The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/subr_witness.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 2008 Isilon Systems, Inc.
    5  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
    6  * Copyright (c) 1998 Berkeley Software Design, Inc.
    7  * All rights reserved.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. Berkeley Software Design Inc's name may not be used to endorse or
   18  *    promote products derived from this software without specific prior
   19  *    written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  *
   33  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
   34  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
   35  */
   36 
   37 /*
   38  * Implementation of the `witness' lock verifier.  Originally implemented for
   39  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
   40  * classes in FreeBSD.
   41  */
   42 
   43 /*
   44  *      Main Entry: witness
   45  *      Pronunciation: 'wit-n&s
   46  *      Function: noun
   47  *      Etymology: Middle English witnesse, from Old English witnes knowledge,
   48  *          testimony, witness, from 2wit
   49  *      Date: before 12th century
   50  *      1 : attestation of a fact or event : TESTIMONY
   51  *      2 : one that gives evidence; specifically : one who testifies in
   52  *          a cause or before a judicial tribunal
   53  *      3 : one asked to be present at a transaction so as to be able to
   54  *          testify to its having taken place
   55  *      4 : one who has personal knowledge of something
   56  *      5 a : something serving as evidence or proof : SIGN
   57  *        b : public affirmation by word or example of usually
   58  *            religious faith or conviction <the heroic witness to divine
   59  *            life -- Pilot>
   60  *      6 capitalized : a member of the Jehovah's Witnesses 
   61  */
   62 
   63 /*
   64  * Special rules concerning Giant and lock orders:
   65  *
   66  * 1) Giant must be acquired before any other mutexes.  Stated another way,
   67  *    no other mutex may be held when Giant is acquired.
   68  *
   69  * 2) Giant must be released when blocking on a sleepable lock.
   70  *
   71  * This rule is less obvious, but is a result of Giant providing the same
   72  * semantics as spl().  Basically, when a thread sleeps, it must release
   73  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
   74  * 2).
   75  *
   76  * 3) Giant may be acquired before or after sleepable locks.
   77  *
   78  * This rule is also not quite as obvious.  Giant may be acquired after
   79  * a sleepable lock because it is a non-sleepable lock and non-sleepable
   80  * locks may always be acquired while holding a sleepable lock.  The second
   81  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
   82  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
   83  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
   84  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
   85  * execute.  Thus, acquiring Giant both before and after a sleepable lock
   86  * will not result in a lock order reversal.
   87  */
   88 
   89 #include <sys/cdefs.h>
   90 __FBSDID("$FreeBSD$");
   91 
   92 #include "opt_ddb.h"
   93 #include "opt_hwpmc_hooks.h"
   94 #include "opt_stack.h"
   95 #include "opt_witness.h"
   96 
   97 #include <sys/param.h>
   98 #include <sys/bus.h>
   99 #include <sys/kdb.h>
  100 #include <sys/kernel.h>
  101 #include <sys/ktr.h>
  102 #include <sys/lock.h>
  103 #include <sys/malloc.h>
  104 #include <sys/mutex.h>
  105 #include <sys/priv.h>
  106 #include <sys/proc.h>
  107 #include <sys/sbuf.h>
  108 #include <sys/sched.h>
  109 #include <sys/stack.h>
  110 #include <sys/sysctl.h>
  111 #include <sys/syslog.h>
  112 #include <sys/systm.h>
  113 
  114 #ifdef DDB
  115 #include <ddb/ddb.h>
  116 #endif
  117 
  118 #include <machine/stdarg.h>
  119 
  120 #if !defined(DDB) && !defined(STACK)
  121 #error "DDB or STACK options are required for WITNESS"
  122 #endif
  123 
  124 /* Note that these traces do not work with KTR_ALQ. */
  125 #if 0
  126 #define KTR_WITNESS     KTR_SUBSYS
  127 #else
  128 #define KTR_WITNESS     0
  129 #endif
  130 
  131 #define LI_RECURSEMASK  0x0000ffff      /* Recursion depth of lock instance. */
  132 #define LI_EXCLUSIVE    0x00010000      /* Exclusive lock instance. */
  133 #define LI_NORELEASE    0x00020000      /* Lock not allowed to be released. */
  134 #define LI_SLEEPABLE    0x00040000      /* Lock may be held while sleeping. */
  135 
  136 #ifndef WITNESS_COUNT
  137 #define WITNESS_COUNT           1536
  138 #endif
  139 #define WITNESS_HASH_SIZE       251     /* Prime, gives load factor < 2 */
  140 #define WITNESS_PENDLIST        (512 + (MAXCPU * 4))
  141 
  142 /* Allocate 256 KB of stack data space */
  143 #define WITNESS_LO_DATA_COUNT   2048
  144 
  145 /* Prime, gives load factor of ~2 at full load */
  146 #define WITNESS_LO_HASH_SIZE    1021
  147 
  148 /*
  149  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
  150  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
  151  * probably be safe for the most part, but it's still a SWAG.
  152  */
  153 #define LOCK_NCHILDREN  5
  154 #define LOCK_CHILDCOUNT 2048
  155 
  156 #define MAX_W_NAME      64
  157 
  158 #define FULLGRAPH_SBUF_SIZE     512
  159 
  160 /*
  161  * These flags go in the witness relationship matrix and describe the
  162  * relationship between any two struct witness objects.
  163  */
  164 #define WITNESS_UNRELATED        0x00    /* No lock order relation. */
  165 #define WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
  166 #define WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
  167 #define WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
  168 #define WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
  169 #define WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
  170 #define WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
  171 #define WITNESS_RELATED_MASK                                            \
  172         (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
  173 #define WITNESS_REVERSAL         0x10    /* A lock order reversal has been
  174                                           * observed. */
  175 #define WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
  176 #define WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
  177 #define WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
  178 
  179 /* Descendant to ancestor flags */
  180 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2)
  181 
  182 /* Ancestor to descendant flags */
  183 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2)
  184 
  185 #define WITNESS_INDEX_ASSERT(i)                                         \
  186         MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
  187 
  188 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
  189 
  190 /*
  191  * Lock instances.  A lock instance is the data associated with a lock while
  192  * it is held by witness.  For example, a lock instance will hold the
  193  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
  194  * are held in a per-cpu list while sleep locks are held in per-thread list.
  195  */
  196 struct lock_instance {
  197         struct lock_object      *li_lock;
  198         const char              *li_file;
  199         int                     li_line;
  200         u_int                   li_flags;
  201 };
  202 
  203 /*
  204  * A simple list type used to build the list of locks held by a thread
  205  * or CPU.  We can't simply embed the list in struct lock_object since a
  206  * lock may be held by more than one thread if it is a shared lock.  Locks
  207  * are added to the head of the list, so we fill up each list entry from
  208  * "the back" logically.  To ease some of the arithmetic, we actually fill
  209  * in each list entry the normal way (children[0] then children[1], etc.) but
  210  * when we traverse the list we read children[count-1] as the first entry
  211  * down to children[0] as the final entry.
  212  */
  213 struct lock_list_entry {
  214         struct lock_list_entry  *ll_next;
  215         struct lock_instance    ll_children[LOCK_NCHILDREN];
  216         u_int                   ll_count;
  217 };
  218 
  219 /*
  220  * The main witness structure. One of these per named lock type in the system
  221  * (for example, "vnode interlock").
  222  */
  223 struct witness {
  224         char                    w_name[MAX_W_NAME];
  225         uint32_t                w_index;  /* Index in the relationship matrix */
  226         struct lock_class       *w_class;
  227         STAILQ_ENTRY(witness)   w_list;         /* List of all witnesses. */
  228         STAILQ_ENTRY(witness)   w_typelist;     /* Witnesses of a type. */
  229         struct witness          *w_hash_next; /* Linked list in hash buckets. */
  230         const char              *w_file; /* File where last acquired */
  231         uint32_t                w_line; /* Line where last acquired */
  232         uint32_t                w_refcount;
  233         uint16_t                w_num_ancestors; /* direct/indirect
  234                                                   * ancestor count */
  235         uint16_t                w_num_descendants; /* direct/indirect
  236                                                     * descendant count */
  237         int16_t                 w_ddb_level;
  238         unsigned                w_displayed:1;
  239         unsigned                w_reversed:1;
  240 };
  241 
  242 STAILQ_HEAD(witness_list, witness);
  243 
  244 /*
  245  * The witness hash table. Keys are witness names (const char *), elements are
  246  * witness objects (struct witness *).
  247  */
  248 struct witness_hash {
  249         struct witness  *wh_array[WITNESS_HASH_SIZE];
  250         uint32_t        wh_size;
  251         uint32_t        wh_count;
  252 };
  253 
  254 /*
  255  * Key type for the lock order data hash table.
  256  */
  257 struct witness_lock_order_key {
  258         uint16_t        from;
  259         uint16_t        to;
  260 };
  261 
  262 struct witness_lock_order_data {
  263         struct stack                    wlod_stack;
  264         struct witness_lock_order_key   wlod_key;
  265         struct witness_lock_order_data  *wlod_next;
  266 };
  267 
  268 /*
  269  * The witness lock order data hash table. Keys are witness index tuples
  270  * (struct witness_lock_order_key), elements are lock order data objects
  271  * (struct witness_lock_order_data). 
  272  */
  273 struct witness_lock_order_hash {
  274         struct witness_lock_order_data  *wloh_array[WITNESS_LO_HASH_SIZE];
  275         u_int   wloh_size;
  276         u_int   wloh_count;
  277 };
  278 
  279 struct witness_blessed {
  280         const char      *b_lock1;
  281         const char      *b_lock2;
  282 };
  283 
  284 struct witness_pendhelp {
  285         const char              *wh_type;
  286         struct lock_object      *wh_lock;
  287 };
  288 
  289 struct witness_order_list_entry {
  290         const char              *w_name;
  291         struct lock_class       *w_class;
  292 };
  293 
  294 /*
  295  * Returns 0 if one of the locks is a spin lock and the other is not.
  296  * Returns 1 otherwise.
  297  */
  298 static __inline int
  299 witness_lock_type_equal(struct witness *w1, struct witness *w2)
  300 {
  301 
  302         return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
  303                 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
  304 }
  305 
  306 static __inline int
  307 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
  308     const struct witness_lock_order_key *b)
  309 {
  310 
  311         return (a->from == b->from && a->to == b->to);
  312 }
  313 
  314 static int      _isitmyx(struct witness *w1, struct witness *w2, int rmask,
  315                     const char *fname);
  316 static void     adopt(struct witness *parent, struct witness *child);
  317 static int      blessed(struct witness *, struct witness *);
  318 static void     depart(struct witness *w);
  319 static struct witness   *enroll(const char *description,
  320                             struct lock_class *lock_class);
  321 static struct lock_instance     *find_instance(struct lock_list_entry *list,
  322                                     const struct lock_object *lock);
  323 static int      isitmychild(struct witness *parent, struct witness *child);
  324 static int      isitmydescendant(struct witness *parent, struct witness *child);
  325 static void     itismychild(struct witness *parent, struct witness *child);
  326 static int      sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
  327 static int      sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
  328 static int      sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
  329 static int      sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
  330 static void     witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
  331 #ifdef DDB
  332 static void     witness_ddb_compute_levels(void);
  333 static void     witness_ddb_display(int(*)(const char *fmt, ...));
  334 static void     witness_ddb_display_descendants(int(*)(const char *fmt, ...),
  335                     struct witness *, int indent);
  336 static void     witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
  337                     struct witness_list *list);
  338 static void     witness_ddb_level_descendants(struct witness *parent, int l);
  339 static void     witness_ddb_list(struct thread *td);
  340 #endif
  341 static void     witness_enter_debugger(const char *msg);
  342 static void     witness_debugger(int cond, const char *msg);
  343 static void     witness_free(struct witness *m);
  344 static struct witness   *witness_get(void);
  345 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size);
  346 static struct witness   *witness_hash_get(const char *key);
  347 static void     witness_hash_put(struct witness *w);
  348 static void     witness_init_hash_tables(void);
  349 static void     witness_increment_graph_generation(void);
  350 static void     witness_lock_list_free(struct lock_list_entry *lle);
  351 static struct lock_list_entry   *witness_lock_list_get(void);
  352 static int      witness_lock_order_add(struct witness *parent,
  353                     struct witness *child);
  354 static int      witness_lock_order_check(struct witness *parent,
  355                     struct witness *child);
  356 static struct witness_lock_order_data   *witness_lock_order_get(
  357                                             struct witness *parent,
  358                                             struct witness *child);
  359 static void     witness_list_lock(struct lock_instance *instance,
  360                     int (*prnt)(const char *fmt, ...));
  361 static int      witness_output(const char *fmt, ...) __printflike(1, 2);
  362 static int      witness_output_drain(void *arg __unused, const char *data,
  363                     int len);
  364 static int      witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
  365 static void     witness_setflag(struct lock_object *lock, int flag, int set);
  366 
  367 FEATURE(witness, "kernel has witness(9) support");
  368 
  369 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
  370     "Witness Locking");
  371 
  372 /*
  373  * If set to 0, lock order checking is disabled.  If set to -1,
  374  * witness is completely disabled.  Otherwise witness performs full
  375  * lock order checking for all locks.  At runtime, lock order checking
  376  * may be toggled.  However, witness cannot be reenabled once it is
  377  * completely disabled.
  378  */
  379 static int witness_watch = 1;
  380 SYSCTL_PROC(_debug_witness, OID_AUTO, watch,
  381     CTLFLAG_RWTUN | CTLTYPE_INT | CTLFLAG_MPSAFE, NULL, 0,
  382     sysctl_debug_witness_watch, "I",
  383     "witness is watching lock operations");
  384 
  385 #ifdef KDB
  386 /*
  387  * When KDB is enabled and witness_kdb is 1, it will cause the system
  388  * to drop into kdebug() when:
  389  *      - a lock hierarchy violation occurs
  390  *      - locks are held when going to sleep.
  391  */
  392 #ifdef WITNESS_KDB
  393 int     witness_kdb = 1;
  394 #else
  395 int     witness_kdb = 0;
  396 #endif
  397 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
  398 #endif /* KDB */
  399 
  400 #if defined(DDB) || defined(KDB)
  401 /*
  402  * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
  403  * to print a stack trace:
  404  *      - a lock hierarchy violation occurs
  405  *      - locks are held when going to sleep.
  406  */
  407 int     witness_trace = 1;
  408 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
  409 #endif /* DDB || KDB */
  410 
  411 #ifdef WITNESS_SKIPSPIN
  412 int     witness_skipspin = 1;
  413 #else
  414 int     witness_skipspin = 0;
  415 #endif
  416 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
  417 
  418 int badstack_sbuf_size;
  419 
  420 int witness_count = WITNESS_COUNT;
  421 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN, 
  422     &witness_count, 0, "");
  423 
  424 /*
  425  * Output channel for witness messages.  By default we print to the console.
  426  */
  427 enum witness_channel {
  428         WITNESS_CONSOLE,
  429         WITNESS_LOG,
  430         WITNESS_NONE,
  431 };
  432 
  433 static enum witness_channel witness_channel = WITNESS_CONSOLE;
  434 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel,
  435     CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL, 0,
  436     sysctl_debug_witness_channel, "A",
  437     "Output channel for warnings");
  438 
  439 /*
  440  * Call this to print out the relations between locks.
  441  */
  442 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph,
  443     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
  444     sysctl_debug_witness_fullgraph, "A",
  445     "Show locks relation graphs");
  446 
  447 /*
  448  * Call this to print out the witness faulty stacks.
  449  */
  450 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks,
  451     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
  452     sysctl_debug_witness_badstacks, "A",
  453     "Show bad witness stacks");
  454 
  455 static struct mtx w_mtx;
  456 
  457 /* w_list */
  458 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
  459 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
  460 
  461 /* w_typelist */
  462 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
  463 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
  464 
  465 /* lock list */
  466 static struct lock_list_entry *w_lock_list_free = NULL;
  467 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
  468 static u_int pending_cnt;
  469 
  470 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
  471 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
  472 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
  473 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
  474     "");
  475 
  476 static struct witness *w_data;
  477 static uint8_t **w_rmatrix;
  478 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
  479 static struct witness_hash w_hash;      /* The witness hash table. */
  480 
  481 /* The lock order data hash */
  482 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
  483 static struct witness_lock_order_data *w_lofree = NULL;
  484 static struct witness_lock_order_hash w_lohash;
  485 static int w_max_used_index = 0;
  486 static unsigned int w_generation = 0;
  487 static const char w_notrunning[] = "Witness not running\n";
  488 static const char w_stillcold[] = "Witness is still cold\n";
  489 #ifdef __i386__
  490 static const char w_notallowed[] = "The sysctl is disabled on the arch\n";
  491 #endif
  492 
  493 static struct witness_order_list_entry order_lists[] = {
  494         /*
  495          * sx locks
  496          */
  497         { "proctree", &lock_class_sx },
  498         { "allproc", &lock_class_sx },
  499         { "allprison", &lock_class_sx },
  500         { NULL, NULL },
  501         /*
  502          * Various mutexes
  503          */
  504         { "Giant", &lock_class_mtx_sleep },
  505         { "pipe mutex", &lock_class_mtx_sleep },
  506         { "sigio lock", &lock_class_mtx_sleep },
  507         { "process group", &lock_class_mtx_sleep },
  508 #ifdef  HWPMC_HOOKS
  509         { "pmc-sleep", &lock_class_mtx_sleep },
  510 #endif
  511         { "process lock", &lock_class_mtx_sleep },
  512         { "session", &lock_class_mtx_sleep },
  513         { "uidinfo hash", &lock_class_rw },
  514         { "time lock", &lock_class_mtx_sleep },
  515         { NULL, NULL },
  516         /*
  517          * umtx
  518          */
  519         { "umtx lock", &lock_class_mtx_sleep },
  520         { NULL, NULL },
  521         /*
  522          * Sockets
  523          */
  524         { "accept", &lock_class_mtx_sleep },
  525         { "so_snd", &lock_class_mtx_sleep },
  526         { "so_rcv", &lock_class_mtx_sleep },
  527         { "sellck", &lock_class_mtx_sleep },
  528         { NULL, NULL },
  529         /*
  530          * Routing
  531          */
  532         { "so_rcv", &lock_class_mtx_sleep },
  533         { "radix node head", &lock_class_rm },
  534         { "ifaddr", &lock_class_mtx_sleep },
  535         { NULL, NULL },
  536         /*
  537          * IPv4 multicast:
  538          * protocol locks before interface locks, after UDP locks.
  539          */
  540         { "in_multi_sx", &lock_class_sx },
  541         { "udpinp", &lock_class_rw },
  542         { "in_multi_list_mtx", &lock_class_mtx_sleep },
  543         { "igmp_mtx", &lock_class_mtx_sleep },
  544         { "ifnet_rw", &lock_class_rw },
  545         { "if_addr_lock", &lock_class_mtx_sleep },
  546         { NULL, NULL },
  547         /*
  548          * IPv6 multicast:
  549          * protocol locks before interface locks, after UDP locks.
  550          */
  551         { "in6_multi_sx", &lock_class_sx },
  552         { "udpinp", &lock_class_rw },
  553         { "in6_multi_list_mtx", &lock_class_mtx_sleep },
  554         { "mld_mtx", &lock_class_mtx_sleep },
  555         { "ifnet_rw", &lock_class_rw },
  556         { "if_addr_lock", &lock_class_mtx_sleep },
  557         { NULL, NULL },
  558         /*
  559          * UNIX Domain Sockets
  560          */
  561         { "unp_link_rwlock", &lock_class_rw },
  562         { "unp_list_lock", &lock_class_mtx_sleep },
  563         { "unp", &lock_class_mtx_sleep },
  564         { "so_snd", &lock_class_mtx_sleep },
  565         { NULL, NULL },
  566         /*
  567          * UDP/IP
  568          */
  569         { "udp", &lock_class_mtx_sleep },
  570         { "udpinp", &lock_class_rw },
  571         { "so_snd", &lock_class_mtx_sleep },
  572         { NULL, NULL },
  573         /*
  574          * TCP/IP
  575          */
  576         { "tcp", &lock_class_mtx_sleep },
  577         { "tcpinp", &lock_class_rw },
  578         { "so_snd", &lock_class_mtx_sleep },
  579         { NULL, NULL },
  580         /*
  581          * BPF
  582          */
  583         { "bpf global lock", &lock_class_sx },
  584         { "bpf cdev lock", &lock_class_mtx_sleep },
  585         { NULL, NULL },
  586         /*
  587          * NFS server
  588          */
  589         { "nfsd_mtx", &lock_class_mtx_sleep },
  590         { "so_snd", &lock_class_mtx_sleep },
  591         { NULL, NULL },
  592 
  593         /*
  594          * IEEE 802.11
  595          */
  596         { "802.11 com lock", &lock_class_mtx_sleep},
  597         { NULL, NULL },
  598         /*
  599          * Network drivers
  600          */
  601         { "network driver", &lock_class_mtx_sleep},
  602         { NULL, NULL },
  603 
  604         /*
  605          * Netgraph
  606          */
  607         { "ng_node", &lock_class_mtx_sleep },
  608         { "ng_worklist", &lock_class_mtx_sleep },
  609         { NULL, NULL },
  610         /*
  611          * CDEV
  612          */
  613         { "vm map (system)", &lock_class_mtx_sleep },
  614         { "vnode interlock", &lock_class_mtx_sleep },
  615         { "cdev", &lock_class_mtx_sleep },
  616         { "devthrd", &lock_class_mtx_sleep },
  617         { NULL, NULL },
  618         /*
  619          * VM
  620          */
  621         { "vm map (user)", &lock_class_sx },
  622         { "vm object", &lock_class_rw },
  623         { "vm page", &lock_class_mtx_sleep },
  624         { "pmap pv global", &lock_class_rw },
  625         { "pmap", &lock_class_mtx_sleep },
  626         { "pmap pv list", &lock_class_rw },
  627         { "vm page free queue", &lock_class_mtx_sleep },
  628         { "vm pagequeue", &lock_class_mtx_sleep },
  629         { NULL, NULL },
  630         /*
  631          * kqueue/VFS interaction
  632          */
  633         { "kqueue", &lock_class_mtx_sleep },
  634         { "struct mount mtx", &lock_class_mtx_sleep },
  635         { "vnode interlock", &lock_class_mtx_sleep },
  636         { NULL, NULL },
  637         /*
  638          * VFS namecache
  639          */
  640         { "ncvn", &lock_class_mtx_sleep },
  641         { "ncbuc", &lock_class_mtx_sleep },
  642         { "vnode interlock", &lock_class_mtx_sleep },
  643         { "ncneg", &lock_class_mtx_sleep },
  644         { NULL, NULL },
  645         /*
  646          * ZFS locking
  647          */
  648         { "dn->dn_mtx", &lock_class_sx },
  649         { "dr->dt.di.dr_mtx", &lock_class_sx },
  650         { "db->db_mtx", &lock_class_sx },
  651         { NULL, NULL },
  652         /*
  653          * TCP log locks
  654          */
  655         { "TCP ID tree", &lock_class_rw },
  656         { "tcp log id bucket", &lock_class_mtx_sleep },
  657         { "tcpinp", &lock_class_rw },
  658         { "TCP log expireq", &lock_class_mtx_sleep },
  659         { NULL, NULL },
  660         /*
  661          * spin locks
  662          */
  663 #ifdef SMP
  664         { "ap boot", &lock_class_mtx_spin },
  665 #endif
  666         { "rm.mutex_mtx", &lock_class_mtx_spin },
  667 #ifdef __i386__
  668         { "cy", &lock_class_mtx_spin },
  669 #endif
  670         { "scc_hwmtx", &lock_class_mtx_spin },
  671         { "uart_hwmtx", &lock_class_mtx_spin },
  672         { "fast_taskqueue", &lock_class_mtx_spin },
  673         { "intr table", &lock_class_mtx_spin },
  674         { "process slock", &lock_class_mtx_spin },
  675         { "syscons video lock", &lock_class_mtx_spin },
  676         { "sleepq chain", &lock_class_mtx_spin },
  677         { "rm_spinlock", &lock_class_mtx_spin },
  678         { "turnstile chain", &lock_class_mtx_spin },
  679         { "turnstile lock", &lock_class_mtx_spin },
  680         { "sched lock", &lock_class_mtx_spin },
  681         { "td_contested", &lock_class_mtx_spin },
  682         { "callout", &lock_class_mtx_spin },
  683         { "entropy harvest mutex", &lock_class_mtx_spin },
  684 #ifdef SMP
  685         { "smp rendezvous", &lock_class_mtx_spin },
  686 #endif
  687 #ifdef __powerpc__
  688         { "tlb0", &lock_class_mtx_spin },
  689 #endif
  690         { NULL, NULL },
  691         { "sched lock", &lock_class_mtx_spin },
  692 #ifdef  HWPMC_HOOKS
  693         { "pmc-per-proc", &lock_class_mtx_spin },
  694 #endif
  695         { NULL, NULL },
  696         /*
  697          * leaf locks
  698          */
  699         { "intrcnt", &lock_class_mtx_spin },
  700         { "icu", &lock_class_mtx_spin },
  701 #ifdef __i386__
  702         { "allpmaps", &lock_class_mtx_spin },
  703         { "descriptor tables", &lock_class_mtx_spin },
  704 #endif
  705         { "clk", &lock_class_mtx_spin },
  706         { "cpuset", &lock_class_mtx_spin },
  707         { "mprof lock", &lock_class_mtx_spin },
  708         { "zombie lock", &lock_class_mtx_spin },
  709         { "ALD Queue", &lock_class_mtx_spin },
  710 #if defined(__i386__) || defined(__amd64__)
  711         { "pcicfg", &lock_class_mtx_spin },
  712         { "NDIS thread lock", &lock_class_mtx_spin },
  713 #endif
  714         { "tw_osl_io_lock", &lock_class_mtx_spin },
  715         { "tw_osl_q_lock", &lock_class_mtx_spin },
  716         { "tw_cl_io_lock", &lock_class_mtx_spin },
  717         { "tw_cl_intr_lock", &lock_class_mtx_spin },
  718         { "tw_cl_gen_lock", &lock_class_mtx_spin },
  719 #ifdef  HWPMC_HOOKS
  720         { "pmc-leaf", &lock_class_mtx_spin },
  721 #endif
  722         { "blocked lock", &lock_class_mtx_spin },
  723         { NULL, NULL },
  724         { NULL, NULL }
  725 };
  726 
  727 /*
  728  * Pairs of locks which have been blessed.  Witness does not complain about
  729  * order problems with blessed lock pairs.  Please do not add an entry to the
  730  * table without an explanatory comment.
  731  */
  732 static struct witness_blessed blessed_list[] = {
  733         /*
  734          * See the comment in ufs_dirhash.c.  Basically, a vnode lock serializes
  735          * both lock orders, so a deadlock cannot happen as a result of this
  736          * LOR.
  737          */
  738         { "dirhash",    "bufwait" },
  739 
  740         /*
  741          * A UFS vnode may be locked in vget() while a buffer belonging to the
  742          * parent directory vnode is locked.
  743          */
  744         { "ufs",        "bufwait" },
  745 };
  746 
  747 /*
  748  * This global is set to 0 once it becomes safe to use the witness code.
  749  */
  750 static int witness_cold = 1;
  751 
  752 /*
  753  * This global is set to 1 once the static lock orders have been enrolled
  754  * so that a warning can be issued for any spin locks enrolled later.
  755  */
  756 static int witness_spin_warn = 0;
  757 
  758 /* Trim useless garbage from filenames. */
  759 static const char *
  760 fixup_filename(const char *file)
  761 {
  762 
  763         if (file == NULL)
  764                 return (NULL);
  765         while (strncmp(file, "../", 3) == 0)
  766                 file += 3;
  767         return (file);
  768 }
  769 
  770 /*
  771  * Calculate the size of early witness structures.
  772  */
  773 int
  774 witness_startup_count(void)
  775 {
  776         int sz;
  777 
  778         sz = sizeof(struct witness) * witness_count;
  779         sz += sizeof(*w_rmatrix) * (witness_count + 1);
  780         sz += sizeof(*w_rmatrix[0]) * (witness_count + 1) *
  781             (witness_count + 1);
  782 
  783         return (sz);
  784 }
  785 
  786 /*
  787  * The WITNESS-enabled diagnostic code.  Note that the witness code does
  788  * assume that the early boot is single-threaded at least until after this
  789  * routine is completed.
  790  */
  791 void
  792 witness_startup(void *mem)
  793 {
  794         struct lock_object *lock;
  795         struct witness_order_list_entry *order;
  796         struct witness *w, *w1;
  797         uintptr_t p;
  798         int i;
  799 
  800         p = (uintptr_t)mem;
  801         w_data = (void *)p;
  802         p += sizeof(struct witness) * witness_count;
  803 
  804         w_rmatrix = (void *)p;
  805         p += sizeof(*w_rmatrix) * (witness_count + 1);
  806 
  807         for (i = 0; i < witness_count + 1; i++) {
  808                 w_rmatrix[i] = (void *)p;
  809                 p += sizeof(*w_rmatrix[i]) * (witness_count + 1);
  810         }
  811         badstack_sbuf_size = witness_count * 256;
  812 
  813         /*
  814          * We have to release Giant before initializing its witness
  815          * structure so that WITNESS doesn't get confused.
  816          */
  817         mtx_unlock(&Giant);
  818         mtx_assert(&Giant, MA_NOTOWNED);
  819 
  820         CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
  821         mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
  822             MTX_NOWITNESS | MTX_NOPROFILE);
  823         for (i = witness_count - 1; i >= 0; i--) {
  824                 w = &w_data[i];
  825                 memset(w, 0, sizeof(*w));
  826                 w_data[i].w_index = i;  /* Witness index never changes. */
  827                 witness_free(w);
  828         }
  829         KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
  830             ("%s: Invalid list of free witness objects", __func__));
  831 
  832         /* Witness with index 0 is not used to aid in debugging. */
  833         STAILQ_REMOVE_HEAD(&w_free, w_list);
  834         w_free_cnt--;
  835 
  836         for (i = 0; i < witness_count; i++) {
  837                 memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) * 
  838                     (witness_count + 1));
  839         }
  840 
  841         for (i = 0; i < LOCK_CHILDCOUNT; i++)
  842                 witness_lock_list_free(&w_locklistdata[i]);
  843         witness_init_hash_tables();
  844 
  845         /* First add in all the specified order lists. */
  846         for (order = order_lists; order->w_name != NULL; order++) {
  847                 w = enroll(order->w_name, order->w_class);
  848                 if (w == NULL)
  849                         continue;
  850                 w->w_file = "order list";
  851                 for (order++; order->w_name != NULL; order++) {
  852                         w1 = enroll(order->w_name, order->w_class);
  853                         if (w1 == NULL)
  854                                 continue;
  855                         w1->w_file = "order list";
  856                         itismychild(w, w1);
  857                         w = w1;
  858                 }
  859         }
  860         witness_spin_warn = 1;
  861 
  862         /* Iterate through all locks and add them to witness. */
  863         for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
  864                 lock = pending_locks[i].wh_lock;
  865                 KASSERT(lock->lo_flags & LO_WITNESS,
  866                     ("%s: lock %s is on pending list but not LO_WITNESS",
  867                     __func__, lock->lo_name));
  868                 lock->lo_witness = enroll(pending_locks[i].wh_type,
  869                     LOCK_CLASS(lock));
  870         }
  871 
  872         /* Mark the witness code as being ready for use. */
  873         witness_cold = 0;
  874 
  875         mtx_lock(&Giant);
  876 }
  877 
  878 void
  879 witness_init(struct lock_object *lock, const char *type)
  880 {
  881         struct lock_class *class;
  882 
  883         /* Various sanity checks. */
  884         class = LOCK_CLASS(lock);
  885         if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
  886             (class->lc_flags & LC_RECURSABLE) == 0)
  887                 kassert_panic("%s: lock (%s) %s can not be recursable",
  888                     __func__, class->lc_name, lock->lo_name);
  889         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
  890             (class->lc_flags & LC_SLEEPABLE) == 0)
  891                 kassert_panic("%s: lock (%s) %s can not be sleepable",
  892                     __func__, class->lc_name, lock->lo_name);
  893         if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
  894             (class->lc_flags & LC_UPGRADABLE) == 0)
  895                 kassert_panic("%s: lock (%s) %s can not be upgradable",
  896                     __func__, class->lc_name, lock->lo_name);
  897 
  898         /*
  899          * If we shouldn't watch this lock, then just clear lo_witness.
  900          * Otherwise, if witness_cold is set, then it is too early to
  901          * enroll this lock, so defer it to witness_initialize() by adding
  902          * it to the pending_locks list.  If it is not too early, then enroll
  903          * the lock now.
  904          */
  905         if (witness_watch < 1 || KERNEL_PANICKED() ||
  906             (lock->lo_flags & LO_WITNESS) == 0)
  907                 lock->lo_witness = NULL;
  908         else if (witness_cold) {
  909                 pending_locks[pending_cnt].wh_lock = lock;
  910                 pending_locks[pending_cnt++].wh_type = type;
  911                 if (pending_cnt > WITNESS_PENDLIST)
  912                         panic("%s: pending locks list is too small, "
  913                             "increase WITNESS_PENDLIST\n",
  914                             __func__);
  915         } else
  916                 lock->lo_witness = enroll(type, class);
  917 }
  918 
  919 void
  920 witness_destroy(struct lock_object *lock)
  921 {
  922         struct lock_class *class;
  923         struct witness *w;
  924 
  925         class = LOCK_CLASS(lock);
  926 
  927         if (witness_cold)
  928                 panic("lock (%s) %s destroyed while witness_cold",
  929                     class->lc_name, lock->lo_name);
  930 
  931         /* XXX: need to verify that no one holds the lock */
  932         if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
  933                 return;
  934         w = lock->lo_witness;
  935 
  936         mtx_lock_spin(&w_mtx);
  937         MPASS(w->w_refcount > 0);
  938         w->w_refcount--;
  939 
  940         if (w->w_refcount == 0)
  941                 depart(w);
  942         mtx_unlock_spin(&w_mtx);
  943 }
  944 
  945 #ifdef DDB
  946 static void
  947 witness_ddb_compute_levels(void)
  948 {
  949         struct witness *w;
  950 
  951         /*
  952          * First clear all levels.
  953          */
  954         STAILQ_FOREACH(w, &w_all, w_list)
  955                 w->w_ddb_level = -1;
  956 
  957         /*
  958          * Look for locks with no parents and level all their descendants.
  959          */
  960         STAILQ_FOREACH(w, &w_all, w_list) {
  961                 /* If the witness has ancestors (is not a root), skip it. */
  962                 if (w->w_num_ancestors > 0)
  963                         continue;
  964                 witness_ddb_level_descendants(w, 0);
  965         }
  966 }
  967 
  968 static void
  969 witness_ddb_level_descendants(struct witness *w, int l)
  970 {
  971         int i;
  972 
  973         if (w->w_ddb_level >= l)
  974                 return;
  975 
  976         w->w_ddb_level = l;
  977         l++;
  978 
  979         for (i = 1; i <= w_max_used_index; i++) {
  980                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
  981                         witness_ddb_level_descendants(&w_data[i], l);
  982         }
  983 }
  984 
  985 static void
  986 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
  987     struct witness *w, int indent)
  988 {
  989         int i;
  990 
  991         for (i = 0; i < indent; i++)
  992                 prnt(" ");
  993         prnt("%s (type: %s, depth: %d, active refs: %d)",
  994              w->w_name, w->w_class->lc_name,
  995              w->w_ddb_level, w->w_refcount);
  996         if (w->w_displayed) {
  997                 prnt(" -- (already displayed)\n");
  998                 return;
  999         }
 1000         w->w_displayed = 1;
 1001         if (w->w_file != NULL && w->w_line != 0)
 1002                 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
 1003                     w->w_line);
 1004         else
 1005                 prnt(" -- never acquired\n");
 1006         indent++;
 1007         WITNESS_INDEX_ASSERT(w->w_index);
 1008         for (i = 1; i <= w_max_used_index; i++) {
 1009                 if (db_pager_quit)
 1010                         return;
 1011                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
 1012                         witness_ddb_display_descendants(prnt, &w_data[i],
 1013                             indent);
 1014         }
 1015 }
 1016 
 1017 static void
 1018 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
 1019     struct witness_list *list)
 1020 {
 1021         struct witness *w;
 1022 
 1023         STAILQ_FOREACH(w, list, w_typelist) {
 1024                 if (w->w_file == NULL || w->w_ddb_level > 0)
 1025                         continue;
 1026 
 1027                 /* This lock has no anscestors - display its descendants. */
 1028                 witness_ddb_display_descendants(prnt, w, 0);
 1029                 if (db_pager_quit)
 1030                         return;
 1031         }
 1032 }
 1033 
 1034 static void
 1035 witness_ddb_display(int(*prnt)(const char *fmt, ...))
 1036 {
 1037         struct witness *w;
 1038 
 1039         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 1040         witness_ddb_compute_levels();
 1041 
 1042         /* Clear all the displayed flags. */
 1043         STAILQ_FOREACH(w, &w_all, w_list)
 1044                 w->w_displayed = 0;
 1045 
 1046         /*
 1047          * First, handle sleep locks which have been acquired at least
 1048          * once.
 1049          */
 1050         prnt("Sleep locks:\n");
 1051         witness_ddb_display_list(prnt, &w_sleep);
 1052         if (db_pager_quit)
 1053                 return;
 1054 
 1055         /*
 1056          * Now do spin locks which have been acquired at least once.
 1057          */
 1058         prnt("\nSpin locks:\n");
 1059         witness_ddb_display_list(prnt, &w_spin);
 1060         if (db_pager_quit)
 1061                 return;
 1062 
 1063         /*
 1064          * Finally, any locks which have not been acquired yet.
 1065          */
 1066         prnt("\nLocks which were never acquired:\n");
 1067         STAILQ_FOREACH(w, &w_all, w_list) {
 1068                 if (w->w_file != NULL || w->w_refcount == 0)
 1069                         continue;
 1070                 prnt("%s (type: %s, depth: %d)\n", w->w_name,
 1071                     w->w_class->lc_name, w->w_ddb_level);
 1072                 if (db_pager_quit)
 1073                         return;
 1074         }
 1075 }
 1076 #endif /* DDB */
 1077 
 1078 int
 1079 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
 1080 {
 1081 
 1082         if (witness_watch == -1 || KERNEL_PANICKED())
 1083                 return (0);
 1084 
 1085         /* Require locks that witness knows about. */
 1086         if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
 1087             lock2->lo_witness == NULL)
 1088                 return (EINVAL);
 1089 
 1090         mtx_assert(&w_mtx, MA_NOTOWNED);
 1091         mtx_lock_spin(&w_mtx);
 1092 
 1093         /*
 1094          * If we already have either an explicit or implied lock order that
 1095          * is the other way around, then return an error.
 1096          */
 1097         if (witness_watch &&
 1098             isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
 1099                 mtx_unlock_spin(&w_mtx);
 1100                 return (EDOOFUS);
 1101         }
 1102 
 1103         /* Try to add the new order. */
 1104         CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
 1105             lock2->lo_witness->w_name, lock1->lo_witness->w_name);
 1106         itismychild(lock1->lo_witness, lock2->lo_witness);
 1107         mtx_unlock_spin(&w_mtx);
 1108         return (0);
 1109 }
 1110 
 1111 void
 1112 witness_checkorder(struct lock_object *lock, int flags, const char *file,
 1113     int line, struct lock_object *interlock)
 1114 {
 1115         struct lock_list_entry *lock_list, *lle;
 1116         struct lock_instance *lock1, *lock2, *plock;
 1117         struct lock_class *class, *iclass;
 1118         struct witness *w, *w1;
 1119         struct thread *td;
 1120         int i, j;
 1121 
 1122         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
 1123             KERNEL_PANICKED())
 1124                 return;
 1125 
 1126         w = lock->lo_witness;
 1127         class = LOCK_CLASS(lock);
 1128         td = curthread;
 1129 
 1130         if (class->lc_flags & LC_SLEEPLOCK) {
 1131                 /*
 1132                  * Since spin locks include a critical section, this check
 1133                  * implicitly enforces a lock order of all sleep locks before
 1134                  * all spin locks.
 1135                  */
 1136                 if (td->td_critnest != 0 && !kdb_active)
 1137                         kassert_panic("acquiring blockable sleep lock with "
 1138                             "spinlock or critical section held (%s) %s @ %s:%d",
 1139                             class->lc_name, lock->lo_name,
 1140                             fixup_filename(file), line);
 1141 
 1142                 /*
 1143                  * If this is the first lock acquired then just return as
 1144                  * no order checking is needed.
 1145                  */
 1146                 lock_list = td->td_sleeplocks;
 1147                 if (lock_list == NULL || lock_list->ll_count == 0)
 1148                         return;
 1149         } else {
 1150                 /*
 1151                  * If this is the first lock, just return as no order
 1152                  * checking is needed.  Avoid problems with thread
 1153                  * migration pinning the thread while checking if
 1154                  * spinlocks are held.  If at least one spinlock is held
 1155                  * the thread is in a safe path and it is allowed to
 1156                  * unpin it.
 1157                  */
 1158                 sched_pin();
 1159                 lock_list = PCPU_GET(spinlocks);
 1160                 if (lock_list == NULL || lock_list->ll_count == 0) {
 1161                         sched_unpin();
 1162                         return;
 1163                 }
 1164                 sched_unpin();
 1165         }
 1166 
 1167         /*
 1168          * Check to see if we are recursing on a lock we already own.  If
 1169          * so, make sure that we don't mismatch exclusive and shared lock
 1170          * acquires.
 1171          */
 1172         lock1 = find_instance(lock_list, lock);
 1173         if (lock1 != NULL) {
 1174                 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
 1175                     (flags & LOP_EXCLUSIVE) == 0) {
 1176                         witness_output("shared lock of (%s) %s @ %s:%d\n",
 1177                             class->lc_name, lock->lo_name,
 1178                             fixup_filename(file), line);
 1179                         witness_output("while exclusively locked from %s:%d\n",
 1180                             fixup_filename(lock1->li_file), lock1->li_line);
 1181                         kassert_panic("excl->share");
 1182                 }
 1183                 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
 1184                     (flags & LOP_EXCLUSIVE) != 0) {
 1185                         witness_output("exclusive lock of (%s) %s @ %s:%d\n",
 1186                             class->lc_name, lock->lo_name,
 1187                             fixup_filename(file), line);
 1188                         witness_output("while share locked from %s:%d\n",
 1189                             fixup_filename(lock1->li_file), lock1->li_line);
 1190                         kassert_panic("share->excl");
 1191                 }
 1192                 return;
 1193         }
 1194 
 1195         /* Warn if the interlock is not locked exactly once. */
 1196         if (interlock != NULL) {
 1197                 iclass = LOCK_CLASS(interlock);
 1198                 lock1 = find_instance(lock_list, interlock);
 1199                 if (lock1 == NULL)
 1200                         kassert_panic("interlock (%s) %s not locked @ %s:%d",
 1201                             iclass->lc_name, interlock->lo_name,
 1202                             fixup_filename(file), line);
 1203                 else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
 1204                         kassert_panic("interlock (%s) %s recursed @ %s:%d",
 1205                             iclass->lc_name, interlock->lo_name,
 1206                             fixup_filename(file), line);
 1207         }
 1208 
 1209         /*
 1210          * Find the previously acquired lock, but ignore interlocks.
 1211          */
 1212         plock = &lock_list->ll_children[lock_list->ll_count - 1];
 1213         if (interlock != NULL && plock->li_lock == interlock) {
 1214                 if (lock_list->ll_count > 1)
 1215                         plock =
 1216                             &lock_list->ll_children[lock_list->ll_count - 2];
 1217                 else {
 1218                         lle = lock_list->ll_next;
 1219 
 1220                         /*
 1221                          * The interlock is the only lock we hold, so
 1222                          * simply return.
 1223                          */
 1224                         if (lle == NULL)
 1225                                 return;
 1226                         plock = &lle->ll_children[lle->ll_count - 1];
 1227                 }
 1228         }
 1229 
 1230         /*
 1231          * Try to perform most checks without a lock.  If this succeeds we
 1232          * can skip acquiring the lock and return success.  Otherwise we redo
 1233          * the check with the lock held to handle races with concurrent updates.
 1234          */
 1235         w1 = plock->li_lock->lo_witness;
 1236         if (witness_lock_order_check(w1, w))
 1237                 return;
 1238 
 1239         mtx_lock_spin(&w_mtx);
 1240         if (witness_lock_order_check(w1, w)) {
 1241                 mtx_unlock_spin(&w_mtx);
 1242                 return;
 1243         }
 1244         witness_lock_order_add(w1, w);
 1245 
 1246         /*
 1247          * Check for duplicate locks of the same type.  Note that we only
 1248          * have to check for this on the last lock we just acquired.  Any
 1249          * other cases will be caught as lock order violations.
 1250          */
 1251         if (w1 == w) {
 1252                 i = w->w_index;
 1253                 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
 1254                     !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
 1255                     w_rmatrix[i][i] |= WITNESS_REVERSAL;
 1256                         w->w_reversed = 1;
 1257                         mtx_unlock_spin(&w_mtx);
 1258                         witness_output(
 1259                             "acquiring duplicate lock of same type: \"%s\"\n", 
 1260                             w->w_name);
 1261                         witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
 1262                             fixup_filename(plock->li_file), plock->li_line);
 1263                         witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
 1264                             fixup_filename(file), line);
 1265                         witness_debugger(1, __func__);
 1266                 } else
 1267                         mtx_unlock_spin(&w_mtx);
 1268                 return;
 1269         }
 1270         mtx_assert(&w_mtx, MA_OWNED);
 1271 
 1272         /*
 1273          * If we know that the lock we are acquiring comes after
 1274          * the lock we most recently acquired in the lock order tree,
 1275          * then there is no need for any further checks.
 1276          */
 1277         if (isitmychild(w1, w))
 1278                 goto out;
 1279 
 1280         for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
 1281                 for (i = lle->ll_count - 1; i >= 0; i--, j++) {
 1282                         struct stack pstack;
 1283                         bool pstackv, trace;
 1284 
 1285                         MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
 1286                         lock1 = &lle->ll_children[i];
 1287 
 1288                         /*
 1289                          * Ignore the interlock.
 1290                          */
 1291                         if (interlock == lock1->li_lock)
 1292                                 continue;
 1293 
 1294                         /*
 1295                          * If this lock doesn't undergo witness checking,
 1296                          * then skip it.
 1297                          */
 1298                         w1 = lock1->li_lock->lo_witness;
 1299                         if (w1 == NULL) {
 1300                                 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
 1301                                     ("lock missing witness structure"));
 1302                                 continue;
 1303                         }
 1304 
 1305                         /*
 1306                          * If we are locking Giant and this is a sleepable
 1307                          * lock, then skip it.
 1308                          */
 1309                         if ((lock1->li_flags & LI_SLEEPABLE) != 0 &&
 1310                             lock == &Giant.lock_object)
 1311                                 continue;
 1312 
 1313                         /*
 1314                          * If we are locking a sleepable lock and this lock
 1315                          * is Giant, then skip it.
 1316                          */
 1317                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1318                             (flags & LOP_NOSLEEP) == 0 &&
 1319                             lock1->li_lock == &Giant.lock_object)
 1320                                 continue;
 1321 
 1322                         /*
 1323                          * If we are locking a sleepable lock and this lock
 1324                          * isn't sleepable, we want to treat it as a lock
 1325                          * order violation to enfore a general lock order of
 1326                          * sleepable locks before non-sleepable locks.
 1327                          */
 1328                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1329                             (flags & LOP_NOSLEEP) == 0 &&
 1330                             (lock1->li_flags & LI_SLEEPABLE) == 0)
 1331                                 goto reversal;
 1332 
 1333                         /*
 1334                          * If we are locking Giant and this is a non-sleepable
 1335                          * lock, then treat it as a reversal.
 1336                          */
 1337                         if ((lock1->li_flags & LI_SLEEPABLE) == 0 &&
 1338                             lock == &Giant.lock_object)
 1339                                 goto reversal;
 1340 
 1341                         /*
 1342                          * Check the lock order hierarchy for a reveresal.
 1343                          */
 1344                         if (!isitmydescendant(w, w1))
 1345                                 continue;
 1346                 reversal:
 1347 
 1348                         /*
 1349                          * We have a lock order violation, check to see if it
 1350                          * is allowed or has already been yelled about.
 1351                          */
 1352 
 1353                         /* Bail if this violation is known */
 1354                         if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
 1355                                 goto out;
 1356 
 1357                         /* Record this as a violation */
 1358                         w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
 1359                         w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
 1360                         w->w_reversed = w1->w_reversed = 1;
 1361                         witness_increment_graph_generation();
 1362 
 1363                         /*
 1364                          * If the lock order is blessed, bail before logging
 1365                          * anything.  We don't look for other lock order
 1366                          * violations though, which may be a bug.
 1367                          */
 1368                         if (blessed(w, w1))
 1369                                 goto out;
 1370 
 1371                         trace = atomic_load_int(&witness_trace);
 1372                         if (trace) {
 1373                                 struct witness_lock_order_data *data;
 1374 
 1375                                 pstackv = false;
 1376                                 data = witness_lock_order_get(w, w1);
 1377                                 if (data != NULL) {
 1378                                         stack_copy(&data->wlod_stack,
 1379                                             &pstack);
 1380                                         pstackv = true;
 1381                                 }
 1382                         }
 1383                         mtx_unlock_spin(&w_mtx);
 1384 
 1385 #ifdef WITNESS_NO_VNODE
 1386                         /*
 1387                          * There are known LORs between VNODE locks. They are
 1388                          * not an indication of a bug. VNODE locks are flagged
 1389                          * as such (LO_IS_VNODE) and we don't yell if the LOR
 1390                          * is between 2 VNODE locks.
 1391                          */
 1392                         if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
 1393                             (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
 1394                                 return;
 1395 #endif
 1396 
 1397                         /*
 1398                          * Ok, yell about it.
 1399                          */
 1400                         if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1401                             (flags & LOP_NOSLEEP) == 0 &&
 1402                             (lock1->li_flags & LI_SLEEPABLE) == 0)
 1403                                 witness_output(
 1404                 "lock order reversal: (sleepable after non-sleepable)\n");
 1405                         else if ((lock1->li_flags & LI_SLEEPABLE) == 0
 1406                             && lock == &Giant.lock_object)
 1407                                 witness_output(
 1408                 "lock order reversal: (Giant after non-sleepable)\n");
 1409                         else
 1410                                 witness_output("lock order reversal:\n");
 1411 
 1412                         /*
 1413                          * Try to locate an earlier lock with
 1414                          * witness w in our list.
 1415                          */
 1416                         do {
 1417                                 lock2 = &lle->ll_children[i];
 1418                                 MPASS(lock2->li_lock != NULL);
 1419                                 if (lock2->li_lock->lo_witness == w)
 1420                                         break;
 1421                                 if (i == 0 && lle->ll_next != NULL) {
 1422                                         lle = lle->ll_next;
 1423                                         i = lle->ll_count - 1;
 1424                                         MPASS(i >= 0 && i < LOCK_NCHILDREN);
 1425                                 } else
 1426                                         i--;
 1427                         } while (i >= 0);
 1428                         if (i < 0) {
 1429                                 witness_output(" 1st %p %s (%s, %s) @ %s:%d\n",
 1430                                     lock1->li_lock, lock1->li_lock->lo_name,
 1431                                     w1->w_name, w1->w_class->lc_name,
 1432                                     fixup_filename(lock1->li_file),
 1433                                     lock1->li_line);
 1434                                 witness_output(" 2nd %p %s (%s, %s) @ %s:%d\n",
 1435                                     lock, lock->lo_name, w->w_name,
 1436                                     w->w_class->lc_name, fixup_filename(file),
 1437                                     line);
 1438                         } else {
 1439                                 struct witness *w2 = lock2->li_lock->lo_witness;
 1440 
 1441                                 witness_output(" 1st %p %s (%s, %s) @ %s:%d\n",
 1442                                     lock2->li_lock, lock2->li_lock->lo_name,
 1443                                     w2->w_name, w2->w_class->lc_name,
 1444                                     fixup_filename(lock2->li_file),
 1445                                     lock2->li_line);
 1446                                 witness_output(" 2nd %p %s (%s, %s) @ %s:%d\n",
 1447                                     lock1->li_lock, lock1->li_lock->lo_name,
 1448                                     w1->w_name, w1->w_class->lc_name,
 1449                                     fixup_filename(lock1->li_file),
 1450                                     lock1->li_line);
 1451                                 witness_output(" 3rd %p %s (%s, %s) @ %s:%d\n", lock,
 1452                                     lock->lo_name, w->w_name,
 1453                                     w->w_class->lc_name, fixup_filename(file),
 1454                                     line);
 1455                         }
 1456                         if (trace) {
 1457                                 char buf[64];
 1458                                 struct sbuf sb;
 1459 
 1460                                 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 1461                                 sbuf_set_drain(&sb, witness_output_drain,
 1462                                     NULL);
 1463 
 1464                                 if (pstackv) {
 1465                                         sbuf_printf(&sb,
 1466                                     "lock order %s -> %s established at:\n",
 1467                                             w->w_name, w1->w_name);
 1468                                         stack_sbuf_print_flags(&sb, &pstack,
 1469                                             M_NOWAIT, STACK_SBUF_FMT_LONG);
 1470                                 }
 1471 
 1472                                 sbuf_printf(&sb,
 1473                                     "lock order %s -> %s attempted at:\n",
 1474                                     w1->w_name, w->w_name);
 1475                                 stack_save(&pstack);
 1476                                 stack_sbuf_print_flags(&sb, &pstack, M_NOWAIT,
 1477                                     STACK_SBUF_FMT_LONG);
 1478 
 1479                                 sbuf_finish(&sb);
 1480                                 sbuf_delete(&sb);
 1481                         }
 1482                         witness_enter_debugger(__func__);
 1483                         return;
 1484                 }
 1485         }
 1486 
 1487         /*
 1488          * If requested, build a new lock order.  However, don't build a new
 1489          * relationship between a sleepable lock and Giant if it is in the
 1490          * wrong direction.  The correct lock order is that sleepable locks
 1491          * always come before Giant.
 1492          */
 1493         if (flags & LOP_NEWORDER &&
 1494             !(plock->li_lock == &Giant.lock_object &&
 1495             (lock->lo_flags & LO_SLEEPABLE) != 0 &&
 1496             (flags & LOP_NOSLEEP) == 0)) {
 1497                 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
 1498                     w->w_name, plock->li_lock->lo_witness->w_name);
 1499                 itismychild(plock->li_lock->lo_witness, w);
 1500         }
 1501 out:
 1502         mtx_unlock_spin(&w_mtx);
 1503 }
 1504 
 1505 void
 1506 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
 1507 {
 1508         struct lock_list_entry **lock_list, *lle;
 1509         struct lock_instance *instance;
 1510         struct witness *w;
 1511         struct thread *td;
 1512 
 1513         if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
 1514             KERNEL_PANICKED())
 1515                 return;
 1516         w = lock->lo_witness;
 1517         td = curthread;
 1518 
 1519         /* Determine lock list for this lock. */
 1520         if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
 1521                 lock_list = &td->td_sleeplocks;
 1522         else
 1523                 lock_list = PCPU_PTR(spinlocks);
 1524 
 1525         /* Check to see if we are recursing on a lock we already own. */
 1526         instance = find_instance(*lock_list, lock);
 1527         if (instance != NULL) {
 1528                 instance->li_flags++;
 1529                 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
 1530                     td->td_proc->p_pid, lock->lo_name,
 1531                     instance->li_flags & LI_RECURSEMASK);
 1532                 instance->li_file = file;
 1533                 instance->li_line = line;
 1534                 return;
 1535         }
 1536 
 1537         /* Update per-witness last file and line acquire. */
 1538         w->w_file = file;
 1539         w->w_line = line;
 1540 
 1541         /* Find the next open lock instance in the list and fill it. */
 1542         lle = *lock_list;
 1543         if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
 1544                 lle = witness_lock_list_get();
 1545                 if (lle == NULL)
 1546                         return;
 1547                 lle->ll_next = *lock_list;
 1548                 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
 1549                     td->td_proc->p_pid, lle);
 1550                 *lock_list = lle;
 1551         }
 1552         instance = &lle->ll_children[lle->ll_count++];
 1553         instance->li_lock = lock;
 1554         instance->li_line = line;
 1555         instance->li_file = file;
 1556         instance->li_flags = 0;
 1557         if ((flags & LOP_EXCLUSIVE) != 0)
 1558                 instance->li_flags |= LI_EXCLUSIVE;
 1559         if ((lock->lo_flags & LO_SLEEPABLE) != 0 && (flags & LOP_NOSLEEP) == 0)
 1560                 instance->li_flags |= LI_SLEEPABLE;
 1561         CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
 1562             td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
 1563 }
 1564 
 1565 void
 1566 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
 1567 {
 1568         struct lock_instance *instance;
 1569         struct lock_class *class;
 1570 
 1571         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 1572         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
 1573                 return;
 1574         class = LOCK_CLASS(lock);
 1575         if (witness_watch) {
 1576                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
 1577                         kassert_panic(
 1578                             "upgrade of non-upgradable lock (%s) %s @ %s:%d",
 1579                             class->lc_name, lock->lo_name,
 1580                             fixup_filename(file), line);
 1581                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
 1582                         kassert_panic(
 1583                             "upgrade of non-sleep lock (%s) %s @ %s:%d",
 1584                             class->lc_name, lock->lo_name,
 1585                             fixup_filename(file), line);
 1586         }
 1587         instance = find_instance(curthread->td_sleeplocks, lock);
 1588         if (instance == NULL) {
 1589                 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
 1590                     class->lc_name, lock->lo_name,
 1591                     fixup_filename(file), line);
 1592                 return;
 1593         }
 1594         if (witness_watch) {
 1595                 if ((instance->li_flags & LI_EXCLUSIVE) != 0)
 1596                         kassert_panic(
 1597                             "upgrade of exclusive lock (%s) %s @ %s:%d",
 1598                             class->lc_name, lock->lo_name,
 1599                             fixup_filename(file), line);
 1600                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
 1601                         kassert_panic(
 1602                             "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
 1603                             class->lc_name, lock->lo_name,
 1604                             instance->li_flags & LI_RECURSEMASK,
 1605                             fixup_filename(file), line);
 1606         }
 1607         instance->li_flags |= LI_EXCLUSIVE;
 1608 }
 1609 
 1610 void
 1611 witness_downgrade(struct lock_object *lock, int flags, const char *file,
 1612     int line)
 1613 {
 1614         struct lock_instance *instance;
 1615         struct lock_class *class;
 1616 
 1617         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 1618         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
 1619                 return;
 1620         class = LOCK_CLASS(lock);
 1621         if (witness_watch) {
 1622                 if ((lock->lo_flags & LO_UPGRADABLE) == 0)
 1623                         kassert_panic(
 1624                             "downgrade of non-upgradable lock (%s) %s @ %s:%d",
 1625                             class->lc_name, lock->lo_name,
 1626                             fixup_filename(file), line);
 1627                 if ((class->lc_flags & LC_SLEEPLOCK) == 0)
 1628                         kassert_panic(
 1629                             "downgrade of non-sleep lock (%s) %s @ %s:%d",
 1630                             class->lc_name, lock->lo_name,
 1631                             fixup_filename(file), line);
 1632         }
 1633         instance = find_instance(curthread->td_sleeplocks, lock);
 1634         if (instance == NULL) {
 1635                 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
 1636                     class->lc_name, lock->lo_name,
 1637                     fixup_filename(file), line);
 1638                 return;
 1639         }
 1640         if (witness_watch) {
 1641                 if ((instance->li_flags & LI_EXCLUSIVE) == 0)
 1642                         kassert_panic(
 1643                             "downgrade of shared lock (%s) %s @ %s:%d",
 1644                             class->lc_name, lock->lo_name,
 1645                             fixup_filename(file), line);
 1646                 if ((instance->li_flags & LI_RECURSEMASK) != 0)
 1647                         kassert_panic(
 1648                             "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
 1649                             class->lc_name, lock->lo_name,
 1650                             instance->li_flags & LI_RECURSEMASK,
 1651                             fixup_filename(file), line);
 1652         }
 1653         instance->li_flags &= ~LI_EXCLUSIVE;
 1654 }
 1655 
 1656 void
 1657 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
 1658 {
 1659         struct lock_list_entry **lock_list, *lle;
 1660         struct lock_instance *instance;
 1661         struct lock_class *class;
 1662         struct thread *td;
 1663         register_t s;
 1664         int i, j;
 1665 
 1666         if (witness_cold || lock->lo_witness == NULL || KERNEL_PANICKED())
 1667                 return;
 1668         td = curthread;
 1669         class = LOCK_CLASS(lock);
 1670 
 1671         /* Find lock instance associated with this lock. */
 1672         if (class->lc_flags & LC_SLEEPLOCK)
 1673                 lock_list = &td->td_sleeplocks;
 1674         else
 1675                 lock_list = PCPU_PTR(spinlocks);
 1676         lle = *lock_list;
 1677         for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
 1678                 for (i = 0; i < (*lock_list)->ll_count; i++) {
 1679                         instance = &(*lock_list)->ll_children[i];
 1680                         if (instance->li_lock == lock)
 1681                                 goto found;
 1682                 }
 1683 
 1684         /*
 1685          * When disabling WITNESS through witness_watch we could end up in
 1686          * having registered locks in the td_sleeplocks queue.
 1687          * We have to make sure we flush these queues, so just search for
 1688          * eventual register locks and remove them.
 1689          */
 1690         if (witness_watch > 0) {
 1691                 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
 1692                     lock->lo_name, fixup_filename(file), line);
 1693                 return;
 1694         } else {
 1695                 return;
 1696         }
 1697 found:
 1698 
 1699         /* First, check for shared/exclusive mismatches. */
 1700         if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
 1701             (flags & LOP_EXCLUSIVE) == 0) {
 1702                 witness_output("shared unlock of (%s) %s @ %s:%d\n",
 1703                     class->lc_name, lock->lo_name, fixup_filename(file), line);
 1704                 witness_output("while exclusively locked from %s:%d\n",
 1705                     fixup_filename(instance->li_file), instance->li_line);
 1706                 kassert_panic("excl->ushare");
 1707         }
 1708         if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
 1709             (flags & LOP_EXCLUSIVE) != 0) {
 1710                 witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
 1711                     class->lc_name, lock->lo_name, fixup_filename(file), line);
 1712                 witness_output("while share locked from %s:%d\n",
 1713                     fixup_filename(instance->li_file),
 1714                     instance->li_line);
 1715                 kassert_panic("share->uexcl");
 1716         }
 1717         /* If we are recursed, unrecurse. */
 1718         if ((instance->li_flags & LI_RECURSEMASK) > 0) {
 1719                 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
 1720                     td->td_proc->p_pid, instance->li_lock->lo_name,
 1721                     instance->li_flags);
 1722                 instance->li_flags--;
 1723                 return;
 1724         }
 1725         /* The lock is now being dropped, check for NORELEASE flag */
 1726         if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
 1727                 witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
 1728                     class->lc_name, lock->lo_name, fixup_filename(file), line);
 1729                 kassert_panic("lock marked norelease");
 1730         }
 1731 
 1732         /* Otherwise, remove this item from the list. */
 1733         s = intr_disable();
 1734         CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
 1735             td->td_proc->p_pid, instance->li_lock->lo_name,
 1736             (*lock_list)->ll_count - 1);
 1737         for (j = i; j < (*lock_list)->ll_count - 1; j++)
 1738                 (*lock_list)->ll_children[j] =
 1739                     (*lock_list)->ll_children[j + 1];
 1740         (*lock_list)->ll_count--;
 1741         intr_restore(s);
 1742 
 1743         /*
 1744          * In order to reduce contention on w_mtx, we want to keep always an
 1745          * head object into lists so that frequent allocation from the 
 1746          * free witness pool (and subsequent locking) is avoided.
 1747          * In order to maintain the current code simple, when the head
 1748          * object is totally unloaded it means also that we do not have
 1749          * further objects in the list, so the list ownership needs to be
 1750          * hand over to another object if the current head needs to be freed.
 1751          */
 1752         if ((*lock_list)->ll_count == 0) {
 1753                 if (*lock_list == lle) {
 1754                         if (lle->ll_next == NULL)
 1755                                 return;
 1756                 } else
 1757                         lle = *lock_list;
 1758                 *lock_list = lle->ll_next;
 1759                 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
 1760                     td->td_proc->p_pid, lle);
 1761                 witness_lock_list_free(lle);
 1762         }
 1763 }
 1764 
 1765 void
 1766 witness_thread_exit(struct thread *td)
 1767 {
 1768         struct lock_list_entry *lle;
 1769         int i, n;
 1770 
 1771         lle = td->td_sleeplocks;
 1772         if (lle == NULL || KERNEL_PANICKED())
 1773                 return;
 1774         if (lle->ll_count != 0) {
 1775                 for (n = 0; lle != NULL; lle = lle->ll_next)
 1776                         for (i = lle->ll_count - 1; i >= 0; i--) {
 1777                                 if (n == 0)
 1778                                         witness_output(
 1779                     "Thread %p exiting with the following locks held:\n", td);
 1780                                 n++;
 1781                                 witness_list_lock(&lle->ll_children[i],
 1782                                     witness_output);
 1783                                 
 1784                         }
 1785                 kassert_panic(
 1786                     "Thread %p cannot exit while holding sleeplocks\n", td);
 1787         }
 1788         witness_lock_list_free(lle);
 1789 }
 1790 
 1791 /*
 1792  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
 1793  * exempt Giant and sleepable locks from the checks as well.  If any
 1794  * non-exempt locks are held, then a supplied message is printed to the
 1795  * output channel along with a list of the offending locks.  If indicated in the
 1796  * flags then a failure results in a panic as well.
 1797  */
 1798 int
 1799 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
 1800 {
 1801         struct lock_list_entry *lock_list, *lle;
 1802         struct lock_instance *lock1;
 1803         struct thread *td;
 1804         va_list ap;
 1805         int i, n;
 1806 
 1807         if (witness_cold || witness_watch < 1 || KERNEL_PANICKED())
 1808                 return (0);
 1809         n = 0;
 1810         td = curthread;
 1811         for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
 1812                 for (i = lle->ll_count - 1; i >= 0; i--) {
 1813                         lock1 = &lle->ll_children[i];
 1814                         if (lock1->li_lock == lock)
 1815                                 continue;
 1816                         if (flags & WARN_GIANTOK &&
 1817                             lock1->li_lock == &Giant.lock_object)
 1818                                 continue;
 1819                         if (flags & WARN_SLEEPOK &&
 1820                             (lock1->li_flags & LI_SLEEPABLE) != 0)
 1821                                 continue;
 1822                         if (n == 0) {
 1823                                 va_start(ap, fmt);
 1824                                 vprintf(fmt, ap);
 1825                                 va_end(ap);
 1826                                 printf(" with the following %slocks held:\n",
 1827                                     (flags & WARN_SLEEPOK) != 0 ?
 1828                                     "non-sleepable " : "");
 1829                         }
 1830                         n++;
 1831                         witness_list_lock(lock1, printf);
 1832                 }
 1833 
 1834         /*
 1835          * Pin the thread in order to avoid problems with thread migration.
 1836          * Once that all verifies are passed about spinlocks ownership,
 1837          * the thread is in a safe path and it can be unpinned.
 1838          */
 1839         sched_pin();
 1840         lock_list = PCPU_GET(spinlocks);
 1841         if (lock_list != NULL && lock_list->ll_count != 0) {
 1842                 sched_unpin();
 1843 
 1844                 /*
 1845                  * We should only have one spinlock and as long as
 1846                  * the flags cannot match for this locks class,
 1847                  * check if the first spinlock is the one curthread
 1848                  * should hold.
 1849                  */
 1850                 lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
 1851                 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
 1852                     lock1->li_lock == lock && n == 0)
 1853                         return (0);
 1854 
 1855                 va_start(ap, fmt);
 1856                 vprintf(fmt, ap);
 1857                 va_end(ap);
 1858                 printf(" with the following %slocks held:\n",
 1859                     (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
 1860                 n += witness_list_locks(&lock_list, printf);
 1861         } else
 1862                 sched_unpin();
 1863         if (flags & WARN_PANIC && n)
 1864                 kassert_panic("%s", __func__);
 1865         else
 1866                 witness_debugger(n, __func__);
 1867         return (n);
 1868 }
 1869 
 1870 const char *
 1871 witness_file(struct lock_object *lock)
 1872 {
 1873         struct witness *w;
 1874 
 1875         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
 1876                 return ("?");
 1877         w = lock->lo_witness;
 1878         return (w->w_file);
 1879 }
 1880 
 1881 int
 1882 witness_line(struct lock_object *lock)
 1883 {
 1884         struct witness *w;
 1885 
 1886         if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
 1887                 return (0);
 1888         w = lock->lo_witness;
 1889         return (w->w_line);
 1890 }
 1891 
 1892 static struct witness *
 1893 enroll(const char *description, struct lock_class *lock_class)
 1894 {
 1895         struct witness *w;
 1896 
 1897         MPASS(description != NULL);
 1898 
 1899         if (witness_watch == -1 || KERNEL_PANICKED())
 1900                 return (NULL);
 1901         if ((lock_class->lc_flags & LC_SPINLOCK)) {
 1902                 if (witness_skipspin)
 1903                         return (NULL);
 1904         } else if ((lock_class->lc_flags & LC_SLEEPLOCK) == 0) {
 1905                 kassert_panic("lock class %s is not sleep or spin",
 1906                     lock_class->lc_name);
 1907                 return (NULL);
 1908         }
 1909 
 1910         mtx_lock_spin(&w_mtx);
 1911         w = witness_hash_get(description);
 1912         if (w)
 1913                 goto found;
 1914         if ((w = witness_get()) == NULL)
 1915                 return (NULL);
 1916         MPASS(strlen(description) < MAX_W_NAME);
 1917         strcpy(w->w_name, description);
 1918         w->w_class = lock_class;
 1919         w->w_refcount = 1;
 1920         STAILQ_INSERT_HEAD(&w_all, w, w_list);
 1921         if (lock_class->lc_flags & LC_SPINLOCK) {
 1922                 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
 1923                 w_spin_cnt++;
 1924         } else if (lock_class->lc_flags & LC_SLEEPLOCK) {
 1925                 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
 1926                 w_sleep_cnt++;
 1927         }
 1928 
 1929         /* Insert new witness into the hash */
 1930         witness_hash_put(w);
 1931         witness_increment_graph_generation();
 1932         mtx_unlock_spin(&w_mtx);
 1933         return (w);
 1934 found:
 1935         w->w_refcount++;
 1936         if (w->w_refcount == 1)
 1937                 w->w_class = lock_class;
 1938         mtx_unlock_spin(&w_mtx);
 1939         if (lock_class != w->w_class)
 1940                 kassert_panic(
 1941                     "lock (%s) %s does not match earlier (%s) lock",
 1942                     description, lock_class->lc_name,
 1943                     w->w_class->lc_name);
 1944         return (w);
 1945 }
 1946 
 1947 static void
 1948 depart(struct witness *w)
 1949 {
 1950 
 1951         MPASS(w->w_refcount == 0);
 1952         if (w->w_class->lc_flags & LC_SLEEPLOCK) {
 1953                 w_sleep_cnt--;
 1954         } else {
 1955                 w_spin_cnt--;
 1956         }
 1957         /*
 1958          * Set file to NULL as it may point into a loadable module.
 1959          */
 1960         w->w_file = NULL;
 1961         w->w_line = 0;
 1962         witness_increment_graph_generation();
 1963 }
 1964 
 1965 static void
 1966 adopt(struct witness *parent, struct witness *child)
 1967 {
 1968         int pi, ci, i, j;
 1969 
 1970         if (witness_cold == 0)
 1971                 mtx_assert(&w_mtx, MA_OWNED);
 1972 
 1973         /* If the relationship is already known, there's no work to be done. */
 1974         if (isitmychild(parent, child))
 1975                 return;
 1976 
 1977         /* When the structure of the graph changes, bump up the generation. */
 1978         witness_increment_graph_generation();
 1979 
 1980         /*
 1981          * The hard part ... create the direct relationship, then propagate all
 1982          * indirect relationships.
 1983          */
 1984         pi = parent->w_index;
 1985         ci = child->w_index;
 1986         WITNESS_INDEX_ASSERT(pi);
 1987         WITNESS_INDEX_ASSERT(ci);
 1988         MPASS(pi != ci);
 1989         w_rmatrix[pi][ci] |= WITNESS_PARENT;
 1990         w_rmatrix[ci][pi] |= WITNESS_CHILD;
 1991 
 1992         /*
 1993          * If parent was not already an ancestor of child,
 1994          * then we increment the descendant and ancestor counters.
 1995          */
 1996         if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
 1997                 parent->w_num_descendants++;
 1998                 child->w_num_ancestors++;
 1999         }
 2000 
 2001         /* 
 2002          * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 
 2003          * an ancestor of 'pi' during this loop.
 2004          */
 2005         for (i = 1; i <= w_max_used_index; i++) {
 2006                 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 
 2007                     (i != pi))
 2008                         continue;
 2009 
 2010                 /* Find each descendant of 'i' and mark it as a descendant. */
 2011                 for (j = 1; j <= w_max_used_index; j++) {
 2012                         /* 
 2013                          * Skip children that are already marked as
 2014                          * descendants of 'i'.
 2015                          */
 2016                         if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
 2017                                 continue;
 2018 
 2019                         /*
 2020                          * We are only interested in descendants of 'ci'. Note
 2021                          * that 'ci' itself is counted as a descendant of 'ci'.
 2022                          */
 2023                         if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 
 2024                             (j != ci))
 2025                                 continue;
 2026                         w_rmatrix[i][j] |= WITNESS_ANCESTOR;
 2027                         w_rmatrix[j][i] |= WITNESS_DESCENDANT;
 2028                         w_data[i].w_num_descendants++;
 2029                         w_data[j].w_num_ancestors++;
 2030 
 2031                         /* 
 2032                          * Make sure we aren't marking a node as both an
 2033                          * ancestor and descendant. We should have caught 
 2034                          * this as a lock order reversal earlier.
 2035                          */
 2036                         if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
 2037                             (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
 2038                                 printf("witness rmatrix paradox! [%d][%d]=%d "
 2039                                     "both ancestor and descendant\n",
 2040                                     i, j, w_rmatrix[i][j]); 
 2041                                 kdb_backtrace();
 2042                                 printf("Witness disabled.\n");
 2043                                 witness_watch = -1;
 2044                         }
 2045                         if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
 2046                             (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
 2047                                 printf("witness rmatrix paradox! [%d][%d]=%d "
 2048                                     "both ancestor and descendant\n",
 2049                                     j, i, w_rmatrix[j][i]); 
 2050                                 kdb_backtrace();
 2051                                 printf("Witness disabled.\n");
 2052                                 witness_watch = -1;
 2053                         }
 2054                 }
 2055         }
 2056 }
 2057 
 2058 static void
 2059 itismychild(struct witness *parent, struct witness *child)
 2060 {
 2061         int unlocked;
 2062 
 2063         MPASS(child != NULL && parent != NULL);
 2064         if (witness_cold == 0)
 2065                 mtx_assert(&w_mtx, MA_OWNED);
 2066 
 2067         if (!witness_lock_type_equal(parent, child)) {
 2068                 if (witness_cold == 0) {
 2069                         unlocked = 1;
 2070                         mtx_unlock_spin(&w_mtx);
 2071                 } else {
 2072                         unlocked = 0;
 2073                 }
 2074                 kassert_panic(
 2075                     "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
 2076                     "the same lock type", __func__, parent->w_name,
 2077                     parent->w_class->lc_name, child->w_name,
 2078                     child->w_class->lc_name);
 2079                 if (unlocked)
 2080                         mtx_lock_spin(&w_mtx);
 2081         }
 2082         adopt(parent, child);
 2083 }
 2084 
 2085 /*
 2086  * Generic code for the isitmy*() functions. The rmask parameter is the
 2087  * expected relationship of w1 to w2.
 2088  */
 2089 static int
 2090 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
 2091 {
 2092         unsigned char r1, r2;
 2093         int i1, i2;
 2094 
 2095         i1 = w1->w_index;
 2096         i2 = w2->w_index;
 2097         WITNESS_INDEX_ASSERT(i1);
 2098         WITNESS_INDEX_ASSERT(i2);
 2099         r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
 2100         r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
 2101 
 2102         /* The flags on one better be the inverse of the flags on the other */
 2103         if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
 2104             (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
 2105                 /* Don't squawk if we're potentially racing with an update. */
 2106                 if (!mtx_owned(&w_mtx))
 2107                         return (0);
 2108                 printf("%s: rmatrix mismatch between %s (index %d) and %s "
 2109                     "(index %d): w_rmatrix[%d][%d] == %hhx but "
 2110                     "w_rmatrix[%d][%d] == %hhx\n",
 2111                     fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
 2112                     i2, i1, r2);
 2113                 kdb_backtrace();
 2114                 printf("Witness disabled.\n");
 2115                 witness_watch = -1;
 2116         }
 2117         return (r1 & rmask);
 2118 }
 2119 
 2120 /*
 2121  * Checks if @child is a direct child of @parent.
 2122  */
 2123 static int
 2124 isitmychild(struct witness *parent, struct witness *child)
 2125 {
 2126 
 2127         return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
 2128 }
 2129 
 2130 /*
 2131  * Checks if @descendant is a direct or inderect descendant of @ancestor.
 2132  */
 2133 static int
 2134 isitmydescendant(struct witness *ancestor, struct witness *descendant)
 2135 {
 2136 
 2137         return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
 2138             __func__));
 2139 }
 2140 
 2141 static int
 2142 blessed(struct witness *w1, struct witness *w2)
 2143 {
 2144         int i;
 2145         struct witness_blessed *b;
 2146 
 2147         for (i = 0; i < nitems(blessed_list); i++) {
 2148                 b = &blessed_list[i];
 2149                 if (strcmp(w1->w_name, b->b_lock1) == 0) {
 2150                         if (strcmp(w2->w_name, b->b_lock2) == 0)
 2151                                 return (1);
 2152                         continue;
 2153                 }
 2154                 if (strcmp(w1->w_name, b->b_lock2) == 0)
 2155                         if (strcmp(w2->w_name, b->b_lock1) == 0)
 2156                                 return (1);
 2157         }
 2158         return (0);
 2159 }
 2160 
 2161 static struct witness *
 2162 witness_get(void)
 2163 {
 2164         struct witness *w;
 2165         int index;
 2166 
 2167         if (witness_cold == 0)
 2168                 mtx_assert(&w_mtx, MA_OWNED);
 2169 
 2170         if (witness_watch == -1) {
 2171                 mtx_unlock_spin(&w_mtx);
 2172                 return (NULL);
 2173         }
 2174         if (STAILQ_EMPTY(&w_free)) {
 2175                 witness_watch = -1;
 2176                 mtx_unlock_spin(&w_mtx);
 2177                 printf("WITNESS: unable to allocate a new witness object\n");
 2178                 return (NULL);
 2179         }
 2180         w = STAILQ_FIRST(&w_free);
 2181         STAILQ_REMOVE_HEAD(&w_free, w_list);
 2182         w_free_cnt--;
 2183         index = w->w_index;
 2184         MPASS(index > 0 && index == w_max_used_index+1 &&
 2185             index < witness_count);
 2186         bzero(w, sizeof(*w));
 2187         w->w_index = index;
 2188         if (index > w_max_used_index)
 2189                 w_max_used_index = index;
 2190         return (w);
 2191 }
 2192 
 2193 static void
 2194 witness_free(struct witness *w)
 2195 {
 2196 
 2197         STAILQ_INSERT_HEAD(&w_free, w, w_list);
 2198         w_free_cnt++;
 2199 }
 2200 
 2201 static struct lock_list_entry *
 2202 witness_lock_list_get(void)
 2203 {
 2204         struct lock_list_entry *lle;
 2205 
 2206         if (witness_watch == -1)
 2207                 return (NULL);
 2208         mtx_lock_spin(&w_mtx);
 2209         lle = w_lock_list_free;
 2210         if (lle == NULL) {
 2211                 witness_watch = -1;
 2212                 mtx_unlock_spin(&w_mtx);
 2213                 printf("%s: witness exhausted\n", __func__);
 2214                 return (NULL);
 2215         }
 2216         w_lock_list_free = lle->ll_next;
 2217         mtx_unlock_spin(&w_mtx);
 2218         bzero(lle, sizeof(*lle));
 2219         return (lle);
 2220 }
 2221                 
 2222 static void
 2223 witness_lock_list_free(struct lock_list_entry *lle)
 2224 {
 2225 
 2226         mtx_lock_spin(&w_mtx);
 2227         lle->ll_next = w_lock_list_free;
 2228         w_lock_list_free = lle;
 2229         mtx_unlock_spin(&w_mtx);
 2230 }
 2231 
 2232 static struct lock_instance *
 2233 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
 2234 {
 2235         struct lock_list_entry *lle;
 2236         struct lock_instance *instance;
 2237         int i;
 2238 
 2239         for (lle = list; lle != NULL; lle = lle->ll_next)
 2240                 for (i = lle->ll_count - 1; i >= 0; i--) {
 2241                         instance = &lle->ll_children[i];
 2242                         if (instance->li_lock == lock)
 2243                                 return (instance);
 2244                 }
 2245         return (NULL);
 2246 }
 2247 
 2248 static void
 2249 witness_list_lock(struct lock_instance *instance,
 2250     int (*prnt)(const char *fmt, ...))
 2251 {
 2252         struct lock_object *lock;
 2253 
 2254         lock = instance->li_lock;
 2255         prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
 2256             "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
 2257         if (lock->lo_witness->w_name != lock->lo_name)
 2258                 prnt(" (%s)", lock->lo_witness->w_name);
 2259         prnt(" r = %d (%p) locked @ %s:%d\n",
 2260             instance->li_flags & LI_RECURSEMASK, lock,
 2261             fixup_filename(instance->li_file), instance->li_line);
 2262 }
 2263 
 2264 static int
 2265 witness_output(const char *fmt, ...)
 2266 {
 2267         va_list ap;
 2268         int ret;
 2269 
 2270         va_start(ap, fmt);
 2271         ret = witness_voutput(fmt, ap);
 2272         va_end(ap);
 2273         return (ret);
 2274 }
 2275 
 2276 static int
 2277 witness_voutput(const char *fmt, va_list ap)
 2278 {
 2279         int ret;
 2280 
 2281         ret = 0;
 2282         switch (witness_channel) {
 2283         case WITNESS_CONSOLE:
 2284                 ret = vprintf(fmt, ap);
 2285                 break;
 2286         case WITNESS_LOG:
 2287                 vlog(LOG_NOTICE, fmt, ap);
 2288                 break;
 2289         case WITNESS_NONE:
 2290                 break;
 2291         }
 2292         return (ret);
 2293 }
 2294 
 2295 #ifdef DDB
 2296 static int
 2297 witness_thread_has_locks(struct thread *td)
 2298 {
 2299 
 2300         if (td->td_sleeplocks == NULL)
 2301                 return (0);
 2302         return (td->td_sleeplocks->ll_count != 0);
 2303 }
 2304 
 2305 static int
 2306 witness_proc_has_locks(struct proc *p)
 2307 {
 2308         struct thread *td;
 2309 
 2310         FOREACH_THREAD_IN_PROC(p, td) {
 2311                 if (witness_thread_has_locks(td))
 2312                         return (1);
 2313         }
 2314         return (0);
 2315 }
 2316 #endif
 2317 
 2318 int
 2319 witness_list_locks(struct lock_list_entry **lock_list,
 2320     int (*prnt)(const char *fmt, ...))
 2321 {
 2322         struct lock_list_entry *lle;
 2323         int i, nheld;
 2324 
 2325         nheld = 0;
 2326         for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
 2327                 for (i = lle->ll_count - 1; i >= 0; i--) {
 2328                         witness_list_lock(&lle->ll_children[i], prnt);
 2329                         nheld++;
 2330                 }
 2331         return (nheld);
 2332 }
 2333 
 2334 /*
 2335  * This is a bit risky at best.  We call this function when we have timed
 2336  * out acquiring a spin lock, and we assume that the other CPU is stuck
 2337  * with this lock held.  So, we go groveling around in the other CPU's
 2338  * per-cpu data to try to find the lock instance for this spin lock to
 2339  * see when it was last acquired.
 2340  */
 2341 void
 2342 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
 2343     int (*prnt)(const char *fmt, ...))
 2344 {
 2345         struct lock_instance *instance;
 2346         struct pcpu *pc;
 2347 
 2348         if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
 2349                 return;
 2350         pc = pcpu_find(owner->td_oncpu);
 2351         instance = find_instance(pc->pc_spinlocks, lock);
 2352         if (instance != NULL)
 2353                 witness_list_lock(instance, prnt);
 2354 }
 2355 
 2356 void
 2357 witness_save(struct lock_object *lock, const char **filep, int *linep)
 2358 {
 2359         struct lock_list_entry *lock_list;
 2360         struct lock_instance *instance;
 2361         struct lock_class *class;
 2362 
 2363         /*
 2364          * This function is used independently in locking code to deal with
 2365          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
 2366          * is gone.
 2367          */
 2368         if (SCHEDULER_STOPPED())
 2369                 return;
 2370         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2371         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
 2372                 return;
 2373         class = LOCK_CLASS(lock);
 2374         if (class->lc_flags & LC_SLEEPLOCK)
 2375                 lock_list = curthread->td_sleeplocks;
 2376         else {
 2377                 if (witness_skipspin)
 2378                         return;
 2379                 lock_list = PCPU_GET(spinlocks);
 2380         }
 2381         instance = find_instance(lock_list, lock);
 2382         if (instance == NULL) {
 2383                 kassert_panic("%s: lock (%s) %s not locked", __func__,
 2384                     class->lc_name, lock->lo_name);
 2385                 return;
 2386         }
 2387         *filep = instance->li_file;
 2388         *linep = instance->li_line;
 2389 }
 2390 
 2391 void
 2392 witness_restore(struct lock_object *lock, const char *file, int line)
 2393 {
 2394         struct lock_list_entry *lock_list;
 2395         struct lock_instance *instance;
 2396         struct lock_class *class;
 2397 
 2398         /*
 2399          * This function is used independently in locking code to deal with
 2400          * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
 2401          * is gone.
 2402          */
 2403         if (SCHEDULER_STOPPED())
 2404                 return;
 2405         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2406         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
 2407                 return;
 2408         class = LOCK_CLASS(lock);
 2409         if (class->lc_flags & LC_SLEEPLOCK)
 2410                 lock_list = curthread->td_sleeplocks;
 2411         else {
 2412                 if (witness_skipspin)
 2413                         return;
 2414                 lock_list = PCPU_GET(spinlocks);
 2415         }
 2416         instance = find_instance(lock_list, lock);
 2417         if (instance == NULL)
 2418                 kassert_panic("%s: lock (%s) %s not locked", __func__,
 2419                     class->lc_name, lock->lo_name);
 2420         lock->lo_witness->w_file = file;
 2421         lock->lo_witness->w_line = line;
 2422         if (instance == NULL)
 2423                 return;
 2424         instance->li_file = file;
 2425         instance->li_line = line;
 2426 }
 2427 
 2428 void
 2429 witness_assert(const struct lock_object *lock, int flags, const char *file,
 2430     int line)
 2431 {
 2432 #ifdef INVARIANT_SUPPORT
 2433         struct lock_instance *instance;
 2434         struct lock_class *class;
 2435 
 2436         if (lock->lo_witness == NULL || witness_watch < 1 || KERNEL_PANICKED())
 2437                 return;
 2438         class = LOCK_CLASS(lock);
 2439         if ((class->lc_flags & LC_SLEEPLOCK) != 0)
 2440                 instance = find_instance(curthread->td_sleeplocks, lock);
 2441         else if ((class->lc_flags & LC_SPINLOCK) != 0)
 2442                 instance = find_instance(PCPU_GET(spinlocks), lock);
 2443         else {
 2444                 kassert_panic("Lock (%s) %s is not sleep or spin!",
 2445                     class->lc_name, lock->lo_name);
 2446                 return;
 2447         }
 2448         switch (flags) {
 2449         case LA_UNLOCKED:
 2450                 if (instance != NULL)
 2451                         kassert_panic("Lock (%s) %s locked @ %s:%d.",
 2452                             class->lc_name, lock->lo_name,
 2453                             fixup_filename(file), line);
 2454                 break;
 2455         case LA_LOCKED:
 2456         case LA_LOCKED | LA_RECURSED:
 2457         case LA_LOCKED | LA_NOTRECURSED:
 2458         case LA_SLOCKED:
 2459         case LA_SLOCKED | LA_RECURSED:
 2460         case LA_SLOCKED | LA_NOTRECURSED:
 2461         case LA_XLOCKED:
 2462         case LA_XLOCKED | LA_RECURSED:
 2463         case LA_XLOCKED | LA_NOTRECURSED:
 2464                 if (instance == NULL) {
 2465                         kassert_panic("Lock (%s) %s not locked @ %s:%d.",
 2466                             class->lc_name, lock->lo_name,
 2467                             fixup_filename(file), line);
 2468                         break;
 2469                 }
 2470                 if ((flags & LA_XLOCKED) != 0 &&
 2471                     (instance->li_flags & LI_EXCLUSIVE) == 0)
 2472                         kassert_panic(
 2473                             "Lock (%s) %s not exclusively locked @ %s:%d.",
 2474                             class->lc_name, lock->lo_name,
 2475                             fixup_filename(file), line);
 2476                 if ((flags & LA_SLOCKED) != 0 &&
 2477                     (instance->li_flags & LI_EXCLUSIVE) != 0)
 2478                         kassert_panic(
 2479                             "Lock (%s) %s exclusively locked @ %s:%d.",
 2480                             class->lc_name, lock->lo_name,
 2481                             fixup_filename(file), line);
 2482                 if ((flags & LA_RECURSED) != 0 &&
 2483                     (instance->li_flags & LI_RECURSEMASK) == 0)
 2484                         kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
 2485                             class->lc_name, lock->lo_name,
 2486                             fixup_filename(file), line);
 2487                 if ((flags & LA_NOTRECURSED) != 0 &&
 2488                     (instance->li_flags & LI_RECURSEMASK) != 0)
 2489                         kassert_panic("Lock (%s) %s recursed @ %s:%d.",
 2490                             class->lc_name, lock->lo_name,
 2491                             fixup_filename(file), line);
 2492                 break;
 2493         default:
 2494                 kassert_panic("Invalid lock assertion at %s:%d.",
 2495                     fixup_filename(file), line);
 2496         }
 2497 #endif  /* INVARIANT_SUPPORT */
 2498 }
 2499 
 2500 static void
 2501 witness_setflag(struct lock_object *lock, int flag, int set)
 2502 {
 2503         struct lock_list_entry *lock_list;
 2504         struct lock_instance *instance;
 2505         struct lock_class *class;
 2506 
 2507         if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
 2508                 return;
 2509         class = LOCK_CLASS(lock);
 2510         if (class->lc_flags & LC_SLEEPLOCK)
 2511                 lock_list = curthread->td_sleeplocks;
 2512         else {
 2513                 if (witness_skipspin)
 2514                         return;
 2515                 lock_list = PCPU_GET(spinlocks);
 2516         }
 2517         instance = find_instance(lock_list, lock);
 2518         if (instance == NULL) {
 2519                 kassert_panic("%s: lock (%s) %s not locked", __func__,
 2520                     class->lc_name, lock->lo_name);
 2521                 return;
 2522         }
 2523 
 2524         if (set)
 2525                 instance->li_flags |= flag;
 2526         else
 2527                 instance->li_flags &= ~flag;
 2528 }
 2529 
 2530 void
 2531 witness_norelease(struct lock_object *lock)
 2532 {
 2533 
 2534         witness_setflag(lock, LI_NORELEASE, 1);
 2535 }
 2536 
 2537 void
 2538 witness_releaseok(struct lock_object *lock)
 2539 {
 2540 
 2541         witness_setflag(lock, LI_NORELEASE, 0);
 2542 }
 2543 
 2544 #ifdef DDB
 2545 static void
 2546 witness_ddb_list(struct thread *td)
 2547 {
 2548 
 2549         KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
 2550         KASSERT(kdb_active, ("%s: not in the debugger", __func__));
 2551 
 2552         if (witness_watch < 1)
 2553                 return;
 2554 
 2555         witness_list_locks(&td->td_sleeplocks, db_printf);
 2556 
 2557         /*
 2558          * We only handle spinlocks if td == curthread.  This is somewhat broken
 2559          * if td is currently executing on some other CPU and holds spin locks
 2560          * as we won't display those locks.  If we had a MI way of getting
 2561          * the per-cpu data for a given cpu then we could use
 2562          * td->td_oncpu to get the list of spinlocks for this thread
 2563          * and "fix" this.
 2564          *
 2565          * That still wouldn't really fix this unless we locked the scheduler
 2566          * lock or stopped the other CPU to make sure it wasn't changing the
 2567          * list out from under us.  It is probably best to just not try to
 2568          * handle threads on other CPU's for now.
 2569          */
 2570         if (td == curthread && PCPU_GET(spinlocks) != NULL)
 2571                 witness_list_locks(PCPU_PTR(spinlocks), db_printf);
 2572 }
 2573 
 2574 DB_SHOW_COMMAND(locks, db_witness_list)
 2575 {
 2576         struct thread *td;
 2577 
 2578         if (have_addr)
 2579                 td = db_lookup_thread(addr, true);
 2580         else
 2581                 td = kdb_thread;
 2582         witness_ddb_list(td);
 2583 }
 2584 
 2585 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
 2586 {
 2587         struct thread *td;
 2588         struct proc *p;
 2589 
 2590         /*
 2591          * It would be nice to list only threads and processes that actually
 2592          * held sleep locks, but that information is currently not exported
 2593          * by WITNESS.
 2594          */
 2595         FOREACH_PROC_IN_SYSTEM(p) {
 2596                 if (!witness_proc_has_locks(p))
 2597                         continue;
 2598                 FOREACH_THREAD_IN_PROC(p, td) {
 2599                         if (!witness_thread_has_locks(td))
 2600                                 continue;
 2601                         db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
 2602                             p->p_comm, td, td->td_tid);
 2603                         witness_ddb_list(td);
 2604                         if (db_pager_quit)
 2605                                 return;
 2606                 }
 2607         }
 2608 }
 2609 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
 2610 
 2611 DB_SHOW_COMMAND(witness, db_witness_display)
 2612 {
 2613 
 2614         witness_ddb_display(db_printf);
 2615 }
 2616 #endif
 2617 
 2618 static void
 2619 sbuf_print_witness_badstacks(struct sbuf *sb, size_t *oldidx)
 2620 {
 2621         struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
 2622         struct witness *tmp_w1, *tmp_w2, *w1, *w2;
 2623         int generation, i, j;
 2624 
 2625         tmp_data1 = NULL;
 2626         tmp_data2 = NULL;
 2627         tmp_w1 = NULL;
 2628         tmp_w2 = NULL;
 2629 
 2630         /* Allocate and init temporary storage space. */
 2631         tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
 2632         tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
 2633         tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
 2634             M_WAITOK | M_ZERO);
 2635         tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 
 2636             M_WAITOK | M_ZERO);
 2637         stack_zero(&tmp_data1->wlod_stack);
 2638         stack_zero(&tmp_data2->wlod_stack);
 2639 
 2640 restart:
 2641         mtx_lock_spin(&w_mtx);
 2642         generation = w_generation;
 2643         mtx_unlock_spin(&w_mtx);
 2644         sbuf_printf(sb, "Number of known direct relationships is %d\n",
 2645             w_lohash.wloh_count);
 2646         for (i = 1; i < w_max_used_index; i++) {
 2647                 mtx_lock_spin(&w_mtx);
 2648                 if (generation != w_generation) {
 2649                         mtx_unlock_spin(&w_mtx);
 2650 
 2651                         /* The graph has changed, try again. */
 2652                         *oldidx = 0;
 2653                         sbuf_clear(sb);
 2654                         goto restart;
 2655                 }
 2656 
 2657                 w1 = &w_data[i];
 2658                 if (w1->w_reversed == 0) {
 2659                         mtx_unlock_spin(&w_mtx);
 2660                         continue;
 2661                 }
 2662 
 2663                 /* Copy w1 locally so we can release the spin lock. */
 2664                 *tmp_w1 = *w1;
 2665                 mtx_unlock_spin(&w_mtx);
 2666 
 2667                 if (tmp_w1->w_reversed == 0)
 2668                         continue;
 2669                 for (j = 1; j < w_max_used_index; j++) {
 2670                         if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
 2671                                 continue;
 2672 
 2673                         mtx_lock_spin(&w_mtx);
 2674                         if (generation != w_generation) {
 2675                                 mtx_unlock_spin(&w_mtx);
 2676 
 2677                                 /* The graph has changed, try again. */
 2678                                 *oldidx = 0;
 2679                                 sbuf_clear(sb);
 2680                                 goto restart;
 2681                         }
 2682 
 2683                         w2 = &w_data[j];
 2684                         data1 = witness_lock_order_get(w1, w2);
 2685                         data2 = witness_lock_order_get(w2, w1);
 2686 
 2687                         /*
 2688                          * Copy information locally so we can release the
 2689                          * spin lock.
 2690                          */
 2691                         *tmp_w2 = *w2;
 2692 
 2693                         if (data1) {
 2694                                 stack_zero(&tmp_data1->wlod_stack);
 2695                                 stack_copy(&data1->wlod_stack,
 2696                                     &tmp_data1->wlod_stack);
 2697                         }
 2698                         if (data2 && data2 != data1) {
 2699                                 stack_zero(&tmp_data2->wlod_stack);
 2700                                 stack_copy(&data2->wlod_stack,
 2701                                     &tmp_data2->wlod_stack);
 2702                         }
 2703                         mtx_unlock_spin(&w_mtx);
 2704 
 2705                         if (blessed(tmp_w1, tmp_w2))
 2706                                 continue;
 2707 
 2708                         sbuf_printf(sb,
 2709             "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
 2710                             tmp_w1->w_name, tmp_w1->w_class->lc_name, 
 2711                             tmp_w2->w_name, tmp_w2->w_class->lc_name);
 2712                         if (data1) {
 2713                                 sbuf_printf(sb,
 2714                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
 2715                                     tmp_w1->w_name, tmp_w1->w_class->lc_name, 
 2716                                     tmp_w2->w_name, tmp_w2->w_class->lc_name);
 2717                                 stack_sbuf_print(sb, &tmp_data1->wlod_stack);
 2718                                 sbuf_printf(sb, "\n");
 2719                         }
 2720                         if (data2 && data2 != data1) {
 2721                                 sbuf_printf(sb,
 2722                         "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
 2723                                     tmp_w2->w_name, tmp_w2->w_class->lc_name, 
 2724                                     tmp_w1->w_name, tmp_w1->w_class->lc_name);
 2725                                 stack_sbuf_print(sb, &tmp_data2->wlod_stack);
 2726                                 sbuf_printf(sb, "\n");
 2727                         }
 2728                 }
 2729         }
 2730         mtx_lock_spin(&w_mtx);
 2731         if (generation != w_generation) {
 2732                 mtx_unlock_spin(&w_mtx);
 2733 
 2734                 /*
 2735                  * The graph changed while we were printing stack data,
 2736                  * try again.
 2737                  */
 2738                 *oldidx = 0;
 2739                 sbuf_clear(sb);
 2740                 goto restart;
 2741         }
 2742         mtx_unlock_spin(&w_mtx);
 2743 
 2744         /* Free temporary storage space. */
 2745         free(tmp_data1, M_TEMP);
 2746         free(tmp_data2, M_TEMP);
 2747         free(tmp_w1, M_TEMP);
 2748         free(tmp_w2, M_TEMP);
 2749 }
 2750 
 2751 static int
 2752 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
 2753 {
 2754         struct sbuf *sb;
 2755         int error;
 2756 
 2757         if (witness_watch < 1) {
 2758                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
 2759                 return (error);
 2760         }
 2761         if (witness_cold) {
 2762                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
 2763                 return (error);
 2764         }
 2765         error = 0;
 2766         sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
 2767         if (sb == NULL)
 2768                 return (ENOMEM);
 2769 
 2770         sbuf_print_witness_badstacks(sb, &req->oldidx);
 2771 
 2772         sbuf_finish(sb);
 2773         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
 2774         sbuf_delete(sb);
 2775 
 2776         return (error);
 2777 }
 2778 
 2779 #ifdef DDB
 2780 static int
 2781 sbuf_db_printf_drain(void *arg __unused, const char *data, int len)
 2782 {
 2783 
 2784         return (db_printf("%.*s", len, data));
 2785 }
 2786 
 2787 DB_SHOW_COMMAND(badstacks, db_witness_badstacks)
 2788 {
 2789         struct sbuf sb;
 2790         char buffer[128];
 2791         size_t dummy;
 2792 
 2793         sbuf_new(&sb, buffer, sizeof(buffer), SBUF_FIXEDLEN);
 2794         sbuf_set_drain(&sb, sbuf_db_printf_drain, NULL);
 2795         sbuf_print_witness_badstacks(&sb, &dummy);
 2796         sbuf_finish(&sb);
 2797 }
 2798 #endif
 2799 
 2800 static int
 2801 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
 2802 {
 2803         static const struct {
 2804                 enum witness_channel channel;
 2805                 const char *name;
 2806         } channels[] = {
 2807                 { WITNESS_CONSOLE, "console" },
 2808                 { WITNESS_LOG, "log" },
 2809                 { WITNESS_NONE, "none" },
 2810         };
 2811         char buf[16];
 2812         u_int i;
 2813         int error;
 2814 
 2815         buf[0] = '\0';
 2816         for (i = 0; i < nitems(channels); i++)
 2817                 if (witness_channel == channels[i].channel) {
 2818                         snprintf(buf, sizeof(buf), "%s", channels[i].name);
 2819                         break;
 2820                 }
 2821 
 2822         error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
 2823         if (error != 0 || req->newptr == NULL)
 2824                 return (error);
 2825 
 2826         error = EINVAL;
 2827         for (i = 0; i < nitems(channels); i++)
 2828                 if (strcmp(channels[i].name, buf) == 0) {
 2829                         witness_channel = channels[i].channel;
 2830                         error = 0;
 2831                         break;
 2832                 }
 2833         return (error);
 2834 }
 2835 
 2836 static int
 2837 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
 2838 {
 2839         struct witness *w;
 2840         struct sbuf *sb;
 2841         int error;
 2842 
 2843 #ifdef __i386__
 2844         error = SYSCTL_OUT(req, w_notallowed, sizeof(w_notallowed));
 2845         return (error);
 2846 #endif
 2847 
 2848         if (witness_watch < 1) {
 2849                 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
 2850                 return (error);
 2851         }
 2852         if (witness_cold) {
 2853                 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
 2854                 return (error);
 2855         }
 2856         error = 0;
 2857 
 2858         error = sysctl_wire_old_buffer(req, 0);
 2859         if (error != 0)
 2860                 return (error);
 2861         sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
 2862         if (sb == NULL)
 2863                 return (ENOMEM);
 2864         sbuf_printf(sb, "\n");
 2865 
 2866         mtx_lock_spin(&w_mtx);
 2867         STAILQ_FOREACH(w, &w_all, w_list)
 2868                 w->w_displayed = 0;
 2869         STAILQ_FOREACH(w, &w_all, w_list)
 2870                 witness_add_fullgraph(sb, w);
 2871         mtx_unlock_spin(&w_mtx);
 2872 
 2873         /*
 2874          * Close the sbuf and return to userland.
 2875          */
 2876         error = sbuf_finish(sb);
 2877         sbuf_delete(sb);
 2878 
 2879         return (error);
 2880 }
 2881 
 2882 static int
 2883 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
 2884 {
 2885         int error, value;
 2886 
 2887         value = witness_watch;
 2888         error = sysctl_handle_int(oidp, &value, 0, req);
 2889         if (error != 0 || req->newptr == NULL)
 2890                 return (error);
 2891         if (value > 1 || value < -1 ||
 2892             (witness_watch == -1 && value != witness_watch))
 2893                 return (EINVAL);
 2894         witness_watch = value;
 2895         return (0);
 2896 }
 2897 
 2898 static void
 2899 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
 2900 {
 2901         int i;
 2902 
 2903         if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
 2904                 return;
 2905         w->w_displayed = 1;
 2906 
 2907         WITNESS_INDEX_ASSERT(w->w_index);
 2908         for (i = 1; i <= w_max_used_index; i++) {
 2909                 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
 2910                         sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
 2911                             w_data[i].w_name);
 2912                         witness_add_fullgraph(sb, &w_data[i]);
 2913                 }
 2914         }
 2915 }
 2916 
 2917 /*
 2918  * A simple hash function. Takes a key pointer and a key size. If size == 0,
 2919  * interprets the key as a string and reads until the null
 2920  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
 2921  * hash value computed from the key.
 2922  */
 2923 static uint32_t
 2924 witness_hash_djb2(const uint8_t *key, uint32_t size)
 2925 {
 2926         unsigned int hash = 5381;
 2927         int i;
 2928 
 2929         /* hash = hash * 33 + key[i] */
 2930         if (size)
 2931                 for (i = 0; i < size; i++)
 2932                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
 2933         else
 2934                 for (i = 0; key[i] != 0; i++)
 2935                         hash = ((hash << 5) + hash) + (unsigned int)key[i];
 2936 
 2937         return (hash);
 2938 }
 2939 
 2940 /*
 2941  * Initializes the two witness hash tables. Called exactly once from
 2942  * witness_initialize().
 2943  */
 2944 static void
 2945 witness_init_hash_tables(void)
 2946 {
 2947         int i;
 2948 
 2949         MPASS(witness_cold);
 2950 
 2951         /* Initialize the hash tables. */
 2952         for (i = 0; i < WITNESS_HASH_SIZE; i++)
 2953                 w_hash.wh_array[i] = NULL;
 2954 
 2955         w_hash.wh_size = WITNESS_HASH_SIZE;
 2956         w_hash.wh_count = 0;
 2957 
 2958         /* Initialize the lock order data hash. */
 2959         w_lofree = NULL;
 2960         for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
 2961                 memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
 2962                 w_lodata[i].wlod_next = w_lofree;
 2963                 w_lofree = &w_lodata[i];
 2964         }
 2965         w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
 2966         w_lohash.wloh_count = 0;
 2967         for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
 2968                 w_lohash.wloh_array[i] = NULL;
 2969 }
 2970 
 2971 static struct witness *
 2972 witness_hash_get(const char *key)
 2973 {
 2974         struct witness *w;
 2975         uint32_t hash;
 2976 
 2977         MPASS(key != NULL);
 2978         if (witness_cold == 0)
 2979                 mtx_assert(&w_mtx, MA_OWNED);
 2980         hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
 2981         w = w_hash.wh_array[hash];
 2982         while (w != NULL) {
 2983                 if (strcmp(w->w_name, key) == 0)
 2984                         goto out;
 2985                 w = w->w_hash_next;
 2986         }
 2987 
 2988 out:
 2989         return (w);
 2990 }
 2991 
 2992 static void
 2993 witness_hash_put(struct witness *w)
 2994 {
 2995         uint32_t hash;
 2996 
 2997         MPASS(w != NULL);
 2998         MPASS(w->w_name != NULL);
 2999         if (witness_cold == 0)
 3000                 mtx_assert(&w_mtx, MA_OWNED);
 3001         KASSERT(witness_hash_get(w->w_name) == NULL,
 3002             ("%s: trying to add a hash entry that already exists!", __func__));
 3003         KASSERT(w->w_hash_next == NULL,
 3004             ("%s: w->w_hash_next != NULL", __func__));
 3005 
 3006         hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
 3007         w->w_hash_next = w_hash.wh_array[hash];
 3008         w_hash.wh_array[hash] = w;
 3009         w_hash.wh_count++;
 3010 }
 3011 
 3012 static struct witness_lock_order_data *
 3013 witness_lock_order_get(struct witness *parent, struct witness *child)
 3014 {
 3015         struct witness_lock_order_data *data = NULL;
 3016         struct witness_lock_order_key key;
 3017         unsigned int hash;
 3018 
 3019         MPASS(parent != NULL && child != NULL);
 3020         key.from = parent->w_index;
 3021         key.to = child->w_index;
 3022         WITNESS_INDEX_ASSERT(key.from);
 3023         WITNESS_INDEX_ASSERT(key.to);
 3024         if ((w_rmatrix[parent->w_index][child->w_index]
 3025             & WITNESS_LOCK_ORDER_KNOWN) == 0)
 3026                 goto out;
 3027 
 3028         hash = witness_hash_djb2((const char*)&key,
 3029             sizeof(key)) % w_lohash.wloh_size;
 3030         data = w_lohash.wloh_array[hash];
 3031         while (data != NULL) {
 3032                 if (witness_lock_order_key_equal(&data->wlod_key, &key))
 3033                         break;
 3034                 data = data->wlod_next;
 3035         }
 3036 
 3037 out:
 3038         return (data);
 3039 }
 3040 
 3041 /*
 3042  * Verify that parent and child have a known relationship, are not the same,
 3043  * and child is actually a child of parent.  This is done without w_mtx
 3044  * to avoid contention in the common case.
 3045  */
 3046 static int
 3047 witness_lock_order_check(struct witness *parent, struct witness *child)
 3048 {
 3049 
 3050         if (parent != child &&
 3051             w_rmatrix[parent->w_index][child->w_index]
 3052             & WITNESS_LOCK_ORDER_KNOWN &&
 3053             isitmychild(parent, child))
 3054                 return (1);
 3055 
 3056         return (0);
 3057 }
 3058 
 3059 static int
 3060 witness_lock_order_add(struct witness *parent, struct witness *child)
 3061 {
 3062         struct witness_lock_order_data *data = NULL;
 3063         struct witness_lock_order_key key;
 3064         unsigned int hash;
 3065 
 3066         MPASS(parent != NULL && child != NULL);
 3067         key.from = parent->w_index;
 3068         key.to = child->w_index;
 3069         WITNESS_INDEX_ASSERT(key.from);
 3070         WITNESS_INDEX_ASSERT(key.to);
 3071         if (w_rmatrix[parent->w_index][child->w_index]
 3072             & WITNESS_LOCK_ORDER_KNOWN)
 3073                 return (1);
 3074 
 3075         hash = witness_hash_djb2((const char*)&key,
 3076             sizeof(key)) % w_lohash.wloh_size;
 3077         w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
 3078         data = w_lofree;
 3079         if (data == NULL)
 3080                 return (0);
 3081         w_lofree = data->wlod_next;
 3082         data->wlod_next = w_lohash.wloh_array[hash];
 3083         data->wlod_key = key;
 3084         w_lohash.wloh_array[hash] = data;
 3085         w_lohash.wloh_count++;
 3086         stack_zero(&data->wlod_stack);
 3087         stack_save(&data->wlod_stack);
 3088         return (1);
 3089 }
 3090 
 3091 /* Call this whenever the structure of the witness graph changes. */
 3092 static void
 3093 witness_increment_graph_generation(void)
 3094 {
 3095 
 3096         if (witness_cold == 0)
 3097                 mtx_assert(&w_mtx, MA_OWNED);
 3098         w_generation++;
 3099 }
 3100 
 3101 static int
 3102 witness_output_drain(void *arg __unused, const char *data, int len)
 3103 {
 3104 
 3105         witness_output("%.*s", len, data);
 3106         return (len);
 3107 }
 3108 
 3109 static void
 3110 witness_debugger(int cond, const char *msg)
 3111 {
 3112         char buf[32];
 3113         struct sbuf sb;
 3114         struct stack st;
 3115 
 3116         if (!cond)
 3117                 return;
 3118 
 3119         if (witness_trace) {
 3120                 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 3121                 sbuf_set_drain(&sb, witness_output_drain, NULL);
 3122 
 3123                 stack_zero(&st);
 3124                 stack_save(&st);
 3125                 witness_output("stack backtrace:\n");
 3126                 stack_sbuf_print_ddb(&sb, &st);
 3127 
 3128                 sbuf_finish(&sb);
 3129         }
 3130 
 3131         witness_enter_debugger(msg);
 3132 }
 3133 
 3134 static void
 3135 witness_enter_debugger(const char *msg)
 3136 {
 3137 #ifdef KDB
 3138         if (witness_kdb)
 3139                 kdb_enter(KDB_WHY_WITNESS, msg);
 3140 #endif
 3141 }

Cache object: 8ef91662dc4142e72f43697fbbc805d9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.