The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_witness.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2008 Isilon Systems, Inc.
    3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
    4  * Copyright (c) 1998 Berkeley Software Design, Inc.
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
   16  *    promote products derived from this software without specific prior
   17  *    written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
   32  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
   33  */
   34 
   35 /*
   36  * Implementation of the `witness' lock verifier.  Originally implemented for
   37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
   38  * classes in FreeBSD.
   39  */
   40 
   41 /*
   42  *      Main Entry: witness
   43  *      Pronunciation: 'wit-n&s
   44  *      Function: noun
   45  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
   46  *          testimony, witness, from 2wit
   47  *      Date: before 12th century
   48  *      1 : attestation of a fact or event : TESTIMONY
   49  *      2 : one that gives evidence; specifically : one who testifies in
   50  *          a cause or before a judicial tribunal
   51  *      3 : one asked to be present at a transaction so as to be able to
   52  *          testify to its having taken place
   53  *      4 : one who has personal knowledge of something
   54  *      5 a : something serving as evidence or proof : SIGN
   55  *        b : public affirmation by word or example of usually
   56  *            religious faith or conviction <the heroic witness to divine
   57  *            life -- Pilot>
   58  *      6 capitalized : a member of the Jehovah's Witnesses 
   59  */
   60 
   61 /*
   62  * Special rules concerning Giant and lock orders:
   63  *
   64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
   65  *    no other mutex may be held when Giant is acquired.
   66  *
   67  * 2) Giant must be released when blocking on a sleepable lock.
   68  *
   69  * This rule is less obvious, but is a result of Giant providing the same
   70  * semantics as spl().  Basically, when a thread sleeps, it must release
   71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
   72  * 2).
   73  *
   74  * 3) Giant may be acquired before or after sleepable locks.
   75  *
   76  * This rule is also not quite as obvious.  Giant may be acquired after
   77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
   78  * locks may always be acquired while holding a sleepable lock.  The second
   79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
   80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
   81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
   82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
   83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
   84  * will not result in a lock order reversal.
   85  */
   86 
   87 #include <sys/cdefs.h>
   88 __FBSDID("$FreeBSD$");
   89 
   90 #include "opt_ddb.h"
   91 #include "opt_hwpmc_hooks.h"
   92 #include "opt_stack.h"
   93 #include "opt_witness.h"
   94 
   95 #include <sys/param.h>
   96 #include <sys/bus.h>
   97 #include <sys/kdb.h>
   98 #include <sys/kernel.h>
   99 #include <sys/ktr.h>
  100 #include <sys/lock.h>
  101 #include <sys/malloc.h>
  102 #include <sys/mutex.h>
  103 #include <sys/priv.h>
  104 #include <sys/proc.h>
  105 #include <sys/sbuf.h>
  106 #include <sys/sched.h>
  107 #include <sys/stack.h>
  108 #include <sys/sysctl.h>
  109 #include <sys/systm.h>
  110 
  111 #ifdef DDB
  112 #include <ddb/ddb.h>
  113 #endif
  114 
  115 #include <machine/stdarg.h>
  116 
  117 #if !defined(DDB) && !defined(STACK)
  118 #error "DDB or STACK options are required for WITNESS"
  119 #endif
  120 
  121 /* Note that these traces do not work with KTR_ALQ. */
  122 #if 0
  123 #define KTR_WITNESS     KTR_SUBSYS
  124 #else
  125 #define KTR_WITNESS     0
  126 #endif
  127 
  128 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
  129 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
  130 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
  131 
  132 /* Define this to check for blessed mutexes */
  133 #undef BLESSING
  134 
  135 #define WITNESS_COUNT           1024
  136 #define WITNESS_CHILDCOUNT      (WITNESS_COUNT * 4)
  137 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
  138 #define WITNESS_PENDLIST        768
  139 
  140 /* Allocate 256 KB of stack data space */
  141 #define WITNESS_LO_DATA_COUNT   2048
  142 
  143 /* Prime, gives load factor of ~2 at full load */
  144 #define WITNESS_LO_HASH_SIZE    1021
  145 
  146 /*
  147  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
  148  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
  149  * probably be safe for the most part, but it's still a SWAG.
  150  */
  151 #define LOCK_NCHILDREN  5
  152 #define LOCK_CHILDCOUNT 2048
  153 
  154 #define MAX_W_NAME      64
  155 
  156 #define BADSTACK_SBUF_SIZE      (256 * WITNESS_COUNT)
  157 #define FULLGRAPH_SBUF_SIZE     512
  158 
  159 /*
  160  * These flags go in the witness relationship matrix and describe the
  161  * relationship between any two struct witness objects.
  162  */
  163 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
  164 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
  165 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
  166 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
  167 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
  168 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
  169 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
  170 #define WITNESS_RELATED_MASK                                            \
  171         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
  172 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
  173                                           * observed. */
  174 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
  175 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
  176 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
  177 
  178 /* Descendant to ancestor flags */
  179 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
  180 
  181 /* Ancestor to descendant flags */
  182 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
  183 
  184 #define WITNESS_INDEX_ASSERT(i)                                         \
  185         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
  186 
  187 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
  188 
  189 /*
  190  * Lock instances.  A lock instance is the data associated with a lock while
  191  * it is held by witness.  For example, a lock instance will hold the
  192  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
  193  * are held in a per-cpu list while sleep locks are held in per-thread list.
  194  */
  195 struct lock_instance {
  196         struct lock_object      *li_lock;
  197         const char              *li_file;
  198         int                     li_line;
  199         u_int                   li_flags;
  200 };
  201 
  202 /*
  203  * A simple list type used to build the list of locks held by a thread
  204  * or CPU.  We can't simply embed the list in struct lock_object since a
  205  * lock may be held by more than one thread if it is a shared lock.  Locks
  206  * are added to the head of the list, so we fill up each list entry from
  207  * "the back" logically.  To ease some of the arithmetic, we actually fill
  208  * in each list entry the normal way (children[0] then children[1], etc.) but
  209  * when we traverse the list we read children[count-1] as the first entry
  210  * down to children[0] as the final entry.
  211  */
  212 struct lock_list_entry {
  213         struct lock_list_entry  *ll_next;
  214         struct lock_instance    ll_children[LOCK_NCHILDREN];
  215         u_int                   ll_count;
  216 };
  217 
  218 /*
  219  * The main witness structure. One of these per named lock type in the system
  220  * (for example, "vnode interlock").
  221  */
  222 struct witness {
  223         char                    w_name[MAX_W_NAME];
  224         uint32_t                w_index;  /* Index in the relationship matrix */
  225         struct lock_class       *w_class;
  226         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
  227         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
  228         struct witness          *w_hash_next; /* Linked list in hash buckets. */
  229         const char              *w_file; /* File where last acquired */
  230         uint32_t                w_line; /* Line where last acquired */
  231         uint32_t                w_refcount;
  232         uint16_t                w_num_ancestors; /* direct/indirect
  233                                                   * ancestor count */
  234         uint16_t                w_num_descendants; /* direct/indirect
  235                                                     * descendant count */
  236         int16_t                 w_ddb_level;
  237         unsigned                w_displayed:1;
  238         unsigned                w_reversed:1;
  239 };
  240 
  241 STAILQ_HEAD(witness_list, witness);
  242 
  243 /*
  244  * The witness hash table. Keys are witness names (const char *), elements are
  245  * witness objects (struct witness *).
  246  */
  247 struct witness_hash {
  248         struct witness  *wh_array[WITNESS_HASH_SIZE];
  249         uint32_t        wh_size;
  250         uint32_t        wh_count;
  251 };
  252 
  253 /*
  254  * Key type for the lock order data hash table.
  255  */
  256 struct witness_lock_order_key {
  257         uint16_t        from;
  258         uint16_t        to;
  259 };
  260 
  261 struct witness_lock_order_data {
  262         struct stack                    wlod_stack;
  263         struct witness_lock_order_key   wlod_key;
  264         struct witness_lock_order_data  *wlod_next;
  265 };
  266 
  267 /*
  268  * The witness lock order data hash table. Keys are witness index tuples
  269  * (struct witness_lock_order_key), elements are lock order data objects
  270  * (struct witness_lock_order_data). 
  271  */
  272 struct witness_lock_order_hash {
  273         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
  274         u_int   wloh_size;
  275         u_int   wloh_count;
  276 };
  277 
  278 #ifdef BLESSING
  279 struct witness_blessed {
  280         const char      *b_lock1;
  281         const char      *b_lock2;
  282 };
  283 #endif
  284 
  285 struct witness_pendhelp {
  286         const char              *wh_type;
  287         struct lock_object      *wh_lock;
  288 };
  289 
  290 struct witness_order_list_entry {
  291         const char              *w_name;
  292         struct lock_class       *w_class;
  293 };
  294 
  295 /*
  296  * Returns 0 if one of the locks is a spin lock and the other is not.
  297  * Returns 1 otherwise.
  298  */
  299 static __inline int
  300 witness_lock_type_equal(struct witness *w1, struct witness *w2)
  301 {
  302 
  303         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
  304                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
  305 }
  306 
  307 static __inline int
  308 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
  309     const struct witness_lock_order_key *b)
  310 {
  311 
  312         return (a->from == b->from && a->to == b->to);
  313 }
  314 
  315 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
  316                     const char *fname);
  317 #ifdef KDB
  318 static void     _witness_debugger(int cond, const char *msg);
  319 #endif
  320 static void     adopt(struct witness *parent, struct witness *child);
  321 #ifdef BLESSING
  322 static int      blessed(struct witness *, struct witness *);
  323 #endif
  324 static void     depart(struct witness *w);
  325 static struct witness   *enroll(const char *description,
  326                             struct lock_class *lock_class);
  327 static struct lock_instance     *find_instance(struct lock_list_entry *list,
  328                                     struct lock_object *lock);
  329 static int      isitmychild(struct witness *parent, struct witness *child);
  330 static int      isitmydescendant(struct witness *parent, struct witness *child);
  331 static void     itismychild(struct witness *parent, struct witness *child);
  332 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
  333 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
  334 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
  335 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
  336 #ifdef DDB
  337 static void     witness_ddb_compute_levels(void);
  338 static void     witness_ddb_display(int(*)(const char *fmt, ...));
  339 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
  340                     struct witness *, int indent);
  341 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
  342                     struct witness_list *list);
  343 static void     witness_ddb_level_descendants(struct witness *parent, int l);
  344 static void     witness_ddb_list(struct thread *td);
  345 #endif
  346 static void     witness_free(struct witness *m);
  347 static struct witness   *witness_get(void);
  348 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
  349 static struct witness   *witness_hash_get(const char *key);
  350 static void     witness_hash_put(struct witness *w);
  351 static void     witness_init_hash_tables(void);
  352 static void     witness_increment_graph_generation(void);
  353 static void     witness_lock_list_free(struct lock_list_entry *lle);
  354 static struct lock_list_entry   *witness_lock_list_get(void);
  355 static int      witness_lock_order_add(struct witness *parent,
  356                     struct witness *child);
  357 static int      witness_lock_order_check(struct witness *parent,
  358                     struct witness *child);
  359 static struct witness_lock_order_data   *witness_lock_order_get(
  360                                             struct witness *parent,
  361                                             struct witness *child);
  362 static void     witness_list_lock(struct lock_instance *instance,
  363                     int (*prnt)(const char *fmt, ...));
  364 static void     witness_setflag(struct lock_object *lock, int flag, int set);
  365 
  366 #ifdef KDB
  367 #define witness_debugger(c)     _witness_debugger(c, __func__)
  368 #else
  369 #define witness_debugger(c)
  370 #endif
  371 
  372 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
  373     "Witness Locking");
  374 
  375 /*
  376  * If set to 0, lock order checking is disabled.  If set to -1,
  377  * witness is completely disabled.  Otherwise witness performs full
  378  * lock order checking for all locks.  At runtime, lock order checking
  379  * may be toggled.  However, witness cannot be reenabled once it is
  380  * completely disabled.
  381  */
  382 static int witness_watch = 1;
  383 TUNABLE_INT("debug.witness.watch", &witness_watch);
  384 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
  385     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
  386 
  387 #ifdef KDB
  388 /*
  389  * When KDB is enabled and witness_kdb is 1, it will cause the system
  390  * to drop into kdebug() when:
  391  *      - a lock hierarchy violation occurs
  392  *      - locks are held when going to sleep.
  393  */
  394 #ifdef WITNESS_KDB
  395 int     witness_kdb = 1;
  396 #else
  397 int     witness_kdb = 0;
  398 #endif
  399 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
  400 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
  401 
  402 /*
  403  * When KDB is enabled and witness_trace is 1, it will cause the system
  404  * to print a stack trace:
  405  *      - a lock hierarchy violation occurs
  406  *      - locks are held when going to sleep.
  407  */
  408 int     witness_trace = 1;
  409 TUNABLE_INT("debug.witness.trace", &witness_trace);
  410 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
  411 #endif /* KDB */
  412 
  413 #ifdef WITNESS_SKIPSPIN
  414 int     witness_skipspin = 1;
  415 #else
  416 int     witness_skipspin = 0;
  417 #endif
  418 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
  419 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
  420     0, "");
  421 
  422 /*
  423  * Call this to print out the relations between locks.
  424  */
  425 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
  426     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
  427 
  428 /*
  429  * Call this to print out the witness faulty stacks.
  430  */
  431 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
  432     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
  433 
  434 static struct mtx w_mtx;
  435 
  436 /* w_list */
  437 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
  438 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
  439 
  440 /* w_typelist */
  441 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
  442 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
  443 
  444 /* lock list */
  445 static struct lock_list_entry *w_lock_list_free = NULL;
  446 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
  447 static u_int pending_cnt;
  448 
  449 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
  450 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
  451 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
  452 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
  453     "");
  454 
  455 static struct witness *w_data;
  456 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
  457 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
  458 static struct witness_hash w_hash;      /* The witness hash table. */
  459 
  460 /* The lock order data hash */
  461 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
  462 static struct witness_lock_order_data *w_lofree = NULL;
  463 static struct witness_lock_order_hash w_lohash;
  464 static int w_max_used_index = 0;
  465 static unsigned int w_generation = 0;
  466 static const char w_notrunning[] = "Witness not running\n";
  467 static const char w_stillcold[] = "Witness is still cold\n";
  468 
  469 
  470 static struct witness_order_list_entry order_lists[] = {
  471         /*
  472          * sx locks
  473          */
  474         { "proctree", &lock_class_sx },
  475         { "allproc", &lock_class_sx },
  476         { "allprison", &lock_class_sx },
  477         { NULL, NULL },
  478         /*
  479          * Various mutexes
  480          */
  481         { "Giant", &lock_class_mtx_sleep },
  482         { "pipe mutex", &lock_class_mtx_sleep },
  483         { "sigio lock", &lock_class_mtx_sleep },
  484         { "process group", &lock_class_mtx_sleep },
  485         { "process lock", &lock_class_mtx_sleep },
  486         { "session", &lock_class_mtx_sleep },
  487         { "uidinfo hash", &lock_class_rw },
  488 #ifdef  HWPMC_HOOKS
  489         { "pmc-sleep", &lock_class_mtx_sleep },
  490 #endif
  491         { "time lock", &lock_class_mtx_sleep },
  492         { NULL, NULL },
  493         /*
  494          * Sockets
  495          */
  496         { "accept", &lock_class_mtx_sleep },
  497         { "so_snd", &lock_class_mtx_sleep },
  498         { "so_rcv", &lock_class_mtx_sleep },
  499         { "sellck", &lock_class_mtx_sleep },
  500         { NULL, NULL },
  501         /*
  502          * Routing
  503          */
  504         { "so_rcv", &lock_class_mtx_sleep },
  505         { "radix node head", &lock_class_rw },
  506         { "rtentry", &lock_class_mtx_sleep },
  507         { "ifaddr", &lock_class_mtx_sleep },
  508         { NULL, NULL },
  509         /*
  510          * IPv4 multicast:
  511          * protocol locks before interface locks, after UDP locks.
  512          */
  513         { "udpinp", &lock_class_rw },
  514         { "in_multi_mtx", &lock_class_mtx_sleep },
  515         { "igmp_mtx", &lock_class_mtx_sleep },
  516         { "if_addr_mtx", &lock_class_mtx_sleep },
  517         { NULL, NULL },
  518         /*
  519          * IPv6 multicast:
  520          * protocol locks before interface locks, after UDP locks.
  521          */
  522         { "udpinp", &lock_class_rw },
  523         { "in6_multi_mtx", &lock_class_mtx_sleep },
  524         { "mld_mtx", &lock_class_mtx_sleep },
  525         { "if_addr_mtx", &lock_class_mtx_sleep },
  526         { NULL, NULL },
  527         /*
  528          * UNIX Domain Sockets
  529          */
  530         { "unp_link_rwlock", &lock_class_rw },
  531         { "unp_list_lock", &lock_class_mtx_sleep },
  532         { "unp", &lock_class_mtx_sleep },
  533         { "so_snd", &lock_class_mtx_sleep },
  534         { NULL, NULL },
  535         /*
  536          * UDP/IP
  537          */
  538         { "udp", &lock_class_rw },
  539         { "udpinp", &lock_class_rw },
  540         { "so_snd", &lock_class_mtx_sleep },
  541         { NULL, NULL },
  542         /*
  543          * TCP/IP
  544          */
  545         { "tcp", &lock_class_rw },
  546         { "tcpinp", &lock_class_rw },
  547         { "so_snd", &lock_class_mtx_sleep },
  548         { NULL, NULL },
  549         /*
  550          * netatalk
  551          */
  552         { "ddp_list_mtx", &lock_class_mtx_sleep },
  553         { "ddp_mtx", &lock_class_mtx_sleep },
  554         { NULL, NULL },
  555         /*
  556          * BPF
  557          */
  558         { "bpf global lock", &lock_class_mtx_sleep },
  559         { "bpf interface lock", &lock_class_rw },
  560         { "bpf cdev lock", &lock_class_mtx_sleep },
  561         { NULL, NULL },
  562         /*
  563          * NFS server
  564          */
  565         { "nfsd_mtx", &lock_class_mtx_sleep },
  566         { "so_snd", &lock_class_mtx_sleep },
  567         { NULL, NULL },
  568 
  569         /*
  570          * IEEE 802.11
  571          */
  572         { "802.11 com lock", &lock_class_mtx_sleep},
  573         { NULL, NULL },
  574         /*
  575          * Network drivers
  576          */
  577         { "network driver", &lock_class_mtx_sleep},
  578         { NULL, NULL },
  579 
  580         /*
  581          * Netgraph
  582          */
  583         { "ng_node", &lock_class_mtx_sleep },
  584         { "ng_worklist", &lock_class_mtx_sleep },
  585         { NULL, NULL },
  586         /*
  587          * CDEV
  588          */
  589         { "vm map (system)", &lock_class_mtx_sleep },
  590         { "vm page queue", &lock_class_mtx_sleep },
  591         { "vnode interlock", &lock_class_mtx_sleep },
  592         { "cdev", &lock_class_mtx_sleep },
  593         { NULL, NULL },
  594         /*
  595          * VM
  596          */
  597         { "vm map (user)", &lock_class_sx },
  598         { "vm object", &lock_class_mtx_sleep },
  599         { "vm page", &lock_class_mtx_sleep },
  600         { "vm page queue", &lock_class_mtx_sleep },
  601         { "pmap pv global", &lock_class_rw },
  602         { "pmap", &lock_class_mtx_sleep },
  603         { "pmap pv list", &lock_class_rw },
  604         { "vm page free queue", &lock_class_mtx_sleep },
  605         { NULL, NULL },
  606         /*
  607          * kqueue/VFS interaction
  608          */
  609         { "kqueue", &lock_class_mtx_sleep },
  610         { "struct mount mtx", &lock_class_mtx_sleep },
  611         { "vnode interlock", &lock_class_mtx_sleep },
  612         { NULL, NULL },
  613         /*
  614          * ZFS locking
  615          */
  616         { "dn->dn_mtx", &lock_class_sx },
  617         { "dr->dt.di.dr_mtx", &lock_class_sx },
  618         { "db->db_mtx", &lock_class_sx },
  619         { NULL, NULL },
  620         /*
  621          * spin locks
  622          */
  623 #ifdef SMP
  624         { "ap boot", &lock_class_mtx_spin },
  625 #endif
  626         { "rm.mutex_mtx", &lock_class_mtx_spin },
  627         { "sio", &lock_class_mtx_spin },
  628         { "scrlock", &lock_class_mtx_spin },
  629 #ifdef __i386__
  630         { "cy", &lock_class_mtx_spin },
  631 #endif
  632 #ifdef __sparc64__
  633         { "pcib_mtx", &lock_class_mtx_spin },
  634         { "rtc_mtx", &lock_class_mtx_spin },
  635 #endif
  636         { "scc_hwmtx", &lock_class_mtx_spin },
  637         { "uart_hwmtx", &lock_class_mtx_spin },
  638         { "fast_taskqueue", &lock_class_mtx_spin },
  639         { "intr table", &lock_class_mtx_spin },
  640 #ifdef  HWPMC_HOOKS
  641         { "pmc-per-proc", &lock_class_mtx_spin },
  642 #endif
  643         { "process slock", &lock_class_mtx_spin },
  644         { "sleepq chain", &lock_class_mtx_spin },
  645         { "umtx lock", &lock_class_mtx_spin },
  646         { "rm_spinlock", &lock_class_mtx_spin },
  647         { "turnstile chain", &lock_class_mtx_spin },
  648         { "turnstile lock", &lock_class_mtx_spin },
  649         { "sched lock", &lock_class_mtx_spin },
  650         { "td_contested", &lock_class_mtx_spin },
  651         { "callout", &lock_class_mtx_spin },
  652         { "entropy harvest mutex", &lock_class_mtx_spin },
  653         { "syscons video lock", &lock_class_mtx_spin },
  654 #ifdef SMP
  655         { "smp rendezvous", &lock_class_mtx_spin },
  656 #endif
  657 #ifdef __powerpc__
  658         { "tlb0", &lock_class_mtx_spin },
  659 #endif
  660         /*
  661          * leaf locks
  662          */
  663         { "intrcnt", &lock_class_mtx_spin },
  664         { "icu", &lock_class_mtx_spin },
  665 #if defined(SMP) && defined(__sparc64__)
  666         { "ipi", &lock_class_mtx_spin },
  667 #endif
  668 #ifdef __i386__
  669         { "allpmaps", &lock_class_mtx_spin },
  670         { "descriptor tables", &lock_class_mtx_spin },
  671 #endif
  672         { "clk", &lock_class_mtx_spin },
  673         { "cpuset", &lock_class_mtx_spin },
  674         { "mprof lock", &lock_class_mtx_spin },
  675         { "zombie lock", &lock_class_mtx_spin },
  676         { "ALD Queue", &lock_class_mtx_spin },
  677 #ifdef __ia64__
  678         { "MCA spin lock", &lock_class_mtx_spin },
  679 #endif
  680 #if defined(__i386__) || defined(__amd64__)
  681         { "pcicfg", &lock_class_mtx_spin },
  682         { "NDIS thread lock", &lock_class_mtx_spin },
  683 #endif
  684         { "tw_osl_io_lock", &lock_class_mtx_spin },
  685         { "tw_osl_q_lock", &lock_class_mtx_spin },
  686         { "tw_cl_io_lock", &lock_class_mtx_spin },
  687         { "tw_cl_intr_lock", &lock_class_mtx_spin },
  688         { "tw_cl_gen_lock", &lock_class_mtx_spin },
  689 #ifdef  HWPMC_HOOKS
  690         { "pmc-leaf", &lock_class_mtx_spin },
  691 #endif
  692         { "blocked lock", &lock_class_mtx_spin },
  693         { NULL, NULL },
  694         { NULL, NULL }
  695 };
  696 
  697 #ifdef BLESSING
  698 /*
  699  * Pairs of locks which have been blessed
  700  * Don't complain about order problems with blessed locks
  701  */
  702 static struct witness_blessed blessed_list[] = {
  703 };
  704 static int blessed_count =
  705         sizeof(blessed_list) / sizeof(struct witness_blessed);
  706 #endif
  707 
  708 /*
  709  * This global is set to 0 once it becomes safe to use the witness code.
  710  */
  711 static int witness_cold = 1;
  712 
  713 /*
  714  * This global is set to 1 once the static lock orders have been enrolled
  715  * so that a warning can be issued for any spin locks enrolled later.
  716  */
  717 static int witness_spin_warn = 0;
  718 
  719 /* Trim useless garbage from filenames. */
  720 static const char *
  721 fixup_filename(const char *file)
  722 {
  723 
  724         if (file == NULL)
  725                 return (NULL);
  726         while (strncmp(file, "../", 3) == 0)
  727                 file += 3;
  728         return (file);
  729 }
  730 
  731 /*
  732  * The WITNESS-enabled diagnostic code.  Note that the witness code does
  733  * assume that the early boot is single-threaded at least until after this
  734  * routine is completed.
  735  */
  736 static void
  737 witness_initialize(void *dummy __unused)
  738 {
  739         struct lock_object *lock;
  740         struct witness_order_list_entry *order;
  741         struct witness *w, *w1;
  742         int i;
  743 
  744         w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
  745             M_NOWAIT | M_ZERO);
  746 
  747         /*
  748          * We have to release Giant before initializing its witness
  749          * structure so that WITNESS doesn't get confused.
  750          */
  751         mtx_unlock(&Giant);
  752         mtx_assert(&Giant, MA_NOTOWNED);
  753 
  754         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
  755         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
  756             MTX_NOWITNESS | MTX_NOPROFILE);
  757         for (i = WITNESS_COUNT - 1; i >= 0; i--) {
  758                 w = &w_data[i];
  759                 memset(w, 0, sizeof(*w));
  760                 w_data[i].w_index = i;  /* Witness index never changes. */
  761                 witness_free(w);
  762         }
  763         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
  764             ("%s: Invalid list of free witness objects", __func__));
  765 
  766         /* Witness with index 0 is not used to aid in debugging. */
  767         STAILQ_REMOVE_HEAD(&w_free, w_list);
  768         w_free_cnt--;
  769 
  770         memset(w_rmatrix, 0,
  771             (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
  772 
  773         for (i = 0; i < LOCK_CHILDCOUNT; i++)
  774                 witness_lock_list_free(&w_locklistdata[i]);
  775         witness_init_hash_tables();
  776 
  777         /* First add in all the specified order lists. */
  778         for (order = order_lists; order->w_name != NULL; order++) {
  779                 w = enroll(order->w_name, order->w_class);
  780                 if (w == NULL)
  781                         continue;
  782                 w->w_file = "order list";
  783                 for (order++; order->w_name != NULL; order++) {
  784                         w1 = enroll(order->w_name, order->w_class);
  785                         if (w1 == NULL)
  786                                 continue;
  787                         w1->w_file = "order list";
  788                         itismychild(w, w1);
  789                         w = w1;
  790                 }
  791         }
  792         witness_spin_warn = 1;
  793 
  794         /* Iterate through all locks and add them to witness. */
  795         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
  796                 lock = pending_locks[i].wh_lock;
  797                 KASSERT(lock->lo_flags & LO_WITNESS,
  798                     ("%s: lock %s is on pending list but not LO_WITNESS",
  799                     __func__, lock->lo_name));
  800                 lock->lo_witness = enroll(pending_locks[i].wh_type,
  801                     LOCK_CLASS(lock));
  802         }
  803 
  804         /* Mark the witness code as being ready for use. */
  805         witness_cold = 0;
  806 
  807         mtx_lock(&Giant);
  808 }
  809 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
  810     NULL);
  811 
  812 void
  813 witness_init(struct lock_object *lock, const char *type)
  814 {
  815         struct lock_class *class;
  816 
  817         /* Various sanity checks. */
  818         class = LOCK_CLASS(lock);
  819         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
  820             (class->lc_flags & LC_RECURSABLE) == 0)
  821                 panic("%s: lock (%s) %s can not be recursable", __func__,
  822                     class->lc_name, lock->lo_name);
  823         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
  824             (class->lc_flags & LC_SLEEPABLE) == 0)
  825                 panic("%s: lock (%s) %s can not be sleepable", __func__,
  826                     class->lc_name, lock->lo_name);
  827         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
  828             (class->lc_flags & LC_UPGRADABLE) == 0)
  829                 panic("%s: lock (%s) %s can not be upgradable", __func__,
  830                     class->lc_name, lock->lo_name);
  831 
  832         /*
  833          * If we shouldn't watch this lock, then just clear lo_witness.
  834          * Otherwise, if witness_cold is set, then it is too early to
  835          * enroll this lock, so defer it to witness_initialize() by adding
  836          * it to the pending_locks list.  If it is not too early, then enroll
  837          * the lock now.
  838          */
  839         if (witness_watch < 1 || panicstr != NULL ||
  840             (lock->lo_flags & LO_WITNESS) == 0)
  841                 lock->lo_witness = NULL;
  842         else if (witness_cold) {
  843                 pending_locks[pending_cnt].wh_lock = lock;
  844                 pending_locks[pending_cnt++].wh_type = type;
  845                 if (pending_cnt > WITNESS_PENDLIST)
  846                         panic("%s: pending locks list is too small, bump it\n",
  847                             __func__);
  848         } else
  849                 lock->lo_witness = enroll(type, class);
  850 }
  851 
  852 void
  853 witness_destroy(struct lock_object *lock)
  854 {
  855         struct lock_class *class;
  856         struct witness *w;
  857 
  858         class = LOCK_CLASS(lock);
  859 
  860         if (witness_cold)
  861                 panic("lock (%s) %s destroyed while witness_cold",
  862                     class->lc_name, lock->lo_name);
  863 
  864         /* XXX: need to verify that no one holds the lock */
  865         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
  866                 return;
  867         w = lock->lo_witness;
  868 
  869         mtx_lock_spin(&w_mtx);
  870         MPASS(w->w_refcount > 0);
  871         w->w_refcount--;
  872 
  873         if (w->w_refcount == 0)
  874                 depart(w);
  875         mtx_unlock_spin(&w_mtx);
  876 }
  877 
  878 #ifdef DDB
  879 static void
  880 witness_ddb_compute_levels(void)
  881 {
  882         struct witness *w;
  883 
  884         /*
  885          * First clear all levels.
  886          */
  887         STAILQ_FOREACH(w, &w_all, w_list)
  888                 w->w_ddb_level = -1;
  889 
  890         /*
  891          * Look for locks with no parents and level all their descendants.
  892          */
  893         STAILQ_FOREACH(w, &w_all, w_list) {
  894 
  895                 /* If the witness has ancestors (is not a root), skip it. */
  896                 if (w->w_num_ancestors > 0)
  897                         continue;
  898                 witness_ddb_level_descendants(w, 0);
  899         }
  900 }
  901 
  902 static void
  903 witness_ddb_level_descendants(struct witness *w, int l)
  904 {
  905         int i;
  906 
  907         if (w->w_ddb_level >= l)
  908                 return;
  909 
  910         w->w_ddb_level = l;
  911         l++;
  912 
  913         for (i = 1; i <= w_max_used_index; i++) {
  914                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
  915                         witness_ddb_level_descendants(&w_data[i], l);
  916         }
  917 }
  918 
  919 static void
  920 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
  921     struct witness *w, int indent)
  922 {
  923         int i;
  924 
  925         for (i = 0; i < indent; i++)
  926                 prnt(" ");
  927         prnt("%s (type: %s, depth: %d, active refs: %d)",
  928              w->w_name, w->w_class->lc_name,
  929              w->w_ddb_level, w->w_refcount);
  930         if (w->w_displayed) {
  931                 prnt(" -- (already displayed)\n");
  932                 return;
  933         }
  934         w->w_displayed = 1;
  935         if (w->w_file != NULL && w->w_line != 0)
  936                 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
  937                     w->w_line);
  938         else
  939                 prnt(" -- never acquired\n");
  940         indent++;
  941         WITNESS_INDEX_ASSERT(w->w_index);
  942         for (i = 1; i <= w_max_used_index; i++) {
  943                 if (db_pager_quit)
  944                         return;
  945                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
  946                         witness_ddb_display_descendants(prnt, &w_data[i],
  947                             indent);
  948         }
  949 }
  950 
  951 static void
  952 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
  953     struct witness_list *list)
  954 {
  955         struct witness *w;
  956 
  957         STAILQ_FOREACH(w, list, w_typelist) {
  958                 if (w->w_file == NULL || w->w_ddb_level > 0)
  959                         continue;
  960 
  961                 /* This lock has no anscestors - display its descendants. */
  962                 witness_ddb_display_descendants(prnt, w, 0);
  963                 if (db_pager_quit)
  964                         return;
  965         }
  966 }
  967         
  968 static void
  969 witness_ddb_display(int(*prnt)(const char *fmt, ...))
  970 {
  971         struct witness *w;
  972 
  973         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
  974         witness_ddb_compute_levels();
  975 
  976         /* Clear all the displayed flags. */
  977         STAILQ_FOREACH(w, &w_all, w_list)
  978                 w->w_displayed = 0;
  979 
  980         /*
  981          * First, handle sleep locks which have been acquired at least
  982          * once.
  983          */
  984         prnt("Sleep locks:\n");
  985         witness_ddb_display_list(prnt, &w_sleep);
  986         if (db_pager_quit)
  987                 return;
  988         
  989         /*
  990          * Now do spin locks which have been acquired at least once.
  991          */
  992         prnt("\nSpin locks:\n");
  993         witness_ddb_display_list(prnt, &w_spin);
  994         if (db_pager_quit)
  995                 return;
  996         
  997         /*
  998          * Finally, any locks which have not been acquired yet.
  999          */
 1000         prnt("\nLocks which were never acquired:\n");
 1001         STAILQ_FOREACH(w, &w_all, w_list) {
 1002                 if (w->w_file != NULL || w->w_refcount == 0)
 1003                         continue;
 1004                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
 1005                     w->w_class->lc_name, w->w_ddb_level);
 1006                 if (db_pager_quit)
 1007                         return;
 1008         }
 1009 }
 1010 #endif /* DDB */
 1011 
 1012 int
 1013 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
 1014 {
 1015 
 1016         if (witness_watch == -1 || panicstr != NULL)
 1017                 return (0);
 1018 
 1019         /* Require locks that witness knows about. */
 1020         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
 1021             lock2->lo_witness == NULL)
 1022                 return (EINVAL);
 1023 
 1024         mtx_assert(&w_mtx, MA_NOTOWNED);
 1025         mtx_lock_spin(&w_mtx);
 1026 
 1027         /*
 1028          * If we already have either an explicit or implied lock order that
 1029          * is the other way around, then return an error.
 1030          */
 1031         if (witness_watch &&
 1032             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
 1033                 mtx_unlock_spin(&w_mtx);
 1034                 return (EDOOFUS);
 1035         }
 1036         
 1037         /* Try to add the new order. */
 1038         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
 1039             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
 1040         itismychild(lock1->lo_witness, lock2->lo_witness);
 1041         mtx_unlock_spin(&w_mtx);
 1042         return (0);
 1043 }
 1044 
 1045 void
 1046 witness_checkorder(struct lock_object *lock, int flags, const char *file,
 1047     int line, struct lock_object *interlock)
 1048 {
 1049         struct lock_list_entry *lock_list, *lle;
 1050         struct lock_instance *lock1, *lock2, *plock;
 1051         struct lock_class *class;
 1052         struct witness *w, *w1;
 1053         struct thread *td;
 1054         int i, j;
 1055 
 1056         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
 1057             panicstr != NULL)
 1058                 return;
 1059 
 1060         w = lock->lo_witness;
 1061         class = LOCK_CLASS(lock);
 1062         td = curthread;
 1063 
 1064         if (class->lc_flags & LC_SLEEPLOCK) {
 1065 
 1066                 /*
 1067                  * Since spin locks include a critical section, this check
 1068                  * implicitly enforces a lock order of all sleep locks before
 1069                  * all spin locks.
 1070                  */
 1071                 if (td->td_critnest != 0 && !kdb_active)
 1072                         panic("blockable sleep lock (%s) %s @ %s:%d",
 1073                             class->lc_name, lock->lo_name,
 1074                             fixup_filename(file), line);
 1075 
 1076                 /*
 1077                  * If this is the first lock acquired then just return as
 1078                  * no order checking is needed.
 1079                  */
 1080                 lock_list = td->td_sleeplocks;
 1081                 if (lock_list == NULL || lock_list->ll_count == 0)
 1082                         return;
 1083         } else {
 1084 
 1085                 /*
 1086                  * If this is the first lock, just return as no order
 1087                  * checking is needed.  Avoid problems with thread
 1088                  * migration pinning the thread while checking if
 1089                  * spinlocks are held.  If at least one spinlock is held
 1090                  * the thread is in a safe path and it is allowed to
 1091                  * unpin it.
 1092                  */
 1093                 sched_pin();
 1094                 lock_list = PCPU_GET(spinlocks);
 1095                 if (lock_list == NULL || lock_list->ll_count == 0) {
 1096                         sched_unpin();
 1097                         return;
 1098                 }
 1099                 sched_unpin();
 1100         }
 1101 
 1102         /*
 1103          * Check to see if we are recursing on a lock we already own.  If
 1104          * so, make sure that we don't mismatch exclusive and shared lock
 1105          * acquires.
 1106          */
 1107         lock1 = find_instance(lock_list, lock);
 1108         if (lock1 != NULL) {
 1109                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
 1110                     (flags & LOP_EXCLUSIVE) == 0) {
 1111                         printf("shared lock of (%s) %s @ %s:%d\n",
 1112                             class->lc_name, lock->lo_name,
 1113                             fixup_filename(file), line);
 1114                         printf("while exclusively locked from %s:%d\n",
 1115                             fixup_filename(lock1->li_file), lock1->li_line);
 1116                         panic("share->excl");
 1117                 }
 1118                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
 1119                     (flags & LOP_EXCLUSIVE) != 0) {
 1120                         printf("exclusive lock of (%s) %s @ %s:%d\n",
 1121                             class->lc_name, lock->lo_name,
 1122                             fixup_filename(file), line);
 1123                         printf("while share locked from %s:%d\n",
 1124                             fixup_filename(lock1->li_file), lock1->li_line);
 1125                         panic("excl->share");
 1126                 }
 1127                 return;
 1128         }
 1129 
 1130         /*
 1131          * Find the previously acquired lock, but ignore interlocks.
 1132          */
 1133         plock = &lock_list->ll_children[lock_list->ll_count - 1];
 1134         if (interlock != NULL && plock->li_lock == interlock) {
 1135                 if (lock_list->ll_count > 1)
 1136                         plock =
 1137                             &lock_list->ll_children[lock_list->ll_count - 2];
 1138                 else {
 1139                         lle = lock_list->ll_next;
 1140 
 1141                         /*
 1142                          * The interlock is the only lock we hold, so
 1143                          * simply return.
 1144                          */
 1145                         if (lle == NULL)
 1146                                 return;
 1147                         plock = &lle->ll_children[lle->ll_count - 1];
 1148                 }
 1149         }
 1150         
 1151         /*
 1152          * Try to perform most checks without a lock.  If this succeeds we
 1153          * can skip acquiring the lock and return success.
 1154          */
 1155         w1 = plock->li_lock->lo_witness;
 1156         if (witness_lock_order_check(w1, w))
 1157                 return;
 1158 
 1159         /*
 1160          * Check for duplicate locks of the same type.  Note that we only
 1161          * have to check for this on the last lock we just acquired.  Any
 1162          * other cases will be caught as lock order violations.
 1163          */
 1164         mtx_lock_spin(&w_mtx);
 1165         witness_lock_order_add(w1, w);
 1166         if (w1 == w) {
 1167                 i = w->w_index;
 1168                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
 1169                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
 1170                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
 1171                         w->w_reversed = 1;
 1172                         mtx_unlock_spin(&w_mtx);
 1173                         printf(
 1174                             "acquiring duplicate lock of same type: \"%s\"\n", 
 1175                             w->w_name);
 1176                         printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
 1177                             fixup_filename(plock->li_file), plock->li_line);
 1178                         printf(" 2nd %s @ %s:%d\n", lock->lo_name,
 1179                             fixup_filename(file), line);
 1180                         witness_debugger(1);
 1181                 } else
 1182                         mtx_unlock_spin(&w_mtx);
 1183                 return;
 1184         }
 1185         mtx_assert(&w_mtx, MA_OWNED);
 1186 
 1187         /*
 1188          * If we know that the lock we are acquiring comes after
 1189          * the lock we most recently acquired in the lock order tree,
 1190          * then there is no need for any further checks.
 1191          */
 1192         if (isitmychild(w1, w))
 1193                 goto out;
 1194 
 1195         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
 1196                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
 1197 
 1198                         MPASS(j < WITNESS_COUNT);
 1199                         lock1 = &lle->ll_children[i];
 1200 
 1201                         /*
 1202                          * Ignore the interlock the first time we see it.
 1203                          */
 1204                         if (interlock != NULL && interlock == lock1->li_lock) {
 1205                                 interlock = NULL;
 1206                                 continue;
 1207                         }
 1208 
 1209                         /*
 1210                          * If this lock doesn't undergo witness checking,
 1211                          * then skip it.
 1212                          */
 1213                         w1 = lock1->li_lock->lo_witness;
 1214                         if (w1 == NULL) {
 1215                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
 1216                                     ("lock missing witness structure"));
 1217                                 continue;
 1218                         }
 1219 
 1220                         /*
 1221                          * If we are locking Giant and this is a sleepable
 1222                          * lock, then skip it.
 1223                          */
 1224                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1225                             lock == &Giant.lock_object)
 1226                                 continue;
 1227 
 1228                         /*
 1229                          * If we are locking a sleepable lock and this lock
 1230                          * is Giant, then skip it.
 1231                          */
 1232                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1233                             lock1->li_lock == &Giant.lock_object)
 1234                                 continue;
 1235 
 1236                         /*
 1237                          * If we are locking a sleepable lock and this lock
 1238                          * isn't sleepable, we want to treat it as a lock
 1239                          * order violation to enfore a general lock order of
 1240                          * sleepable locks before non-sleepable locks.
 1241                          */
 1242                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1243                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
 1244                                 goto reversal;
 1245 
 1246                         /*
 1247                          * If we are locking Giant and this is a non-sleepable
 1248                          * lock, then treat it as a reversal.
 1249                          */
 1250                         if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
 1251                             lock == &Giant.lock_object)
 1252                                 goto reversal;
 1253 
 1254                         /*
 1255                          * Check the lock order hierarchy for a reveresal.
 1256                          */
 1257                         if (!isitmydescendant(w, w1))
 1258                                 continue;
 1259                 reversal:
 1260 
 1261                         /*
 1262                          * We have a lock order violation, check to see if it
 1263                          * is allowed or has already been yelled about.
 1264                          */
 1265 #ifdef BLESSING
 1266 
 1267                         /*
 1268                          * If the lock order is blessed, just bail.  We don't
 1269                          * look for other lock order violations though, which
 1270                          * may be a bug.
 1271                          */
 1272                         if (blessed(w, w1))
 1273                                 goto out;
 1274 #endif
 1275 
 1276                         /* Bail if this violation is known */
 1277                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
 1278                                 goto out;
 1279 
 1280                         /* Record this as a violation */
 1281                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
 1282                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
 1283                         w->w_reversed = w1->w_reversed = 1;
 1284                         witness_increment_graph_generation();
 1285                         mtx_unlock_spin(&w_mtx);
 1286                         
 1287                         /*
 1288                          * Ok, yell about it.
 1289                          */
 1290                         if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1291                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
 1292                                 printf(
 1293                 "lock order reversal: (sleepable after non-sleepable)\n");
 1294                         else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
 1295                             && lock == &Giant.lock_object)
 1296                                 printf(
 1297                 "lock order reversal: (Giant after non-sleepable)\n");
 1298                         else
 1299                                 printf("lock order reversal:\n");
 1300 
 1301                         /*
 1302                          * Try to locate an earlier lock with
 1303                          * witness w in our list.
 1304                          */
 1305                         do {
 1306                                 lock2 = &lle->ll_children[i];
 1307                                 MPASS(lock2->li_lock != NULL);
 1308                                 if (lock2->li_lock->lo_witness == w)
 1309                                         break;
 1310                                 if (i == 0 && lle->ll_next != NULL) {
 1311                                         lle = lle->ll_next;
 1312                                         i = lle->ll_count - 1;
 1313                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
 1314                                 } else
 1315                                         i--;
 1316                         } while (i >= 0);
 1317                         if (i < 0) {
 1318                                 printf(" 1st %p %s (%s) @ %s:%d\n",
 1319                                     lock1->li_lock, lock1->li_lock->lo_name,
 1320                                     w1->w_name, fixup_filename(lock1->li_file),
 1321                                     lock1->li_line);
 1322                                 printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
 1323                                     lock->lo_name, w->w_name,
 1324                                     fixup_filename(file), line);
 1325                         } else {
 1326                                 printf(" 1st %p %s (%s) @ %s:%d\n",
 1327                                     lock2->li_lock, lock2->li_lock->lo_name,
 1328                                     lock2->li_lock->lo_witness->w_name,
 1329                                     fixup_filename(lock2->li_file),
 1330                                     lock2->li_line);
 1331                                 printf(" 2nd %p %s (%s) @ %s:%d\n",
 1332                                     lock1->li_lock, lock1->li_lock->lo_name,
 1333                                     w1->w_name, fixup_filename(lock1->li_file),
 1334                                     lock1->li_line);
 1335                                 printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
 1336                                     lock->lo_name, w->w_name,
 1337                                     fixup_filename(file), line);
 1338                         }
 1339                         witness_debugger(1);
 1340                         return;
 1341                 }
 1342         }
 1343 
 1344         /*
 1345          * If requested, build a new lock order.  However, don't build a new
 1346          * relationship between a sleepable lock and Giant if it is in the
 1347          * wrong direction.  The correct lock order is that sleepable locks
 1348          * always come before Giant.
 1349          */
 1350         if (flags & LOP_NEWORDER &&
 1351             !(plock->li_lock == &Giant.lock_object &&
 1352             (lock->lo_flags & LO_SLEEPABLE) != 0)) {
 1353                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
 1354                     w->w_name, plock->li_lock->lo_witness->w_name);
 1355                 itismychild(plock->li_lock->lo_witness, w);
 1356         }
 1357 out:
 1358         mtx_unlock_spin(&w_mtx);
 1359 }
 1360 
 1361 void
 1362 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
 1363 {
 1364         struct lock_list_entry **lock_list, *lle;
 1365         struct lock_instance *instance;
 1366         struct witness *w;
 1367         struct thread *td;
 1368 
 1369         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
 1370             panicstr != NULL)
 1371                 return;
 1372         w = lock->lo_witness;
 1373         td = curthread;
 1374 
 1375         /* Determine lock list for this lock. */
 1376         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
 1377                 lock_list = &td->td_sleeplocks;
 1378         else
 1379                 lock_list = PCPU_PTR(spinlocks);
 1380 
 1381         /* Check to see if we are recursing on a lock we already own. */
 1382         instance = find_instance(*lock_list, lock);
 1383         if (instance != NULL) {
 1384                 instance->li_flags++;
 1385                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
 1386                     td->td_proc->p_pid, lock->lo_name,
 1387                     instance->li_flags & LI_RECURSEMASK);
 1388                 instance->li_file = file;
 1389                 instance->li_line = line;
 1390                 return;
 1391         }
 1392 
 1393         /* Update per-witness last file and line acquire. */
 1394         w->w_file = file;
 1395         w->w_line = line;
 1396 
 1397         /* Find the next open lock instance in the list and fill it. */
 1398         lle = *lock_list;
 1399         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
 1400                 lle = witness_lock_list_get();
 1401                 if (lle == NULL)
 1402                         return;
 1403                 lle->ll_next = *lock_list;
 1404                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
 1405                     td->td_proc->p_pid, lle);
 1406                 *lock_list = lle;
 1407         }
 1408         instance = &lle->ll_children[lle->ll_count++];
 1409         instance->li_lock = lock;
 1410         instance->li_line = line;
 1411         instance->li_file = file;
 1412         if ((flags & LOP_EXCLUSIVE) != 0)
 1413                 instance->li_flags = LI_EXCLUSIVE;
 1414         else
 1415                 instance->li_flags = 0;
 1416         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
 1417             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
 1418 }
 1419 
 1420 void
 1421 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
 1422 {
 1423         struct lock_instance *instance;
 1424         struct lock_class *class;
 1425 
 1426         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 1427         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 1428                 return;
 1429         class = LOCK_CLASS(lock);
 1430         if (witness_watch) {
 1431                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
 1432                         panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
 1433                             class->lc_name, lock->lo_name,
 1434                             fixup_filename(file), line);
 1435                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
 1436                         panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
 1437                             class->lc_name, lock->lo_name,
 1438                             fixup_filename(file), line);
 1439         }
 1440         instance = find_instance(curthread->td_sleeplocks, lock);
 1441         if (instance == NULL)
 1442                 panic("upgrade of unlocked lock (%s) %s @ %s:%d",
 1443                     class->lc_name, lock->lo_name,
 1444                     fixup_filename(file), line);
 1445         if (witness_watch) {
 1446                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
 1447                         panic("upgrade of exclusive lock (%s) %s @ %s:%d",
 1448                             class->lc_name, lock->lo_name,
 1449                             fixup_filename(file), line);
 1450                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
 1451                         panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
 1452                             class->lc_name, lock->lo_name,
 1453                             instance->li_flags & LI_RECURSEMASK,
 1454                             fixup_filename(file), line);
 1455         }
 1456         instance->li_flags |= LI_EXCLUSIVE;
 1457 }
 1458 
 1459 void
 1460 witness_downgrade(struct lock_object *lock, int flags, const char *file,
 1461     int line)
 1462 {
 1463         struct lock_instance *instance;
 1464         struct lock_class *class;
 1465 
 1466         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 1467         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 1468                 return;
 1469         class = LOCK_CLASS(lock);
 1470         if (witness_watch) {
 1471                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
 1472                 panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
 1473                             class->lc_name, lock->lo_name,
 1474                             fixup_filename(file), line);
 1475                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
 1476                         panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
 1477                             class->lc_name, lock->lo_name,
 1478                             fixup_filename(file), line);
 1479         }
 1480         instance = find_instance(curthread->td_sleeplocks, lock);
 1481         if (instance == NULL)
 1482                 panic("downgrade of unlocked lock (%s) %s @ %s:%d",
 1483                     class->lc_name, lock->lo_name,
 1484                     fixup_filename(file), line);
 1485         if (witness_watch) {
 1486                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
 1487                         panic("downgrade of shared lock (%s) %s @ %s:%d",
 1488                             class->lc_name, lock->lo_name,
 1489                             fixup_filename(file), line);
 1490                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
 1491                         panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
 1492                             class->lc_name, lock->lo_name,
 1493                             instance->li_flags & LI_RECURSEMASK,
 1494                             fixup_filename(file), line);
 1495         }
 1496         instance->li_flags &= ~LI_EXCLUSIVE;
 1497 }
 1498 
 1499 void
 1500 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
 1501 {
 1502         struct lock_list_entry **lock_list, *lle;
 1503         struct lock_instance *instance;
 1504         struct lock_class *class;
 1505         struct thread *td;
 1506         register_t s;
 1507         int i, j;
 1508 
 1509         if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
 1510                 return;
 1511         td = curthread;
 1512         class = LOCK_CLASS(lock);
 1513 
 1514         /* Find lock instance associated with this lock. */
 1515         if (class->lc_flags & LC_SLEEPLOCK)
 1516                 lock_list = &td->td_sleeplocks;
 1517         else
 1518                 lock_list = PCPU_PTR(spinlocks);
 1519         lle = *lock_list;
 1520         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
 1521                 for (i = 0; i < (*lock_list)->ll_count; i++) {
 1522                         instance = &(*lock_list)->ll_children[i];
 1523                         if (instance->li_lock == lock)
 1524                                 goto found;
 1525                 }
 1526 
 1527         /*
 1528          * When disabling WITNESS through witness_watch we could end up in
 1529          * having registered locks in the td_sleeplocks queue.
 1530          * We have to make sure we flush these queues, so just search for
 1531          * eventual register locks and remove them.
 1532          */
 1533         if (witness_watch > 0)
 1534                 panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
 1535                     lock->lo_name, fixup_filename(file), line);
 1536         else
 1537                 return;
 1538 found:
 1539 
 1540         /* First, check for shared/exclusive mismatches. */
 1541         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
 1542             (flags & LOP_EXCLUSIVE) == 0) {
 1543                 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
 1544                     lock->lo_name, fixup_filename(file), line);
 1545                 printf("while exclusively locked from %s:%d\n",
 1546                     fixup_filename(instance->li_file), instance->li_line);
 1547                 panic("excl->ushare");
 1548         }
 1549         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
 1550             (flags & LOP_EXCLUSIVE) != 0) {
 1551                 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
 1552                     lock->lo_name, fixup_filename(file), line);
 1553                 printf("while share locked from %s:%d\n",
 1554                     fixup_filename(instance->li_file),
 1555                     instance->li_line);
 1556                 panic("share->uexcl");
 1557         }
 1558         /* If we are recursed, unrecurse. */
 1559         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
 1560                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
 1561                     td->td_proc->p_pid, instance->li_lock->lo_name,
 1562                     instance->li_flags);
 1563                 instance->li_flags--;
 1564                 return;
 1565         }
 1566         /* The lock is now being dropped, check for NORELEASE flag */
 1567         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
 1568                 printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
 1569                     lock->lo_name, fixup_filename(file), line);
 1570                 panic("lock marked norelease");
 1571         }
 1572 
 1573         /* Otherwise, remove this item from the list. */
 1574         s = intr_disable();
 1575         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
 1576             td->td_proc->p_pid, instance->li_lock->lo_name,
 1577             (*lock_list)->ll_count - 1);
 1578         for (j = i; j < (*lock_list)->ll_count - 1; j++)
 1579                 (*lock_list)->ll_children[j] =
 1580                     (*lock_list)->ll_children[j + 1];
 1581         (*lock_list)->ll_count--;
 1582         intr_restore(s);
 1583 
 1584         /*
 1585          * In order to reduce contention on w_mtx, we want to keep always an
 1586          * head object into lists so that frequent allocation from the 
 1587          * free witness pool (and subsequent locking) is avoided.
 1588          * In order to maintain the current code simple, when the head
 1589          * object is totally unloaded it means also that we do not have
 1590          * further objects in the list, so the list ownership needs to be
 1591          * hand over to another object if the current head needs to be freed.
 1592          */
 1593         if ((*lock_list)->ll_count == 0) {
 1594                 if (*lock_list == lle) {
 1595                         if (lle->ll_next == NULL)
 1596                                 return;
 1597                 } else
 1598                         lle = *lock_list;
 1599                 *lock_list = lle->ll_next;
 1600                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
 1601                     td->td_proc->p_pid, lle);
 1602                 witness_lock_list_free(lle);
 1603         }
 1604 }
 1605 
 1606 void
 1607 witness_thread_exit(struct thread *td)
 1608 {
 1609         struct lock_list_entry *lle;
 1610         int i, n;
 1611 
 1612         lle = td->td_sleeplocks;
 1613         if (lle == NULL || panicstr != NULL)
 1614                 return;
 1615         if (lle->ll_count != 0) {
 1616                 for (n = 0; lle != NULL; lle = lle->ll_next)
 1617                         for (i = lle->ll_count - 1; i >= 0; i--) {
 1618                                 if (n == 0)
 1619                 printf("Thread %p exiting with the following locks held:\n",
 1620                                             td);
 1621                                 n++;
 1622                                 witness_list_lock(&lle->ll_children[i], printf);
 1623                                 
 1624                         }
 1625                 panic("Thread %p cannot exit while holding sleeplocks\n", td);
 1626         }
 1627         witness_lock_list_free(lle);
 1628 }
 1629 
 1630 /*
 1631  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
 1632  * exempt Giant and sleepable locks from the checks as well.  If any
 1633  * non-exempt locks are held, then a supplied message is printed to the
 1634  * console along with a list of the offending locks.  If indicated in the
 1635  * flags then a failure results in a panic as well.
 1636  */
 1637 int
 1638 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
 1639 {
 1640         struct lock_list_entry *lock_list, *lle;
 1641         struct lock_instance *lock1;
 1642         struct thread *td;
 1643         va_list ap;
 1644         int i, n;
 1645 
 1646         if (witness_cold || witness_watch < 1 || panicstr != NULL)
 1647                 return (0);
 1648         n = 0;
 1649         td = curthread;
 1650         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
 1651                 for (i = lle->ll_count - 1; i >= 0; i--) {
 1652                         lock1 = &lle->ll_children[i];
 1653                         if (lock1->li_lock == lock)
 1654                                 continue;
 1655                         if (flags & WARN_GIANTOK &&
 1656                             lock1->li_lock == &Giant.lock_object)
 1657                                 continue;
 1658                         if (flags & WARN_SLEEPOK &&
 1659                             (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
 1660                                 continue;
 1661                         if (n == 0) {
 1662                                 va_start(ap, fmt);
 1663                                 vprintf(fmt, ap);
 1664                                 va_end(ap);
 1665                                 printf(" with the following");
 1666                                 if (flags & WARN_SLEEPOK)
 1667                                         printf(" non-sleepable");
 1668                                 printf(" locks held:\n");
 1669                         }
 1670                         n++;
 1671                         witness_list_lock(lock1, printf);
 1672                 }
 1673 
 1674         /*
 1675          * Pin the thread in order to avoid problems with thread migration.
 1676          * Once that all verifies are passed about spinlocks ownership,
 1677          * the thread is in a safe path and it can be unpinned.
 1678          */
 1679         sched_pin();
 1680         lock_list = PCPU_GET(spinlocks);
 1681         if (lock_list != NULL && lock_list->ll_count != 0) {
 1682                 sched_unpin();
 1683 
 1684                 /*
 1685                  * We should only have one spinlock and as long as
 1686                  * the flags cannot match for this locks class,
 1687                  * check if the first spinlock is the one curthread
 1688                  * should hold.
 1689                  */
 1690                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
 1691                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
 1692                     lock1->li_lock == lock && n == 0)
 1693                         return (0);
 1694 
 1695                 va_start(ap, fmt);
 1696                 vprintf(fmt, ap);
 1697                 va_end(ap);
 1698                 printf(" with the following");
 1699                 if (flags & WARN_SLEEPOK)
 1700                         printf(" non-sleepable");
 1701                 printf(" locks held:\n");
 1702                 n += witness_list_locks(&lock_list, printf);
 1703         } else
 1704                 sched_unpin();
 1705         if (flags & WARN_PANIC && n)
 1706                 panic("%s", __func__);
 1707         else
 1708                 witness_debugger(n);
 1709         return (n);
 1710 }
 1711 
 1712 const char *
 1713 witness_file(struct lock_object *lock)
 1714 {
 1715         struct witness *w;
 1716 
 1717         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
 1718                 return ("?");
 1719         w = lock->lo_witness;
 1720         return (w->w_file);
 1721 }
 1722 
 1723 int
 1724 witness_line(struct lock_object *lock)
 1725 {
 1726         struct witness *w;
 1727 
 1728         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
 1729                 return (0);
 1730         w = lock->lo_witness;
 1731         return (w->w_line);
 1732 }
 1733 
 1734 static struct witness *
 1735 enroll(const char *description, struct lock_class *lock_class)
 1736 {
 1737         struct witness *w;
 1738         struct witness_list *typelist;
 1739 
 1740         MPASS(description != NULL);
 1741 
 1742         if (witness_watch == -1 || panicstr != NULL)
 1743                 return (NULL);
 1744         if ((lock_class->lc_flags & LC_SPINLOCK)) {
 1745                 if (witness_skipspin)
 1746                         return (NULL);
 1747                 else
 1748                         typelist = &w_spin;
 1749         } else if ((lock_class->lc_flags & LC_SLEEPLOCK))
 1750                 typelist = &w_sleep;
 1751         else
 1752                 panic("lock class %s is not sleep or spin",
 1753                     lock_class->lc_name);
 1754 
 1755         mtx_lock_spin(&w_mtx);
 1756         w = witness_hash_get(description);
 1757         if (w)
 1758                 goto found;
 1759         if ((w = witness_get()) == NULL)
 1760                 return (NULL);
 1761         MPASS(strlen(description) < MAX_W_NAME);
 1762         strcpy(w->w_name, description);
 1763         w->w_class = lock_class;
 1764         w->w_refcount = 1;
 1765         STAILQ_INSERT_HEAD(&w_all, w, w_list);
 1766         if (lock_class->lc_flags & LC_SPINLOCK) {
 1767                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
 1768                 w_spin_cnt++;
 1769         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
 1770                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
 1771                 w_sleep_cnt++;
 1772         }
 1773 
 1774         /* Insert new witness into the hash */
 1775         witness_hash_put(w);
 1776         witness_increment_graph_generation();
 1777         mtx_unlock_spin(&w_mtx);
 1778         return (w);
 1779 found:
 1780         w->w_refcount++;
 1781         mtx_unlock_spin(&w_mtx);
 1782         if (lock_class != w->w_class)
 1783                 panic(
 1784                         "lock (%s) %s does not match earlier (%s) lock",
 1785                         description, lock_class->lc_name,
 1786                         w->w_class->lc_name);
 1787         return (w);
 1788 }
 1789 
 1790 static void
 1791 depart(struct witness *w)
 1792 {
 1793         struct witness_list *list;
 1794 
 1795         MPASS(w->w_refcount == 0);
 1796         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
 1797                 list = &w_sleep;
 1798                 w_sleep_cnt--;
 1799         } else {
 1800                 list = &w_spin;
 1801                 w_spin_cnt--;
 1802         }
 1803         /*
 1804          * Set file to NULL as it may point into a loadable module.
 1805          */
 1806         w->w_file = NULL;
 1807         w->w_line = 0;
 1808         witness_increment_graph_generation();
 1809 }
 1810 
 1811 
 1812 static void
 1813 adopt(struct witness *parent, struct witness *child)
 1814 {
 1815         int pi, ci, i, j;
 1816 
 1817         if (witness_cold == 0)
 1818                 mtx_assert(&w_mtx, MA_OWNED);
 1819 
 1820         /* If the relationship is already known, there's no work to be done. */
 1821         if (isitmychild(parent, child))
 1822                 return;
 1823 
 1824         /* When the structure of the graph changes, bump up the generation. */
 1825         witness_increment_graph_generation();
 1826 
 1827         /*
 1828          * The hard part ... create the direct relationship, then propagate all
 1829          * indirect relationships.
 1830          */
 1831         pi = parent->w_index;
 1832         ci = child->w_index;
 1833         WITNESS_INDEX_ASSERT(pi);
 1834         WITNESS_INDEX_ASSERT(ci);
 1835         MPASS(pi != ci);
 1836         w_rmatrix[pi][ci] |= WITNESS_PARENT;
 1837         w_rmatrix[ci][pi] |= WITNESS_CHILD;
 1838 
 1839         /*
 1840          * If parent was not already an ancestor of child,
 1841          * then we increment the descendant and ancestor counters.
 1842          */
 1843         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
 1844                 parent->w_num_descendants++;
 1845                 child->w_num_ancestors++;
 1846         }
 1847 
 1848         /* 
 1849          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
 1850          * an ancestor of 'pi' during this loop.
 1851          */
 1852         for (i = 1; i <= w_max_used_index; i++) {
 1853                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
 1854                     (i != pi))
 1855                         continue;
 1856 
 1857                 /* Find each descendant of 'i' and mark it as a descendant. */
 1858                 for (j = 1; j <= w_max_used_index; j++) {
 1859 
 1860                         /* 
 1861                          * Skip children that are already marked as
 1862                          * descendants of 'i'.
 1863                          */
 1864                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
 1865                                 continue;
 1866 
 1867                         /*
 1868                          * We are only interested in descendants of 'ci'. Note
 1869                          * that 'ci' itself is counted as a descendant of 'ci'.
 1870                          */
 1871                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
 1872                             (j != ci))
 1873                                 continue;
 1874                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
 1875                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
 1876                         w_data[i].w_num_descendants++;
 1877                         w_data[j].w_num_ancestors++;
 1878 
 1879                         /* 
 1880                          * Make sure we aren't marking a node as both an
 1881                          * ancestor and descendant. We should have caught 
 1882                          * this as a lock order reversal earlier.
 1883                          */
 1884                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
 1885                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
 1886                                 printf("witness rmatrix paradox! [%d][%d]=%d "
 1887                                     "both ancestor and descendant\n",
 1888                                     i, j, w_rmatrix[i][j]); 
 1889                                 kdb_backtrace();
 1890                                 printf("Witness disabled.\n");
 1891                                 witness_watch = -1;
 1892                         }
 1893                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
 1894                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
 1895                                 printf("witness rmatrix paradox! [%d][%d]=%d "
 1896                                     "both ancestor and descendant\n",
 1897                                     j, i, w_rmatrix[j][i]); 
 1898                                 kdb_backtrace();
 1899                                 printf("Witness disabled.\n");
 1900                                 witness_watch = -1;
 1901                         }
 1902                 }
 1903         }
 1904 }
 1905 
 1906 static void
 1907 itismychild(struct witness *parent, struct witness *child)
 1908 {
 1909 
 1910         MPASS(child != NULL && parent != NULL);
 1911         if (witness_cold == 0)
 1912                 mtx_assert(&w_mtx, MA_OWNED);
 1913 
 1914         if (!witness_lock_type_equal(parent, child)) {
 1915                 if (witness_cold == 0)
 1916                         mtx_unlock_spin(&w_mtx);
 1917                 panic("%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
 1918                     "the same lock type", __func__, parent->w_name,
 1919                     parent->w_class->lc_name, child->w_name,
 1920                     child->w_class->lc_name);
 1921         }
 1922         adopt(parent, child);
 1923 }
 1924 
 1925 /*
 1926  * Generic code for the isitmy*() functions. The rmask parameter is the
 1927  * expected relationship of w1 to w2.
 1928  */
 1929 static int
 1930 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
 1931 {
 1932         unsigned char r1, r2;
 1933         int i1, i2;
 1934 
 1935         i1 = w1->w_index;
 1936         i2 = w2->w_index;
 1937         WITNESS_INDEX_ASSERT(i1);
 1938         WITNESS_INDEX_ASSERT(i2);
 1939         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
 1940         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
 1941 
 1942         /* The flags on one better be the inverse of the flags on the other */
 1943         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
 1944                 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
 1945                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
 1946                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
 1947                     "w_rmatrix[%d][%d] == %hhx\n",
 1948                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
 1949                     i2, i1, r2);
 1950                 kdb_backtrace();
 1951                 printf("Witness disabled.\n");
 1952                 witness_watch = -1;
 1953         }
 1954         return (r1 & rmask);
 1955 }
 1956 
 1957 /*
 1958  * Checks if @child is a direct child of @parent.
 1959  */
 1960 static int
 1961 isitmychild(struct witness *parent, struct witness *child)
 1962 {
 1963 
 1964         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
 1965 }
 1966 
 1967 /*
 1968  * Checks if @descendant is a direct or inderect descendant of @ancestor.
 1969  */
 1970 static int
 1971 isitmydescendant(struct witness *ancestor, struct witness *descendant)
 1972 {
 1973 
 1974         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
 1975             __func__));
 1976 }
 1977 
 1978 #ifdef BLESSING
 1979 static int
 1980 blessed(struct witness *w1, struct witness *w2)
 1981 {
 1982         int i;
 1983         struct witness_blessed *b;
 1984 
 1985         for (i = 0; i < blessed_count; i++) {
 1986                 b = &blessed_list[i];
 1987                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
 1988                         if (strcmp(w2->w_name, b->b_lock2) == 0)
 1989                                 return (1);
 1990                         continue;
 1991                 }
 1992                 if (strcmp(w1->w_name, b->b_lock2) == 0)
 1993                         if (strcmp(w2->w_name, b->b_lock1) == 0)
 1994                                 return (1);
 1995         }
 1996         return (0);
 1997 }
 1998 #endif
 1999 
 2000 static struct witness *
 2001 witness_get(void)
 2002 {
 2003         struct witness *w;
 2004         int index;
 2005 
 2006         if (witness_cold == 0)
 2007                 mtx_assert(&w_mtx, MA_OWNED);
 2008 
 2009         if (witness_watch == -1) {
 2010                 mtx_unlock_spin(&w_mtx);
 2011                 return (NULL);
 2012         }
 2013         if (STAILQ_EMPTY(&w_free)) {
 2014                 witness_watch = -1;
 2015                 mtx_unlock_spin(&w_mtx);
 2016                 printf("WITNESS: unable to allocate a new witness object\n");
 2017                 return (NULL);
 2018         }
 2019         w = STAILQ_FIRST(&w_free);
 2020         STAILQ_REMOVE_HEAD(&w_free, w_list);
 2021         w_free_cnt--;
 2022         index = w->w_index;
 2023         MPASS(index > 0 && index == w_max_used_index+1 &&
 2024             index < WITNESS_COUNT);
 2025         bzero(w, sizeof(*w));
 2026         w->w_index = index;
 2027         if (index > w_max_used_index)
 2028                 w_max_used_index = index;
 2029         return (w);
 2030 }
 2031 
 2032 static void
 2033 witness_free(struct witness *w)
 2034 {
 2035 
 2036         STAILQ_INSERT_HEAD(&w_free, w, w_list);
 2037         w_free_cnt++;
 2038 }
 2039 
 2040 static struct lock_list_entry *
 2041 witness_lock_list_get(void)
 2042 {
 2043         struct lock_list_entry *lle;
 2044 
 2045         if (witness_watch == -1)
 2046                 return (NULL);
 2047         mtx_lock_spin(&w_mtx);
 2048         lle = w_lock_list_free;
 2049         if (lle == NULL) {
 2050                 witness_watch = -1;
 2051                 mtx_unlock_spin(&w_mtx);
 2052                 printf("%s: witness exhausted\n", __func__);
 2053                 return (NULL);
 2054         }
 2055         w_lock_list_free = lle->ll_next;
 2056         mtx_unlock_spin(&w_mtx);
 2057         bzero(lle, sizeof(*lle));
 2058         return (lle);
 2059 }
 2060                 
 2061 static void
 2062 witness_lock_list_free(struct lock_list_entry *lle)
 2063 {
 2064 
 2065         mtx_lock_spin(&w_mtx);
 2066         lle->ll_next = w_lock_list_free;
 2067         w_lock_list_free = lle;
 2068         mtx_unlock_spin(&w_mtx);
 2069 }
 2070 
 2071 static struct lock_instance *
 2072 find_instance(struct lock_list_entry *list, struct lock_object *lock)
 2073 {
 2074         struct lock_list_entry *lle;
 2075         struct lock_instance *instance;
 2076         int i;
 2077 
 2078         for (lle = list; lle != NULL; lle = lle->ll_next)
 2079                 for (i = lle->ll_count - 1; i >= 0; i--) {
 2080                         instance = &lle->ll_children[i];
 2081                         if (instance->li_lock == lock)
 2082                                 return (instance);
 2083                 }
 2084         return (NULL);
 2085 }
 2086 
 2087 static void
 2088 witness_list_lock(struct lock_instance *instance,
 2089     int (*prnt)(const char *fmt, ...))
 2090 {
 2091         struct lock_object *lock;
 2092 
 2093         lock = instance->li_lock;
 2094         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
 2095             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
 2096         if (lock->lo_witness->w_name != lock->lo_name)
 2097                 prnt(" (%s)", lock->lo_witness->w_name);
 2098         prnt(" r = %d (%p) locked @ %s:%d\n",
 2099             instance->li_flags & LI_RECURSEMASK, lock,
 2100             fixup_filename(instance->li_file), instance->li_line);
 2101 }
 2102 
 2103 #ifdef DDB
 2104 static int
 2105 witness_thread_has_locks(struct thread *td)
 2106 {
 2107 
 2108         if (td->td_sleeplocks == NULL)
 2109                 return (0);
 2110         return (td->td_sleeplocks->ll_count != 0);
 2111 }
 2112 
 2113 static int
 2114 witness_proc_has_locks(struct proc *p)
 2115 {
 2116         struct thread *td;
 2117 
 2118         FOREACH_THREAD_IN_PROC(p, td) {
 2119                 if (witness_thread_has_locks(td))
 2120                         return (1);
 2121         }
 2122         return (0);
 2123 }
 2124 #endif
 2125 
 2126 int
 2127 witness_list_locks(struct lock_list_entry **lock_list,
 2128     int (*prnt)(const char *fmt, ...))
 2129 {
 2130         struct lock_list_entry *lle;
 2131         int i, nheld;
 2132 
 2133         nheld = 0;
 2134         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
 2135                 for (i = lle->ll_count - 1; i >= 0; i--) {
 2136                         witness_list_lock(&lle->ll_children[i], prnt);
 2137                         nheld++;
 2138                 }
 2139         return (nheld);
 2140 }
 2141 
 2142 /*
 2143  * This is a bit risky at best.  We call this function when we have timed
 2144  * out acquiring a spin lock, and we assume that the other CPU is stuck
 2145  * with this lock held.  So, we go groveling around in the other CPU's
 2146  * per-cpu data to try to find the lock instance for this spin lock to
 2147  * see when it was last acquired.
 2148  */
 2149 void
 2150 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
 2151     int (*prnt)(const char *fmt, ...))
 2152 {
 2153         struct lock_instance *instance;
 2154         struct pcpu *pc;
 2155 
 2156         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
 2157                 return;
 2158         pc = pcpu_find(owner->td_oncpu);
 2159         instance = find_instance(pc->pc_spinlocks, lock);
 2160         if (instance != NULL)
 2161                 witness_list_lock(instance, prnt);
 2162 }
 2163 
 2164 void
 2165 witness_save(struct lock_object *lock, const char **filep, int *linep)
 2166 {
 2167         struct lock_list_entry *lock_list;
 2168         struct lock_instance *instance;
 2169         struct lock_class *class;
 2170 
 2171         /*
 2172          * This function is used independently in locking code to deal with
 2173          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
 2174          * is gone.
 2175          */
 2176         if (SCHEDULER_STOPPED())
 2177                 return;
 2178         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2179         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 2180                 return;
 2181         class = LOCK_CLASS(lock);
 2182         if (class->lc_flags & LC_SLEEPLOCK)
 2183                 lock_list = curthread->td_sleeplocks;
 2184         else {
 2185                 if (witness_skipspin)
 2186                         return;
 2187                 lock_list = PCPU_GET(spinlocks);
 2188         }
 2189         instance = find_instance(lock_list, lock);
 2190         if (instance == NULL)
 2191                 panic("%s: lock (%s) %s not locked", __func__,
 2192                     class->lc_name, lock->lo_name);
 2193         *filep = instance->li_file;
 2194         *linep = instance->li_line;
 2195 }
 2196 
 2197 void
 2198 witness_restore(struct lock_object *lock, const char *file, int line)
 2199 {
 2200         struct lock_list_entry *lock_list;
 2201         struct lock_instance *instance;
 2202         struct lock_class *class;
 2203 
 2204         /*
 2205          * This function is used independently in locking code to deal with
 2206          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
 2207          * is gone.
 2208          */
 2209         if (SCHEDULER_STOPPED())
 2210                 return;
 2211         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2212         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 2213                 return;
 2214         class = LOCK_CLASS(lock);
 2215         if (class->lc_flags & LC_SLEEPLOCK)
 2216                 lock_list = curthread->td_sleeplocks;
 2217         else {
 2218                 if (witness_skipspin)
 2219                         return;
 2220                 lock_list = PCPU_GET(spinlocks);
 2221         }
 2222         instance = find_instance(lock_list, lock);
 2223         if (instance == NULL)
 2224                 panic("%s: lock (%s) %s not locked", __func__,
 2225                     class->lc_name, lock->lo_name);
 2226         lock->lo_witness->w_file = file;
 2227         lock->lo_witness->w_line = line;
 2228         instance->li_file = file;
 2229         instance->li_line = line;
 2230 }
 2231 
 2232 void
 2233 witness_assert(struct lock_object *lock, int flags, const char *file, int line)
 2234 {
 2235 #ifdef INVARIANT_SUPPORT
 2236         struct lock_instance *instance;
 2237         struct lock_class *class;
 2238 
 2239         if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
 2240                 return;
 2241         class = LOCK_CLASS(lock);
 2242         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
 2243                 instance = find_instance(curthread->td_sleeplocks, lock);
 2244         else if ((class->lc_flags & LC_SPINLOCK) != 0)
 2245                 instance = find_instance(PCPU_GET(spinlocks), lock);
 2246         else {
 2247                 panic("Lock (%s) %s is not sleep or spin!",
 2248                     class->lc_name, lock->lo_name);
 2249         }
 2250         switch (flags) {
 2251         case LA_UNLOCKED:
 2252                 if (instance != NULL)
 2253                         panic("Lock (%s) %s locked @ %s:%d.",
 2254                             class->lc_name, lock->lo_name,
 2255                             fixup_filename(file), line);
 2256                 break;
 2257         case LA_LOCKED:
 2258         case LA_LOCKED | LA_RECURSED:
 2259         case LA_LOCKED | LA_NOTRECURSED:
 2260         case LA_SLOCKED:
 2261         case LA_SLOCKED | LA_RECURSED:
 2262         case LA_SLOCKED | LA_NOTRECURSED:
 2263         case LA_XLOCKED:
 2264         case LA_XLOCKED | LA_RECURSED:
 2265         case LA_XLOCKED | LA_NOTRECURSED:
 2266                 if (instance == NULL) {
 2267                         panic("Lock (%s) %s not locked @ %s:%d.",
 2268                             class->lc_name, lock->lo_name,
 2269                             fixup_filename(file), line);
 2270                         break;
 2271                 }
 2272                 if ((flags & LA_XLOCKED) != 0 &&
 2273                     (instance->li_flags & LI_EXCLUSIVE) == 0)
 2274                         panic("Lock (%s) %s not exclusively locked @ %s:%d.",
 2275                             class->lc_name, lock->lo_name,
 2276                             fixup_filename(file), line);
 2277                 if ((flags & LA_SLOCKED) != 0 &&
 2278                     (instance->li_flags & LI_EXCLUSIVE) != 0)
 2279                         panic("Lock (%s) %s exclusively locked @ %s:%d.",
 2280                             class->lc_name, lock->lo_name,
 2281                             fixup_filename(file), line);
 2282                 if ((flags & LA_RECURSED) != 0 &&
 2283                     (instance->li_flags & LI_RECURSEMASK) == 0)
 2284                         panic("Lock (%s) %s not recursed @ %s:%d.",
 2285                             class->lc_name, lock->lo_name,
 2286                             fixup_filename(file), line);
 2287                 if ((flags & LA_NOTRECURSED) != 0 &&
 2288                     (instance->li_flags & LI_RECURSEMASK) != 0)
 2289                         panic("Lock (%s) %s recursed @ %s:%d.",
 2290                             class->lc_name, lock->lo_name,
 2291                             fixup_filename(file), line);
 2292                 break;
 2293         default:
 2294                 panic("Invalid lock assertion at %s:%d.",
 2295                     fixup_filename(file), line);
 2296 
 2297         }
 2298 #endif  /* INVARIANT_SUPPORT */
 2299 }
 2300 
 2301 static void
 2302 witness_setflag(struct lock_object *lock, int flag, int set)
 2303 {
 2304         struct lock_list_entry *lock_list;
 2305         struct lock_instance *instance;
 2306         struct lock_class *class;
 2307 
 2308         if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
 2309                 return;
 2310         class = LOCK_CLASS(lock);
 2311         if (class->lc_flags & LC_SLEEPLOCK)
 2312                 lock_list = curthread->td_sleeplocks;
 2313         else {
 2314                 if (witness_skipspin)
 2315                         return;
 2316                 lock_list = PCPU_GET(spinlocks);
 2317         }
 2318         instance = find_instance(lock_list, lock);
 2319         if (instance == NULL)
 2320                 panic("%s: lock (%s) %s not locked", __func__,
 2321                     class->lc_name, lock->lo_name);
 2322 
 2323         if (set)
 2324                 instance->li_flags |= flag;
 2325         else
 2326                 instance->li_flags &= ~flag;
 2327 }
 2328 
 2329 void
 2330 witness_norelease(struct lock_object *lock)
 2331 {
 2332 
 2333         witness_setflag(lock, LI_NORELEASE, 1);
 2334 }
 2335 
 2336 void
 2337 witness_releaseok(struct lock_object *lock)
 2338 {
 2339 
 2340         witness_setflag(lock, LI_NORELEASE, 0);
 2341 }
 2342 
 2343 #ifdef DDB
 2344 static void
 2345 witness_ddb_list(struct thread *td)
 2346 {
 2347 
 2348         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2349         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
 2350 
 2351         if (witness_watch < 1)
 2352                 return;
 2353 
 2354         witness_list_locks(&td->td_sleeplocks, db_printf);
 2355 
 2356         /*
 2357          * We only handle spinlocks if td == curthread.  This is somewhat broken
 2358          * if td is currently executing on some other CPU and holds spin locks
 2359          * as we won't display those locks.  If we had a MI way of getting
 2360          * the per-cpu data for a given cpu then we could use
 2361          * td->td_oncpu to get the list of spinlocks for this thread
 2362          * and "fix" this.
 2363          *
 2364          * That still wouldn't really fix this unless we locked the scheduler
 2365          * lock or stopped the other CPU to make sure it wasn't changing the
 2366          * list out from under us.  It is probably best to just not try to
 2367          * handle threads on other CPU's for now.
 2368          */
 2369         if (td == curthread && PCPU_GET(spinlocks) != NULL)
 2370                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
 2371 }
 2372 
 2373 DB_SHOW_COMMAND(locks, db_witness_list)
 2374 {
 2375         struct thread *td;
 2376 
 2377         if (have_addr)
 2378                 td = db_lookup_thread(addr, TRUE);
 2379         else
 2380                 td = kdb_thread;
 2381         witness_ddb_list(td);
 2382 }
 2383 
 2384 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
 2385 {
 2386         struct thread *td;
 2387         struct proc *p;
 2388 
 2389         /*
 2390          * It would be nice to list only threads and processes that actually
 2391          * held sleep locks, but that information is currently not exported
 2392          * by WITNESS.
 2393          */
 2394         FOREACH_PROC_IN_SYSTEM(p) {
 2395                 if (!witness_proc_has_locks(p))
 2396                         continue;
 2397                 FOREACH_THREAD_IN_PROC(p, td) {
 2398                         if (!witness_thread_has_locks(td))
 2399                                 continue;
 2400                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
 2401                             p->p_comm, td, td->td_tid);
 2402                         witness_ddb_list(td);
 2403                         if (db_pager_quit)
 2404                                 return;
 2405                 }
 2406         }
 2407 }
 2408 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
 2409 
 2410 DB_SHOW_COMMAND(witness, db_witness_display)
 2411 {
 2412 
 2413         witness_ddb_display(db_printf);
 2414 }
 2415 #endif
 2416 
 2417 static int
 2418 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
 2419 {
 2420         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
 2421         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
 2422         struct sbuf *sb;
 2423         u_int w_rmatrix1, w_rmatrix2;
 2424         int error, generation, i, j;
 2425 
 2426         tmp_data1 = NULL;
 2427         tmp_data2 = NULL;
 2428         tmp_w1 = NULL;
 2429         tmp_w2 = NULL;
 2430         if (witness_watch < 1) {
 2431                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
 2432                 return (error);
 2433         }
 2434         if (witness_cold) {
 2435                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
 2436                 return (error);
 2437         }
 2438         error = 0;
 2439         sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
 2440         if (sb == NULL)
 2441                 return (ENOMEM);
 2442 
 2443         /* Allocate and init temporary storage space. */
 2444         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
 2445         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
 2446         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
 2447             M_WAITOK | M_ZERO);
 2448         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
 2449             M_WAITOK | M_ZERO);
 2450         stack_zero(&tmp_data1->wlod_stack);
 2451         stack_zero(&tmp_data2->wlod_stack);
 2452 
 2453 restart:
 2454         mtx_lock_spin(&w_mtx);
 2455         generation = w_generation;
 2456         mtx_unlock_spin(&w_mtx);
 2457         sbuf_printf(sb, "Number of known direct relationships is %d\n",
 2458             w_lohash.wloh_count);
 2459         for (i = 1; i < w_max_used_index; i++) {
 2460                 mtx_lock_spin(&w_mtx);
 2461                 if (generation != w_generation) {
 2462                         mtx_unlock_spin(&w_mtx);
 2463 
 2464                         /* The graph has changed, try again. */
 2465                         req->oldidx = 0;
 2466                         sbuf_clear(sb);
 2467                         goto restart;
 2468                 }
 2469 
 2470                 w1 = &w_data[i];
 2471                 if (w1->w_reversed == 0) {
 2472                         mtx_unlock_spin(&w_mtx);
 2473                         continue;
 2474                 }
 2475 
 2476                 /* Copy w1 locally so we can release the spin lock. */
 2477                 *tmp_w1 = *w1;
 2478                 mtx_unlock_spin(&w_mtx);
 2479 
 2480                 if (tmp_w1->w_reversed == 0)
 2481                         continue;
 2482                 for (j = 1; j < w_max_used_index; j++) {
 2483                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
 2484                                 continue;
 2485 
 2486                         mtx_lock_spin(&w_mtx);
 2487                         if (generation != w_generation) {
 2488                                 mtx_unlock_spin(&w_mtx);
 2489 
 2490                                 /* The graph has changed, try again. */
 2491                                 req->oldidx = 0;
 2492                                 sbuf_clear(sb);
 2493                                 goto restart;
 2494                         }
 2495 
 2496                         w2 = &w_data[j];
 2497                         data1 = witness_lock_order_get(w1, w2);
 2498                         data2 = witness_lock_order_get(w2, w1);
 2499 
 2500                         /*
 2501                          * Copy information locally so we can release the
 2502                          * spin lock.
 2503                          */
 2504                         *tmp_w2 = *w2;
 2505                         w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
 2506                         w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
 2507 
 2508                         if (data1) {
 2509                                 stack_zero(&tmp_data1->wlod_stack);
 2510                                 stack_copy(&data1->wlod_stack,
 2511                                     &tmp_data1->wlod_stack);
 2512                         }
 2513                         if (data2 && data2 != data1) {
 2514                                 stack_zero(&tmp_data2->wlod_stack);
 2515                                 stack_copy(&data2->wlod_stack,
 2516                                     &tmp_data2->wlod_stack);
 2517                         }
 2518                         mtx_unlock_spin(&w_mtx);
 2519 
 2520                         sbuf_printf(sb,
 2521             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
 2522                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
 2523                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
 2524 #if 0
 2525                         sbuf_printf(sb,
 2526                         "w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
 2527                             tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
 2528                             tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
 2529 #endif
 2530                         if (data1) {
 2531                                 sbuf_printf(sb,
 2532                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
 2533                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
 2534                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
 2535                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
 2536                                 sbuf_printf(sb, "\n");
 2537                         }
 2538                         if (data2 && data2 != data1) {
 2539                                 sbuf_printf(sb,
 2540                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
 2541                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
 2542                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
 2543                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
 2544                                 sbuf_printf(sb, "\n");
 2545                         }
 2546                 }
 2547         }
 2548         mtx_lock_spin(&w_mtx);
 2549         if (generation != w_generation) {
 2550                 mtx_unlock_spin(&w_mtx);
 2551 
 2552                 /*
 2553                  * The graph changed while we were printing stack data,
 2554                  * try again.
 2555                  */
 2556                 req->oldidx = 0;
 2557                 sbuf_clear(sb);
 2558                 goto restart;
 2559         }
 2560         mtx_unlock_spin(&w_mtx);
 2561 
 2562         /* Free temporary storage space. */
 2563         free(tmp_data1, M_TEMP);
 2564         free(tmp_data2, M_TEMP);
 2565         free(tmp_w1, M_TEMP);
 2566         free(tmp_w2, M_TEMP);
 2567 
 2568         sbuf_finish(sb);
 2569         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
 2570         sbuf_delete(sb);
 2571 
 2572         return (error);
 2573 }
 2574 
 2575 static int
 2576 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
 2577 {
 2578         struct witness *w;
 2579         struct sbuf *sb;
 2580         int error;
 2581 
 2582         if (witness_watch < 1) {
 2583                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
 2584                 return (error);
 2585         }
 2586         if (witness_cold) {
 2587                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
 2588                 return (error);
 2589         }
 2590         error = 0;
 2591 
 2592         error = sysctl_wire_old_buffer(req, 0);
 2593         if (error != 0)
 2594                 return (error);
 2595         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
 2596         if (sb == NULL)
 2597                 return (ENOMEM);
 2598         sbuf_printf(sb, "\n");
 2599 
 2600         mtx_lock_spin(&w_mtx);
 2601         STAILQ_FOREACH(w, &w_all, w_list)
 2602                 w->w_displayed = 0;
 2603         STAILQ_FOREACH(w, &w_all, w_list)
 2604                 witness_add_fullgraph(sb, w);
 2605         mtx_unlock_spin(&w_mtx);
 2606 
 2607         /*
 2608          * Close the sbuf and return to userland.
 2609          */
 2610         error = sbuf_finish(sb);
 2611         sbuf_delete(sb);
 2612 
 2613         return (error);
 2614 }
 2615 
 2616 static int
 2617 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
 2618 {
 2619         int error, value;
 2620 
 2621         value = witness_watch;
 2622         error = sysctl_handle_int(oidp, &value, 0, req);
 2623         if (error != 0 || req->newptr == NULL)
 2624                 return (error);
 2625         if (value > 1 || value < -1 ||
 2626             (witness_watch == -1 && value != witness_watch))
 2627                 return (EINVAL);
 2628         witness_watch = value;
 2629         return (0);
 2630 }
 2631 
 2632 static void
 2633 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
 2634 {
 2635         int i;
 2636 
 2637         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
 2638                 return;
 2639         w->w_displayed = 1;
 2640 
 2641         WITNESS_INDEX_ASSERT(w->w_index);
 2642         for (i = 1; i <= w_max_used_index; i++) {
 2643                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
 2644                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
 2645                             w_data[i].w_name);
 2646                         witness_add_fullgraph(sb, &w_data[i]);
 2647                 }
 2648         }
 2649 }
 2650 
 2651 /*
 2652  * A simple hash function. Takes a key pointer and a key size. If size == 0,
 2653  * interprets the key as a string and reads until the null
 2654  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
 2655  * hash value computed from the key.
 2656  */
 2657 static uint32_t
 2658 witness_hash_djb2(const uint8_t *key, uint32_t size)
 2659 {
 2660         unsigned int hash = 5381;
 2661         int i;
 2662 
 2663         /* hash = hash * 33 + key[i] */
 2664         if (size)
 2665                 for (i = 0; i < size; i++)
 2666                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
 2667         else
 2668                 for (i = 0; key[i] != 0; i++)
 2669                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
 2670 
 2671         return (hash);
 2672 }
 2673 
 2674 
 2675 /*
 2676  * Initializes the two witness hash tables. Called exactly once from
 2677  * witness_initialize().
 2678  */
 2679 static void
 2680 witness_init_hash_tables(void)
 2681 {
 2682         int i;
 2683 
 2684         MPASS(witness_cold);
 2685 
 2686         /* Initialize the hash tables. */
 2687         for (i = 0; i < WITNESS_HASH_SIZE; i++)
 2688                 w_hash.wh_array[i] = NULL;
 2689 
 2690         w_hash.wh_size = WITNESS_HASH_SIZE;
 2691         w_hash.wh_count = 0;
 2692 
 2693         /* Initialize the lock order data hash. */
 2694         w_lofree = NULL;
 2695         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
 2696                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
 2697                 w_lodata[i].wlod_next = w_lofree;
 2698                 w_lofree = &w_lodata[i];
 2699         }
 2700         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
 2701         w_lohash.wloh_count = 0;
 2702         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
 2703                 w_lohash.wloh_array[i] = NULL;
 2704 }
 2705 
 2706 static struct witness *
 2707 witness_hash_get(const char *key)
 2708 {
 2709         struct witness *w;
 2710         uint32_t hash;
 2711         
 2712         MPASS(key != NULL);
 2713         if (witness_cold == 0)
 2714                 mtx_assert(&w_mtx, MA_OWNED);
 2715         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
 2716         w = w_hash.wh_array[hash];
 2717         while (w != NULL) {
 2718                 if (strcmp(w->w_name, key) == 0)
 2719                         goto out;
 2720                 w = w->w_hash_next;
 2721         }
 2722 
 2723 out:
 2724         return (w);
 2725 }
 2726 
 2727 static void
 2728 witness_hash_put(struct witness *w)
 2729 {
 2730         uint32_t hash;
 2731 
 2732         MPASS(w != NULL);
 2733         MPASS(w->w_name != NULL);
 2734         if (witness_cold == 0)
 2735                 mtx_assert(&w_mtx, MA_OWNED);
 2736         KASSERT(witness_hash_get(w->w_name) == NULL,
 2737             ("%s: trying to add a hash entry that already exists!", __func__));
 2738         KASSERT(w->w_hash_next == NULL,
 2739             ("%s: w->w_hash_next != NULL", __func__));
 2740 
 2741         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
 2742         w->w_hash_next = w_hash.wh_array[hash];
 2743         w_hash.wh_array[hash] = w;
 2744         w_hash.wh_count++;
 2745 }
 2746 
 2747 
 2748 static struct witness_lock_order_data *
 2749 witness_lock_order_get(struct witness *parent, struct witness *child)
 2750 {
 2751         struct witness_lock_order_data *data = NULL;
 2752         struct witness_lock_order_key key;
 2753         unsigned int hash;
 2754 
 2755         MPASS(parent != NULL && child != NULL);
 2756         key.from = parent->w_index;
 2757         key.to = child->w_index;
 2758         WITNESS_INDEX_ASSERT(key.from);
 2759         WITNESS_INDEX_ASSERT(key.to);
 2760         if ((w_rmatrix[parent->w_index][child->w_index]
 2761             & WITNESS_LOCK_ORDER_KNOWN) == 0)
 2762                 goto out;
 2763 
 2764         hash = witness_hash_djb2((const char*)&key,
 2765             sizeof(key)) % w_lohash.wloh_size;
 2766         data = w_lohash.wloh_array[hash];
 2767         while (data != NULL) {
 2768                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
 2769                         break;
 2770                 data = data->wlod_next;
 2771         }
 2772 
 2773 out:
 2774         return (data);
 2775 }
 2776 
 2777 /*
 2778  * Verify that parent and child have a known relationship, are not the same,
 2779  * and child is actually a child of parent.  This is done without w_mtx
 2780  * to avoid contention in the common case.
 2781  */
 2782 static int
 2783 witness_lock_order_check(struct witness *parent, struct witness *child)
 2784 {
 2785 
 2786         if (parent != child &&
 2787             w_rmatrix[parent->w_index][child->w_index]
 2788             & WITNESS_LOCK_ORDER_KNOWN &&
 2789             isitmychild(parent, child))
 2790                 return (1);
 2791 
 2792         return (0);
 2793 }
 2794 
 2795 static int
 2796 witness_lock_order_add(struct witness *parent, struct witness *child)
 2797 {
 2798         struct witness_lock_order_data *data = NULL;
 2799         struct witness_lock_order_key key;
 2800         unsigned int hash;
 2801         
 2802         MPASS(parent != NULL && child != NULL);
 2803         key.from = parent->w_index;
 2804         key.to = child->w_index;
 2805         WITNESS_INDEX_ASSERT(key.from);
 2806         WITNESS_INDEX_ASSERT(key.to);
 2807         if (w_rmatrix[parent->w_index][child->w_index]
 2808             & WITNESS_LOCK_ORDER_KNOWN)
 2809                 return (1);
 2810 
 2811         hash = witness_hash_djb2((const char*)&key,
 2812             sizeof(key)) % w_lohash.wloh_size;
 2813         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
 2814         data = w_lofree;
 2815         if (data == NULL)
 2816                 return (0);
 2817         w_lofree = data->wlod_next;
 2818         data->wlod_next = w_lohash.wloh_array[hash];
 2819         data->wlod_key = key;
 2820         w_lohash.wloh_array[hash] = data;
 2821         w_lohash.wloh_count++;
 2822         stack_zero(&data->wlod_stack);
 2823         stack_save(&data->wlod_stack);
 2824         return (1);
 2825 }
 2826 
 2827 /* Call this whenver the structure of the witness graph changes. */
 2828 static void
 2829 witness_increment_graph_generation(void)
 2830 {
 2831 
 2832         if (witness_cold == 0)
 2833                 mtx_assert(&w_mtx, MA_OWNED);
 2834         w_generation++;
 2835 }
 2836 
 2837 #ifdef KDB
 2838 static void
 2839 _witness_debugger(int cond, const char *msg)
 2840 {
 2841 
 2842         if (witness_trace && cond)
 2843                 kdb_backtrace();
 2844         if (witness_kdb && cond)
 2845                 kdb_enter(KDB_WHY_WITNESS, msg);
 2846 }
 2847 #endif

Cache object: 990bd4ce2d2ab124f420d278ea4e562a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.