;
 2757         unsigned int hash;
 2758 
 2759         MPASS(parent != NULL && child != NULL);
 2760         key.from = parent->w_index;
 2761         key.to = child->w_index;
 2762         WITNESS_INDEX_ASSERT(key.from);
 2763         WITNESS_INDEX_ASSERT(key.to);
 2764         if ((w_rmatrix[parent->w_index][child->w_index]
 2765             & WITNESS_LOCK_ORDER_KNOWN) == 0)
 2766                 goto out;
 2767 
 2768         hash = witness_hash_djb2((const char*)&key,
 2769             sizeof(key)) % w_lohash.wloh_size;
 2770         data = w_lohash.wloh_array[hash];
 2771         while (data != NULL) {
 2772                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
 2773                         break;
 2774                 data = data->wlod_next;
 2775         }
 2776 
 2777 out:
 2778         return (data);
 2779 }
 2780 
 2781 /*
 2782  * Verify that parent and child have a known relationship, are not the same,
 2783  * and child is actually a child of parent.  This is done without w_mtx
 2784  * to avoid contention in the common case.
 2785  */
 2786 static int
 2787 witness_lock_order_check(struct witness *parent, struct witness *child)
 2788 {
 2789 
 2790         if (parent != child &&
 2791             w_rmatrix[parent->w_index][child->w_index]
 2792             & WITNESS_LOCK_ORDER_KNOWN &&
 2793             isitmychild(parent, child))
 2794                 return (1);
 2795 
 2796         return (0);
 2797 }
 2798 
 2799 static int
 2800 witness_lock_order_add(struct witness *parent, struct witness *child)
 2801 {
 2802         struct witness_lock_order_data *data = NULL;
 2803         struct witness_lock_order_key key;
 2804         unsigned int hash;
 2805         
 2806         MPASS(parent != NULL && child != NULL);
 2807         key.from = parent->w_index;
 2808         key.to = child->w_index;
 2809         WITNESS_INDEX_ASSERT(key.from);
 2810         WITNESS_INDEX_ASSERT(key.to);
 2811         if (w_rmatrix[parent->w_index][child->w_index]
 2812             & WITNESS_LOCK_ORDER_KNOWN)
 2813                 return (1);
 2814 
 2815         hash = witness_hash_djb2((const char*)&key,
 2816             sizeof(key)) % w_lohash.wloh_size;
 2817         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
 2818         data = w_lofree;
 2819         if (data == NULL)
 2820                 return (0);
 2821         w_lofree = data->wlod_next;
 2822         data->wlod_next = w_lohash.wloh_array[hash];
 2823         data->wlod_key = key;
 2824         w_lohash.wloh_array[hash] = data;
 2825         w_lohash.wloh_count++;
 2826         stack_zero(&data->wlod_stack);
 2827         stack_save(&data->wlod_stack);
 2828         return (1);
 2829 }
 2830 
 2831 /* Call this whenver the structure of the witness graph changes. */
 2832 static void
 2833 witness_increment_graph_generation(void)
 2834 {
 2835 
 2836         if (witness_cold == 0)
 2837                 mtx_assert(&w_mtx, MA_OWNED);
 2838         w_generation++;
 2839 }
 2840 
 2841 #ifdef KDB
 2842 static void
 2843 _witness_debugger(int cond, const char *msg)
 2844 {
 2845 
 2846         if (witness_trace && cond)
 2847                 kdb_backtrace();
 2848         if (witness_kdb && cond)
 2849                 kdb_enter(KDB_WHY_WITNESS, msg);
 2850 }
 2851 #endif

Cache object: 82ea78ca91dbae3dbff5e59af472f45e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.