FreeBSD/Linux Kernel Cross Reference
sys/kern/sys_pipe.c
1 /*-
2 * Copyright (c) 1996 John S. Dyson
3 * Copyright (c) 2012 Giovanni Trematerra
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice immediately at the beginning of the file, without modification,
11 * this list of conditions, and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Absolutely no warranty of function or purpose is made by the author
16 * John S. Dyson.
17 * 4. Modifications may be freely made to this file if the above conditions
18 * are met.
19 */
20
21 /*
22 * This file contains a high-performance replacement for the socket-based
23 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
24 * all features of sockets, but does do everything that pipes normally
25 * do.
26 */
27
28 /*
29 * This code has two modes of operation, a small write mode and a large
30 * write mode. The small write mode acts like conventional pipes with
31 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
32 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
33 * and PIPE_SIZE in size, the sending process pins the underlying pages in
34 * memory, and the receiving process copies directly from these pinned pages
35 * in the sending process.
36 *
37 * If the sending process receives a signal, it is possible that it will
38 * go away, and certainly its address space can change, because control
39 * is returned back to the user-mode side. In that case, the pipe code
40 * arranges to copy the buffer supplied by the user process, to a pageable
41 * kernel buffer, and the receiving process will grab the data from the
42 * pageable kernel buffer. Since signals don't happen all that often,
43 * the copy operation is normally eliminated.
44 *
45 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
46 * happen for small transfers so that the system will not spend all of
47 * its time context switching.
48 *
49 * In order to limit the resource use of pipes, two sysctls exist:
50 *
51 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
52 * address space available to us in pipe_map. This value is normally
53 * autotuned, but may also be loader tuned.
54 *
55 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
56 * memory in use by pipes.
57 *
58 * Based on how large pipekva is relative to maxpipekva, the following
59 * will happen:
60 *
61 * 0% - 50%:
62 * New pipes are given 16K of memory backing, pipes may dynamically
63 * grow to as large as 64K where needed.
64 * 50% - 75%:
65 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
66 * existing pipes may NOT grow.
67 * 75% - 100%:
68 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
69 * existing pipes will be shrunk down to 4K whenever possible.
70 *
71 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If
72 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
73 * resize which MUST occur for reverse-direction pipes when they are
74 * first used.
75 *
76 * Additional information about the current state of pipes may be obtained
77 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
78 * and kern.ipc.piperesizefail.
79 *
80 * Locking rules: There are two locks present here: A mutex, used via
81 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via
82 * the flag, as mutexes can not persist over uiomove. The mutex
83 * exists only to guard access to the flag, and is not in itself a
84 * locking mechanism. Also note that there is only a single mutex for
85 * both directions of a pipe.
86 *
87 * As pipelock() may have to sleep before it can acquire the flag, it
88 * is important to reread all data after a call to pipelock(); everything
89 * in the structure may have changed.
90 */
91
92 #include <sys/cdefs.h>
93 __FBSDID("$FreeBSD: releng/10.0/sys/kern/sys_pipe.c 255426 2013-09-09 18:11:59Z jhb $");
94
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/conf.h>
98 #include <sys/fcntl.h>
99 #include <sys/file.h>
100 #include <sys/filedesc.h>
101 #include <sys/filio.h>
102 #include <sys/kernel.h>
103 #include <sys/lock.h>
104 #include <sys/mutex.h>
105 #include <sys/ttycom.h>
106 #include <sys/stat.h>
107 #include <sys/malloc.h>
108 #include <sys/poll.h>
109 #include <sys/selinfo.h>
110 #include <sys/signalvar.h>
111 #include <sys/syscallsubr.h>
112 #include <sys/sysctl.h>
113 #include <sys/sysproto.h>
114 #include <sys/pipe.h>
115 #include <sys/proc.h>
116 #include <sys/vnode.h>
117 #include <sys/uio.h>
118 #include <sys/event.h>
119
120 #include <security/mac/mac_framework.h>
121
122 #include <vm/vm.h>
123 #include <vm/vm_param.h>
124 #include <vm/vm_object.h>
125 #include <vm/vm_kern.h>
126 #include <vm/vm_extern.h>
127 #include <vm/pmap.h>
128 #include <vm/vm_map.h>
129 #include <vm/vm_page.h>
130 #include <vm/uma.h>
131
132 /*
133 * Use this define if you want to disable *fancy* VM things. Expect an
134 * approx 30% decrease in transfer rate. This could be useful for
135 * NetBSD or OpenBSD.
136 */
137 /* #define PIPE_NODIRECT */
138
139 #define PIPE_PEER(pipe) \
140 (((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
141
142 /*
143 * interfaces to the outside world
144 */
145 static fo_rdwr_t pipe_read;
146 static fo_rdwr_t pipe_write;
147 static fo_truncate_t pipe_truncate;
148 static fo_ioctl_t pipe_ioctl;
149 static fo_poll_t pipe_poll;
150 static fo_kqfilter_t pipe_kqfilter;
151 static fo_stat_t pipe_stat;
152 static fo_close_t pipe_close;
153 static fo_chmod_t pipe_chmod;
154 static fo_chown_t pipe_chown;
155
156 struct fileops pipeops = {
157 .fo_read = pipe_read,
158 .fo_write = pipe_write,
159 .fo_truncate = pipe_truncate,
160 .fo_ioctl = pipe_ioctl,
161 .fo_poll = pipe_poll,
162 .fo_kqfilter = pipe_kqfilter,
163 .fo_stat = pipe_stat,
164 .fo_close = pipe_close,
165 .fo_chmod = pipe_chmod,
166 .fo_chown = pipe_chown,
167 .fo_sendfile = invfo_sendfile,
168 .fo_flags = DFLAG_PASSABLE
169 };
170
171 static void filt_pipedetach(struct knote *kn);
172 static void filt_pipedetach_notsup(struct knote *kn);
173 static int filt_pipenotsup(struct knote *kn, long hint);
174 static int filt_piperead(struct knote *kn, long hint);
175 static int filt_pipewrite(struct knote *kn, long hint);
176
177 static struct filterops pipe_nfiltops = {
178 .f_isfd = 1,
179 .f_detach = filt_pipedetach_notsup,
180 .f_event = filt_pipenotsup
181 };
182 static struct filterops pipe_rfiltops = {
183 .f_isfd = 1,
184 .f_detach = filt_pipedetach,
185 .f_event = filt_piperead
186 };
187 static struct filterops pipe_wfiltops = {
188 .f_isfd = 1,
189 .f_detach = filt_pipedetach,
190 .f_event = filt_pipewrite
191 };
192
193 /*
194 * Default pipe buffer size(s), this can be kind-of large now because pipe
195 * space is pageable. The pipe code will try to maintain locality of
196 * reference for performance reasons, so small amounts of outstanding I/O
197 * will not wipe the cache.
198 */
199 #define MINPIPESIZE (PIPE_SIZE/3)
200 #define MAXPIPESIZE (2*PIPE_SIZE/3)
201
202 static long amountpipekva;
203 static int pipefragretry;
204 static int pipeallocfail;
205 static int piperesizefail;
206 static int piperesizeallowed = 1;
207
208 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
209 &maxpipekva, 0, "Pipe KVA limit");
210 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
211 &amountpipekva, 0, "Pipe KVA usage");
212 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
213 &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
214 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
215 &pipeallocfail, 0, "Pipe allocation failures");
216 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
217 &piperesizefail, 0, "Pipe resize failures");
218 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
219 &piperesizeallowed, 0, "Pipe resizing allowed");
220
221 static void pipeinit(void *dummy __unused);
222 static void pipeclose(struct pipe *cpipe);
223 static void pipe_free_kmem(struct pipe *cpipe);
224 static int pipe_create(struct pipe *pipe, int backing);
225 static int pipe_paircreate(struct thread *td, struct pipepair **p_pp);
226 static __inline int pipelock(struct pipe *cpipe, int catch);
227 static __inline void pipeunlock(struct pipe *cpipe);
228 #ifndef PIPE_NODIRECT
229 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
230 static void pipe_destroy_write_buffer(struct pipe *wpipe);
231 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
232 static void pipe_clone_write_buffer(struct pipe *wpipe);
233 #endif
234 static int pipespace(struct pipe *cpipe, int size);
235 static int pipespace_new(struct pipe *cpipe, int size);
236
237 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags);
238 static int pipe_zone_init(void *mem, int size, int flags);
239 static void pipe_zone_fini(void *mem, int size);
240
241 static uma_zone_t pipe_zone;
242 static struct unrhdr *pipeino_unr;
243 static dev_t pipedev_ino;
244
245 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
246
247 static void
248 pipeinit(void *dummy __unused)
249 {
250
251 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
252 pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
253 UMA_ALIGN_PTR, 0);
254 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
255 pipeino_unr = new_unrhdr(1, INT32_MAX, NULL);
256 KASSERT(pipeino_unr != NULL, ("pipe fake inodes not initialized"));
257 pipedev_ino = devfs_alloc_cdp_inode();
258 KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
259 }
260
261 static int
262 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
263 {
264 struct pipepair *pp;
265 struct pipe *rpipe, *wpipe;
266
267 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
268
269 pp = (struct pipepair *)mem;
270
271 /*
272 * We zero both pipe endpoints to make sure all the kmem pointers
273 * are NULL, flag fields are zero'd, etc. We timestamp both
274 * endpoints with the same time.
275 */
276 rpipe = &pp->pp_rpipe;
277 bzero(rpipe, sizeof(*rpipe));
278 vfs_timestamp(&rpipe->pipe_ctime);
279 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
280
281 wpipe = &pp->pp_wpipe;
282 bzero(wpipe, sizeof(*wpipe));
283 wpipe->pipe_ctime = rpipe->pipe_ctime;
284 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
285
286 rpipe->pipe_peer = wpipe;
287 rpipe->pipe_pair = pp;
288 wpipe->pipe_peer = rpipe;
289 wpipe->pipe_pair = pp;
290
291 /*
292 * Mark both endpoints as present; they will later get free'd
293 * one at a time. When both are free'd, then the whole pair
294 * is released.
295 */
296 rpipe->pipe_present = PIPE_ACTIVE;
297 wpipe->pipe_present = PIPE_ACTIVE;
298
299 /*
300 * Eventually, the MAC Framework may initialize the label
301 * in ctor or init, but for now we do it elswhere to avoid
302 * blocking in ctor or init.
303 */
304 pp->pp_label = NULL;
305
306 return (0);
307 }
308
309 static int
310 pipe_zone_init(void *mem, int size, int flags)
311 {
312 struct pipepair *pp;
313
314 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
315
316 pp = (struct pipepair *)mem;
317
318 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
319 return (0);
320 }
321
322 static void
323 pipe_zone_fini(void *mem, int size)
324 {
325 struct pipepair *pp;
326
327 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
328
329 pp = (struct pipepair *)mem;
330
331 mtx_destroy(&pp->pp_mtx);
332 }
333
334 static int
335 pipe_paircreate(struct thread *td, struct pipepair **p_pp)
336 {
337 struct pipepair *pp;
338 struct pipe *rpipe, *wpipe;
339 int error;
340
341 *p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
342 #ifdef MAC
343 /*
344 * The MAC label is shared between the connected endpoints. As a
345 * result mac_pipe_init() and mac_pipe_create() are called once
346 * for the pair, and not on the endpoints.
347 */
348 mac_pipe_init(pp);
349 mac_pipe_create(td->td_ucred, pp);
350 #endif
351 rpipe = &pp->pp_rpipe;
352 wpipe = &pp->pp_wpipe;
353
354 knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
355 knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
356
357 /* Only the forward direction pipe is backed by default */
358 if ((error = pipe_create(rpipe, 1)) != 0 ||
359 (error = pipe_create(wpipe, 0)) != 0) {
360 pipeclose(rpipe);
361 pipeclose(wpipe);
362 return (error);
363 }
364
365 rpipe->pipe_state |= PIPE_DIRECTOK;
366 wpipe->pipe_state |= PIPE_DIRECTOK;
367 return (0);
368 }
369
370 int
371 pipe_named_ctor(struct pipe **ppipe, struct thread *td)
372 {
373 struct pipepair *pp;
374 int error;
375
376 error = pipe_paircreate(td, &pp);
377 if (error != 0)
378 return (error);
379 pp->pp_rpipe.pipe_state |= PIPE_NAMED;
380 *ppipe = &pp->pp_rpipe;
381 return (0);
382 }
383
384 void
385 pipe_dtor(struct pipe *dpipe)
386 {
387 ino_t ino;
388
389 ino = dpipe->pipe_ino;
390 funsetown(&dpipe->pipe_sigio);
391 pipeclose(dpipe);
392 if (dpipe->pipe_state & PIPE_NAMED) {
393 dpipe = dpipe->pipe_peer;
394 funsetown(&dpipe->pipe_sigio);
395 pipeclose(dpipe);
396 }
397 if (ino != 0 && ino != (ino_t)-1)
398 free_unr(pipeino_unr, ino);
399 }
400
401 /*
402 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let
403 * the zone pick up the pieces via pipeclose().
404 */
405 int
406 kern_pipe(struct thread *td, int fildes[2])
407 {
408
409 return (kern_pipe2(td, fildes, 0));
410 }
411
412 int
413 kern_pipe2(struct thread *td, int fildes[2], int flags)
414 {
415 struct filedesc *fdp;
416 struct file *rf, *wf;
417 struct pipe *rpipe, *wpipe;
418 struct pipepair *pp;
419 int fd, fflags, error;
420
421 fdp = td->td_proc->p_fd;
422 error = pipe_paircreate(td, &pp);
423 if (error != 0)
424 return (error);
425 rpipe = &pp->pp_rpipe;
426 wpipe = &pp->pp_wpipe;
427 error = falloc(td, &rf, &fd, flags);
428 if (error) {
429 pipeclose(rpipe);
430 pipeclose(wpipe);
431 return (error);
432 }
433 /* An extra reference on `rf' has been held for us by falloc(). */
434 fildes[0] = fd;
435
436 fflags = FREAD | FWRITE;
437 if ((flags & O_NONBLOCK) != 0)
438 fflags |= FNONBLOCK;
439
440 /*
441 * Warning: once we've gotten past allocation of the fd for the
442 * read-side, we can only drop the read side via fdrop() in order
443 * to avoid races against processes which manage to dup() the read
444 * side while we are blocked trying to allocate the write side.
445 */
446 finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
447 error = falloc(td, &wf, &fd, flags);
448 if (error) {
449 fdclose(fdp, rf, fildes[0], td);
450 fdrop(rf, td);
451 /* rpipe has been closed by fdrop(). */
452 pipeclose(wpipe);
453 return (error);
454 }
455 /* An extra reference on `wf' has been held for us by falloc(). */
456 finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
457 fdrop(wf, td);
458 fildes[1] = fd;
459 fdrop(rf, td);
460
461 return (0);
462 }
463
464 /* ARGSUSED */
465 int
466 sys_pipe(struct thread *td, struct pipe_args *uap)
467 {
468 int error;
469 int fildes[2];
470
471 error = kern_pipe(td, fildes);
472 if (error)
473 return (error);
474
475 td->td_retval[0] = fildes[0];
476 td->td_retval[1] = fildes[1];
477
478 return (0);
479 }
480
481 int
482 sys_pipe2(struct thread *td, struct pipe2_args *uap)
483 {
484 int error, fildes[2];
485
486 if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
487 return (EINVAL);
488 error = kern_pipe2(td, fildes, uap->flags);
489 if (error)
490 return (error);
491 error = copyout(fildes, uap->fildes, 2 * sizeof(int));
492 if (error) {
493 (void)kern_close(td, fildes[0]);
494 (void)kern_close(td, fildes[1]);
495 }
496 return (error);
497 }
498
499 /*
500 * Allocate kva for pipe circular buffer, the space is pageable
501 * This routine will 'realloc' the size of a pipe safely, if it fails
502 * it will retain the old buffer.
503 * If it fails it will return ENOMEM.
504 */
505 static int
506 pipespace_new(cpipe, size)
507 struct pipe *cpipe;
508 int size;
509 {
510 caddr_t buffer;
511 int error, cnt, firstseg;
512 static int curfail = 0;
513 static struct timeval lastfail;
514
515 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
516 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
517 ("pipespace: resize of direct writes not allowed"));
518 retry:
519 cnt = cpipe->pipe_buffer.cnt;
520 if (cnt > size)
521 size = cnt;
522
523 size = round_page(size);
524 buffer = (caddr_t) vm_map_min(pipe_map);
525
526 error = vm_map_find(pipe_map, NULL, 0,
527 (vm_offset_t *) &buffer, size, 0, VMFS_ANY_SPACE,
528 VM_PROT_ALL, VM_PROT_ALL, 0);
529 if (error != KERN_SUCCESS) {
530 if ((cpipe->pipe_buffer.buffer == NULL) &&
531 (size > SMALL_PIPE_SIZE)) {
532 size = SMALL_PIPE_SIZE;
533 pipefragretry++;
534 goto retry;
535 }
536 if (cpipe->pipe_buffer.buffer == NULL) {
537 pipeallocfail++;
538 if (ppsratecheck(&lastfail, &curfail, 1))
539 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
540 } else {
541 piperesizefail++;
542 }
543 return (ENOMEM);
544 }
545
546 /* copy data, then free old resources if we're resizing */
547 if (cnt > 0) {
548 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
549 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
550 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
551 buffer, firstseg);
552 if ((cnt - firstseg) > 0)
553 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
554 cpipe->pipe_buffer.in);
555 } else {
556 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
557 buffer, cnt);
558 }
559 }
560 pipe_free_kmem(cpipe);
561 cpipe->pipe_buffer.buffer = buffer;
562 cpipe->pipe_buffer.size = size;
563 cpipe->pipe_buffer.in = cnt;
564 cpipe->pipe_buffer.out = 0;
565 cpipe->pipe_buffer.cnt = cnt;
566 atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
567 return (0);
568 }
569
570 /*
571 * Wrapper for pipespace_new() that performs locking assertions.
572 */
573 static int
574 pipespace(cpipe, size)
575 struct pipe *cpipe;
576 int size;
577 {
578
579 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
580 ("Unlocked pipe passed to pipespace"));
581 return (pipespace_new(cpipe, size));
582 }
583
584 /*
585 * lock a pipe for I/O, blocking other access
586 */
587 static __inline int
588 pipelock(cpipe, catch)
589 struct pipe *cpipe;
590 int catch;
591 {
592 int error;
593
594 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
595 while (cpipe->pipe_state & PIPE_LOCKFL) {
596 cpipe->pipe_state |= PIPE_LWANT;
597 error = msleep(cpipe, PIPE_MTX(cpipe),
598 catch ? (PRIBIO | PCATCH) : PRIBIO,
599 "pipelk", 0);
600 if (error != 0)
601 return (error);
602 }
603 cpipe->pipe_state |= PIPE_LOCKFL;
604 return (0);
605 }
606
607 /*
608 * unlock a pipe I/O lock
609 */
610 static __inline void
611 pipeunlock(cpipe)
612 struct pipe *cpipe;
613 {
614
615 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
616 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
617 ("Unlocked pipe passed to pipeunlock"));
618 cpipe->pipe_state &= ~PIPE_LOCKFL;
619 if (cpipe->pipe_state & PIPE_LWANT) {
620 cpipe->pipe_state &= ~PIPE_LWANT;
621 wakeup(cpipe);
622 }
623 }
624
625 void
626 pipeselwakeup(cpipe)
627 struct pipe *cpipe;
628 {
629
630 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
631 if (cpipe->pipe_state & PIPE_SEL) {
632 selwakeuppri(&cpipe->pipe_sel, PSOCK);
633 if (!SEL_WAITING(&cpipe->pipe_sel))
634 cpipe->pipe_state &= ~PIPE_SEL;
635 }
636 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
637 pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
638 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
639 }
640
641 /*
642 * Initialize and allocate VM and memory for pipe. The structure
643 * will start out zero'd from the ctor, so we just manage the kmem.
644 */
645 static int
646 pipe_create(pipe, backing)
647 struct pipe *pipe;
648 int backing;
649 {
650 int error;
651
652 if (backing) {
653 if (amountpipekva > maxpipekva / 2)
654 error = pipespace_new(pipe, SMALL_PIPE_SIZE);
655 else
656 error = pipespace_new(pipe, PIPE_SIZE);
657 } else {
658 /* If we're not backing this pipe, no need to do anything. */
659 error = 0;
660 }
661 pipe->pipe_ino = -1;
662 return (error);
663 }
664
665 /* ARGSUSED */
666 static int
667 pipe_read(fp, uio, active_cred, flags, td)
668 struct file *fp;
669 struct uio *uio;
670 struct ucred *active_cred;
671 struct thread *td;
672 int flags;
673 {
674 struct pipe *rpipe;
675 int error;
676 int nread = 0;
677 int size;
678
679 rpipe = fp->f_data;
680 PIPE_LOCK(rpipe);
681 ++rpipe->pipe_busy;
682 error = pipelock(rpipe, 1);
683 if (error)
684 goto unlocked_error;
685
686 #ifdef MAC
687 error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
688 if (error)
689 goto locked_error;
690 #endif
691 if (amountpipekva > (3 * maxpipekva) / 4) {
692 if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
693 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
694 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
695 (piperesizeallowed == 1)) {
696 PIPE_UNLOCK(rpipe);
697 pipespace(rpipe, SMALL_PIPE_SIZE);
698 PIPE_LOCK(rpipe);
699 }
700 }
701
702 while (uio->uio_resid) {
703 /*
704 * normal pipe buffer receive
705 */
706 if (rpipe->pipe_buffer.cnt > 0) {
707 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
708 if (size > rpipe->pipe_buffer.cnt)
709 size = rpipe->pipe_buffer.cnt;
710 if (size > uio->uio_resid)
711 size = uio->uio_resid;
712
713 PIPE_UNLOCK(rpipe);
714 error = uiomove(
715 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
716 size, uio);
717 PIPE_LOCK(rpipe);
718 if (error)
719 break;
720
721 rpipe->pipe_buffer.out += size;
722 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
723 rpipe->pipe_buffer.out = 0;
724
725 rpipe->pipe_buffer.cnt -= size;
726
727 /*
728 * If there is no more to read in the pipe, reset
729 * its pointers to the beginning. This improves
730 * cache hit stats.
731 */
732 if (rpipe->pipe_buffer.cnt == 0) {
733 rpipe->pipe_buffer.in = 0;
734 rpipe->pipe_buffer.out = 0;
735 }
736 nread += size;
737 #ifndef PIPE_NODIRECT
738 /*
739 * Direct copy, bypassing a kernel buffer.
740 */
741 } else if ((size = rpipe->pipe_map.cnt) &&
742 (rpipe->pipe_state & PIPE_DIRECTW)) {
743 if (size > uio->uio_resid)
744 size = (u_int) uio->uio_resid;
745
746 PIPE_UNLOCK(rpipe);
747 error = uiomove_fromphys(rpipe->pipe_map.ms,
748 rpipe->pipe_map.pos, size, uio);
749 PIPE_LOCK(rpipe);
750 if (error)
751 break;
752 nread += size;
753 rpipe->pipe_map.pos += size;
754 rpipe->pipe_map.cnt -= size;
755 if (rpipe->pipe_map.cnt == 0) {
756 rpipe->pipe_state &= ~(PIPE_DIRECTW|PIPE_WANTW);
757 wakeup(rpipe);
758 }
759 #endif
760 } else {
761 /*
762 * detect EOF condition
763 * read returns 0 on EOF, no need to set error
764 */
765 if (rpipe->pipe_state & PIPE_EOF)
766 break;
767
768 /*
769 * If the "write-side" has been blocked, wake it up now.
770 */
771 if (rpipe->pipe_state & PIPE_WANTW) {
772 rpipe->pipe_state &= ~PIPE_WANTW;
773 wakeup(rpipe);
774 }
775
776 /*
777 * Break if some data was read.
778 */
779 if (nread > 0)
780 break;
781
782 /*
783 * Unlock the pipe buffer for our remaining processing.
784 * We will either break out with an error or we will
785 * sleep and relock to loop.
786 */
787 pipeunlock(rpipe);
788
789 /*
790 * Handle non-blocking mode operation or
791 * wait for more data.
792 */
793 if (fp->f_flag & FNONBLOCK) {
794 error = EAGAIN;
795 } else {
796 rpipe->pipe_state |= PIPE_WANTR;
797 if ((error = msleep(rpipe, PIPE_MTX(rpipe),
798 PRIBIO | PCATCH,
799 "piperd", 0)) == 0)
800 error = pipelock(rpipe, 1);
801 }
802 if (error)
803 goto unlocked_error;
804 }
805 }
806 #ifdef MAC
807 locked_error:
808 #endif
809 pipeunlock(rpipe);
810
811 /* XXX: should probably do this before getting any locks. */
812 if (error == 0)
813 vfs_timestamp(&rpipe->pipe_atime);
814 unlocked_error:
815 --rpipe->pipe_busy;
816
817 /*
818 * PIPE_WANT processing only makes sense if pipe_busy is 0.
819 */
820 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
821 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
822 wakeup(rpipe);
823 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
824 /*
825 * Handle write blocking hysteresis.
826 */
827 if (rpipe->pipe_state & PIPE_WANTW) {
828 rpipe->pipe_state &= ~PIPE_WANTW;
829 wakeup(rpipe);
830 }
831 }
832
833 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
834 pipeselwakeup(rpipe);
835
836 PIPE_UNLOCK(rpipe);
837 return (error);
838 }
839
840 #ifndef PIPE_NODIRECT
841 /*
842 * Map the sending processes' buffer into kernel space and wire it.
843 * This is similar to a physical write operation.
844 */
845 static int
846 pipe_build_write_buffer(wpipe, uio)
847 struct pipe *wpipe;
848 struct uio *uio;
849 {
850 u_int size;
851 int i;
852
853 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
854 KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
855 ("Clone attempt on non-direct write pipe!"));
856
857 if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
858 size = wpipe->pipe_buffer.size;
859 else
860 size = uio->uio_iov->iov_len;
861
862 if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
863 (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
864 wpipe->pipe_map.ms, PIPENPAGES)) < 0)
865 return (EFAULT);
866
867 /*
868 * set up the control block
869 */
870 wpipe->pipe_map.npages = i;
871 wpipe->pipe_map.pos =
872 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
873 wpipe->pipe_map.cnt = size;
874
875 /*
876 * and update the uio data
877 */
878
879 uio->uio_iov->iov_len -= size;
880 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
881 if (uio->uio_iov->iov_len == 0)
882 uio->uio_iov++;
883 uio->uio_resid -= size;
884 uio->uio_offset += size;
885 return (0);
886 }
887
888 /*
889 * unmap and unwire the process buffer
890 */
891 static void
892 pipe_destroy_write_buffer(wpipe)
893 struct pipe *wpipe;
894 {
895
896 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
897 vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
898 wpipe->pipe_map.npages = 0;
899 }
900
901 /*
902 * In the case of a signal, the writing process might go away. This
903 * code copies the data into the circular buffer so that the source
904 * pages can be freed without loss of data.
905 */
906 static void
907 pipe_clone_write_buffer(wpipe)
908 struct pipe *wpipe;
909 {
910 struct uio uio;
911 struct iovec iov;
912 int size;
913 int pos;
914
915 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
916 size = wpipe->pipe_map.cnt;
917 pos = wpipe->pipe_map.pos;
918
919 wpipe->pipe_buffer.in = size;
920 wpipe->pipe_buffer.out = 0;
921 wpipe->pipe_buffer.cnt = size;
922 wpipe->pipe_state &= ~PIPE_DIRECTW;
923
924 PIPE_UNLOCK(wpipe);
925 iov.iov_base = wpipe->pipe_buffer.buffer;
926 iov.iov_len = size;
927 uio.uio_iov = &iov;
928 uio.uio_iovcnt = 1;
929 uio.uio_offset = 0;
930 uio.uio_resid = size;
931 uio.uio_segflg = UIO_SYSSPACE;
932 uio.uio_rw = UIO_READ;
933 uio.uio_td = curthread;
934 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
935 PIPE_LOCK(wpipe);
936 pipe_destroy_write_buffer(wpipe);
937 }
938
939 /*
940 * This implements the pipe buffer write mechanism. Note that only
941 * a direct write OR a normal pipe write can be pending at any given time.
942 * If there are any characters in the pipe buffer, the direct write will
943 * be deferred until the receiving process grabs all of the bytes from
944 * the pipe buffer. Then the direct mapping write is set-up.
945 */
946 static int
947 pipe_direct_write(wpipe, uio)
948 struct pipe *wpipe;
949 struct uio *uio;
950 {
951 int error;
952
953 retry:
954 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
955 error = pipelock(wpipe, 1);
956 if (wpipe->pipe_state & PIPE_EOF)
957 error = EPIPE;
958 if (error) {
959 pipeunlock(wpipe);
960 goto error1;
961 }
962 while (wpipe->pipe_state & PIPE_DIRECTW) {
963 if (wpipe->pipe_state & PIPE_WANTR) {
964 wpipe->pipe_state &= ~PIPE_WANTR;
965 wakeup(wpipe);
966 }
967 pipeselwakeup(wpipe);
968 wpipe->pipe_state |= PIPE_WANTW;
969 pipeunlock(wpipe);
970 error = msleep(wpipe, PIPE_MTX(wpipe),
971 PRIBIO | PCATCH, "pipdww", 0);
972 if (error)
973 goto error1;
974 else
975 goto retry;
976 }
977 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */
978 if (wpipe->pipe_buffer.cnt > 0) {
979 if (wpipe->pipe_state & PIPE_WANTR) {
980 wpipe->pipe_state &= ~PIPE_WANTR;
981 wakeup(wpipe);
982 }
983 pipeselwakeup(wpipe);
984 wpipe->pipe_state |= PIPE_WANTW;
985 pipeunlock(wpipe);
986 error = msleep(wpipe, PIPE_MTX(wpipe),
987 PRIBIO | PCATCH, "pipdwc", 0);
988 if (error)
989 goto error1;
990 else
991 goto retry;
992 }
993
994 wpipe->pipe_state |= PIPE_DIRECTW;
995
996 PIPE_UNLOCK(wpipe);
997 error = pipe_build_write_buffer(wpipe, uio);
998 PIPE_LOCK(wpipe);
999 if (error) {
1000 wpipe->pipe_state &= ~PIPE_DIRECTW;
1001 pipeunlock(wpipe);
1002 goto error1;
1003 }
1004
1005 error = 0;
1006 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
1007 if (wpipe->pipe_state & PIPE_EOF) {
1008 pipe_destroy_write_buffer(wpipe);
1009 pipeselwakeup(wpipe);
1010 pipeunlock(wpipe);
1011 error = EPIPE;
1012 goto error1;
1013 }
1014 if (wpipe->pipe_state & PIPE_WANTR) {
1015 wpipe->pipe_state &= ~PIPE_WANTR;
1016 wakeup(wpipe);
1017 }
1018 pipeselwakeup(wpipe);
1019 wpipe->pipe_state |= PIPE_WANTW;
1020 pipeunlock(wpipe);
1021 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1022 "pipdwt", 0);
1023 pipelock(wpipe, 0);
1024 }
1025
1026 if (wpipe->pipe_state & PIPE_EOF)
1027 error = EPIPE;
1028 if (wpipe->pipe_state & PIPE_DIRECTW) {
1029 /*
1030 * this bit of trickery substitutes a kernel buffer for
1031 * the process that might be going away.
1032 */
1033 pipe_clone_write_buffer(wpipe);
1034 } else {
1035 pipe_destroy_write_buffer(wpipe);
1036 }
1037 pipeunlock(wpipe);
1038 return (error);
1039
1040 error1:
1041 wakeup(wpipe);
1042 return (error);
1043 }
1044 #endif
1045
1046 static int
1047 pipe_write(fp, uio, active_cred, flags, td)
1048 struct file *fp;
1049 struct uio *uio;
1050 struct ucred *active_cred;
1051 struct thread *td;
1052 int flags;
1053 {
1054 int error = 0;
1055 int desiredsize;
1056 ssize_t orig_resid;
1057 struct pipe *wpipe, *rpipe;
1058
1059 rpipe = fp->f_data;
1060 wpipe = PIPE_PEER(rpipe);
1061 PIPE_LOCK(rpipe);
1062 error = pipelock(wpipe, 1);
1063 if (error) {
1064 PIPE_UNLOCK(rpipe);
1065 return (error);
1066 }
1067 /*
1068 * detect loss of pipe read side, issue SIGPIPE if lost.
1069 */
1070 if (wpipe->pipe_present != PIPE_ACTIVE ||
1071 (wpipe->pipe_state & PIPE_EOF)) {
1072 pipeunlock(wpipe);
1073 PIPE_UNLOCK(rpipe);
1074 return (EPIPE);
1075 }
1076 #ifdef MAC
1077 error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1078 if (error) {
1079 pipeunlock(wpipe);
1080 PIPE_UNLOCK(rpipe);
1081 return (error);
1082 }
1083 #endif
1084 ++wpipe->pipe_busy;
1085
1086 /* Choose a larger size if it's advantageous */
1087 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1088 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1089 if (piperesizeallowed != 1)
1090 break;
1091 if (amountpipekva > maxpipekva / 2)
1092 break;
1093 if (desiredsize == BIG_PIPE_SIZE)
1094 break;
1095 desiredsize = desiredsize * 2;
1096 }
1097
1098 /* Choose a smaller size if we're in a OOM situation */
1099 if ((amountpipekva > (3 * maxpipekva) / 4) &&
1100 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1101 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1102 (piperesizeallowed == 1))
1103 desiredsize = SMALL_PIPE_SIZE;
1104
1105 /* Resize if the above determined that a new size was necessary */
1106 if ((desiredsize != wpipe->pipe_buffer.size) &&
1107 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1108 PIPE_UNLOCK(wpipe);
1109 pipespace(wpipe, desiredsize);
1110 PIPE_LOCK(wpipe);
1111 }
1112 if (wpipe->pipe_buffer.size == 0) {
1113 /*
1114 * This can only happen for reverse direction use of pipes
1115 * in a complete OOM situation.
1116 */
1117 error = ENOMEM;
1118 --wpipe->pipe_busy;
1119 pipeunlock(wpipe);
1120 PIPE_UNLOCK(wpipe);
1121 return (error);
1122 }
1123
1124 pipeunlock(wpipe);
1125
1126 orig_resid = uio->uio_resid;
1127
1128 while (uio->uio_resid) {
1129 int space;
1130
1131 pipelock(wpipe, 0);
1132 if (wpipe->pipe_state & PIPE_EOF) {
1133 pipeunlock(wpipe);
1134 error = EPIPE;
1135 break;
1136 }
1137 #ifndef PIPE_NODIRECT
1138 /*
1139 * If the transfer is large, we can gain performance if
1140 * we do process-to-process copies directly.
1141 * If the write is non-blocking, we don't use the
1142 * direct write mechanism.
1143 *
1144 * The direct write mechanism will detect the reader going
1145 * away on us.
1146 */
1147 if (uio->uio_segflg == UIO_USERSPACE &&
1148 uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1149 wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1150 (fp->f_flag & FNONBLOCK) == 0) {
1151 pipeunlock(wpipe);
1152 error = pipe_direct_write(wpipe, uio);
1153 if (error)
1154 break;
1155 continue;
1156 }
1157 #endif
1158
1159 /*
1160 * Pipe buffered writes cannot be coincidental with
1161 * direct writes. We wait until the currently executing
1162 * direct write is completed before we start filling the
1163 * pipe buffer. We break out if a signal occurs or the
1164 * reader goes away.
1165 */
1166 if (wpipe->pipe_state & PIPE_DIRECTW) {
1167 if (wpipe->pipe_state & PIPE_WANTR) {
1168 wpipe->pipe_state &= ~PIPE_WANTR;
1169 wakeup(wpipe);
1170 }
1171 pipeselwakeup(wpipe);
1172 wpipe->pipe_state |= PIPE_WANTW;
1173 pipeunlock(wpipe);
1174 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1175 "pipbww", 0);
1176 if (error)
1177 break;
1178 else
1179 continue;
1180 }
1181
1182 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1183
1184 /* Writes of size <= PIPE_BUF must be atomic. */
1185 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1186 space = 0;
1187
1188 if (space > 0) {
1189 int size; /* Transfer size */
1190 int segsize; /* first segment to transfer */
1191
1192 /*
1193 * Transfer size is minimum of uio transfer
1194 * and free space in pipe buffer.
1195 */
1196 if (space > uio->uio_resid)
1197 size = uio->uio_resid;
1198 else
1199 size = space;
1200 /*
1201 * First segment to transfer is minimum of
1202 * transfer size and contiguous space in
1203 * pipe buffer. If first segment to transfer
1204 * is less than the transfer size, we've got
1205 * a wraparound in the buffer.
1206 */
1207 segsize = wpipe->pipe_buffer.size -
1208 wpipe->pipe_buffer.in;
1209 if (segsize > size)
1210 segsize = size;
1211
1212 /* Transfer first segment */
1213
1214 PIPE_UNLOCK(rpipe);
1215 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1216 segsize, uio);
1217 PIPE_LOCK(rpipe);
1218
1219 if (error == 0 && segsize < size) {
1220 KASSERT(wpipe->pipe_buffer.in + segsize ==
1221 wpipe->pipe_buffer.size,
1222 ("Pipe buffer wraparound disappeared"));
1223 /*
1224 * Transfer remaining part now, to
1225 * support atomic writes. Wraparound
1226 * happened.
1227 */
1228
1229 PIPE_UNLOCK(rpipe);
1230 error = uiomove(
1231 &wpipe->pipe_buffer.buffer[0],
1232 size - segsize, uio);
1233 PIPE_LOCK(rpipe);
1234 }
1235 if (error == 0) {
1236 wpipe->pipe_buffer.in += size;
1237 if (wpipe->pipe_buffer.in >=
1238 wpipe->pipe_buffer.size) {
1239 KASSERT(wpipe->pipe_buffer.in ==
1240 size - segsize +
1241 wpipe->pipe_buffer.size,
1242 ("Expected wraparound bad"));
1243 wpipe->pipe_buffer.in = size - segsize;
1244 }
1245
1246 wpipe->pipe_buffer.cnt += size;
1247 KASSERT(wpipe->pipe_buffer.cnt <=
1248 wpipe->pipe_buffer.size,
1249 ("Pipe buffer overflow"));
1250 }
1251 pipeunlock(wpipe);
1252 if (error != 0)
1253 break;
1254 } else {
1255 /*
1256 * If the "read-side" has been blocked, wake it up now.
1257 */
1258 if (wpipe->pipe_state & PIPE_WANTR) {
1259 wpipe->pipe_state &= ~PIPE_WANTR;
1260 wakeup(wpipe);
1261 }
1262
1263 /*
1264 * don't block on non-blocking I/O
1265 */
1266 if (fp->f_flag & FNONBLOCK) {
1267 error = EAGAIN;
1268 pipeunlock(wpipe);
1269 break;
1270 }
1271
1272 /*
1273 * We have no more space and have something to offer,
1274 * wake up select/poll.
1275 */
1276 pipeselwakeup(wpipe);
1277
1278 wpipe->pipe_state |= PIPE_WANTW;
1279 pipeunlock(wpipe);
1280 error = msleep(wpipe, PIPE_MTX(rpipe),
1281 PRIBIO | PCATCH, "pipewr", 0);
1282 if (error != 0)
1283 break;
1284 }
1285 }
1286
1287 pipelock(wpipe, 0);
1288 --wpipe->pipe_busy;
1289
1290 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1291 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1292 wakeup(wpipe);
1293 } else if (wpipe->pipe_buffer.cnt > 0) {
1294 /*
1295 * If we have put any characters in the buffer, we wake up
1296 * the reader.
1297 */
1298 if (wpipe->pipe_state & PIPE_WANTR) {
1299 wpipe->pipe_state &= ~PIPE_WANTR;
1300 wakeup(wpipe);
1301 }
1302 }
1303
1304 /*
1305 * Don't return EPIPE if I/O was successful
1306 */
1307 if ((wpipe->pipe_buffer.cnt == 0) &&
1308 (uio->uio_resid == 0) &&
1309 (error == EPIPE)) {
1310 error = 0;
1311 }
1312
1313 if (error == 0)
1314 vfs_timestamp(&wpipe->pipe_mtime);
1315
1316 /*
1317 * We have something to offer,
1318 * wake up select/poll.
1319 */
1320 if (wpipe->pipe_buffer.cnt)
1321 pipeselwakeup(wpipe);
1322
1323 pipeunlock(wpipe);
1324 PIPE_UNLOCK(rpipe);
1325 return (error);
1326 }
1327
1328 /* ARGSUSED */
1329 static int
1330 pipe_truncate(fp, length, active_cred, td)
1331 struct file *fp;
1332 off_t length;
1333 struct ucred *active_cred;
1334 struct thread *td;
1335 {
1336
1337 /* For named pipes call the vnode operation. */
1338 if (fp->f_vnode != NULL)
1339 return (vnops.fo_truncate(fp, length, active_cred, td));
1340 return (EINVAL);
1341 }
1342
1343 /*
1344 * we implement a very minimal set of ioctls for compatibility with sockets.
1345 */
1346 static int
1347 pipe_ioctl(fp, cmd, data, active_cred, td)
1348 struct file *fp;
1349 u_long cmd;
1350 void *data;
1351 struct ucred *active_cred;
1352 struct thread *td;
1353 {
1354 struct pipe *mpipe = fp->f_data;
1355 int error;
1356
1357 PIPE_LOCK(mpipe);
1358
1359 #ifdef MAC
1360 error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1361 if (error) {
1362 PIPE_UNLOCK(mpipe);
1363 return (error);
1364 }
1365 #endif
1366
1367 error = 0;
1368 switch (cmd) {
1369
1370 case FIONBIO:
1371 break;
1372
1373 case FIOASYNC:
1374 if (*(int *)data) {
1375 mpipe->pipe_state |= PIPE_ASYNC;
1376 } else {
1377 mpipe->pipe_state &= ~PIPE_ASYNC;
1378 }
1379 break;
1380
1381 case FIONREAD:
1382 if (!(fp->f_flag & FREAD)) {
1383 *(int *)data = 0;
1384 PIPE_UNLOCK(mpipe);
1385 return (0);
1386 }
1387 if (mpipe->pipe_state & PIPE_DIRECTW)
1388 *(int *)data = mpipe->pipe_map.cnt;
1389 else
1390 *(int *)data = mpipe->pipe_buffer.cnt;
1391 break;
1392
1393 case FIOSETOWN:
1394 PIPE_UNLOCK(mpipe);
1395 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1396 goto out_unlocked;
1397
1398 case FIOGETOWN:
1399 *(int *)data = fgetown(&mpipe->pipe_sigio);
1400 break;
1401
1402 /* This is deprecated, FIOSETOWN should be used instead. */
1403 case TIOCSPGRP:
1404 PIPE_UNLOCK(mpipe);
1405 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1406 goto out_unlocked;
1407
1408 /* This is deprecated, FIOGETOWN should be used instead. */
1409 case TIOCGPGRP:
1410 *(int *)data = -fgetown(&mpipe->pipe_sigio);
1411 break;
1412
1413 default:
1414 error = ENOTTY;
1415 break;
1416 }
1417 PIPE_UNLOCK(mpipe);
1418 out_unlocked:
1419 return (error);
1420 }
1421
1422 static int
1423 pipe_poll(fp, events, active_cred, td)
1424 struct file *fp;
1425 int events;
1426 struct ucred *active_cred;
1427 struct thread *td;
1428 {
1429 struct pipe *rpipe;
1430 struct pipe *wpipe;
1431 int levents, revents;
1432 #ifdef MAC
1433 int error;
1434 #endif
1435
1436 revents = 0;
1437 rpipe = fp->f_data;
1438 wpipe = PIPE_PEER(rpipe);
1439 PIPE_LOCK(rpipe);
1440 #ifdef MAC
1441 error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1442 if (error)
1443 goto locked_error;
1444 #endif
1445 if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1446 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1447 (rpipe->pipe_buffer.cnt > 0))
1448 revents |= events & (POLLIN | POLLRDNORM);
1449
1450 if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1451 if (wpipe->pipe_present != PIPE_ACTIVE ||
1452 (wpipe->pipe_state & PIPE_EOF) ||
1453 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1454 ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1455 wpipe->pipe_buffer.size == 0)))
1456 revents |= events & (POLLOUT | POLLWRNORM);
1457
1458 levents = events &
1459 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1460 if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents &&
1461 fp->f_seqcount == rpipe->pipe_wgen)
1462 events |= POLLINIGNEOF;
1463
1464 if ((events & POLLINIGNEOF) == 0) {
1465 if (rpipe->pipe_state & PIPE_EOF) {
1466 revents |= (events & (POLLIN | POLLRDNORM));
1467 if (wpipe->pipe_present != PIPE_ACTIVE ||
1468 (wpipe->pipe_state & PIPE_EOF))
1469 revents |= POLLHUP;
1470 }
1471 }
1472
1473 if (revents == 0) {
1474 if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) {
1475 selrecord(td, &rpipe->pipe_sel);
1476 if (SEL_WAITING(&rpipe->pipe_sel))
1477 rpipe->pipe_state |= PIPE_SEL;
1478 }
1479
1480 if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) {
1481 selrecord(td, &wpipe->pipe_sel);
1482 if (SEL_WAITING(&wpipe->pipe_sel))
1483 wpipe->pipe_state |= PIPE_SEL;
1484 }
1485 }
1486 #ifdef MAC
1487 locked_error:
1488 #endif
1489 PIPE_UNLOCK(rpipe);
1490
1491 return (revents);
1492 }
1493
1494 /*
1495 * We shouldn't need locks here as we're doing a read and this should
1496 * be a natural race.
1497 */
1498 static int
1499 pipe_stat(fp, ub, active_cred, td)
1500 struct file *fp;
1501 struct stat *ub;
1502 struct ucred *active_cred;
1503 struct thread *td;
1504 {
1505 struct pipe *pipe;
1506 int new_unr;
1507 #ifdef MAC
1508 int error;
1509 #endif
1510
1511 pipe = fp->f_data;
1512 PIPE_LOCK(pipe);
1513 #ifdef MAC
1514 error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1515 if (error) {
1516 PIPE_UNLOCK(pipe);
1517 return (error);
1518 }
1519 #endif
1520
1521 /* For named pipes ask the underlying filesystem. */
1522 if (pipe->pipe_state & PIPE_NAMED) {
1523 PIPE_UNLOCK(pipe);
1524 return (vnops.fo_stat(fp, ub, active_cred, td));
1525 }
1526
1527 /*
1528 * Lazily allocate an inode number for the pipe. Most pipe
1529 * users do not call fstat(2) on the pipe, which means that
1530 * postponing the inode allocation until it is must be
1531 * returned to userland is useful. If alloc_unr failed,
1532 * assign st_ino zero instead of returning an error.
1533 * Special pipe_ino values:
1534 * -1 - not yet initialized;
1535 * 0 - alloc_unr failed, return 0 as st_ino forever.
1536 */
1537 if (pipe->pipe_ino == (ino_t)-1) {
1538 new_unr = alloc_unr(pipeino_unr);
1539 if (new_unr != -1)
1540 pipe->pipe_ino = new_unr;
1541 else
1542 pipe->pipe_ino = 0;
1543 }
1544 PIPE_UNLOCK(pipe);
1545
1546 bzero(ub, sizeof(*ub));
1547 ub->st_mode = S_IFIFO;
1548 ub->st_blksize = PAGE_SIZE;
1549 if (pipe->pipe_state & PIPE_DIRECTW)
1550 ub->st_size = pipe->pipe_map.cnt;
1551 else
1552 ub->st_size = pipe->pipe_buffer.cnt;
1553 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1554 ub->st_atim = pipe->pipe_atime;
1555 ub->st_mtim = pipe->pipe_mtime;
1556 ub->st_ctim = pipe->pipe_ctime;
1557 ub->st_uid = fp->f_cred->cr_uid;
1558 ub->st_gid = fp->f_cred->cr_gid;
1559 ub->st_dev = pipedev_ino;
1560 ub->st_ino = pipe->pipe_ino;
1561 /*
1562 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1563 */
1564 return (0);
1565 }
1566
1567 /* ARGSUSED */
1568 static int
1569 pipe_close(fp, td)
1570 struct file *fp;
1571 struct thread *td;
1572 {
1573
1574 if (fp->f_vnode != NULL)
1575 return vnops.fo_close(fp, td);
1576 fp->f_ops = &badfileops;
1577 pipe_dtor(fp->f_data);
1578 fp->f_data = NULL;
1579 return (0);
1580 }
1581
1582 static int
1583 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1584 {
1585 struct pipe *cpipe;
1586 int error;
1587
1588 cpipe = fp->f_data;
1589 if (cpipe->pipe_state & PIPE_NAMED)
1590 error = vn_chmod(fp, mode, active_cred, td);
1591 else
1592 error = invfo_chmod(fp, mode, active_cred, td);
1593 return (error);
1594 }
1595
1596 static int
1597 pipe_chown(fp, uid, gid, active_cred, td)
1598 struct file *fp;
1599 uid_t uid;
1600 gid_t gid;
1601 struct ucred *active_cred;
1602 struct thread *td;
1603 {
1604 struct pipe *cpipe;
1605 int error;
1606
1607 cpipe = fp->f_data;
1608 if (cpipe->pipe_state & PIPE_NAMED)
1609 error = vn_chown(fp, uid, gid, active_cred, td);
1610 else
1611 error = invfo_chown(fp, uid, gid, active_cred, td);
1612 return (error);
1613 }
1614
1615 static void
1616 pipe_free_kmem(cpipe)
1617 struct pipe *cpipe;
1618 {
1619
1620 KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1621 ("pipe_free_kmem: pipe mutex locked"));
1622
1623 if (cpipe->pipe_buffer.buffer != NULL) {
1624 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1625 vm_map_remove(pipe_map,
1626 (vm_offset_t)cpipe->pipe_buffer.buffer,
1627 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1628 cpipe->pipe_buffer.buffer = NULL;
1629 }
1630 #ifndef PIPE_NODIRECT
1631 {
1632 cpipe->pipe_map.cnt = 0;
1633 cpipe->pipe_map.pos = 0;
1634 cpipe->pipe_map.npages = 0;
1635 }
1636 #endif
1637 }
1638
1639 /*
1640 * shutdown the pipe
1641 */
1642 static void
1643 pipeclose(cpipe)
1644 struct pipe *cpipe;
1645 {
1646 struct pipepair *pp;
1647 struct pipe *ppipe;
1648
1649 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1650
1651 PIPE_LOCK(cpipe);
1652 pipelock(cpipe, 0);
1653 pp = cpipe->pipe_pair;
1654
1655 pipeselwakeup(cpipe);
1656
1657 /*
1658 * If the other side is blocked, wake it up saying that
1659 * we want to close it down.
1660 */
1661 cpipe->pipe_state |= PIPE_EOF;
1662 while (cpipe->pipe_busy) {
1663 wakeup(cpipe);
1664 cpipe->pipe_state |= PIPE_WANT;
1665 pipeunlock(cpipe);
1666 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1667 pipelock(cpipe, 0);
1668 }
1669
1670
1671 /*
1672 * Disconnect from peer, if any.
1673 */
1674 ppipe = cpipe->pipe_peer;
1675 if (ppipe->pipe_present == PIPE_ACTIVE) {
1676 pipeselwakeup(ppipe);
1677
1678 ppipe->pipe_state |= PIPE_EOF;
1679 wakeup(ppipe);
1680 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1681 }
1682
1683 /*
1684 * Mark this endpoint as free. Release kmem resources. We
1685 * don't mark this endpoint as unused until we've finished
1686 * doing that, or the pipe might disappear out from under
1687 * us.
1688 */
1689 PIPE_UNLOCK(cpipe);
1690 pipe_free_kmem(cpipe);
1691 PIPE_LOCK(cpipe);
1692 cpipe->pipe_present = PIPE_CLOSING;
1693 pipeunlock(cpipe);
1694
1695 /*
1696 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1697 * PIPE_FINALIZED, that allows other end to free the
1698 * pipe_pair, only after the knotes are completely dismantled.
1699 */
1700 knlist_clear(&cpipe->pipe_sel.si_note, 1);
1701 cpipe->pipe_present = PIPE_FINALIZED;
1702 seldrain(&cpipe->pipe_sel);
1703 knlist_destroy(&cpipe->pipe_sel.si_note);
1704
1705 /*
1706 * If both endpoints are now closed, release the memory for the
1707 * pipe pair. If not, unlock.
1708 */
1709 if (ppipe->pipe_present == PIPE_FINALIZED) {
1710 PIPE_UNLOCK(cpipe);
1711 #ifdef MAC
1712 mac_pipe_destroy(pp);
1713 #endif
1714 uma_zfree(pipe_zone, cpipe->pipe_pair);
1715 } else
1716 PIPE_UNLOCK(cpipe);
1717 }
1718
1719 /*ARGSUSED*/
1720 static int
1721 pipe_kqfilter(struct file *fp, struct knote *kn)
1722 {
1723 struct pipe *cpipe;
1724
1725 /*
1726 * If a filter is requested that is not supported by this file
1727 * descriptor, don't return an error, but also don't ever generate an
1728 * event.
1729 */
1730 if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1731 kn->kn_fop = &pipe_nfiltops;
1732 return (0);
1733 }
1734 if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1735 kn->kn_fop = &pipe_nfiltops;
1736 return (0);
1737 }
1738 cpipe = fp->f_data;
1739 PIPE_LOCK(cpipe);
1740 switch (kn->kn_filter) {
1741 case EVFILT_READ:
1742 kn->kn_fop = &pipe_rfiltops;
1743 break;
1744 case EVFILT_WRITE:
1745 kn->kn_fop = &pipe_wfiltops;
1746 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1747 /* other end of pipe has been closed */
1748 PIPE_UNLOCK(cpipe);
1749 return (EPIPE);
1750 }
1751 cpipe = PIPE_PEER(cpipe);
1752 break;
1753 default:
1754 PIPE_UNLOCK(cpipe);
1755 return (EINVAL);
1756 }
1757
1758 kn->kn_hook = cpipe;
1759 knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1760 PIPE_UNLOCK(cpipe);
1761 return (0);
1762 }
1763
1764 static void
1765 filt_pipedetach(struct knote *kn)
1766 {
1767 struct pipe *cpipe = kn->kn_hook;
1768
1769 PIPE_LOCK(cpipe);
1770 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1771 PIPE_UNLOCK(cpipe);
1772 }
1773
1774 /*ARGSUSED*/
1775 static int
1776 filt_piperead(struct knote *kn, long hint)
1777 {
1778 struct pipe *rpipe = kn->kn_hook;
1779 struct pipe *wpipe = rpipe->pipe_peer;
1780 int ret;
1781
1782 PIPE_LOCK(rpipe);
1783 kn->kn_data = rpipe->pipe_buffer.cnt;
1784 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1785 kn->kn_data = rpipe->pipe_map.cnt;
1786
1787 if ((rpipe->pipe_state & PIPE_EOF) ||
1788 wpipe->pipe_present != PIPE_ACTIVE ||
1789 (wpipe->pipe_state & PIPE_EOF)) {
1790 kn->kn_flags |= EV_EOF;
1791 PIPE_UNLOCK(rpipe);
1792 return (1);
1793 }
1794 ret = kn->kn_data > 0;
1795 PIPE_UNLOCK(rpipe);
1796 return ret;
1797 }
1798
1799 /*ARGSUSED*/
1800 static int
1801 filt_pipewrite(struct knote *kn, long hint)
1802 {
1803 struct pipe *wpipe;
1804
1805 wpipe = kn->kn_hook;
1806 PIPE_LOCK(wpipe);
1807 if (wpipe->pipe_present != PIPE_ACTIVE ||
1808 (wpipe->pipe_state & PIPE_EOF)) {
1809 kn->kn_data = 0;
1810 kn->kn_flags |= EV_EOF;
1811 PIPE_UNLOCK(wpipe);
1812 return (1);
1813 }
1814 kn->kn_data = (wpipe->pipe_buffer.size > 0) ?
1815 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF;
1816 if (wpipe->pipe_state & PIPE_DIRECTW)
1817 kn->kn_data = 0;
1818
1819 PIPE_UNLOCK(wpipe);
1820 return (kn->kn_data >= PIPE_BUF);
1821 }
1822
1823 static void
1824 filt_pipedetach_notsup(struct knote *kn)
1825 {
1826
1827 }
1828
1829 static int
1830 filt_pipenotsup(struct knote *kn, long hint)
1831 {
1832
1833 return (0);
1834 }
Cache object: 86f9730dc997e3889ad9613752d4a588
|