The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/sys_pipe.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1996 John S. Dyson
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice immediately at the beginning of the file, without modification,
   10  *    this list of conditions, and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 3. Absolutely no warranty of function or purpose is made by the author
   15  *    John S. Dyson.
   16  * 4. Modifications may be freely made to this file if the above conditions
   17  *    are met.
   18  *
   19  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.60.2.13 2002/08/05 15:05:15 des Exp $
   20  */
   21 
   22 /*
   23  * This file contains a high-performance replacement for the socket-based
   24  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
   25  * all features of sockets, but does do everything that pipes normally
   26  * do.
   27  */
   28 #include <sys/param.h>
   29 #include <sys/systm.h>
   30 #include <sys/kernel.h>
   31 #include <sys/proc.h>
   32 #include <sys/fcntl.h>
   33 #include <sys/file.h>
   34 #include <sys/filedesc.h>
   35 #include <sys/filio.h>
   36 #include <sys/ttycom.h>
   37 #include <sys/stat.h>
   38 #include <sys/signalvar.h>
   39 #include <sys/sysproto.h>
   40 #include <sys/pipe.h>
   41 #include <sys/vnode.h>
   42 #include <sys/uio.h>
   43 #include <sys/event.h>
   44 #include <sys/globaldata.h>
   45 #include <sys/module.h>
   46 #include <sys/malloc.h>
   47 #include <sys/sysctl.h>
   48 #include <sys/socket.h>
   49 
   50 #include <vm/vm.h>
   51 #include <vm/vm_param.h>
   52 #include <sys/lock.h>
   53 #include <vm/vm_object.h>
   54 #include <vm/vm_kern.h>
   55 #include <vm/vm_extern.h>
   56 #include <vm/pmap.h>
   57 #include <vm/vm_map.h>
   58 #include <vm/vm_page.h>
   59 #include <vm/vm_zone.h>
   60 
   61 #include <sys/file2.h>
   62 #include <sys/signal2.h>
   63 
   64 #include <machine/cpufunc.h>
   65 
   66 /*
   67  * interfaces to the outside world
   68  */
   69 static int pipe_read (struct file *fp, struct uio *uio, 
   70                 struct ucred *cred, int flags);
   71 static int pipe_write (struct file *fp, struct uio *uio, 
   72                 struct ucred *cred, int flags);
   73 static int pipe_close (struct file *fp);
   74 static int pipe_shutdown (struct file *fp, int how);
   75 static int pipe_kqfilter (struct file *fp, struct knote *kn);
   76 static int pipe_stat (struct file *fp, struct stat *sb, struct ucred *cred);
   77 static int pipe_ioctl (struct file *fp, u_long cmd, caddr_t data,
   78                 struct ucred *cred, struct sysmsg *msg);
   79 
   80 static struct fileops pipeops = {
   81         .fo_read = pipe_read, 
   82         .fo_write = pipe_write,
   83         .fo_ioctl = pipe_ioctl,
   84         .fo_kqfilter = pipe_kqfilter,
   85         .fo_stat = pipe_stat,
   86         .fo_close = pipe_close,
   87         .fo_shutdown = pipe_shutdown
   88 };
   89 
   90 static void     filt_pipedetach(struct knote *kn);
   91 static int      filt_piperead(struct knote *kn, long hint);
   92 static int      filt_pipewrite(struct knote *kn, long hint);
   93 
   94 static struct filterops pipe_rfiltops =
   95         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_pipedetach, filt_piperead };
   96 static struct filterops pipe_wfiltops =
   97         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_pipedetach, filt_pipewrite };
   98 
   99 MALLOC_DEFINE(M_PIPE, "pipe", "pipe structures");
  100 
  101 /*
  102  * Default pipe buffer size(s), this can be kind-of large now because pipe
  103  * space is pageable.  The pipe code will try to maintain locality of
  104  * reference for performance reasons, so small amounts of outstanding I/O
  105  * will not wipe the cache.
  106  */
  107 #define MINPIPESIZE (PIPE_SIZE/3)
  108 #define MAXPIPESIZE (2*PIPE_SIZE/3)
  109 
  110 /*
  111  * Limit the number of "big" pipes
  112  */
  113 #define LIMITBIGPIPES   64
  114 #define PIPEQ_MAX_CACHE 16      /* per-cpu pipe structure cache */
  115 
  116 static int pipe_maxbig = LIMITBIGPIPES;
  117 static int pipe_maxcache = PIPEQ_MAX_CACHE;
  118 static int pipe_bigcount;
  119 static int pipe_nbig;
  120 static int pipe_bcache_alloc;
  121 static int pipe_bkmem_alloc;
  122 static int pipe_rblocked_count;
  123 static int pipe_wblocked_count;
  124 
  125 SYSCTL_NODE(_kern, OID_AUTO, pipe, CTLFLAG_RW, 0, "Pipe operation");
  126 SYSCTL_INT(_kern_pipe, OID_AUTO, nbig,
  127         CTLFLAG_RD, &pipe_nbig, 0, "number of big pipes allocated");
  128 SYSCTL_INT(_kern_pipe, OID_AUTO, bigcount,
  129         CTLFLAG_RW, &pipe_bigcount, 0, "number of times pipe expanded");
  130 SYSCTL_INT(_kern_pipe, OID_AUTO, rblocked,
  131         CTLFLAG_RW, &pipe_rblocked_count, 0, "number of times pipe expanded");
  132 SYSCTL_INT(_kern_pipe, OID_AUTO, wblocked,
  133         CTLFLAG_RW, &pipe_wblocked_count, 0, "number of times pipe expanded");
  134 SYSCTL_INT(_kern_pipe, OID_AUTO, maxcache,
  135         CTLFLAG_RW, &pipe_maxcache, 0, "max pipes cached per-cpu");
  136 SYSCTL_INT(_kern_pipe, OID_AUTO, maxbig,
  137         CTLFLAG_RW, &pipe_maxbig, 0, "max number of big pipes");
  138 static int pipe_delay = 5000;   /* 5uS default */
  139 SYSCTL_INT(_kern_pipe, OID_AUTO, delay,
  140         CTLFLAG_RW, &pipe_delay, 0, "SMP delay optimization in ns");
  141 #if !defined(NO_PIPE_SYSCTL_STATS)
  142 SYSCTL_INT(_kern_pipe, OID_AUTO, bcache_alloc,
  143         CTLFLAG_RW, &pipe_bcache_alloc, 0, "pipe buffer from pcpu cache");
  144 SYSCTL_INT(_kern_pipe, OID_AUTO, bkmem_alloc,
  145         CTLFLAG_RW, &pipe_bkmem_alloc, 0, "pipe buffer from kmem");
  146 #endif
  147 
  148 /*
  149  * Auto-size pipe cache to reduce kmem allocations and frees.
  150  */
  151 static
  152 void
  153 pipeinit(void *dummy)
  154 {
  155         size_t mbytes = kmem_lim_size();
  156 
  157         if (pipe_maxbig == LIMITBIGPIPES) {
  158                 if (mbytes >= 7 * 1024)
  159                         pipe_maxbig *= 2;
  160                 if (mbytes >= 15 * 1024)
  161                         pipe_maxbig *= 2;
  162         }
  163         if (pipe_maxcache == PIPEQ_MAX_CACHE) {
  164                 if (mbytes >= 7 * 1024)
  165                         pipe_maxcache *= 2;
  166                 if (mbytes >= 15 * 1024)
  167                         pipe_maxcache *= 2;
  168         }
  169 }
  170 SYSINIT(kmem, SI_BOOT2_MACHDEP, SI_ORDER_ANY, pipeinit, NULL)
  171 
  172 static void pipeclose (struct pipe *cpipe);
  173 static void pipe_free_kmem (struct pipe *cpipe);
  174 static int pipe_create (struct pipe **cpipep);
  175 static int pipespace (struct pipe *cpipe, int size);
  176 
  177 static __inline void
  178 pipewakeup(struct pipe *cpipe, int dosigio)
  179 {
  180         if (dosigio && (cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) {
  181                 lwkt_gettoken(&sigio_token);
  182                 pgsigio(cpipe->pipe_sigio, SIGIO, 0);
  183                 lwkt_reltoken(&sigio_token);
  184         }
  185         KNOTE(&cpipe->pipe_kq.ki_note, 0);
  186 }
  187 
  188 /*
  189  * These routines are called before and after a UIO.  The UIO
  190  * may block, causing our held tokens to be lost temporarily.
  191  *
  192  * We use these routines to serialize reads against other reads
  193  * and writes against other writes.
  194  *
  195  * The read token is held on entry so *ipp does not race.
  196  */
  197 static __inline int
  198 pipe_start_uio(struct pipe *cpipe, int *ipp)
  199 {
  200         int error;
  201 
  202         while (*ipp) {
  203                 *ipp = -1;
  204                 error = tsleep(ipp, PCATCH, "pipexx", 0);
  205                 if (error)
  206                         return (error);
  207         }
  208         *ipp = 1;
  209         return (0);
  210 }
  211 
  212 static __inline void
  213 pipe_end_uio(struct pipe *cpipe, int *ipp)
  214 {
  215         if (*ipp < 0) {
  216                 *ipp = 0;
  217                 wakeup(ipp);
  218         } else {
  219                 KKASSERT(*ipp > 0);
  220                 *ipp = 0;
  221         }
  222 }
  223 
  224 /*
  225  * The pipe system call for the DTYPE_PIPE type of pipes
  226  *
  227  * pipe_args(int dummy)
  228  *
  229  * MPSAFE
  230  */
  231 int
  232 sys_pipe(struct pipe_args *uap)
  233 {
  234         struct thread *td = curthread;
  235         struct filedesc *fdp = td->td_proc->p_fd;
  236         struct file *rf, *wf;
  237         struct pipe *rpipe, *wpipe;
  238         int fd1, fd2, error;
  239 
  240         rpipe = wpipe = NULL;
  241         if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
  242                 pipeclose(rpipe); 
  243                 pipeclose(wpipe); 
  244                 return (ENFILE);
  245         }
  246         
  247         error = falloc(td->td_lwp, &rf, &fd1);
  248         if (error) {
  249                 pipeclose(rpipe);
  250                 pipeclose(wpipe);
  251                 return (error);
  252         }
  253         uap->sysmsg_fds[0] = fd1;
  254 
  255         /*
  256          * Warning: once we've gotten past allocation of the fd for the
  257          * read-side, we can only drop the read side via fdrop() in order
  258          * to avoid races against processes which manage to dup() the read
  259          * side while we are blocked trying to allocate the write side.
  260          */
  261         rf->f_type = DTYPE_PIPE;
  262         rf->f_flag = FREAD | FWRITE;
  263         rf->f_ops = &pipeops;
  264         rf->f_data = rpipe;
  265         error = falloc(td->td_lwp, &wf, &fd2);
  266         if (error) {
  267                 fsetfd(fdp, NULL, fd1);
  268                 fdrop(rf);
  269                 /* rpipe has been closed by fdrop(). */
  270                 pipeclose(wpipe);
  271                 return (error);
  272         }
  273         wf->f_type = DTYPE_PIPE;
  274         wf->f_flag = FREAD | FWRITE;
  275         wf->f_ops = &pipeops;
  276         wf->f_data = wpipe;
  277         uap->sysmsg_fds[1] = fd2;
  278 
  279         rpipe->pipe_slock = kmalloc(sizeof(struct lock),
  280                                     M_PIPE, M_WAITOK|M_ZERO);
  281         wpipe->pipe_slock = rpipe->pipe_slock;
  282         rpipe->pipe_peer = wpipe;
  283         wpipe->pipe_peer = rpipe;
  284         lockinit(rpipe->pipe_slock, "pipecl", 0, 0);
  285 
  286         /*
  287          * Once activated the peer relationship remains valid until
  288          * both sides are closed.
  289          */
  290         fsetfd(fdp, rf, fd1);
  291         fsetfd(fdp, wf, fd2);
  292         fdrop(rf);
  293         fdrop(wf);
  294 
  295         return (0);
  296 }
  297 
  298 /*
  299  * Allocate kva for pipe circular buffer, the space is pageable
  300  * This routine will 'realloc' the size of a pipe safely, if it fails
  301  * it will retain the old buffer.
  302  * If it fails it will return ENOMEM.
  303  */
  304 static int
  305 pipespace(struct pipe *cpipe, int size)
  306 {
  307         struct vm_object *object;
  308         caddr_t buffer;
  309         int npages, error;
  310 
  311         npages = round_page(size) / PAGE_SIZE;
  312         object = cpipe->pipe_buffer.object;
  313 
  314         /*
  315          * [re]create the object if necessary and reserve space for it
  316          * in the kernel_map.  The object and memory are pageable.  On
  317          * success, free the old resources before assigning the new
  318          * ones.
  319          */
  320         if (object == NULL || object->size != npages) {
  321                 object = vm_object_allocate(OBJT_DEFAULT, npages);
  322                 buffer = (caddr_t)vm_map_min(&kernel_map);
  323 
  324                 error = vm_map_find(&kernel_map, object, 0,
  325                                     (vm_offset_t *)&buffer,
  326                                     size, PAGE_SIZE,
  327                                     1, VM_MAPTYPE_NORMAL,
  328                                     VM_PROT_ALL, VM_PROT_ALL,
  329                                     0);
  330 
  331                 if (error != KERN_SUCCESS) {
  332                         vm_object_deallocate(object);
  333                         return (ENOMEM);
  334                 }
  335                 pipe_free_kmem(cpipe);
  336                 cpipe->pipe_buffer.object = object;
  337                 cpipe->pipe_buffer.buffer = buffer;
  338                 cpipe->pipe_buffer.size = size;
  339                 ++pipe_bkmem_alloc;
  340         } else {
  341                 ++pipe_bcache_alloc;
  342         }
  343         cpipe->pipe_buffer.rindex = 0;
  344         cpipe->pipe_buffer.windex = 0;
  345         return (0);
  346 }
  347 
  348 /*
  349  * Initialize and allocate VM and memory for pipe, pulling the pipe from
  350  * our per-cpu cache if possible.  For now make sure it is sized for the
  351  * smaller PIPE_SIZE default.
  352  */
  353 static int
  354 pipe_create(struct pipe **cpipep)
  355 {
  356         globaldata_t gd = mycpu;
  357         struct pipe *cpipe;
  358         int error;
  359 
  360         if ((cpipe = gd->gd_pipeq) != NULL) {
  361                 gd->gd_pipeq = cpipe->pipe_peer;
  362                 --gd->gd_pipeqcount;
  363                 cpipe->pipe_peer = NULL;
  364                 cpipe->pipe_wantwcnt = 0;
  365         } else {
  366                 cpipe = kmalloc(sizeof(struct pipe), M_PIPE, M_WAITOK|M_ZERO);
  367         }
  368         *cpipep = cpipe;
  369         if ((error = pipespace(cpipe, PIPE_SIZE)) != 0)
  370                 return (error);
  371         vfs_timestamp(&cpipe->pipe_ctime);
  372         cpipe->pipe_atime = cpipe->pipe_ctime;
  373         cpipe->pipe_mtime = cpipe->pipe_ctime;
  374         lwkt_token_init(&cpipe->pipe_rlock, "piper");
  375         lwkt_token_init(&cpipe->pipe_wlock, "pipew");
  376         return (0);
  377 }
  378 
  379 static int
  380 pipe_read(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
  381 {
  382         struct pipe *rpipe;
  383         struct pipe *wpipe;
  384         int error;
  385         size_t nread = 0;
  386         int nbio;
  387         u_int size;     /* total bytes available */
  388         u_int nsize;    /* total bytes to read */
  389         u_int rindex;   /* contiguous bytes available */
  390         int notify_writer;
  391         int bigread;
  392         int bigcount;
  393 
  394         atomic_set_int(&curthread->td_mpflags, TDF_MP_BATCH_DEMARC);
  395 
  396         if (uio->uio_resid == 0)
  397                 return(0);
  398 
  399         /*
  400          * Setup locks, calculate nbio
  401          */
  402         rpipe = (struct pipe *)fp->f_data;
  403         wpipe = rpipe->pipe_peer;
  404         lwkt_gettoken(&rpipe->pipe_rlock);
  405 
  406         if (fflags & O_FBLOCKING)
  407                 nbio = 0;
  408         else if (fflags & O_FNONBLOCKING)
  409                 nbio = 1;
  410         else if (fp->f_flag & O_NONBLOCK)
  411                 nbio = 1;
  412         else
  413                 nbio = 0;
  414 
  415         /*
  416          * Reads are serialized.  Note however that pipe_buffer.buffer and
  417          * pipe_buffer.size can change out from under us when the number
  418          * of bytes in the buffer are zero due to the write-side doing a
  419          * pipespace().
  420          */
  421         error = pipe_start_uio(rpipe, &rpipe->pipe_rip);
  422         if (error) {
  423                 lwkt_reltoken(&rpipe->pipe_rlock);
  424                 return (error);
  425         }
  426         notify_writer = 0;
  427 
  428         bigread = (uio->uio_resid > 10 * 1024 * 1024);
  429         bigcount = 10;
  430 
  431         while (uio->uio_resid) {
  432                 /*
  433                  * Don't hog the cpu.
  434                  */
  435                 if (bigread && --bigcount == 0) {
  436                         lwkt_user_yield();
  437                         bigcount = 10;
  438                         if (CURSIG(curthread->td_lwp)) {
  439                                 error = EINTR;
  440                                 break;
  441                         }
  442                 }
  443 
  444                 size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
  445                 cpu_lfence();
  446                 if (size) {
  447                         rindex = rpipe->pipe_buffer.rindex &
  448                                  (rpipe->pipe_buffer.size - 1);
  449                         nsize = size;
  450                         if (nsize > rpipe->pipe_buffer.size - rindex)
  451                                 nsize = rpipe->pipe_buffer.size - rindex;
  452                         nsize = szmin(nsize, uio->uio_resid);
  453 
  454                         error = uiomove(&rpipe->pipe_buffer.buffer[rindex],
  455                                         nsize, uio);
  456                         if (error)
  457                                 break;
  458                         cpu_mfence();
  459                         rpipe->pipe_buffer.rindex += nsize;
  460                         nread += nsize;
  461 
  462                         /*
  463                          * If the FIFO is still over half full just continue
  464                          * and do not try to notify the writer yet.
  465                          */
  466                         if (size - nsize >= (rpipe->pipe_buffer.size >> 1)) {
  467                                 notify_writer = 0;
  468                                 continue;
  469                         }
  470 
  471                         /*
  472                          * When the FIFO is less then half full notify any
  473                          * waiting writer.  WANTW can be checked while
  474                          * holding just the rlock.
  475                          */
  476                         notify_writer = 1;
  477                         if ((rpipe->pipe_state & PIPE_WANTW) == 0)
  478                                 continue;
  479                 }
  480 
  481                 /*
  482                  * If the "write-side" was blocked we wake it up.  This code
  483                  * is reached either when the buffer is completely emptied
  484                  * or if it becomes more then half-empty.
  485                  *
  486                  * Pipe_state can only be modified if both the rlock and
  487                  * wlock are held.
  488                  */
  489                 if (rpipe->pipe_state & PIPE_WANTW) {
  490                         lwkt_gettoken(&rpipe->pipe_wlock);
  491                         if (rpipe->pipe_state & PIPE_WANTW) {
  492                                 rpipe->pipe_state &= ~PIPE_WANTW;
  493                                 lwkt_reltoken(&rpipe->pipe_wlock);
  494                                 wakeup(rpipe);
  495                         } else {
  496                                 lwkt_reltoken(&rpipe->pipe_wlock);
  497                         }
  498                 }
  499 
  500                 /*
  501                  * Pick up our copy loop again if the writer sent data to
  502                  * us while we were messing around.
  503                  *
  504                  * On a SMP box poll up to pipe_delay nanoseconds for new
  505                  * data.  Typically a value of 2000 to 4000 is sufficient
  506                  * to eradicate most IPIs/tsleeps/wakeups when a pipe
  507                  * is used for synchronous communications with small packets,
  508                  * and 8000 or so (8uS) will pipeline large buffer xfers
  509                  * between cpus over a pipe.
  510                  *
  511                  * For synchronous communications a hit means doing a
  512                  * full Awrite-Bread-Bwrite-Aread cycle in less then 2uS,
  513                  * where as miss requiring a tsleep/wakeup sequence
  514                  * will take 7uS or more.
  515                  */
  516                 if (rpipe->pipe_buffer.windex != rpipe->pipe_buffer.rindex)
  517                         continue;
  518 
  519 #ifdef _RDTSC_SUPPORTED_
  520                 if (pipe_delay) {
  521                         int64_t tsc_target;
  522                         int good = 0;
  523 
  524                         tsc_target = tsc_get_target(pipe_delay);
  525                         while (tsc_test_target(tsc_target) == 0) {
  526                                 if (rpipe->pipe_buffer.windex !=
  527                                     rpipe->pipe_buffer.rindex) {
  528                                         good = 1;
  529                                         break;
  530                                 }
  531                         }
  532                         if (good)
  533                                 continue;
  534                 }
  535 #endif
  536 
  537                 /*
  538                  * Detect EOF condition, do not set error.
  539                  */
  540                 if (rpipe->pipe_state & PIPE_REOF)
  541                         break;
  542 
  543                 /*
  544                  * Break if some data was read, or if this was a non-blocking
  545                  * read.
  546                  */
  547                 if (nread > 0)
  548                         break;
  549 
  550                 if (nbio) {
  551                         error = EAGAIN;
  552                         break;
  553                 }
  554 
  555                 /*
  556                  * Last chance, interlock with WANTR.
  557                  */
  558                 lwkt_gettoken(&rpipe->pipe_wlock);
  559                 size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
  560                 if (size) {
  561                         lwkt_reltoken(&rpipe->pipe_wlock);
  562                         continue;
  563                 }
  564 
  565                 /*
  566                  * Retest EOF - acquiring a new token can temporarily release
  567                  * tokens already held.
  568                  */
  569                 if (rpipe->pipe_state & PIPE_REOF) {
  570                         lwkt_reltoken(&rpipe->pipe_wlock);
  571                         break;
  572                 }
  573 
  574                 /*
  575                  * If there is no more to read in the pipe, reset its
  576                  * pointers to the beginning.  This improves cache hit
  577                  * stats.
  578                  *
  579                  * We need both locks to modify both pointers, and there
  580                  * must also not be a write in progress or the uiomove()
  581                  * in the write might block and temporarily release
  582                  * its wlock, then reacquire and update windex.  We are
  583                  * only serialized against reads, not writes.
  584                  *
  585                  * XXX should we even bother resetting the indices?  It
  586                  *     might actually be more cache efficient not to.
  587                  */
  588                 if (rpipe->pipe_buffer.rindex == rpipe->pipe_buffer.windex &&
  589                     rpipe->pipe_wip == 0) {
  590                         rpipe->pipe_buffer.rindex = 0;
  591                         rpipe->pipe_buffer.windex = 0;
  592                 }
  593 
  594                 /*
  595                  * Wait for more data.
  596                  *
  597                  * Pipe_state can only be set if both the rlock and wlock
  598                  * are held.
  599                  */
  600                 rpipe->pipe_state |= PIPE_WANTR;
  601                 tsleep_interlock(rpipe, PCATCH);
  602                 lwkt_reltoken(&rpipe->pipe_wlock);
  603                 error = tsleep(rpipe, PCATCH | PINTERLOCKED, "piperd", 0);
  604                 ++pipe_rblocked_count;
  605                 if (error)
  606                         break;
  607         }
  608         pipe_end_uio(rpipe, &rpipe->pipe_rip);
  609 
  610         /*
  611          * Uptime last access time
  612          */
  613         if (error == 0 && nread)
  614                 vfs_timestamp(&rpipe->pipe_atime);
  615 
  616         /*
  617          * If we drained the FIFO more then half way then handle
  618          * write blocking hysteresis.
  619          *
  620          * Note that PIPE_WANTW cannot be set by the writer without
  621          * it holding both rlock and wlock, so we can test it
  622          * while holding just rlock.
  623          */
  624         if (notify_writer) {
  625                 /*
  626                  * Synchronous blocking is done on the pipe involved
  627                  */
  628                 if (rpipe->pipe_state & PIPE_WANTW) {
  629                         lwkt_gettoken(&rpipe->pipe_wlock);
  630                         if (rpipe->pipe_state & PIPE_WANTW) {
  631                                 rpipe->pipe_state &= ~PIPE_WANTW;
  632                                 lwkt_reltoken(&rpipe->pipe_wlock);
  633                                 wakeup(rpipe);
  634                         } else {
  635                                 lwkt_reltoken(&rpipe->pipe_wlock);
  636                         }
  637                 }
  638 
  639                 /*
  640                  * But we may also have to deal with a kqueue which is
  641                  * stored on the same pipe as its descriptor, so a
  642                  * EVFILT_WRITE event waiting for our side to drain will
  643                  * be on the other side.
  644                  */
  645                 lwkt_gettoken(&wpipe->pipe_wlock);
  646                 pipewakeup(wpipe, 0);
  647                 lwkt_reltoken(&wpipe->pipe_wlock);
  648         }
  649         /*size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;*/
  650         lwkt_reltoken(&rpipe->pipe_rlock);
  651 
  652         return (error);
  653 }
  654 
  655 static int
  656 pipe_write(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
  657 {
  658         int error;
  659         int orig_resid;
  660         int nbio;
  661         struct pipe *wpipe;
  662         struct pipe *rpipe;
  663         u_int windex;
  664         u_int space;
  665         u_int wcount;
  666         int bigwrite;
  667         int bigcount;
  668 
  669         /*
  670          * Writes go to the peer.  The peer will always exist.
  671          */
  672         rpipe = (struct pipe *) fp->f_data;
  673         wpipe = rpipe->pipe_peer;
  674         lwkt_gettoken(&wpipe->pipe_wlock);
  675         if (wpipe->pipe_state & PIPE_WEOF) {
  676                 lwkt_reltoken(&wpipe->pipe_wlock);
  677                 return (EPIPE);
  678         }
  679 
  680         /*
  681          * Degenerate case (EPIPE takes prec)
  682          */
  683         if (uio->uio_resid == 0) {
  684                 lwkt_reltoken(&wpipe->pipe_wlock);
  685                 return(0);
  686         }
  687 
  688         /*
  689          * Writes are serialized (start_uio must be called with wlock)
  690          */
  691         error = pipe_start_uio(wpipe, &wpipe->pipe_wip);
  692         if (error) {
  693                 lwkt_reltoken(&wpipe->pipe_wlock);
  694                 return (error);
  695         }
  696 
  697         if (fflags & O_FBLOCKING)
  698                 nbio = 0;
  699         else if (fflags & O_FNONBLOCKING)
  700                 nbio = 1;
  701         else if (fp->f_flag & O_NONBLOCK)
  702                 nbio = 1;
  703         else
  704                 nbio = 0;
  705 
  706         /*
  707          * If it is advantageous to resize the pipe buffer, do
  708          * so.  We are write-serialized so we can block safely.
  709          */
  710         if ((wpipe->pipe_buffer.size <= PIPE_SIZE) &&
  711             (pipe_nbig < pipe_maxbig) &&
  712             wpipe->pipe_wantwcnt > 4 &&
  713             (wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex)) {
  714                 /* 
  715                  * Recheck after lock.
  716                  */
  717                 lwkt_gettoken(&wpipe->pipe_rlock);
  718                 if ((wpipe->pipe_buffer.size <= PIPE_SIZE) &&
  719                     (pipe_nbig < pipe_maxbig) &&
  720                     (wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex)) {
  721                         atomic_add_int(&pipe_nbig, 1);
  722                         if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
  723                                 ++pipe_bigcount;
  724                         else
  725                                 atomic_subtract_int(&pipe_nbig, 1);
  726                 }
  727                 lwkt_reltoken(&wpipe->pipe_rlock);
  728         }
  729 
  730         orig_resid = uio->uio_resid;
  731         wcount = 0;
  732 
  733         bigwrite = (uio->uio_resid > 10 * 1024 * 1024);
  734         bigcount = 10;
  735 
  736         while (uio->uio_resid) {
  737                 if (wpipe->pipe_state & PIPE_WEOF) {
  738                         error = EPIPE;
  739                         break;
  740                 }
  741 
  742                 /*
  743                  * Don't hog the cpu.
  744                  */
  745                 if (bigwrite && --bigcount == 0) {
  746                         lwkt_user_yield();
  747                         bigcount = 10;
  748                         if (CURSIG(curthread->td_lwp)) {
  749                                 error = EINTR;
  750                                 break;
  751                         }
  752                 }
  753 
  754                 windex = wpipe->pipe_buffer.windex &
  755                          (wpipe->pipe_buffer.size - 1);
  756                 space = wpipe->pipe_buffer.size -
  757                         (wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex);
  758                 cpu_lfence();
  759 
  760                 /* Writes of size <= PIPE_BUF must be atomic. */
  761                 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
  762                         space = 0;
  763 
  764                 /* 
  765                  * Write to fill, read size handles write hysteresis.  Also
  766                  * additional restrictions can cause select-based non-blocking
  767                  * writes to spin.
  768                  */
  769                 if (space > 0) {
  770                         u_int segsize;
  771 
  772                         /*
  773                          * Transfer size is minimum of uio transfer
  774                          * and free space in pipe buffer.
  775                          *
  776                          * Limit each uiocopy to no more then PIPE_SIZE
  777                          * so we can keep the gravy train going on a
  778                          * SMP box.  This doubles the performance for
  779                          * write sizes > 16K.  Otherwise large writes
  780                          * wind up doing an inefficient synchronous
  781                          * ping-pong.
  782                          */
  783                         space = szmin(space, uio->uio_resid);
  784                         if (space > PIPE_SIZE)
  785                                 space = PIPE_SIZE;
  786 
  787                         /*
  788                          * First segment to transfer is minimum of
  789                          * transfer size and contiguous space in
  790                          * pipe buffer.  If first segment to transfer
  791                          * is less than the transfer size, we've got
  792                          * a wraparound in the buffer.
  793                          */
  794                         segsize = wpipe->pipe_buffer.size - windex;
  795                         if (segsize > space)
  796                                 segsize = space;
  797 
  798                         /*
  799                          * If this is the first loop and the reader is
  800                          * blocked, do a preemptive wakeup of the reader.
  801                          *
  802                          * On SMP the IPI latency plus the wlock interlock
  803                          * on the reader side is the fastest way to get the
  804                          * reader going.  (The scheduler will hard loop on
  805                          * lock tokens).
  806                          *
  807                          * NOTE: We can't clear WANTR here without acquiring
  808                          * the rlock, which we don't want to do here!
  809                          */
  810                         if ((wpipe->pipe_state & PIPE_WANTR))
  811                                 wakeup(wpipe);
  812 
  813                         /*
  814                          * Transfer segment, which may include a wrap-around.
  815                          * Update windex to account for both all in one go
  816                          * so the reader can read() the data atomically.
  817                          */
  818                         error = uiomove(&wpipe->pipe_buffer.buffer[windex],
  819                                         segsize, uio);
  820                         if (error == 0 && segsize < space) {
  821                                 segsize = space - segsize;
  822                                 error = uiomove(&wpipe->pipe_buffer.buffer[0],
  823                                                 segsize, uio);
  824                         }
  825                         if (error)
  826                                 break;
  827                         cpu_mfence();
  828                         wpipe->pipe_buffer.windex += space;
  829                         wcount += space;
  830                         continue;
  831                 }
  832 
  833                 /*
  834                  * We need both the rlock and the wlock to interlock against
  835                  * the EOF, WANTW, and size checks, and to modify pipe_state.
  836                  *
  837                  * These are token locks so we do not have to worry about
  838                  * deadlocks.
  839                  */
  840                 lwkt_gettoken(&wpipe->pipe_rlock);
  841 
  842                 /*
  843                  * If the "read-side" has been blocked, wake it up now
  844                  * and yield to let it drain synchronously rather
  845                  * then block.
  846                  */
  847                 if (wpipe->pipe_state & PIPE_WANTR) {
  848                         wpipe->pipe_state &= ~PIPE_WANTR;
  849                         wakeup(wpipe);
  850                 }
  851 
  852                 /*
  853                  * don't block on non-blocking I/O
  854                  */
  855                 if (nbio) {
  856                         lwkt_reltoken(&wpipe->pipe_rlock);
  857                         error = EAGAIN;
  858                         break;
  859                 }
  860 
  861                 /*
  862                  * re-test whether we have to block in the writer after
  863                  * acquiring both locks, in case the reader opened up
  864                  * some space.
  865                  */
  866                 space = wpipe->pipe_buffer.size -
  867                         (wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex);
  868                 cpu_lfence();
  869                 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
  870                         space = 0;
  871 
  872                 /*
  873                  * Retest EOF - acquiring a new token can temporarily release
  874                  * tokens already held.
  875                  */
  876                 if (wpipe->pipe_state & PIPE_WEOF) {
  877                         lwkt_reltoken(&wpipe->pipe_rlock);
  878                         error = EPIPE;
  879                         break;
  880                 }
  881 
  882                 /*
  883                  * We have no more space and have something to offer,
  884                  * wake up select/poll/kq.
  885                  */
  886                 if (space == 0) {
  887                         wpipe->pipe_state |= PIPE_WANTW;
  888                         ++wpipe->pipe_wantwcnt;
  889                         pipewakeup(wpipe, 1);
  890                         if (wpipe->pipe_state & PIPE_WANTW)
  891                                 error = tsleep(wpipe, PCATCH, "pipewr", 0);
  892                         ++pipe_wblocked_count;
  893                 }
  894                 lwkt_reltoken(&wpipe->pipe_rlock);
  895 
  896                 /*
  897                  * Break out if we errored or the read side wants us to go
  898                  * away.
  899                  */
  900                 if (error)
  901                         break;
  902                 if (wpipe->pipe_state & PIPE_WEOF) {
  903                         error = EPIPE;
  904                         break;
  905                 }
  906         }
  907         pipe_end_uio(wpipe, &wpipe->pipe_wip);
  908 
  909         /*
  910          * If we have put any characters in the buffer, we wake up
  911          * the reader.
  912          *
  913          * Both rlock and wlock are required to be able to modify pipe_state.
  914          */
  915         if (wpipe->pipe_buffer.windex != wpipe->pipe_buffer.rindex) {
  916                 if (wpipe->pipe_state & PIPE_WANTR) {
  917                         lwkt_gettoken(&wpipe->pipe_rlock);
  918                         if (wpipe->pipe_state & PIPE_WANTR) {
  919                                 wpipe->pipe_state &= ~PIPE_WANTR;
  920                                 lwkt_reltoken(&wpipe->pipe_rlock);
  921                                 wakeup(wpipe);
  922                         } else {
  923                                 lwkt_reltoken(&wpipe->pipe_rlock);
  924                         }
  925                 }
  926                 lwkt_gettoken(&wpipe->pipe_rlock);
  927                 pipewakeup(wpipe, 1);
  928                 lwkt_reltoken(&wpipe->pipe_rlock);
  929         }
  930 
  931         /*
  932          * Don't return EPIPE if I/O was successful
  933          */
  934         if ((wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex) &&
  935             (uio->uio_resid == 0) &&
  936             (error == EPIPE)) {
  937                 error = 0;
  938         }
  939 
  940         if (error == 0)
  941                 vfs_timestamp(&wpipe->pipe_mtime);
  942 
  943         /*
  944          * We have something to offer,
  945          * wake up select/poll/kq.
  946          */
  947         /*space = wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex;*/
  948         lwkt_reltoken(&wpipe->pipe_wlock);
  949         return (error);
  950 }
  951 
  952 /*
  953  * we implement a very minimal set of ioctls for compatibility with sockets.
  954  */
  955 int
  956 pipe_ioctl(struct file *fp, u_long cmd, caddr_t data,
  957            struct ucred *cred, struct sysmsg *msg)
  958 {
  959         struct pipe *mpipe;
  960         int error;
  961 
  962         mpipe = (struct pipe *)fp->f_data;
  963 
  964         lwkt_gettoken(&mpipe->pipe_rlock);
  965         lwkt_gettoken(&mpipe->pipe_wlock);
  966 
  967         switch (cmd) {
  968         case FIOASYNC:
  969                 if (*(int *)data) {
  970                         mpipe->pipe_state |= PIPE_ASYNC;
  971                 } else {
  972                         mpipe->pipe_state &= ~PIPE_ASYNC;
  973                 }
  974                 error = 0;
  975                 break;
  976         case FIONREAD:
  977                 *(int *)data = mpipe->pipe_buffer.windex -
  978                                 mpipe->pipe_buffer.rindex;
  979                 error = 0;
  980                 break;
  981         case FIOSETOWN:
  982                 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
  983                 break;
  984         case FIOGETOWN:
  985                 *(int *)data = fgetown(&mpipe->pipe_sigio);
  986                 error = 0;
  987                 break;
  988         case TIOCSPGRP:
  989                 /* This is deprecated, FIOSETOWN should be used instead. */
  990                 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
  991                 break;
  992 
  993         case TIOCGPGRP:
  994                 /* This is deprecated, FIOGETOWN should be used instead. */
  995                 *(int *)data = -fgetown(&mpipe->pipe_sigio);
  996                 error = 0;
  997                 break;
  998         default:
  999                 error = ENOTTY;
 1000                 break;
 1001         }
 1002         lwkt_reltoken(&mpipe->pipe_wlock);
 1003         lwkt_reltoken(&mpipe->pipe_rlock);
 1004 
 1005         return (error);
 1006 }
 1007 
 1008 /*
 1009  * MPSAFE
 1010  */
 1011 static int
 1012 pipe_stat(struct file *fp, struct stat *ub, struct ucred *cred)
 1013 {
 1014         struct pipe *pipe;
 1015 
 1016         pipe = (struct pipe *)fp->f_data;
 1017 
 1018         bzero((caddr_t)ub, sizeof(*ub));
 1019         ub->st_mode = S_IFIFO;
 1020         ub->st_blksize = pipe->pipe_buffer.size;
 1021         ub->st_size = pipe->pipe_buffer.windex - pipe->pipe_buffer.rindex;
 1022         ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
 1023         ub->st_atimespec = pipe->pipe_atime;
 1024         ub->st_mtimespec = pipe->pipe_mtime;
 1025         ub->st_ctimespec = pipe->pipe_ctime;
 1026         /*
 1027          * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev,
 1028          * st_flags, st_gen.
 1029          * XXX (st_dev, st_ino) should be unique.
 1030          */
 1031         return (0);
 1032 }
 1033 
 1034 static int
 1035 pipe_close(struct file *fp)
 1036 {
 1037         struct pipe *cpipe;
 1038 
 1039         cpipe = (struct pipe *)fp->f_data;
 1040         fp->f_ops = &badfileops;
 1041         fp->f_data = NULL;
 1042         funsetown(&cpipe->pipe_sigio);
 1043         pipeclose(cpipe);
 1044         return (0);
 1045 }
 1046 
 1047 /*
 1048  * Shutdown one or both directions of a full-duplex pipe.
 1049  */
 1050 static int
 1051 pipe_shutdown(struct file *fp, int how)
 1052 {
 1053         struct pipe *rpipe;
 1054         struct pipe *wpipe;
 1055         int error = EPIPE;
 1056 
 1057         rpipe = (struct pipe *)fp->f_data;
 1058         wpipe = rpipe->pipe_peer;
 1059 
 1060         /*
 1061          * We modify pipe_state on both pipes, which means we need
 1062          * all four tokens!
 1063          */
 1064         lwkt_gettoken(&rpipe->pipe_rlock);
 1065         lwkt_gettoken(&rpipe->pipe_wlock);
 1066         lwkt_gettoken(&wpipe->pipe_rlock);
 1067         lwkt_gettoken(&wpipe->pipe_wlock);
 1068 
 1069         switch(how) {
 1070         case SHUT_RDWR:
 1071         case SHUT_RD:
 1072                 rpipe->pipe_state |= PIPE_REOF;         /* my reads */
 1073                 rpipe->pipe_state |= PIPE_WEOF;         /* peer writes */
 1074                 if (rpipe->pipe_state & PIPE_WANTR) {
 1075                         rpipe->pipe_state &= ~PIPE_WANTR;
 1076                         wakeup(rpipe);
 1077                 }
 1078                 if (rpipe->pipe_state & PIPE_WANTW) {
 1079                         rpipe->pipe_state &= ~PIPE_WANTW;
 1080                         wakeup(rpipe);
 1081                 }
 1082                 error = 0;
 1083                 if (how == SHUT_RD)
 1084                         break;
 1085                 /* fall through */
 1086         case SHUT_WR:
 1087                 wpipe->pipe_state |= PIPE_REOF;         /* peer reads */
 1088                 wpipe->pipe_state |= PIPE_WEOF;         /* my writes */
 1089                 if (wpipe->pipe_state & PIPE_WANTR) {
 1090                         wpipe->pipe_state &= ~PIPE_WANTR;
 1091                         wakeup(wpipe);
 1092                 }
 1093                 if (wpipe->pipe_state & PIPE_WANTW) {
 1094                         wpipe->pipe_state &= ~PIPE_WANTW;
 1095                         wakeup(wpipe);
 1096                 }
 1097                 error = 0;
 1098                 break;
 1099         }
 1100         pipewakeup(rpipe, 1);
 1101         pipewakeup(wpipe, 1);
 1102 
 1103         lwkt_reltoken(&wpipe->pipe_wlock);
 1104         lwkt_reltoken(&wpipe->pipe_rlock);
 1105         lwkt_reltoken(&rpipe->pipe_wlock);
 1106         lwkt_reltoken(&rpipe->pipe_rlock);
 1107 
 1108         return (error);
 1109 }
 1110 
 1111 static void
 1112 pipe_free_kmem(struct pipe *cpipe)
 1113 {
 1114         if (cpipe->pipe_buffer.buffer != NULL) {
 1115                 if (cpipe->pipe_buffer.size > PIPE_SIZE)
 1116                         atomic_subtract_int(&pipe_nbig, 1);
 1117                 kmem_free(&kernel_map,
 1118                         (vm_offset_t)cpipe->pipe_buffer.buffer,
 1119                         cpipe->pipe_buffer.size);
 1120                 cpipe->pipe_buffer.buffer = NULL;
 1121                 cpipe->pipe_buffer.object = NULL;
 1122         }
 1123 }
 1124 
 1125 /*
 1126  * Close the pipe.  The slock must be held to interlock against simultanious
 1127  * closes.  The rlock and wlock must be held to adjust the pipe_state.
 1128  */
 1129 static void
 1130 pipeclose(struct pipe *cpipe)
 1131 {
 1132         globaldata_t gd;
 1133         struct pipe *ppipe;
 1134 
 1135         if (cpipe == NULL)
 1136                 return;
 1137 
 1138         /*
 1139          * The slock may not have been allocated yet (close during
 1140          * initialization)
 1141          *
 1142          * We need both the read and write tokens to modify pipe_state.
 1143          */
 1144         if (cpipe->pipe_slock)
 1145                 lockmgr(cpipe->pipe_slock, LK_EXCLUSIVE);
 1146         lwkt_gettoken(&cpipe->pipe_rlock);
 1147         lwkt_gettoken(&cpipe->pipe_wlock);
 1148 
 1149         /*
 1150          * Set our state, wakeup anyone waiting in select/poll/kq, and
 1151          * wakeup anyone blocked on our pipe.
 1152          */
 1153         cpipe->pipe_state |= PIPE_CLOSED | PIPE_REOF | PIPE_WEOF;
 1154         pipewakeup(cpipe, 1);
 1155         if (cpipe->pipe_state & (PIPE_WANTR | PIPE_WANTW)) {
 1156                 cpipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
 1157                 wakeup(cpipe);
 1158         }
 1159 
 1160         /*
 1161          * Disconnect from peer.
 1162          */
 1163         if ((ppipe = cpipe->pipe_peer) != NULL) {
 1164                 lwkt_gettoken(&ppipe->pipe_rlock);
 1165                 lwkt_gettoken(&ppipe->pipe_wlock);
 1166                 ppipe->pipe_state |= PIPE_REOF | PIPE_WEOF;
 1167                 pipewakeup(ppipe, 1);
 1168                 if (ppipe->pipe_state & (PIPE_WANTR | PIPE_WANTW)) {
 1169                         ppipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
 1170                         wakeup(ppipe);
 1171                 }
 1172                 if (SLIST_FIRST(&ppipe->pipe_kq.ki_note))
 1173                         KNOTE(&ppipe->pipe_kq.ki_note, 0);
 1174                 lwkt_reltoken(&ppipe->pipe_wlock);
 1175                 lwkt_reltoken(&ppipe->pipe_rlock);
 1176         }
 1177 
 1178         /*
 1179          * If the peer is also closed we can free resources for both
 1180          * sides, otherwise we leave our side intact to deal with any
 1181          * races (since we only have the slock).
 1182          */
 1183         if (ppipe && (ppipe->pipe_state & PIPE_CLOSED)) {
 1184                 cpipe->pipe_peer = NULL;
 1185                 ppipe->pipe_peer = NULL;
 1186                 ppipe->pipe_slock = NULL;       /* we will free the slock */
 1187                 pipeclose(ppipe);
 1188                 ppipe = NULL;
 1189         }
 1190 
 1191         lwkt_reltoken(&cpipe->pipe_wlock);
 1192         lwkt_reltoken(&cpipe->pipe_rlock);
 1193         if (cpipe->pipe_slock)
 1194                 lockmgr(cpipe->pipe_slock, LK_RELEASE);
 1195 
 1196         /*
 1197          * If we disassociated from our peer we can free resources
 1198          */
 1199         if (ppipe == NULL) {
 1200                 gd = mycpu;
 1201                 if (cpipe->pipe_slock) {
 1202                         kfree(cpipe->pipe_slock, M_PIPE);
 1203                         cpipe->pipe_slock = NULL;
 1204                 }
 1205                 if (gd->gd_pipeqcount >= pipe_maxcache ||
 1206                     cpipe->pipe_buffer.size != PIPE_SIZE
 1207                 ) {
 1208                         pipe_free_kmem(cpipe);
 1209                         kfree(cpipe, M_PIPE);
 1210                 } else {
 1211                         cpipe->pipe_state = 0;
 1212                         cpipe->pipe_peer = gd->gd_pipeq;
 1213                         gd->gd_pipeq = cpipe;
 1214                         ++gd->gd_pipeqcount;
 1215                 }
 1216         }
 1217 }
 1218 
 1219 static int
 1220 pipe_kqfilter(struct file *fp, struct knote *kn)
 1221 {
 1222         struct pipe *cpipe;
 1223 
 1224         cpipe = (struct pipe *)kn->kn_fp->f_data;
 1225 
 1226         switch (kn->kn_filter) {
 1227         case EVFILT_READ:
 1228                 kn->kn_fop = &pipe_rfiltops;
 1229                 break;
 1230         case EVFILT_WRITE:
 1231                 kn->kn_fop = &pipe_wfiltops;
 1232                 if (cpipe->pipe_peer == NULL) {
 1233                         /* other end of pipe has been closed */
 1234                         return (EPIPE);
 1235                 }
 1236                 break;
 1237         default:
 1238                 return (EOPNOTSUPP);
 1239         }
 1240         kn->kn_hook = (caddr_t)cpipe;
 1241 
 1242         knote_insert(&cpipe->pipe_kq.ki_note, kn);
 1243 
 1244         return (0);
 1245 }
 1246 
 1247 static void
 1248 filt_pipedetach(struct knote *kn)
 1249 {
 1250         struct pipe *cpipe = (struct pipe *)kn->kn_hook;
 1251 
 1252         knote_remove(&cpipe->pipe_kq.ki_note, kn);
 1253 }
 1254 
 1255 /*ARGSUSED*/
 1256 static int
 1257 filt_piperead(struct knote *kn, long hint)
 1258 {
 1259         struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
 1260         int ready = 0;
 1261 
 1262         lwkt_gettoken(&rpipe->pipe_rlock);
 1263         lwkt_gettoken(&rpipe->pipe_wlock);
 1264 
 1265         kn->kn_data = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
 1266 
 1267         if (rpipe->pipe_state & PIPE_REOF) {
 1268                 /*
 1269                  * Only set NODATA if all data has been exhausted
 1270                  */
 1271                 if (kn->kn_data == 0)
 1272                         kn->kn_flags |= EV_NODATA;
 1273                 kn->kn_flags |= EV_EOF; 
 1274                 ready = 1;
 1275         }
 1276 
 1277         lwkt_reltoken(&rpipe->pipe_wlock);
 1278         lwkt_reltoken(&rpipe->pipe_rlock);
 1279 
 1280         if (!ready)
 1281                 ready = kn->kn_data > 0;
 1282 
 1283         return (ready);
 1284 }
 1285 
 1286 /*ARGSUSED*/
 1287 static int
 1288 filt_pipewrite(struct knote *kn, long hint)
 1289 {
 1290         struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
 1291         struct pipe *wpipe = rpipe->pipe_peer;
 1292         int ready = 0;
 1293 
 1294         kn->kn_data = 0;
 1295         if (wpipe == NULL) {
 1296                 kn->kn_flags |= (EV_EOF | EV_NODATA);
 1297                 return (1);
 1298         }
 1299 
 1300         lwkt_gettoken(&wpipe->pipe_rlock);
 1301         lwkt_gettoken(&wpipe->pipe_wlock);
 1302 
 1303         if (wpipe->pipe_state & PIPE_WEOF) {
 1304                 kn->kn_flags |= (EV_EOF | EV_NODATA);
 1305                 ready = 1;
 1306         }
 1307 
 1308         if (!ready)
 1309                 kn->kn_data = wpipe->pipe_buffer.size -
 1310                               (wpipe->pipe_buffer.windex -
 1311                                wpipe->pipe_buffer.rindex);
 1312 
 1313         lwkt_reltoken(&wpipe->pipe_wlock);
 1314         lwkt_reltoken(&wpipe->pipe_rlock);
 1315 
 1316         if (!ready)
 1317                 ready = kn->kn_data >= PIPE_BUF;
 1318 
 1319         return (ready);
 1320 }

Cache object: 8ae38084f3ee111e20cd9b4fe99fc396


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.