The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/sys_generic.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1989, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  * (c) UNIX System Laboratories, Inc.
    7  * All or some portions of this file are derived from material licensed
    8  * to the University of California by American Telephone and Telegraph
    9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   10  * the permission of UNIX System Laboratories, Inc.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      @(#)sys_generic.c       8.5 (Berkeley) 1/21/94
   37  */
   38 
   39 #include <sys/cdefs.h>
   40 __FBSDID("$FreeBSD$");
   41 
   42 #include "opt_capsicum.h"
   43 #include "opt_ktrace.h"
   44 
   45 #include <sys/param.h>
   46 #include <sys/systm.h>
   47 #include <sys/sysproto.h>
   48 #include <sys/capsicum.h>
   49 #include <sys/filedesc.h>
   50 #include <sys/filio.h>
   51 #include <sys/fcntl.h>
   52 #include <sys/file.h>
   53 #include <sys/lock.h>
   54 #include <sys/proc.h>
   55 #include <sys/signalvar.h>
   56 #include <sys/socketvar.h>
   57 #include <sys/uio.h>
   58 #include <sys/eventfd.h>
   59 #include <sys/kernel.h>
   60 #include <sys/ktr.h>
   61 #include <sys/limits.h>
   62 #include <sys/malloc.h>
   63 #include <sys/poll.h>
   64 #include <sys/resourcevar.h>
   65 #include <sys/selinfo.h>
   66 #include <sys/sleepqueue.h>
   67 #include <sys/specialfd.h>
   68 #include <sys/syscallsubr.h>
   69 #include <sys/sysctl.h>
   70 #include <sys/sysent.h>
   71 #include <sys/vnode.h>
   72 #include <sys/bio.h>
   73 #include <sys/buf.h>
   74 #include <sys/condvar.h>
   75 #ifdef KTRACE
   76 #include <sys/ktrace.h>
   77 #endif
   78 
   79 #include <security/audit/audit.h>
   80 
   81 /*
   82  * The following macro defines how many bytes will be allocated from
   83  * the stack instead of memory allocated when passing the IOCTL data
   84  * structures from userspace and to the kernel. Some IOCTLs having
   85  * small data structures are used very frequently and this small
   86  * buffer on the stack gives a significant speedup improvement for
   87  * those requests. The value of this define should be greater or equal
   88  * to 64 bytes and should also be power of two. The data structure is
   89  * currently hard-aligned to a 8-byte boundary on the stack. This
   90  * should currently be sufficient for all supported platforms.
   91  */
   92 #define SYS_IOCTL_SMALL_SIZE    128     /* bytes */
   93 #define SYS_IOCTL_SMALL_ALIGN   8       /* bytes */
   94 
   95 #ifdef __LP64__
   96 static int iosize_max_clamp = 0;
   97 SYSCTL_INT(_debug, OID_AUTO, iosize_max_clamp, CTLFLAG_RW,
   98     &iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX");
   99 static int devfs_iosize_max_clamp = 1;
  100 SYSCTL_INT(_debug, OID_AUTO, devfs_iosize_max_clamp, CTLFLAG_RW,
  101     &devfs_iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX for devices");
  102 #endif
  103 
  104 /*
  105  * Assert that the return value of read(2) and write(2) syscalls fits
  106  * into a register.  If not, an architecture will need to provide the
  107  * usermode wrappers to reconstruct the result.
  108  */
  109 CTASSERT(sizeof(register_t) >= sizeof(size_t));
  110 
  111 static MALLOC_DEFINE(M_IOCTLOPS, "ioctlops", "ioctl data buffer");
  112 static MALLOC_DEFINE(M_SELECT, "select", "select() buffer");
  113 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
  114 
  115 static int      pollout(struct thread *, struct pollfd *, struct pollfd *,
  116                     u_int);
  117 static int      pollscan(struct thread *, struct pollfd *, u_int);
  118 static int      pollrescan(struct thread *);
  119 static int      selscan(struct thread *, fd_mask **, fd_mask **, int);
  120 static int      selrescan(struct thread *, fd_mask **, fd_mask **);
  121 static void     selfdalloc(struct thread *, void *);
  122 static void     selfdfree(struct seltd *, struct selfd *);
  123 static int      dofileread(struct thread *, int, struct file *, struct uio *,
  124                     off_t, int);
  125 static int      dofilewrite(struct thread *, int, struct file *, struct uio *,
  126                     off_t, int);
  127 static void     doselwakeup(struct selinfo *, int);
  128 static void     seltdinit(struct thread *);
  129 static int      seltdwait(struct thread *, sbintime_t, sbintime_t);
  130 static void     seltdclear(struct thread *);
  131 
  132 /*
  133  * One seltd per-thread allocated on demand as needed.
  134  *
  135  *      t - protected by st_mtx
  136  *      k - Only accessed by curthread or read-only
  137  */
  138 struct seltd {
  139         STAILQ_HEAD(, selfd)    st_selq;        /* (k) List of selfds. */
  140         struct selfd            *st_free1;      /* (k) free fd for read set. */
  141         struct selfd            *st_free2;      /* (k) free fd for write set. */
  142         struct mtx              st_mtx;         /* Protects struct seltd */
  143         struct cv               st_wait;        /* (t) Wait channel. */
  144         int                     st_flags;       /* (t) SELTD_ flags. */
  145 };
  146 
  147 #define SELTD_PENDING   0x0001                  /* We have pending events. */
  148 #define SELTD_RESCAN    0x0002                  /* Doing a rescan. */
  149 
  150 /*
  151  * One selfd allocated per-thread per-file-descriptor.
  152  *      f - protected by sf_mtx
  153  */
  154 struct selfd {
  155         STAILQ_ENTRY(selfd)     sf_link;        /* (k) fds owned by this td. */
  156         TAILQ_ENTRY(selfd)      sf_threads;     /* (f) fds on this selinfo. */
  157         struct selinfo          *sf_si;         /* (f) selinfo when linked. */
  158         struct mtx              *sf_mtx;        /* Pointer to selinfo mtx. */
  159         struct seltd            *sf_td;         /* (k) owning seltd. */
  160         void                    *sf_cookie;     /* (k) fd or pollfd. */
  161 };
  162 
  163 MALLOC_DEFINE(M_SELFD, "selfd", "selfd");
  164 static struct mtx_pool *mtxpool_select;
  165 
  166 #ifdef __LP64__
  167 size_t
  168 devfs_iosize_max(void)
  169 {
  170 
  171         return (devfs_iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ?
  172             INT_MAX : SSIZE_MAX);
  173 }
  174 
  175 size_t
  176 iosize_max(void)
  177 {
  178 
  179         return (iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ?
  180             INT_MAX : SSIZE_MAX);
  181 }
  182 #endif
  183 
  184 #ifndef _SYS_SYSPROTO_H_
  185 struct read_args {
  186         int     fd;
  187         void    *buf;
  188         size_t  nbyte;
  189 };
  190 #endif
  191 int
  192 sys_read(struct thread *td, struct read_args *uap)
  193 {
  194         struct uio auio;
  195         struct iovec aiov;
  196         int error;
  197 
  198         if (uap->nbyte > IOSIZE_MAX)
  199                 return (EINVAL);
  200         aiov.iov_base = uap->buf;
  201         aiov.iov_len = uap->nbyte;
  202         auio.uio_iov = &aiov;
  203         auio.uio_iovcnt = 1;
  204         auio.uio_resid = uap->nbyte;
  205         auio.uio_segflg = UIO_USERSPACE;
  206         error = kern_readv(td, uap->fd, &auio);
  207         return (error);
  208 }
  209 
  210 /*
  211  * Positioned read system call
  212  */
  213 #ifndef _SYS_SYSPROTO_H_
  214 struct pread_args {
  215         int     fd;
  216         void    *buf;
  217         size_t  nbyte;
  218         int     pad;
  219         off_t   offset;
  220 };
  221 #endif
  222 int
  223 sys_pread(struct thread *td, struct pread_args *uap)
  224 {
  225 
  226         return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
  227 }
  228 
  229 int
  230 kern_pread(struct thread *td, int fd, void *buf, size_t nbyte, off_t offset)
  231 {
  232         struct uio auio;
  233         struct iovec aiov;
  234         int error;
  235 
  236         if (nbyte > IOSIZE_MAX)
  237                 return (EINVAL);
  238         aiov.iov_base = buf;
  239         aiov.iov_len = nbyte;
  240         auio.uio_iov = &aiov;
  241         auio.uio_iovcnt = 1;
  242         auio.uio_resid = nbyte;
  243         auio.uio_segflg = UIO_USERSPACE;
  244         error = kern_preadv(td, fd, &auio, offset);
  245         return (error);
  246 }
  247 
  248 #if defined(COMPAT_FREEBSD6)
  249 int
  250 freebsd6_pread(struct thread *td, struct freebsd6_pread_args *uap)
  251 {
  252 
  253         return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
  254 }
  255 #endif
  256 
  257 /*
  258  * Scatter read system call.
  259  */
  260 #ifndef _SYS_SYSPROTO_H_
  261 struct readv_args {
  262         int     fd;
  263         struct  iovec *iovp;
  264         u_int   iovcnt;
  265 };
  266 #endif
  267 int
  268 sys_readv(struct thread *td, struct readv_args *uap)
  269 {
  270         struct uio *auio;
  271         int error;
  272 
  273         error = copyinuio(uap->iovp, uap->iovcnt, &auio);
  274         if (error)
  275                 return (error);
  276         error = kern_readv(td, uap->fd, auio);
  277         free(auio, M_IOV);
  278         return (error);
  279 }
  280 
  281 int
  282 kern_readv(struct thread *td, int fd, struct uio *auio)
  283 {
  284         struct file *fp;
  285         int error;
  286 
  287         error = fget_read(td, fd, &cap_read_rights, &fp);
  288         if (error)
  289                 return (error);
  290         error = dofileread(td, fd, fp, auio, (off_t)-1, 0);
  291         fdrop(fp, td);
  292         return (error);
  293 }
  294 
  295 /*
  296  * Scatter positioned read system call.
  297  */
  298 #ifndef _SYS_SYSPROTO_H_
  299 struct preadv_args {
  300         int     fd;
  301         struct  iovec *iovp;
  302         u_int   iovcnt;
  303         off_t   offset;
  304 };
  305 #endif
  306 int
  307 sys_preadv(struct thread *td, struct preadv_args *uap)
  308 {
  309         struct uio *auio;
  310         int error;
  311 
  312         error = copyinuio(uap->iovp, uap->iovcnt, &auio);
  313         if (error)
  314                 return (error);
  315         error = kern_preadv(td, uap->fd, auio, uap->offset);
  316         free(auio, M_IOV);
  317         return (error);
  318 }
  319 
  320 int
  321 kern_preadv(struct thread *td, int fd, struct uio *auio, off_t offset)
  322 {
  323         struct file *fp;
  324         int error;
  325 
  326         error = fget_read(td, fd, &cap_pread_rights, &fp);
  327         if (error)
  328                 return (error);
  329         if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
  330                 error = ESPIPE;
  331         else if (offset < 0 &&
  332             (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR))
  333                 error = EINVAL;
  334         else
  335                 error = dofileread(td, fd, fp, auio, offset, FOF_OFFSET);
  336         fdrop(fp, td);
  337         return (error);
  338 }
  339 
  340 /*
  341  * Common code for readv and preadv that reads data in
  342  * from a file using the passed in uio, offset, and flags.
  343  */
  344 static int
  345 dofileread(struct thread *td, int fd, struct file *fp, struct uio *auio,
  346     off_t offset, int flags)
  347 {
  348         ssize_t cnt;
  349         int error;
  350 #ifdef KTRACE
  351         struct uio *ktruio = NULL;
  352 #endif
  353 
  354         AUDIT_ARG_FD(fd);
  355 
  356         /* Finish zero length reads right here */
  357         if (auio->uio_resid == 0) {
  358                 td->td_retval[0] = 0;
  359                 return (0);
  360         }
  361         auio->uio_rw = UIO_READ;
  362         auio->uio_offset = offset;
  363         auio->uio_td = td;
  364 #ifdef KTRACE
  365         if (KTRPOINT(td, KTR_GENIO)) 
  366                 ktruio = cloneuio(auio);
  367 #endif
  368         cnt = auio->uio_resid;
  369         if ((error = fo_read(fp, auio, td->td_ucred, flags, td))) {
  370                 if (auio->uio_resid != cnt && (error == ERESTART ||
  371                     error == EINTR || error == EWOULDBLOCK))
  372                         error = 0;
  373         }
  374         cnt -= auio->uio_resid;
  375 #ifdef KTRACE
  376         if (ktruio != NULL) {
  377                 ktruio->uio_resid = cnt;
  378                 ktrgenio(fd, UIO_READ, ktruio, error);
  379         }
  380 #endif
  381         td->td_retval[0] = cnt;
  382         return (error);
  383 }
  384 
  385 #ifndef _SYS_SYSPROTO_H_
  386 struct write_args {
  387         int     fd;
  388         const void *buf;
  389         size_t  nbyte;
  390 };
  391 #endif
  392 int
  393 sys_write(struct thread *td, struct write_args *uap)
  394 {
  395         struct uio auio;
  396         struct iovec aiov;
  397         int error;
  398 
  399         if (uap->nbyte > IOSIZE_MAX)
  400                 return (EINVAL);
  401         aiov.iov_base = (void *)(uintptr_t)uap->buf;
  402         aiov.iov_len = uap->nbyte;
  403         auio.uio_iov = &aiov;
  404         auio.uio_iovcnt = 1;
  405         auio.uio_resid = uap->nbyte;
  406         auio.uio_segflg = UIO_USERSPACE;
  407         error = kern_writev(td, uap->fd, &auio);
  408         return (error);
  409 }
  410 
  411 /*
  412  * Positioned write system call.
  413  */
  414 #ifndef _SYS_SYSPROTO_H_
  415 struct pwrite_args {
  416         int     fd;
  417         const void *buf;
  418         size_t  nbyte;
  419         int     pad;
  420         off_t   offset;
  421 };
  422 #endif
  423 int
  424 sys_pwrite(struct thread *td, struct pwrite_args *uap)
  425 {
  426 
  427         return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
  428 }
  429 
  430 int
  431 kern_pwrite(struct thread *td, int fd, const void *buf, size_t nbyte,
  432     off_t offset)
  433 {
  434         struct uio auio;
  435         struct iovec aiov;
  436         int error;
  437 
  438         if (nbyte > IOSIZE_MAX)
  439                 return (EINVAL);
  440         aiov.iov_base = (void *)(uintptr_t)buf;
  441         aiov.iov_len = nbyte;
  442         auio.uio_iov = &aiov;
  443         auio.uio_iovcnt = 1;
  444         auio.uio_resid = nbyte;
  445         auio.uio_segflg = UIO_USERSPACE;
  446         error = kern_pwritev(td, fd, &auio, offset);
  447         return (error);
  448 }
  449 
  450 #if defined(COMPAT_FREEBSD6)
  451 int
  452 freebsd6_pwrite(struct thread *td, struct freebsd6_pwrite_args *uap)
  453 {
  454 
  455         return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
  456 }
  457 #endif
  458 
  459 /*
  460  * Gather write system call.
  461  */
  462 #ifndef _SYS_SYSPROTO_H_
  463 struct writev_args {
  464         int     fd;
  465         struct  iovec *iovp;
  466         u_int   iovcnt;
  467 };
  468 #endif
  469 int
  470 sys_writev(struct thread *td, struct writev_args *uap)
  471 {
  472         struct uio *auio;
  473         int error;
  474 
  475         error = copyinuio(uap->iovp, uap->iovcnt, &auio);
  476         if (error)
  477                 return (error);
  478         error = kern_writev(td, uap->fd, auio);
  479         free(auio, M_IOV);
  480         return (error);
  481 }
  482 
  483 int
  484 kern_writev(struct thread *td, int fd, struct uio *auio)
  485 {
  486         struct file *fp;
  487         int error;
  488 
  489         error = fget_write(td, fd, &cap_write_rights, &fp);
  490         if (error)
  491                 return (error);
  492         error = dofilewrite(td, fd, fp, auio, (off_t)-1, 0);
  493         fdrop(fp, td);
  494         return (error);
  495 }
  496 
  497 /*
  498  * Gather positioned write system call.
  499  */
  500 #ifndef _SYS_SYSPROTO_H_
  501 struct pwritev_args {
  502         int     fd;
  503         struct  iovec *iovp;
  504         u_int   iovcnt;
  505         off_t   offset;
  506 };
  507 #endif
  508 int
  509 sys_pwritev(struct thread *td, struct pwritev_args *uap)
  510 {
  511         struct uio *auio;
  512         int error;
  513 
  514         error = copyinuio(uap->iovp, uap->iovcnt, &auio);
  515         if (error)
  516                 return (error);
  517         error = kern_pwritev(td, uap->fd, auio, uap->offset);
  518         free(auio, M_IOV);
  519         return (error);
  520 }
  521 
  522 int
  523 kern_pwritev(struct thread *td, int fd, struct uio *auio, off_t offset)
  524 {
  525         struct file *fp;
  526         int error;
  527 
  528         error = fget_write(td, fd, &cap_pwrite_rights, &fp);
  529         if (error)
  530                 return (error);
  531         if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
  532                 error = ESPIPE;
  533         else if (offset < 0 &&
  534             (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR))
  535                 error = EINVAL;
  536         else
  537                 error = dofilewrite(td, fd, fp, auio, offset, FOF_OFFSET);
  538         fdrop(fp, td);
  539         return (error);
  540 }
  541 
  542 /*
  543  * Common code for writev and pwritev that writes data to
  544  * a file using the passed in uio, offset, and flags.
  545  */
  546 static int
  547 dofilewrite(struct thread *td, int fd, struct file *fp, struct uio *auio,
  548     off_t offset, int flags)
  549 {
  550         ssize_t cnt;
  551         int error;
  552 #ifdef KTRACE
  553         struct uio *ktruio = NULL;
  554 #endif
  555 
  556         AUDIT_ARG_FD(fd);
  557         auio->uio_rw = UIO_WRITE;
  558         auio->uio_td = td;
  559         auio->uio_offset = offset;
  560 #ifdef KTRACE
  561         if (KTRPOINT(td, KTR_GENIO))
  562                 ktruio = cloneuio(auio);
  563 #endif
  564         cnt = auio->uio_resid;
  565         if ((error = fo_write(fp, auio, td->td_ucred, flags, td))) {
  566                 if (auio->uio_resid != cnt && (error == ERESTART ||
  567                     error == EINTR || error == EWOULDBLOCK))
  568                         error = 0;
  569                 /* Socket layer is responsible for issuing SIGPIPE. */
  570                 if (fp->f_type != DTYPE_SOCKET && error == EPIPE) {
  571                         PROC_LOCK(td->td_proc);
  572                         tdsignal(td, SIGPIPE);
  573                         PROC_UNLOCK(td->td_proc);
  574                 }
  575         }
  576         cnt -= auio->uio_resid;
  577 #ifdef KTRACE
  578         if (ktruio != NULL) {
  579                 ktruio->uio_resid = cnt;
  580                 ktrgenio(fd, UIO_WRITE, ktruio, error);
  581         }
  582 #endif
  583         td->td_retval[0] = cnt;
  584         return (error);
  585 }
  586 
  587 /*
  588  * Truncate a file given a file descriptor.
  589  *
  590  * Can't use fget_write() here, since must return EINVAL and not EBADF if the
  591  * descriptor isn't writable.
  592  */
  593 int
  594 kern_ftruncate(struct thread *td, int fd, off_t length)
  595 {
  596         struct file *fp;
  597         int error;
  598 
  599         AUDIT_ARG_FD(fd);
  600         if (length < 0)
  601                 return (EINVAL);
  602         error = fget(td, fd, &cap_ftruncate_rights, &fp);
  603         if (error)
  604                 return (error);
  605         AUDIT_ARG_FILE(td->td_proc, fp);
  606         if (!(fp->f_flag & FWRITE)) {
  607                 fdrop(fp, td);
  608                 return (EINVAL);
  609         }
  610         error = fo_truncate(fp, length, td->td_ucred, td);
  611         fdrop(fp, td);
  612         return (error);
  613 }
  614 
  615 #ifndef _SYS_SYSPROTO_H_
  616 struct ftruncate_args {
  617         int     fd;
  618         int     pad;
  619         off_t   length;
  620 };
  621 #endif
  622 int
  623 sys_ftruncate(struct thread *td, struct ftruncate_args *uap)
  624 {
  625 
  626         return (kern_ftruncate(td, uap->fd, uap->length));
  627 }
  628 
  629 #if defined(COMPAT_43)
  630 #ifndef _SYS_SYSPROTO_H_
  631 struct oftruncate_args {
  632         int     fd;
  633         long    length;
  634 };
  635 #endif
  636 int
  637 oftruncate(struct thread *td, struct oftruncate_args *uap)
  638 {
  639 
  640         return (kern_ftruncate(td, uap->fd, uap->length));
  641 }
  642 #endif /* COMPAT_43 */
  643 
  644 #ifndef _SYS_SYSPROTO_H_
  645 struct ioctl_args {
  646         int     fd;
  647         u_long  com;
  648         caddr_t data;
  649 };
  650 #endif
  651 /* ARGSUSED */
  652 int
  653 sys_ioctl(struct thread *td, struct ioctl_args *uap)
  654 {
  655         u_char smalldata[SYS_IOCTL_SMALL_SIZE] __aligned(SYS_IOCTL_SMALL_ALIGN);
  656         uint32_t com;
  657         int arg, error;
  658         u_int size;
  659         caddr_t data;
  660 
  661 #ifdef INVARIANTS
  662         if (uap->com > 0xffffffff) {
  663                 printf(
  664                     "WARNING pid %d (%s): ioctl sign-extension ioctl %lx\n",
  665                     td->td_proc->p_pid, td->td_name, uap->com);
  666         }
  667 #endif
  668         com = (uint32_t)uap->com;
  669 
  670         /*
  671          * Interpret high order word to find amount of data to be
  672          * copied to/from the user's address space.
  673          */
  674         size = IOCPARM_LEN(com);
  675         if ((size > IOCPARM_MAX) ||
  676             ((com & (IOC_VOID  | IOC_IN | IOC_OUT)) == 0) ||
  677 #if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
  678             ((com & IOC_OUT) && size == 0) ||
  679 #else
  680             ((com & (IOC_IN | IOC_OUT)) && size == 0) ||
  681 #endif
  682             ((com & IOC_VOID) && size > 0 && size != sizeof(int)))
  683                 return (ENOTTY);
  684 
  685         if (size > 0) {
  686                 if (com & IOC_VOID) {
  687                         /* Integer argument. */
  688                         arg = (intptr_t)uap->data;
  689                         data = (void *)&arg;
  690                         size = 0;
  691                 } else {
  692                         if (size > SYS_IOCTL_SMALL_SIZE)
  693                                 data = malloc((u_long)size, M_IOCTLOPS, M_WAITOK);
  694                         else
  695                                 data = smalldata;
  696                 }
  697         } else
  698                 data = (void *)&uap->data;
  699         if (com & IOC_IN) {
  700                 error = copyin(uap->data, data, (u_int)size);
  701                 if (error != 0)
  702                         goto out;
  703         } else if (com & IOC_OUT) {
  704                 /*
  705                  * Zero the buffer so the user always
  706                  * gets back something deterministic.
  707                  */
  708                 bzero(data, size);
  709         }
  710 
  711         error = kern_ioctl(td, uap->fd, com, data);
  712 
  713         if (error == 0 && (com & IOC_OUT))
  714                 error = copyout(data, uap->data, (u_int)size);
  715 
  716 out:
  717         if (size > SYS_IOCTL_SMALL_SIZE)
  718                 free(data, M_IOCTLOPS);
  719         return (error);
  720 }
  721 
  722 int
  723 kern_ioctl(struct thread *td, int fd, u_long com, caddr_t data)
  724 {
  725         struct file *fp;
  726         struct filedesc *fdp;
  727         int error, tmp, locked;
  728 
  729         AUDIT_ARG_FD(fd);
  730         AUDIT_ARG_CMD(com);
  731 
  732         fdp = td->td_proc->p_fd;
  733 
  734         switch (com) {
  735         case FIONCLEX:
  736         case FIOCLEX:
  737                 FILEDESC_XLOCK(fdp);
  738                 locked = LA_XLOCKED;
  739                 break;
  740         default:
  741 #ifdef CAPABILITIES
  742                 FILEDESC_SLOCK(fdp);
  743                 locked = LA_SLOCKED;
  744 #else
  745                 locked = LA_UNLOCKED;
  746 #endif
  747                 break;
  748         }
  749 
  750 #ifdef CAPABILITIES
  751         if ((fp = fget_locked(fdp, fd)) == NULL) {
  752                 error = EBADF;
  753                 goto out;
  754         }
  755         if ((error = cap_ioctl_check(fdp, fd, com)) != 0) {
  756                 fp = NULL;      /* fhold() was not called yet */
  757                 goto out;
  758         }
  759         if (!fhold(fp)) {
  760                 error = EBADF;
  761                 fp = NULL;
  762                 goto out;
  763         }
  764         if (locked == LA_SLOCKED) {
  765                 FILEDESC_SUNLOCK(fdp);
  766                 locked = LA_UNLOCKED;
  767         }
  768 #else
  769         error = fget(td, fd, &cap_ioctl_rights, &fp);
  770         if (error != 0) {
  771                 fp = NULL;
  772                 goto out;
  773         }
  774 #endif
  775         if ((fp->f_flag & (FREAD | FWRITE)) == 0) {
  776                 error = EBADF;
  777                 goto out;
  778         }
  779 
  780         switch (com) {
  781         case FIONCLEX:
  782                 fdp->fd_ofiles[fd].fde_flags &= ~UF_EXCLOSE;
  783                 goto out;
  784         case FIOCLEX:
  785                 fdp->fd_ofiles[fd].fde_flags |= UF_EXCLOSE;
  786                 goto out;
  787         case FIONBIO:
  788                 if ((tmp = *(int *)data))
  789                         atomic_set_int(&fp->f_flag, FNONBLOCK);
  790                 else
  791                         atomic_clear_int(&fp->f_flag, FNONBLOCK);
  792                 data = (void *)&tmp;
  793                 break;
  794         case FIOASYNC:
  795                 if ((tmp = *(int *)data))
  796                         atomic_set_int(&fp->f_flag, FASYNC);
  797                 else
  798                         atomic_clear_int(&fp->f_flag, FASYNC);
  799                 data = (void *)&tmp;
  800                 break;
  801         }
  802 
  803         error = fo_ioctl(fp, com, data, td->td_ucred, td);
  804 out:
  805         switch (locked) {
  806         case LA_XLOCKED:
  807                 FILEDESC_XUNLOCK(fdp);
  808                 break;
  809 #ifdef CAPABILITIES
  810         case LA_SLOCKED:
  811                 FILEDESC_SUNLOCK(fdp);
  812                 break;
  813 #endif
  814         default:
  815                 FILEDESC_UNLOCK_ASSERT(fdp);
  816                 break;
  817         }
  818         if (fp != NULL)
  819                 fdrop(fp, td);
  820         return (error);
  821 }
  822 
  823 int
  824 sys_posix_fallocate(struct thread *td, struct posix_fallocate_args *uap)
  825 {
  826         int error;
  827 
  828         error = kern_posix_fallocate(td, uap->fd, uap->offset, uap->len);
  829         return (kern_posix_error(td, error));
  830 }
  831 
  832 int
  833 kern_posix_fallocate(struct thread *td, int fd, off_t offset, off_t len)
  834 {
  835         struct file *fp;
  836         int error;
  837 
  838         AUDIT_ARG_FD(fd);
  839         if (offset < 0 || len <= 0)
  840                 return (EINVAL);
  841         /* Check for wrap. */
  842         if (offset > OFF_MAX - len)
  843                 return (EFBIG);
  844         AUDIT_ARG_FD(fd);
  845         error = fget(td, fd, &cap_pwrite_rights, &fp);
  846         if (error != 0)
  847                 return (error);
  848         AUDIT_ARG_FILE(td->td_proc, fp);
  849         if ((fp->f_ops->fo_flags & DFLAG_SEEKABLE) == 0) {
  850                 error = ESPIPE;
  851                 goto out;
  852         }
  853         if ((fp->f_flag & FWRITE) == 0) {
  854                 error = EBADF;
  855                 goto out;
  856         }
  857 
  858         error = fo_fallocate(fp, offset, len, td);
  859  out:
  860         fdrop(fp, td);
  861         return (error);
  862 }
  863 
  864 int
  865 kern_specialfd(struct thread *td, int type, void *arg)
  866 {
  867         struct file *fp;
  868         struct specialfd_eventfd *ae;
  869         int error, fd, fflags;
  870 
  871         fflags = 0;
  872         error = falloc_noinstall(td, &fp);
  873         if (error != 0)
  874                 return (error);
  875 
  876         switch (type) {
  877         case SPECIALFD_EVENTFD:
  878                 ae = arg;
  879                 if ((ae->flags & EFD_CLOEXEC) != 0)
  880                         fflags |= O_CLOEXEC;
  881                 error = eventfd_create_file(td, fp, ae->initval, ae->flags);
  882                 break;
  883         default:
  884                 error = EINVAL;
  885                 break;
  886         }
  887 
  888         if (error == 0)
  889                 error = finstall(td, fp, &fd, fflags, NULL);
  890         fdrop(fp, td);
  891         if (error == 0)
  892                 td->td_retval[0] = fd;
  893         return (error);
  894 }
  895 
  896 int
  897 sys___specialfd(struct thread *td, struct __specialfd_args *args)
  898 {
  899         struct specialfd_eventfd ae;
  900         int error;
  901 
  902         switch (args->type) {
  903         case SPECIALFD_EVENTFD:
  904                 if (args->len != sizeof(struct specialfd_eventfd)) {
  905                         error = EINVAL;
  906                         break;
  907                 }
  908                 error = copyin(args->req, &ae, sizeof(ae));
  909                 if (error != 0)
  910                         break;
  911                 if ((ae.flags & ~(EFD_CLOEXEC | EFD_NONBLOCK |
  912                     EFD_SEMAPHORE)) != 0) {
  913                         error = EINVAL;
  914                         break;
  915                 }
  916                 error = kern_specialfd(td, args->type, &ae);
  917                 break;
  918         default:
  919                 error = EINVAL;
  920                 break;
  921         }
  922         return (error);
  923 }
  924 
  925 int
  926 poll_no_poll(int events)
  927 {
  928         /*
  929          * Return true for read/write.  If the user asked for something
  930          * special, return POLLNVAL, so that clients have a way of
  931          * determining reliably whether or not the extended
  932          * functionality is present without hard-coding knowledge
  933          * of specific filesystem implementations.
  934          */
  935         if (events & ~POLLSTANDARD)
  936                 return (POLLNVAL);
  937 
  938         return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
  939 }
  940 
  941 int
  942 sys_pselect(struct thread *td, struct pselect_args *uap)
  943 {
  944         struct timespec ts;
  945         struct timeval tv, *tvp;
  946         sigset_t set, *uset;
  947         int error;
  948 
  949         if (uap->ts != NULL) {
  950                 error = copyin(uap->ts, &ts, sizeof(ts));
  951                 if (error != 0)
  952                     return (error);
  953                 TIMESPEC_TO_TIMEVAL(&tv, &ts);
  954                 tvp = &tv;
  955         } else
  956                 tvp = NULL;
  957         if (uap->sm != NULL) {
  958                 error = copyin(uap->sm, &set, sizeof(set));
  959                 if (error != 0)
  960                         return (error);
  961                 uset = &set;
  962         } else
  963                 uset = NULL;
  964         return (kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
  965             uset, NFDBITS));
  966 }
  967 
  968 int
  969 kern_pselect(struct thread *td, int nd, fd_set *in, fd_set *ou, fd_set *ex,
  970     struct timeval *tvp, sigset_t *uset, int abi_nfdbits)
  971 {
  972         int error;
  973 
  974         if (uset != NULL) {
  975                 error = kern_sigprocmask(td, SIG_SETMASK, uset,
  976                     &td->td_oldsigmask, 0);
  977                 if (error != 0)
  978                         return (error);
  979                 td->td_pflags |= TDP_OLDMASK;
  980                 /*
  981                  * Make sure that ast() is called on return to
  982                  * usermode and TDP_OLDMASK is cleared, restoring old
  983                  * sigmask.
  984                  */
  985                 thread_lock(td);
  986                 td->td_flags |= TDF_ASTPENDING;
  987                 thread_unlock(td);
  988         }
  989         error = kern_select(td, nd, in, ou, ex, tvp, abi_nfdbits);
  990         return (error);
  991 }
  992 
  993 #ifndef _SYS_SYSPROTO_H_
  994 struct select_args {
  995         int     nd;
  996         fd_set  *in, *ou, *ex;
  997         struct  timeval *tv;
  998 };
  999 #endif
 1000 int
 1001 sys_select(struct thread *td, struct select_args *uap)
 1002 {
 1003         struct timeval tv, *tvp;
 1004         int error;
 1005 
 1006         if (uap->tv != NULL) {
 1007                 error = copyin(uap->tv, &tv, sizeof(tv));
 1008                 if (error)
 1009                         return (error);
 1010                 tvp = &tv;
 1011         } else
 1012                 tvp = NULL;
 1013 
 1014         return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
 1015             NFDBITS));
 1016 }
 1017 
 1018 /*
 1019  * In the unlikely case when user specified n greater then the last
 1020  * open file descriptor, check that no bits are set after the last
 1021  * valid fd.  We must return EBADF if any is set.
 1022  *
 1023  * There are applications that rely on the behaviour.
 1024  *
 1025  * nd is fd_nfiles.
 1026  */
 1027 static int
 1028 select_check_badfd(fd_set *fd_in, int nd, int ndu, int abi_nfdbits)
 1029 {
 1030         char *addr, *oaddr;
 1031         int b, i, res;
 1032         uint8_t bits;
 1033 
 1034         if (nd >= ndu || fd_in == NULL)
 1035                 return (0);
 1036 
 1037         oaddr = NULL;
 1038         bits = 0; /* silence gcc */
 1039         for (i = nd; i < ndu; i++) {
 1040                 b = i / NBBY;
 1041 #if BYTE_ORDER == LITTLE_ENDIAN
 1042                 addr = (char *)fd_in + b;
 1043 #else
 1044                 addr = (char *)fd_in;
 1045                 if (abi_nfdbits == NFDBITS) {
 1046                         addr += rounddown(b, sizeof(fd_mask)) +
 1047                             sizeof(fd_mask) - 1 - b % sizeof(fd_mask);
 1048                 } else {
 1049                         addr += rounddown(b, sizeof(uint32_t)) +
 1050                             sizeof(uint32_t) - 1 - b % sizeof(uint32_t);
 1051                 }
 1052 #endif
 1053                 if (addr != oaddr) {
 1054                         res = fubyte(addr);
 1055                         if (res == -1)
 1056                                 return (EFAULT);
 1057                         oaddr = addr;
 1058                         bits = res;
 1059                 }
 1060                 if ((bits & (1 << (i % NBBY))) != 0)
 1061                         return (EBADF);
 1062         }
 1063         return (0);
 1064 }
 1065 
 1066 int
 1067 kern_select(struct thread *td, int nd, fd_set *fd_in, fd_set *fd_ou,
 1068     fd_set *fd_ex, struct timeval *tvp, int abi_nfdbits)
 1069 {
 1070         struct filedesc *fdp;
 1071         /*
 1072          * The magic 2048 here is chosen to be just enough for FD_SETSIZE
 1073          * infds with the new FD_SETSIZE of 1024, and more than enough for
 1074          * FD_SETSIZE infds, outfds and exceptfds with the old FD_SETSIZE
 1075          * of 256.
 1076          */
 1077         fd_mask s_selbits[howmany(2048, NFDBITS)];
 1078         fd_mask *ibits[3], *obits[3], *selbits, *sbp;
 1079         struct timeval rtv;
 1080         sbintime_t asbt, precision, rsbt;
 1081         u_int nbufbytes, ncpbytes, ncpubytes, nfdbits;
 1082         int error, lf, ndu;
 1083 
 1084         if (nd < 0)
 1085                 return (EINVAL);
 1086         fdp = td->td_proc->p_fd;
 1087         ndu = nd;
 1088         lf = fdp->fd_nfiles;
 1089         if (nd > lf)
 1090                 nd = lf;
 1091 
 1092         error = select_check_badfd(fd_in, nd, ndu, abi_nfdbits);
 1093         if (error != 0)
 1094                 return (error);
 1095         error = select_check_badfd(fd_ou, nd, ndu, abi_nfdbits);
 1096         if (error != 0)
 1097                 return (error);
 1098         error = select_check_badfd(fd_ex, nd, ndu, abi_nfdbits);
 1099         if (error != 0)
 1100                 return (error);
 1101 
 1102         /*
 1103          * Allocate just enough bits for the non-null fd_sets.  Use the
 1104          * preallocated auto buffer if possible.
 1105          */
 1106         nfdbits = roundup(nd, NFDBITS);
 1107         ncpbytes = nfdbits / NBBY;
 1108         ncpubytes = roundup(nd, abi_nfdbits) / NBBY;
 1109         nbufbytes = 0;
 1110         if (fd_in != NULL)
 1111                 nbufbytes += 2 * ncpbytes;
 1112         if (fd_ou != NULL)
 1113                 nbufbytes += 2 * ncpbytes;
 1114         if (fd_ex != NULL)
 1115                 nbufbytes += 2 * ncpbytes;
 1116         if (nbufbytes <= sizeof s_selbits)
 1117                 selbits = &s_selbits[0];
 1118         else
 1119                 selbits = malloc(nbufbytes, M_SELECT, M_WAITOK);
 1120 
 1121         /*
 1122          * Assign pointers into the bit buffers and fetch the input bits.
 1123          * Put the output buffers together so that they can be bzeroed
 1124          * together.
 1125          */
 1126         sbp = selbits;
 1127 #define getbits(name, x) \
 1128         do {                                                            \
 1129                 if (name == NULL) {                                     \
 1130                         ibits[x] = NULL;                                \
 1131                         obits[x] = NULL;                                \
 1132                 } else {                                                \
 1133                         ibits[x] = sbp + nbufbytes / 2 / sizeof *sbp;   \
 1134                         obits[x] = sbp;                                 \
 1135                         sbp += ncpbytes / sizeof *sbp;                  \
 1136                         error = copyin(name, ibits[x], ncpubytes);      \
 1137                         if (error != 0)                                 \
 1138                                 goto done;                              \
 1139                         if (ncpbytes != ncpubytes)                      \
 1140                                 bzero((char *)ibits[x] + ncpubytes,     \
 1141                                     ncpbytes - ncpubytes);              \
 1142                 }                                                       \
 1143         } while (0)
 1144         getbits(fd_in, 0);
 1145         getbits(fd_ou, 1);
 1146         getbits(fd_ex, 2);
 1147 #undef  getbits
 1148 
 1149 #if BYTE_ORDER == BIG_ENDIAN && defined(__LP64__)
 1150         /*
 1151          * XXX: swizzle_fdset assumes that if abi_nfdbits != NFDBITS,
 1152          * we are running under 32-bit emulation. This should be more
 1153          * generic.
 1154          */
 1155 #define swizzle_fdset(bits)                                             \
 1156         if (abi_nfdbits != NFDBITS && bits != NULL) {                   \
 1157                 int i;                                                  \
 1158                 for (i = 0; i < ncpbytes / sizeof *sbp; i++)            \
 1159                         bits[i] = (bits[i] >> 32) | (bits[i] << 32);    \
 1160         }
 1161 #else
 1162 #define swizzle_fdset(bits)
 1163 #endif
 1164 
 1165         /* Make sure the bit order makes it through an ABI transition */
 1166         swizzle_fdset(ibits[0]);
 1167         swizzle_fdset(ibits[1]);
 1168         swizzle_fdset(ibits[2]);
 1169 
 1170         if (nbufbytes != 0)
 1171                 bzero(selbits, nbufbytes / 2);
 1172 
 1173         precision = 0;
 1174         if (tvp != NULL) {
 1175                 rtv = *tvp;
 1176                 if (rtv.tv_sec < 0 || rtv.tv_usec < 0 ||
 1177                     rtv.tv_usec >= 1000000) {
 1178                         error = EINVAL;
 1179                         goto done;
 1180                 }
 1181                 if (!timevalisset(&rtv))
 1182                         asbt = 0;
 1183                 else if (rtv.tv_sec <= INT32_MAX) {
 1184                         rsbt = tvtosbt(rtv);
 1185                         precision = rsbt;
 1186                         precision >>= tc_precexp;
 1187                         if (TIMESEL(&asbt, rsbt))
 1188                                 asbt += tc_tick_sbt;
 1189                         if (asbt <= SBT_MAX - rsbt)
 1190                                 asbt += rsbt;
 1191                         else
 1192                                 asbt = -1;
 1193                 } else
 1194                         asbt = -1;
 1195         } else
 1196                 asbt = -1;
 1197         seltdinit(td);
 1198         /* Iterate until the timeout expires or descriptors become ready. */
 1199         for (;;) {
 1200                 error = selscan(td, ibits, obits, nd);
 1201                 if (error || td->td_retval[0] != 0)
 1202                         break;
 1203                 error = seltdwait(td, asbt, precision);
 1204                 if (error)
 1205                         break;
 1206                 error = selrescan(td, ibits, obits);
 1207                 if (error || td->td_retval[0] != 0)
 1208                         break;
 1209         }
 1210         seltdclear(td);
 1211 
 1212 done:
 1213         /* select is not restarted after signals... */
 1214         if (error == ERESTART)
 1215                 error = EINTR;
 1216         if (error == EWOULDBLOCK)
 1217                 error = 0;
 1218 
 1219         /* swizzle bit order back, if necessary */
 1220         swizzle_fdset(obits[0]);
 1221         swizzle_fdset(obits[1]);
 1222         swizzle_fdset(obits[2]);
 1223 #undef swizzle_fdset
 1224 
 1225 #define putbits(name, x) \
 1226         if (name && (error2 = copyout(obits[x], name, ncpubytes))) \
 1227                 error = error2;
 1228         if (error == 0) {
 1229                 int error2;
 1230 
 1231                 putbits(fd_in, 0);
 1232                 putbits(fd_ou, 1);
 1233                 putbits(fd_ex, 2);
 1234 #undef putbits
 1235         }
 1236         if (selbits != &s_selbits[0])
 1237                 free(selbits, M_SELECT);
 1238 
 1239         return (error);
 1240 }
 1241 /* 
 1242  * Convert a select bit set to poll flags.
 1243  *
 1244  * The backend always returns POLLHUP/POLLERR if appropriate and we
 1245  * return this as a set bit in any set.
 1246  */
 1247 static const int select_flags[3] = {
 1248     POLLRDNORM | POLLHUP | POLLERR,
 1249     POLLWRNORM | POLLHUP | POLLERR,
 1250     POLLRDBAND | POLLERR
 1251 };
 1252 
 1253 /*
 1254  * Compute the fo_poll flags required for a fd given by the index and
 1255  * bit position in the fd_mask array.
 1256  */
 1257 static __inline int
 1258 selflags(fd_mask **ibits, int idx, fd_mask bit)
 1259 {
 1260         int flags;
 1261         int msk;
 1262 
 1263         flags = 0;
 1264         for (msk = 0; msk < 3; msk++) {
 1265                 if (ibits[msk] == NULL)
 1266                         continue;
 1267                 if ((ibits[msk][idx] & bit) == 0)
 1268                         continue;
 1269                 flags |= select_flags[msk];
 1270         }
 1271         return (flags);
 1272 }
 1273 
 1274 /*
 1275  * Set the appropriate output bits given a mask of fired events and the
 1276  * input bits originally requested.
 1277  */
 1278 static __inline int
 1279 selsetbits(fd_mask **ibits, fd_mask **obits, int idx, fd_mask bit, int events)
 1280 {
 1281         int msk;
 1282         int n;
 1283 
 1284         n = 0;
 1285         for (msk = 0; msk < 3; msk++) {
 1286                 if ((events & select_flags[msk]) == 0)
 1287                         continue;
 1288                 if (ibits[msk] == NULL)
 1289                         continue;
 1290                 if ((ibits[msk][idx] & bit) == 0)
 1291                         continue;
 1292                 /*
 1293                  * XXX Check for a duplicate set.  This can occur because a
 1294                  * socket calls selrecord() twice for each poll() call
 1295                  * resulting in two selfds per real fd.  selrescan() will
 1296                  * call selsetbits twice as a result.
 1297                  */
 1298                 if ((obits[msk][idx] & bit) != 0)
 1299                         continue;
 1300                 obits[msk][idx] |= bit;
 1301                 n++;
 1302         }
 1303 
 1304         return (n);
 1305 }
 1306 
 1307 /*
 1308  * Traverse the list of fds attached to this thread's seltd and check for
 1309  * completion.
 1310  */
 1311 static int
 1312 selrescan(struct thread *td, fd_mask **ibits, fd_mask **obits)
 1313 {
 1314         struct filedesc *fdp;
 1315         struct selinfo *si;
 1316         struct seltd *stp;
 1317         struct selfd *sfp;
 1318         struct selfd *sfn;
 1319         struct file *fp;
 1320         fd_mask bit;
 1321         int fd, ev, n, idx;
 1322         int error;
 1323         bool only_user;
 1324 
 1325         fdp = td->td_proc->p_fd;
 1326         stp = td->td_sel;
 1327         n = 0;
 1328         only_user = FILEDESC_IS_ONLY_USER(fdp);
 1329         STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
 1330                 fd = (int)(uintptr_t)sfp->sf_cookie;
 1331                 si = sfp->sf_si;
 1332                 selfdfree(stp, sfp);
 1333                 /* If the selinfo wasn't cleared the event didn't fire. */
 1334                 if (si != NULL)
 1335                         continue;
 1336                 if (only_user)
 1337                         error = fget_only_user(fdp, fd, &cap_event_rights, &fp);
 1338                 else
 1339                         error = fget_unlocked(fdp, fd, &cap_event_rights, &fp);
 1340                 if (__predict_false(error != 0))
 1341                         return (error);
 1342                 idx = fd / NFDBITS;
 1343                 bit = (fd_mask)1 << (fd % NFDBITS);
 1344                 ev = fo_poll(fp, selflags(ibits, idx, bit), td->td_ucred, td);
 1345                 if (only_user)
 1346                         fput_only_user(fdp, fp);
 1347                 else
 1348                         fdrop(fp, td);
 1349                 if (ev != 0)
 1350                         n += selsetbits(ibits, obits, idx, bit, ev);
 1351         }
 1352         stp->st_flags = 0;
 1353         td->td_retval[0] = n;
 1354         return (0);
 1355 }
 1356 
 1357 /*
 1358  * Perform the initial filedescriptor scan and register ourselves with
 1359  * each selinfo.
 1360  */
 1361 static int
 1362 selscan(struct thread *td, fd_mask **ibits, fd_mask **obits, int nfd)
 1363 {
 1364         struct filedesc *fdp;
 1365         struct file *fp;
 1366         fd_mask bit;
 1367         int ev, flags, end, fd;
 1368         int n, idx;
 1369         int error;
 1370         bool only_user;
 1371 
 1372         fdp = td->td_proc->p_fd;
 1373         n = 0;
 1374         only_user = FILEDESC_IS_ONLY_USER(fdp);
 1375         for (idx = 0, fd = 0; fd < nfd; idx++) {
 1376                 end = imin(fd + NFDBITS, nfd);
 1377                 for (bit = 1; fd < end; bit <<= 1, fd++) {
 1378                         /* Compute the list of events we're interested in. */
 1379                         flags = selflags(ibits, idx, bit);
 1380                         if (flags == 0)
 1381                                 continue;
 1382                         if (only_user)
 1383                                 error = fget_only_user(fdp, fd, &cap_event_rights, &fp);
 1384                         else
 1385                                 error = fget_unlocked(fdp, fd, &cap_event_rights, &fp);
 1386                         if (__predict_false(error != 0))
 1387                                 return (error);
 1388                         selfdalloc(td, (void *)(uintptr_t)fd);
 1389                         ev = fo_poll(fp, flags, td->td_ucred, td);
 1390                         if (only_user)
 1391                                 fput_only_user(fdp, fp);
 1392                         else
 1393                                 fdrop(fp, td);
 1394                         if (ev != 0)
 1395                                 n += selsetbits(ibits, obits, idx, bit, ev);
 1396                 }
 1397         }
 1398 
 1399         td->td_retval[0] = n;
 1400         return (0);
 1401 }
 1402 
 1403 int
 1404 sys_poll(struct thread *td, struct poll_args *uap)
 1405 {
 1406         struct timespec ts, *tsp;
 1407 
 1408         if (uap->timeout != INFTIM) {
 1409                 if (uap->timeout < 0)
 1410                         return (EINVAL);
 1411                 ts.tv_sec = uap->timeout / 1000;
 1412                 ts.tv_nsec = (uap->timeout % 1000) * 1000000;
 1413                 tsp = &ts;
 1414         } else
 1415                 tsp = NULL;
 1416 
 1417         return (kern_poll(td, uap->fds, uap->nfds, tsp, NULL));
 1418 }
 1419 
 1420 /*
 1421  * kfds points to an array in the kernel.
 1422  */
 1423 int
 1424 kern_poll_kfds(struct thread *td, struct pollfd *kfds, u_int nfds,
 1425     struct timespec *tsp, sigset_t *uset)
 1426 {
 1427         sbintime_t sbt, precision, tmp;
 1428         time_t over;
 1429         struct timespec ts;
 1430         int error;
 1431 
 1432         precision = 0;
 1433         if (tsp != NULL) {
 1434                 if (!timespecvalid_interval(tsp))
 1435                         return (EINVAL);
 1436                 if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
 1437                         sbt = 0;
 1438                 else {
 1439                         ts = *tsp;
 1440                         if (ts.tv_sec > INT32_MAX / 2) {
 1441                                 over = ts.tv_sec - INT32_MAX / 2;
 1442                                 ts.tv_sec -= over;
 1443                         } else
 1444                                 over = 0;
 1445                         tmp = tstosbt(ts);
 1446                         precision = tmp;
 1447                         precision >>= tc_precexp;
 1448                         if (TIMESEL(&sbt, tmp))
 1449                                 sbt += tc_tick_sbt;
 1450                         sbt += tmp;
 1451                 }
 1452         } else
 1453                 sbt = -1;
 1454 
 1455         if (uset != NULL) {
 1456                 error = kern_sigprocmask(td, SIG_SETMASK, uset,
 1457                     &td->td_oldsigmask, 0);
 1458                 if (error)
 1459                         return (error);
 1460                 td->td_pflags |= TDP_OLDMASK;
 1461                 /*
 1462                  * Make sure that ast() is called on return to
 1463                  * usermode and TDP_OLDMASK is cleared, restoring old
 1464                  * sigmask.
 1465                  */
 1466                 thread_lock(td);
 1467                 td->td_flags |= TDF_ASTPENDING;
 1468                 thread_unlock(td);
 1469         }
 1470 
 1471         seltdinit(td);
 1472         /* Iterate until the timeout expires or descriptors become ready. */
 1473         for (;;) {
 1474                 error = pollscan(td, kfds, nfds);
 1475                 if (error || td->td_retval[0] != 0)
 1476                         break;
 1477                 error = seltdwait(td, sbt, precision);
 1478                 if (error)
 1479                         break;
 1480                 error = pollrescan(td);
 1481                 if (error || td->td_retval[0] != 0)
 1482                         break;
 1483         }
 1484         seltdclear(td);
 1485 
 1486         /* poll is not restarted after signals... */
 1487         if (error == ERESTART)
 1488                 error = EINTR;
 1489         if (error == EWOULDBLOCK)
 1490                 error = 0;
 1491         return (error);
 1492 }
 1493 
 1494 int
 1495 sys_ppoll(struct thread *td, struct ppoll_args *uap)
 1496 {
 1497         struct timespec ts, *tsp;
 1498         sigset_t set, *ssp;
 1499         int error;
 1500 
 1501         if (uap->ts != NULL) {
 1502                 error = copyin(uap->ts, &ts, sizeof(ts));
 1503                 if (error)
 1504                         return (error);
 1505                 tsp = &ts;
 1506         } else
 1507                 tsp = NULL;
 1508         if (uap->set != NULL) {
 1509                 error = copyin(uap->set, &set, sizeof(set));
 1510                 if (error)
 1511                         return (error);
 1512                 ssp = &set;
 1513         } else
 1514                 ssp = NULL;
 1515         return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
 1516 }
 1517 
 1518 /*
 1519  * ufds points to an array in user space.
 1520  */
 1521 int
 1522 kern_poll(struct thread *td, struct pollfd *ufds, u_int nfds,
 1523     struct timespec *tsp, sigset_t *set)
 1524 {
 1525         struct pollfd *kfds;
 1526         struct pollfd stackfds[32];
 1527         int error;
 1528 
 1529         if (kern_poll_maxfds(nfds))
 1530                 return (EINVAL);
 1531         if (nfds > nitems(stackfds))
 1532                 kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK);
 1533         else
 1534                 kfds = stackfds;
 1535         error = copyin(ufds, kfds, nfds * sizeof(*kfds));
 1536         if (error != 0)
 1537                 goto out;
 1538 
 1539         error = kern_poll_kfds(td, kfds, nfds, tsp, set);
 1540         if (error == 0)
 1541                 error = pollout(td, kfds, ufds, nfds);
 1542 
 1543 out:
 1544         if (nfds > nitems(stackfds))
 1545                 free(kfds, M_TEMP);
 1546         return (error);
 1547 }
 1548 
 1549 bool
 1550 kern_poll_maxfds(u_int nfds)
 1551 {
 1552 
 1553         /*
 1554          * This is kinda bogus.  We have fd limits, but that is not
 1555          * really related to the size of the pollfd array.  Make sure
 1556          * we let the process use at least FD_SETSIZE entries and at
 1557          * least enough for the system-wide limits.  We want to be reasonably
 1558          * safe, but not overly restrictive.
 1559          */
 1560         return (nfds > maxfilesperproc && nfds > FD_SETSIZE);
 1561 }
 1562 
 1563 static int
 1564 pollrescan(struct thread *td)
 1565 {
 1566         struct seltd *stp;
 1567         struct selfd *sfp;
 1568         struct selfd *sfn;
 1569         struct selinfo *si;
 1570         struct filedesc *fdp;
 1571         struct file *fp;
 1572         struct pollfd *fd;
 1573         int n, error;
 1574         bool only_user;
 1575 
 1576         n = 0;
 1577         fdp = td->td_proc->p_fd;
 1578         stp = td->td_sel;
 1579         only_user = FILEDESC_IS_ONLY_USER(fdp);
 1580         STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
 1581                 fd = (struct pollfd *)sfp->sf_cookie;
 1582                 si = sfp->sf_si;
 1583                 selfdfree(stp, sfp);
 1584                 /* If the selinfo wasn't cleared the event didn't fire. */
 1585                 if (si != NULL)
 1586                         continue;
 1587                 if (only_user)
 1588                         error = fget_only_user(fdp, fd->fd, &cap_event_rights, &fp);
 1589                 else
 1590                         error = fget_unlocked(fdp, fd->fd, &cap_event_rights, &fp);
 1591                 if (__predict_false(error != 0)) {
 1592                         fd->revents = POLLNVAL;
 1593                         n++;
 1594                         continue;
 1595                 }
 1596                 /*
 1597                  * Note: backend also returns POLLHUP and
 1598                  * POLLERR if appropriate.
 1599                  */
 1600                 fd->revents = fo_poll(fp, fd->events, td->td_ucred, td);
 1601                 if (only_user)
 1602                         fput_only_user(fdp, fp);
 1603                 else
 1604                         fdrop(fp, td);
 1605                 if (fd->revents != 0)
 1606                         n++;
 1607         }
 1608         stp->st_flags = 0;
 1609         td->td_retval[0] = n;
 1610         return (0);
 1611 }
 1612 
 1613 static int
 1614 pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
 1615 {
 1616         int error = 0;
 1617         u_int i = 0;
 1618         u_int n = 0;
 1619 
 1620         for (i = 0; i < nfd; i++) {
 1621                 error = copyout(&fds->revents, &ufds->revents,
 1622                     sizeof(ufds->revents));
 1623                 if (error)
 1624                         return (error);
 1625                 if (fds->revents != 0)
 1626                         n++;
 1627                 fds++;
 1628                 ufds++;
 1629         }
 1630         td->td_retval[0] = n;
 1631         return (0);
 1632 }
 1633 
 1634 static int
 1635 pollscan(struct thread *td, struct pollfd *fds, u_int nfd)
 1636 {
 1637         struct filedesc *fdp;
 1638         struct file *fp;
 1639         int i, n, error;
 1640         bool only_user;
 1641 
 1642         n = 0;
 1643         fdp = td->td_proc->p_fd;
 1644         only_user = FILEDESC_IS_ONLY_USER(fdp);
 1645         for (i = 0; i < nfd; i++, fds++) {
 1646                 if (fds->fd < 0) {
 1647                         fds->revents = 0;
 1648                         continue;
 1649                 }
 1650                 if (only_user)
 1651                         error = fget_only_user(fdp, fds->fd, &cap_event_rights, &fp);
 1652                 else
 1653                         error = fget_unlocked(fdp, fds->fd, &cap_event_rights, &fp);
 1654                 if (__predict_false(error != 0)) {
 1655                         fds->revents = POLLNVAL;
 1656                         n++;
 1657                         continue;
 1658                 }
 1659                 /*
 1660                  * Note: backend also returns POLLHUP and
 1661                  * POLLERR if appropriate.
 1662                  */
 1663                 selfdalloc(td, fds);
 1664                 fds->revents = fo_poll(fp, fds->events,
 1665                     td->td_ucred, td);
 1666                 if (only_user)
 1667                         fput_only_user(fdp, fp);
 1668                 else
 1669                         fdrop(fp, td);
 1670                 /*
 1671                  * POSIX requires POLLOUT to be never
 1672                  * set simultaneously with POLLHUP.
 1673                  */
 1674                 if ((fds->revents & POLLHUP) != 0)
 1675                         fds->revents &= ~POLLOUT;
 1676 
 1677                 if (fds->revents != 0)
 1678                         n++;
 1679         }
 1680         td->td_retval[0] = n;
 1681         return (0);
 1682 }
 1683 
 1684 /*
 1685  * XXX This was created specifically to support netncp and netsmb.  This
 1686  * allows the caller to specify a socket to wait for events on.  It returns
 1687  * 0 if any events matched and an error otherwise.  There is no way to
 1688  * determine which events fired.
 1689  */
 1690 int
 1691 selsocket(struct socket *so, int events, struct timeval *tvp, struct thread *td)
 1692 {
 1693         struct timeval rtv;
 1694         sbintime_t asbt, precision, rsbt;
 1695         int error;
 1696 
 1697         precision = 0;  /* stupid gcc! */
 1698         if (tvp != NULL) {
 1699                 rtv = *tvp;
 1700                 if (rtv.tv_sec < 0 || rtv.tv_usec < 0 || 
 1701                     rtv.tv_usec >= 1000000)
 1702                         return (EINVAL);
 1703                 if (!timevalisset(&rtv))
 1704                         asbt = 0;
 1705                 else if (rtv.tv_sec <= INT32_MAX) {
 1706                         rsbt = tvtosbt(rtv);
 1707                         precision = rsbt;
 1708                         precision >>= tc_precexp;
 1709                         if (TIMESEL(&asbt, rsbt))
 1710                                 asbt += tc_tick_sbt;
 1711                         if (asbt <= SBT_MAX - rsbt)
 1712                                 asbt += rsbt;
 1713                         else
 1714                                 asbt = -1;
 1715                 } else
 1716                         asbt = -1;
 1717         } else
 1718                 asbt = -1;
 1719         seltdinit(td);
 1720         /*
 1721          * Iterate until the timeout expires or the socket becomes ready.
 1722          */
 1723         for (;;) {
 1724                 selfdalloc(td, NULL);
 1725                 if (sopoll(so, events, NULL, td) != 0) {
 1726                         error = 0;
 1727                         break;
 1728                 }
 1729                 error = seltdwait(td, asbt, precision);
 1730                 if (error)
 1731                         break;
 1732         }
 1733         seltdclear(td);
 1734         /* XXX Duplicates ncp/smb behavior. */
 1735         if (error == ERESTART)
 1736                 error = 0;
 1737         return (error);
 1738 }
 1739 
 1740 /*
 1741  * Preallocate two selfds associated with 'cookie'.  Some fo_poll routines
 1742  * have two select sets, one for read and another for write.
 1743  */
 1744 static void
 1745 selfdalloc(struct thread *td, void *cookie)
 1746 {
 1747         struct seltd *stp;
 1748 
 1749         stp = td->td_sel;
 1750         if (stp->st_free1 == NULL)
 1751                 stp->st_free1 = malloc(sizeof(*stp->st_free1), M_SELFD, M_WAITOK|M_ZERO);
 1752         stp->st_free1->sf_td = stp;
 1753         stp->st_free1->sf_cookie = cookie;
 1754         if (stp->st_free2 == NULL)
 1755                 stp->st_free2 = malloc(sizeof(*stp->st_free2), M_SELFD, M_WAITOK|M_ZERO);
 1756         stp->st_free2->sf_td = stp;
 1757         stp->st_free2->sf_cookie = cookie;
 1758 }
 1759 
 1760 static void
 1761 selfdfree(struct seltd *stp, struct selfd *sfp)
 1762 {
 1763         STAILQ_REMOVE(&stp->st_selq, sfp, selfd, sf_link);
 1764         /*
 1765          * Paired with doselwakeup.
 1766          */
 1767         if (atomic_load_acq_ptr((uintptr_t *)&sfp->sf_si) != (uintptr_t)NULL) {
 1768                 mtx_lock(sfp->sf_mtx);
 1769                 if (sfp->sf_si != NULL) {
 1770                         TAILQ_REMOVE(&sfp->sf_si->si_tdlist, sfp, sf_threads);
 1771                 }
 1772                 mtx_unlock(sfp->sf_mtx);
 1773         }
 1774         free(sfp, M_SELFD);
 1775 }
 1776 
 1777 /* Drain the waiters tied to all the selfd belonging the specified selinfo. */
 1778 void
 1779 seldrain(struct selinfo *sip)
 1780 {
 1781 
 1782         /*
 1783          * This feature is already provided by doselwakeup(), thus it is
 1784          * enough to go for it.
 1785          * Eventually, the context, should take care to avoid races
 1786          * between thread calling select()/poll() and file descriptor
 1787          * detaching, but, again, the races are just the same as
 1788          * selwakeup().
 1789          */
 1790         doselwakeup(sip, -1);
 1791 }
 1792 
 1793 /*
 1794  * Record a select request.
 1795  */
 1796 void
 1797 selrecord(struct thread *selector, struct selinfo *sip)
 1798 {
 1799         struct selfd *sfp;
 1800         struct seltd *stp;
 1801         struct mtx *mtxp;
 1802 
 1803         stp = selector->td_sel;
 1804         /*
 1805          * Don't record when doing a rescan.
 1806          */
 1807         if (stp->st_flags & SELTD_RESCAN)
 1808                 return;
 1809         /*
 1810          * Grab one of the preallocated descriptors.
 1811          */
 1812         sfp = NULL;
 1813         if ((sfp = stp->st_free1) != NULL)
 1814                 stp->st_free1 = NULL;
 1815         else if ((sfp = stp->st_free2) != NULL)
 1816                 stp->st_free2 = NULL;
 1817         else
 1818                 panic("selrecord: No free selfd on selq");
 1819         mtxp = sip->si_mtx;
 1820         if (mtxp == NULL)
 1821                 mtxp = mtx_pool_find(mtxpool_select, sip);
 1822         /*
 1823          * Initialize the sfp and queue it in the thread.
 1824          */
 1825         sfp->sf_si = sip;
 1826         sfp->sf_mtx = mtxp;
 1827         STAILQ_INSERT_TAIL(&stp->st_selq, sfp, sf_link);
 1828         /*
 1829          * Now that we've locked the sip, check for initialization.
 1830          */
 1831         mtx_lock(mtxp);
 1832         if (sip->si_mtx == NULL) {
 1833                 sip->si_mtx = mtxp;
 1834                 TAILQ_INIT(&sip->si_tdlist);
 1835         }
 1836         /*
 1837          * Add this thread to the list of selfds listening on this selinfo.
 1838          */
 1839         TAILQ_INSERT_TAIL(&sip->si_tdlist, sfp, sf_threads);
 1840         mtx_unlock(sip->si_mtx);
 1841 }
 1842 
 1843 /* Wake up a selecting thread. */
 1844 void
 1845 selwakeup(struct selinfo *sip)
 1846 {
 1847         doselwakeup(sip, -1);
 1848 }
 1849 
 1850 /* Wake up a selecting thread, and set its priority. */
 1851 void
 1852 selwakeuppri(struct selinfo *sip, int pri)
 1853 {
 1854         doselwakeup(sip, pri);
 1855 }
 1856 
 1857 /*
 1858  * Do a wakeup when a selectable event occurs.
 1859  */
 1860 static void
 1861 doselwakeup(struct selinfo *sip, int pri)
 1862 {
 1863         struct selfd *sfp;
 1864         struct selfd *sfn;
 1865         struct seltd *stp;
 1866 
 1867         /* If it's not initialized there can't be any waiters. */
 1868         if (sip->si_mtx == NULL)
 1869                 return;
 1870         /*
 1871          * Locking the selinfo locks all selfds associated with it.
 1872          */
 1873         mtx_lock(sip->si_mtx);
 1874         TAILQ_FOREACH_SAFE(sfp, &sip->si_tdlist, sf_threads, sfn) {
 1875                 /*
 1876                  * Once we remove this sfp from the list and clear the
 1877                  * sf_si seltdclear will know to ignore this si.
 1878                  */
 1879                 TAILQ_REMOVE(&sip->si_tdlist, sfp, sf_threads);
 1880                 stp = sfp->sf_td;
 1881                 mtx_lock(&stp->st_mtx);
 1882                 stp->st_flags |= SELTD_PENDING;
 1883                 cv_broadcastpri(&stp->st_wait, pri);
 1884                 mtx_unlock(&stp->st_mtx);
 1885                 /*
 1886                  * Paired with selfdfree.
 1887                  *
 1888                  * Storing this only after the wakeup provides an invariant that
 1889                  * stp is not used after selfdfree returns.
 1890                  */
 1891                 atomic_store_rel_ptr((uintptr_t *)&sfp->sf_si, (uintptr_t)NULL);
 1892         }
 1893         mtx_unlock(sip->si_mtx);
 1894 }
 1895 
 1896 static void
 1897 seltdinit(struct thread *td)
 1898 {
 1899         struct seltd *stp;
 1900 
 1901         stp = td->td_sel;
 1902         if (stp != NULL) {
 1903                 MPASS(stp->st_flags == 0);
 1904                 MPASS(STAILQ_EMPTY(&stp->st_selq));
 1905                 return;
 1906         }
 1907         stp = malloc(sizeof(*stp), M_SELECT, M_WAITOK|M_ZERO);
 1908         mtx_init(&stp->st_mtx, "sellck", NULL, MTX_DEF);
 1909         cv_init(&stp->st_wait, "select");
 1910         stp->st_flags = 0;
 1911         STAILQ_INIT(&stp->st_selq);
 1912         td->td_sel = stp;
 1913 }
 1914 
 1915 static int
 1916 seltdwait(struct thread *td, sbintime_t sbt, sbintime_t precision)
 1917 {
 1918         struct seltd *stp;
 1919         int error;
 1920 
 1921         stp = td->td_sel;
 1922         /*
 1923          * An event of interest may occur while we do not hold the seltd
 1924          * locked so check the pending flag before we sleep.
 1925          */
 1926         mtx_lock(&stp->st_mtx);
 1927         /*
 1928          * Any further calls to selrecord will be a rescan.
 1929          */
 1930         stp->st_flags |= SELTD_RESCAN;
 1931         if (stp->st_flags & SELTD_PENDING) {
 1932                 mtx_unlock(&stp->st_mtx);
 1933                 return (0);
 1934         }
 1935         if (sbt == 0)
 1936                 error = EWOULDBLOCK;
 1937         else if (sbt != -1)
 1938                 error = cv_timedwait_sig_sbt(&stp->st_wait, &stp->st_mtx,
 1939                     sbt, precision, C_ABSOLUTE);
 1940         else
 1941                 error = cv_wait_sig(&stp->st_wait, &stp->st_mtx);
 1942         mtx_unlock(&stp->st_mtx);
 1943 
 1944         return (error);
 1945 }
 1946 
 1947 void
 1948 seltdfini(struct thread *td)
 1949 {
 1950         struct seltd *stp;
 1951 
 1952         stp = td->td_sel;
 1953         if (stp == NULL)
 1954                 return;
 1955         MPASS(stp->st_flags == 0);
 1956         MPASS(STAILQ_EMPTY(&stp->st_selq));
 1957         if (stp->st_free1)
 1958                 free(stp->st_free1, M_SELFD);
 1959         if (stp->st_free2)
 1960                 free(stp->st_free2, M_SELFD);
 1961         td->td_sel = NULL;
 1962         cv_destroy(&stp->st_wait);
 1963         mtx_destroy(&stp->st_mtx);
 1964         free(stp, M_SELECT);
 1965 }
 1966 
 1967 /*
 1968  * Remove the references to the thread from all of the objects we were
 1969  * polling.
 1970  */
 1971 static void
 1972 seltdclear(struct thread *td)
 1973 {
 1974         struct seltd *stp;
 1975         struct selfd *sfp;
 1976         struct selfd *sfn;
 1977 
 1978         stp = td->td_sel;
 1979         STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn)
 1980                 selfdfree(stp, sfp);
 1981         stp->st_flags = 0;
 1982 }
 1983 
 1984 static void selectinit(void *);
 1985 SYSINIT(select, SI_SUB_SYSCALLS, SI_ORDER_ANY, selectinit, NULL);
 1986 static void
 1987 selectinit(void *dummy __unused)
 1988 {
 1989 
 1990         mtxpool_select = mtx_pool_create("select mtxpool", 128, MTX_DEF);
 1991 }
 1992 
 1993 /*
 1994  * Set up a syscall return value that follows the convention specified for
 1995  * posix_* functions.
 1996  */
 1997 int
 1998 kern_posix_error(struct thread *td, int error)
 1999 {
 2000 
 2001         if (error <= 0)
 2002                 return (error);
 2003         td->td_errno = error;
 2004         td->td_pflags |= TDP_NERRNO;
 2005         td->td_retval[0] = error;
 2006         return (0);
 2007 }

Cache object: 412bce1ee0c3248b5d22d610b9dafbd5


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.