FreeBSD/Linux Kernel Cross Reference
sys/kern/sys_pipe.c
1 /*-
2 * Copyright (c) 1996 John S. Dyson
3 * Copyright (c) 2012 Giovanni Trematerra
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice immediately at the beginning of the file, without modification,
11 * this list of conditions, and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Absolutely no warranty of function or purpose is made by the author
16 * John S. Dyson.
17 * 4. Modifications may be freely made to this file if the above conditions
18 * are met.
19 */
20
21 /*
22 * This file contains a high-performance replacement for the socket-based
23 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
24 * all features of sockets, but does do everything that pipes normally
25 * do.
26 */
27
28 /*
29 * This code has two modes of operation, a small write mode and a large
30 * write mode. The small write mode acts like conventional pipes with
31 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
32 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
33 * and PIPE_SIZE in size, the sending process pins the underlying pages in
34 * memory, and the receiving process copies directly from these pinned pages
35 * in the sending process.
36 *
37 * If the sending process receives a signal, it is possible that it will
38 * go away, and certainly its address space can change, because control
39 * is returned back to the user-mode side. In that case, the pipe code
40 * arranges to copy the buffer supplied by the user process, to a pageable
41 * kernel buffer, and the receiving process will grab the data from the
42 * pageable kernel buffer. Since signals don't happen all that often,
43 * the copy operation is normally eliminated.
44 *
45 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
46 * happen for small transfers so that the system will not spend all of
47 * its time context switching.
48 *
49 * In order to limit the resource use of pipes, two sysctls exist:
50 *
51 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
52 * address space available to us in pipe_map. This value is normally
53 * autotuned, but may also be loader tuned.
54 *
55 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
56 * memory in use by pipes.
57 *
58 * Based on how large pipekva is relative to maxpipekva, the following
59 * will happen:
60 *
61 * 0% - 50%:
62 * New pipes are given 16K of memory backing, pipes may dynamically
63 * grow to as large as 64K where needed.
64 * 50% - 75%:
65 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
66 * existing pipes may NOT grow.
67 * 75% - 100%:
68 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
69 * existing pipes will be shrunk down to 4K whenever possible.
70 *
71 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If
72 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
73 * resize which MUST occur for reverse-direction pipes when they are
74 * first used.
75 *
76 * Additional information about the current state of pipes may be obtained
77 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
78 * and kern.ipc.piperesizefail.
79 *
80 * Locking rules: There are two locks present here: A mutex, used via
81 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via
82 * the flag, as mutexes can not persist over uiomove. The mutex
83 * exists only to guard access to the flag, and is not in itself a
84 * locking mechanism. Also note that there is only a single mutex for
85 * both directions of a pipe.
86 *
87 * As pipelock() may have to sleep before it can acquire the flag, it
88 * is important to reread all data after a call to pipelock(); everything
89 * in the structure may have changed.
90 */
91
92 #include "opt_compat.h"
93
94 #include <sys/cdefs.h>
95 __FBSDID("$FreeBSD: releng/11.0/sys/kern/sys_pipe.c 302095 2016-06-22 21:18:19Z brooks $");
96
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/fcntl.h>
101 #include <sys/file.h>
102 #include <sys/filedesc.h>
103 #include <sys/filio.h>
104 #include <sys/kernel.h>
105 #include <sys/lock.h>
106 #include <sys/mutex.h>
107 #include <sys/ttycom.h>
108 #include <sys/stat.h>
109 #include <sys/malloc.h>
110 #include <sys/poll.h>
111 #include <sys/selinfo.h>
112 #include <sys/signalvar.h>
113 #include <sys/syscallsubr.h>
114 #include <sys/sysctl.h>
115 #include <sys/sysproto.h>
116 #include <sys/pipe.h>
117 #include <sys/proc.h>
118 #include <sys/vnode.h>
119 #include <sys/uio.h>
120 #include <sys/user.h>
121 #include <sys/event.h>
122
123 #include <security/mac/mac_framework.h>
124
125 #include <vm/vm.h>
126 #include <vm/vm_param.h>
127 #include <vm/vm_object.h>
128 #include <vm/vm_kern.h>
129 #include <vm/vm_extern.h>
130 #include <vm/pmap.h>
131 #include <vm/vm_map.h>
132 #include <vm/vm_page.h>
133 #include <vm/uma.h>
134
135 /*
136 * Use this define if you want to disable *fancy* VM things. Expect an
137 * approx 30% decrease in transfer rate. This could be useful for
138 * NetBSD or OpenBSD.
139 */
140 /* #define PIPE_NODIRECT */
141
142 #define PIPE_PEER(pipe) \
143 (((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
144
145 /*
146 * interfaces to the outside world
147 */
148 static fo_rdwr_t pipe_read;
149 static fo_rdwr_t pipe_write;
150 static fo_truncate_t pipe_truncate;
151 static fo_ioctl_t pipe_ioctl;
152 static fo_poll_t pipe_poll;
153 static fo_kqfilter_t pipe_kqfilter;
154 static fo_stat_t pipe_stat;
155 static fo_close_t pipe_close;
156 static fo_chmod_t pipe_chmod;
157 static fo_chown_t pipe_chown;
158 static fo_fill_kinfo_t pipe_fill_kinfo;
159
160 struct fileops pipeops = {
161 .fo_read = pipe_read,
162 .fo_write = pipe_write,
163 .fo_truncate = pipe_truncate,
164 .fo_ioctl = pipe_ioctl,
165 .fo_poll = pipe_poll,
166 .fo_kqfilter = pipe_kqfilter,
167 .fo_stat = pipe_stat,
168 .fo_close = pipe_close,
169 .fo_chmod = pipe_chmod,
170 .fo_chown = pipe_chown,
171 .fo_sendfile = invfo_sendfile,
172 .fo_fill_kinfo = pipe_fill_kinfo,
173 .fo_flags = DFLAG_PASSABLE
174 };
175
176 static void filt_pipedetach(struct knote *kn);
177 static void filt_pipedetach_notsup(struct knote *kn);
178 static int filt_pipenotsup(struct knote *kn, long hint);
179 static int filt_piperead(struct knote *kn, long hint);
180 static int filt_pipewrite(struct knote *kn, long hint);
181
182 static struct filterops pipe_nfiltops = {
183 .f_isfd = 1,
184 .f_detach = filt_pipedetach_notsup,
185 .f_event = filt_pipenotsup
186 };
187 static struct filterops pipe_rfiltops = {
188 .f_isfd = 1,
189 .f_detach = filt_pipedetach,
190 .f_event = filt_piperead
191 };
192 static struct filterops pipe_wfiltops = {
193 .f_isfd = 1,
194 .f_detach = filt_pipedetach,
195 .f_event = filt_pipewrite
196 };
197
198 /*
199 * Default pipe buffer size(s), this can be kind-of large now because pipe
200 * space is pageable. The pipe code will try to maintain locality of
201 * reference for performance reasons, so small amounts of outstanding I/O
202 * will not wipe the cache.
203 */
204 #define MINPIPESIZE (PIPE_SIZE/3)
205 #define MAXPIPESIZE (2*PIPE_SIZE/3)
206
207 static long amountpipekva;
208 static int pipefragretry;
209 static int pipeallocfail;
210 static int piperesizefail;
211 static int piperesizeallowed = 1;
212
213 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
214 &maxpipekva, 0, "Pipe KVA limit");
215 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
216 &amountpipekva, 0, "Pipe KVA usage");
217 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
218 &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
219 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
220 &pipeallocfail, 0, "Pipe allocation failures");
221 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
222 &piperesizefail, 0, "Pipe resize failures");
223 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
224 &piperesizeallowed, 0, "Pipe resizing allowed");
225
226 static void pipeinit(void *dummy __unused);
227 static void pipeclose(struct pipe *cpipe);
228 static void pipe_free_kmem(struct pipe *cpipe);
229 static void pipe_create(struct pipe *pipe, int backing);
230 static void pipe_paircreate(struct thread *td, struct pipepair **p_pp);
231 static __inline int pipelock(struct pipe *cpipe, int catch);
232 static __inline void pipeunlock(struct pipe *cpipe);
233 #ifndef PIPE_NODIRECT
234 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
235 static void pipe_destroy_write_buffer(struct pipe *wpipe);
236 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
237 static void pipe_clone_write_buffer(struct pipe *wpipe);
238 #endif
239 static int pipespace(struct pipe *cpipe, int size);
240 static int pipespace_new(struct pipe *cpipe, int size);
241
242 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags);
243 static int pipe_zone_init(void *mem, int size, int flags);
244 static void pipe_zone_fini(void *mem, int size);
245
246 static uma_zone_t pipe_zone;
247 static struct unrhdr *pipeino_unr;
248 static dev_t pipedev_ino;
249
250 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
251
252 static void
253 pipeinit(void *dummy __unused)
254 {
255
256 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
257 pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
258 UMA_ALIGN_PTR, 0);
259 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
260 pipeino_unr = new_unrhdr(1, INT32_MAX, NULL);
261 KASSERT(pipeino_unr != NULL, ("pipe fake inodes not initialized"));
262 pipedev_ino = devfs_alloc_cdp_inode();
263 KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
264 }
265
266 static int
267 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
268 {
269 struct pipepair *pp;
270 struct pipe *rpipe, *wpipe;
271
272 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
273
274 pp = (struct pipepair *)mem;
275
276 /*
277 * We zero both pipe endpoints to make sure all the kmem pointers
278 * are NULL, flag fields are zero'd, etc. We timestamp both
279 * endpoints with the same time.
280 */
281 rpipe = &pp->pp_rpipe;
282 bzero(rpipe, sizeof(*rpipe));
283 vfs_timestamp(&rpipe->pipe_ctime);
284 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
285
286 wpipe = &pp->pp_wpipe;
287 bzero(wpipe, sizeof(*wpipe));
288 wpipe->pipe_ctime = rpipe->pipe_ctime;
289 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
290
291 rpipe->pipe_peer = wpipe;
292 rpipe->pipe_pair = pp;
293 wpipe->pipe_peer = rpipe;
294 wpipe->pipe_pair = pp;
295
296 /*
297 * Mark both endpoints as present; they will later get free'd
298 * one at a time. When both are free'd, then the whole pair
299 * is released.
300 */
301 rpipe->pipe_present = PIPE_ACTIVE;
302 wpipe->pipe_present = PIPE_ACTIVE;
303
304 /*
305 * Eventually, the MAC Framework may initialize the label
306 * in ctor or init, but for now we do it elswhere to avoid
307 * blocking in ctor or init.
308 */
309 pp->pp_label = NULL;
310
311 return (0);
312 }
313
314 static int
315 pipe_zone_init(void *mem, int size, int flags)
316 {
317 struct pipepair *pp;
318
319 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
320
321 pp = (struct pipepair *)mem;
322
323 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_NEW);
324 return (0);
325 }
326
327 static void
328 pipe_zone_fini(void *mem, int size)
329 {
330 struct pipepair *pp;
331
332 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
333
334 pp = (struct pipepair *)mem;
335
336 mtx_destroy(&pp->pp_mtx);
337 }
338
339 static void
340 pipe_paircreate(struct thread *td, struct pipepair **p_pp)
341 {
342 struct pipepair *pp;
343 struct pipe *rpipe, *wpipe;
344
345 *p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
346 #ifdef MAC
347 /*
348 * The MAC label is shared between the connected endpoints. As a
349 * result mac_pipe_init() and mac_pipe_create() are called once
350 * for the pair, and not on the endpoints.
351 */
352 mac_pipe_init(pp);
353 mac_pipe_create(td->td_ucred, pp);
354 #endif
355 rpipe = &pp->pp_rpipe;
356 wpipe = &pp->pp_wpipe;
357
358 knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
359 knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
360
361 /* Only the forward direction pipe is backed by default */
362 pipe_create(rpipe, 1);
363 pipe_create(wpipe, 0);
364
365 rpipe->pipe_state |= PIPE_DIRECTOK;
366 wpipe->pipe_state |= PIPE_DIRECTOK;
367 }
368
369 void
370 pipe_named_ctor(struct pipe **ppipe, struct thread *td)
371 {
372 struct pipepair *pp;
373
374 pipe_paircreate(td, &pp);
375 pp->pp_rpipe.pipe_state |= PIPE_NAMED;
376 *ppipe = &pp->pp_rpipe;
377 }
378
379 void
380 pipe_dtor(struct pipe *dpipe)
381 {
382 struct pipe *peer;
383 ino_t ino;
384
385 ino = dpipe->pipe_ino;
386 peer = (dpipe->pipe_state & PIPE_NAMED) != 0 ? dpipe->pipe_peer : NULL;
387 funsetown(&dpipe->pipe_sigio);
388 pipeclose(dpipe);
389 if (peer != NULL) {
390 funsetown(&peer->pipe_sigio);
391 pipeclose(peer);
392 }
393 if (ino != 0 && ino != (ino_t)-1)
394 free_unr(pipeino_unr, ino);
395 }
396
397 /*
398 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let
399 * the zone pick up the pieces via pipeclose().
400 */
401 int
402 kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1,
403 struct filecaps *fcaps2)
404 {
405 struct file *rf, *wf;
406 struct pipe *rpipe, *wpipe;
407 struct pipepair *pp;
408 int fd, fflags, error;
409
410 pipe_paircreate(td, &pp);
411 rpipe = &pp->pp_rpipe;
412 wpipe = &pp->pp_wpipe;
413 error = falloc_caps(td, &rf, &fd, flags, fcaps1);
414 if (error) {
415 pipeclose(rpipe);
416 pipeclose(wpipe);
417 return (error);
418 }
419 /* An extra reference on `rf' has been held for us by falloc_caps(). */
420 fildes[0] = fd;
421
422 fflags = FREAD | FWRITE;
423 if ((flags & O_NONBLOCK) != 0)
424 fflags |= FNONBLOCK;
425
426 /*
427 * Warning: once we've gotten past allocation of the fd for the
428 * read-side, we can only drop the read side via fdrop() in order
429 * to avoid races against processes which manage to dup() the read
430 * side while we are blocked trying to allocate the write side.
431 */
432 finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
433 error = falloc_caps(td, &wf, &fd, flags, fcaps2);
434 if (error) {
435 fdclose(td, rf, fildes[0]);
436 fdrop(rf, td);
437 /* rpipe has been closed by fdrop(). */
438 pipeclose(wpipe);
439 return (error);
440 }
441 /* An extra reference on `wf' has been held for us by falloc_caps(). */
442 finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
443 fdrop(wf, td);
444 fildes[1] = fd;
445 fdrop(rf, td);
446
447 return (0);
448 }
449
450 #ifdef COMPAT_FREEBSD10
451 /* ARGSUSED */
452 int
453 freebsd10_pipe(struct thread *td, struct freebsd10_pipe_args *uap __unused)
454 {
455 int error;
456 int fildes[2];
457
458 error = kern_pipe(td, fildes, 0, NULL, NULL);
459 if (error)
460 return (error);
461
462 td->td_retval[0] = fildes[0];
463 td->td_retval[1] = fildes[1];
464
465 return (0);
466 }
467 #endif
468
469 int
470 sys_pipe2(struct thread *td, struct pipe2_args *uap)
471 {
472 int error, fildes[2];
473
474 if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
475 return (EINVAL);
476 error = kern_pipe(td, fildes, uap->flags, NULL, NULL);
477 if (error)
478 return (error);
479 error = copyout(fildes, uap->fildes, 2 * sizeof(int));
480 if (error) {
481 (void)kern_close(td, fildes[0]);
482 (void)kern_close(td, fildes[1]);
483 }
484 return (error);
485 }
486
487 /*
488 * Allocate kva for pipe circular buffer, the space is pageable
489 * This routine will 'realloc' the size of a pipe safely, if it fails
490 * it will retain the old buffer.
491 * If it fails it will return ENOMEM.
492 */
493 static int
494 pipespace_new(cpipe, size)
495 struct pipe *cpipe;
496 int size;
497 {
498 caddr_t buffer;
499 int error, cnt, firstseg;
500 static int curfail = 0;
501 static struct timeval lastfail;
502
503 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
504 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
505 ("pipespace: resize of direct writes not allowed"));
506 retry:
507 cnt = cpipe->pipe_buffer.cnt;
508 if (cnt > size)
509 size = cnt;
510
511 size = round_page(size);
512 buffer = (caddr_t) vm_map_min(pipe_map);
513
514 error = vm_map_find(pipe_map, NULL, 0,
515 (vm_offset_t *) &buffer, size, 0, VMFS_ANY_SPACE,
516 VM_PROT_ALL, VM_PROT_ALL, 0);
517 if (error != KERN_SUCCESS) {
518 if ((cpipe->pipe_buffer.buffer == NULL) &&
519 (size > SMALL_PIPE_SIZE)) {
520 size = SMALL_PIPE_SIZE;
521 pipefragretry++;
522 goto retry;
523 }
524 if (cpipe->pipe_buffer.buffer == NULL) {
525 pipeallocfail++;
526 if (ppsratecheck(&lastfail, &curfail, 1))
527 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
528 } else {
529 piperesizefail++;
530 }
531 return (ENOMEM);
532 }
533
534 /* copy data, then free old resources if we're resizing */
535 if (cnt > 0) {
536 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
537 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
538 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
539 buffer, firstseg);
540 if ((cnt - firstseg) > 0)
541 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
542 cpipe->pipe_buffer.in);
543 } else {
544 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
545 buffer, cnt);
546 }
547 }
548 pipe_free_kmem(cpipe);
549 cpipe->pipe_buffer.buffer = buffer;
550 cpipe->pipe_buffer.size = size;
551 cpipe->pipe_buffer.in = cnt;
552 cpipe->pipe_buffer.out = 0;
553 cpipe->pipe_buffer.cnt = cnt;
554 atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
555 return (0);
556 }
557
558 /*
559 * Wrapper for pipespace_new() that performs locking assertions.
560 */
561 static int
562 pipespace(cpipe, size)
563 struct pipe *cpipe;
564 int size;
565 {
566
567 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
568 ("Unlocked pipe passed to pipespace"));
569 return (pipespace_new(cpipe, size));
570 }
571
572 /*
573 * lock a pipe for I/O, blocking other access
574 */
575 static __inline int
576 pipelock(cpipe, catch)
577 struct pipe *cpipe;
578 int catch;
579 {
580 int error;
581
582 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
583 while (cpipe->pipe_state & PIPE_LOCKFL) {
584 cpipe->pipe_state |= PIPE_LWANT;
585 error = msleep(cpipe, PIPE_MTX(cpipe),
586 catch ? (PRIBIO | PCATCH) : PRIBIO,
587 "pipelk", 0);
588 if (error != 0)
589 return (error);
590 }
591 cpipe->pipe_state |= PIPE_LOCKFL;
592 return (0);
593 }
594
595 /*
596 * unlock a pipe I/O lock
597 */
598 static __inline void
599 pipeunlock(cpipe)
600 struct pipe *cpipe;
601 {
602
603 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
604 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
605 ("Unlocked pipe passed to pipeunlock"));
606 cpipe->pipe_state &= ~PIPE_LOCKFL;
607 if (cpipe->pipe_state & PIPE_LWANT) {
608 cpipe->pipe_state &= ~PIPE_LWANT;
609 wakeup(cpipe);
610 }
611 }
612
613 void
614 pipeselwakeup(cpipe)
615 struct pipe *cpipe;
616 {
617
618 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
619 if (cpipe->pipe_state & PIPE_SEL) {
620 selwakeuppri(&cpipe->pipe_sel, PSOCK);
621 if (!SEL_WAITING(&cpipe->pipe_sel))
622 cpipe->pipe_state &= ~PIPE_SEL;
623 }
624 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
625 pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
626 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
627 }
628
629 /*
630 * Initialize and allocate VM and memory for pipe. The structure
631 * will start out zero'd from the ctor, so we just manage the kmem.
632 */
633 static void
634 pipe_create(pipe, backing)
635 struct pipe *pipe;
636 int backing;
637 {
638
639 if (backing) {
640 /*
641 * Note that these functions can fail if pipe map is exhausted
642 * (as a result of too many pipes created), but we ignore the
643 * error as it is not fatal and could be provoked by
644 * unprivileged users. The only consequence is worse performance
645 * with given pipe.
646 */
647 if (amountpipekva > maxpipekva / 2)
648 (void)pipespace_new(pipe, SMALL_PIPE_SIZE);
649 else
650 (void)pipespace_new(pipe, PIPE_SIZE);
651 }
652
653 pipe->pipe_ino = -1;
654 }
655
656 /* ARGSUSED */
657 static int
658 pipe_read(fp, uio, active_cred, flags, td)
659 struct file *fp;
660 struct uio *uio;
661 struct ucred *active_cred;
662 struct thread *td;
663 int flags;
664 {
665 struct pipe *rpipe;
666 int error;
667 int nread = 0;
668 int size;
669
670 rpipe = fp->f_data;
671 PIPE_LOCK(rpipe);
672 ++rpipe->pipe_busy;
673 error = pipelock(rpipe, 1);
674 if (error)
675 goto unlocked_error;
676
677 #ifdef MAC
678 error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
679 if (error)
680 goto locked_error;
681 #endif
682 if (amountpipekva > (3 * maxpipekva) / 4) {
683 if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
684 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
685 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
686 (piperesizeallowed == 1)) {
687 PIPE_UNLOCK(rpipe);
688 pipespace(rpipe, SMALL_PIPE_SIZE);
689 PIPE_LOCK(rpipe);
690 }
691 }
692
693 while (uio->uio_resid) {
694 /*
695 * normal pipe buffer receive
696 */
697 if (rpipe->pipe_buffer.cnt > 0) {
698 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
699 if (size > rpipe->pipe_buffer.cnt)
700 size = rpipe->pipe_buffer.cnt;
701 if (size > uio->uio_resid)
702 size = uio->uio_resid;
703
704 PIPE_UNLOCK(rpipe);
705 error = uiomove(
706 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
707 size, uio);
708 PIPE_LOCK(rpipe);
709 if (error)
710 break;
711
712 rpipe->pipe_buffer.out += size;
713 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
714 rpipe->pipe_buffer.out = 0;
715
716 rpipe->pipe_buffer.cnt -= size;
717
718 /*
719 * If there is no more to read in the pipe, reset
720 * its pointers to the beginning. This improves
721 * cache hit stats.
722 */
723 if (rpipe->pipe_buffer.cnt == 0) {
724 rpipe->pipe_buffer.in = 0;
725 rpipe->pipe_buffer.out = 0;
726 }
727 nread += size;
728 #ifndef PIPE_NODIRECT
729 /*
730 * Direct copy, bypassing a kernel buffer.
731 */
732 } else if ((size = rpipe->pipe_map.cnt) &&
733 (rpipe->pipe_state & PIPE_DIRECTW)) {
734 if (size > uio->uio_resid)
735 size = (u_int) uio->uio_resid;
736
737 PIPE_UNLOCK(rpipe);
738 error = uiomove_fromphys(rpipe->pipe_map.ms,
739 rpipe->pipe_map.pos, size, uio);
740 PIPE_LOCK(rpipe);
741 if (error)
742 break;
743 nread += size;
744 rpipe->pipe_map.pos += size;
745 rpipe->pipe_map.cnt -= size;
746 if (rpipe->pipe_map.cnt == 0) {
747 rpipe->pipe_state &= ~(PIPE_DIRECTW|PIPE_WANTW);
748 wakeup(rpipe);
749 }
750 #endif
751 } else {
752 /*
753 * detect EOF condition
754 * read returns 0 on EOF, no need to set error
755 */
756 if (rpipe->pipe_state & PIPE_EOF)
757 break;
758
759 /*
760 * If the "write-side" has been blocked, wake it up now.
761 */
762 if (rpipe->pipe_state & PIPE_WANTW) {
763 rpipe->pipe_state &= ~PIPE_WANTW;
764 wakeup(rpipe);
765 }
766
767 /*
768 * Break if some data was read.
769 */
770 if (nread > 0)
771 break;
772
773 /*
774 * Unlock the pipe buffer for our remaining processing.
775 * We will either break out with an error or we will
776 * sleep and relock to loop.
777 */
778 pipeunlock(rpipe);
779
780 /*
781 * Handle non-blocking mode operation or
782 * wait for more data.
783 */
784 if (fp->f_flag & FNONBLOCK) {
785 error = EAGAIN;
786 } else {
787 rpipe->pipe_state |= PIPE_WANTR;
788 if ((error = msleep(rpipe, PIPE_MTX(rpipe),
789 PRIBIO | PCATCH,
790 "piperd", 0)) == 0)
791 error = pipelock(rpipe, 1);
792 }
793 if (error)
794 goto unlocked_error;
795 }
796 }
797 #ifdef MAC
798 locked_error:
799 #endif
800 pipeunlock(rpipe);
801
802 /* XXX: should probably do this before getting any locks. */
803 if (error == 0)
804 vfs_timestamp(&rpipe->pipe_atime);
805 unlocked_error:
806 --rpipe->pipe_busy;
807
808 /*
809 * PIPE_WANT processing only makes sense if pipe_busy is 0.
810 */
811 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
812 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
813 wakeup(rpipe);
814 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
815 /*
816 * Handle write blocking hysteresis.
817 */
818 if (rpipe->pipe_state & PIPE_WANTW) {
819 rpipe->pipe_state &= ~PIPE_WANTW;
820 wakeup(rpipe);
821 }
822 }
823
824 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
825 pipeselwakeup(rpipe);
826
827 PIPE_UNLOCK(rpipe);
828 return (error);
829 }
830
831 #ifndef PIPE_NODIRECT
832 /*
833 * Map the sending processes' buffer into kernel space and wire it.
834 * This is similar to a physical write operation.
835 */
836 static int
837 pipe_build_write_buffer(wpipe, uio)
838 struct pipe *wpipe;
839 struct uio *uio;
840 {
841 u_int size;
842 int i;
843
844 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
845 KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
846 ("Clone attempt on non-direct write pipe!"));
847
848 if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
849 size = wpipe->pipe_buffer.size;
850 else
851 size = uio->uio_iov->iov_len;
852
853 if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
854 (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
855 wpipe->pipe_map.ms, PIPENPAGES)) < 0)
856 return (EFAULT);
857
858 /*
859 * set up the control block
860 */
861 wpipe->pipe_map.npages = i;
862 wpipe->pipe_map.pos =
863 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
864 wpipe->pipe_map.cnt = size;
865
866 /*
867 * and update the uio data
868 */
869
870 uio->uio_iov->iov_len -= size;
871 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
872 if (uio->uio_iov->iov_len == 0)
873 uio->uio_iov++;
874 uio->uio_resid -= size;
875 uio->uio_offset += size;
876 return (0);
877 }
878
879 /*
880 * unmap and unwire the process buffer
881 */
882 static void
883 pipe_destroy_write_buffer(wpipe)
884 struct pipe *wpipe;
885 {
886
887 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
888 vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
889 wpipe->pipe_map.npages = 0;
890 }
891
892 /*
893 * In the case of a signal, the writing process might go away. This
894 * code copies the data into the circular buffer so that the source
895 * pages can be freed without loss of data.
896 */
897 static void
898 pipe_clone_write_buffer(wpipe)
899 struct pipe *wpipe;
900 {
901 struct uio uio;
902 struct iovec iov;
903 int size;
904 int pos;
905
906 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
907 size = wpipe->pipe_map.cnt;
908 pos = wpipe->pipe_map.pos;
909
910 wpipe->pipe_buffer.in = size;
911 wpipe->pipe_buffer.out = 0;
912 wpipe->pipe_buffer.cnt = size;
913 wpipe->pipe_state &= ~PIPE_DIRECTW;
914
915 PIPE_UNLOCK(wpipe);
916 iov.iov_base = wpipe->pipe_buffer.buffer;
917 iov.iov_len = size;
918 uio.uio_iov = &iov;
919 uio.uio_iovcnt = 1;
920 uio.uio_offset = 0;
921 uio.uio_resid = size;
922 uio.uio_segflg = UIO_SYSSPACE;
923 uio.uio_rw = UIO_READ;
924 uio.uio_td = curthread;
925 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
926 PIPE_LOCK(wpipe);
927 pipe_destroy_write_buffer(wpipe);
928 }
929
930 /*
931 * This implements the pipe buffer write mechanism. Note that only
932 * a direct write OR a normal pipe write can be pending at any given time.
933 * If there are any characters in the pipe buffer, the direct write will
934 * be deferred until the receiving process grabs all of the bytes from
935 * the pipe buffer. Then the direct mapping write is set-up.
936 */
937 static int
938 pipe_direct_write(wpipe, uio)
939 struct pipe *wpipe;
940 struct uio *uio;
941 {
942 int error;
943
944 retry:
945 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
946 error = pipelock(wpipe, 1);
947 if (error != 0)
948 goto error1;
949 if ((wpipe->pipe_state & PIPE_EOF) != 0) {
950 error = EPIPE;
951 pipeunlock(wpipe);
952 goto error1;
953 }
954 while (wpipe->pipe_state & PIPE_DIRECTW) {
955 if (wpipe->pipe_state & PIPE_WANTR) {
956 wpipe->pipe_state &= ~PIPE_WANTR;
957 wakeup(wpipe);
958 }
959 pipeselwakeup(wpipe);
960 wpipe->pipe_state |= PIPE_WANTW;
961 pipeunlock(wpipe);
962 error = msleep(wpipe, PIPE_MTX(wpipe),
963 PRIBIO | PCATCH, "pipdww", 0);
964 if (error)
965 goto error1;
966 else
967 goto retry;
968 }
969 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */
970 if (wpipe->pipe_buffer.cnt > 0) {
971 if (wpipe->pipe_state & PIPE_WANTR) {
972 wpipe->pipe_state &= ~PIPE_WANTR;
973 wakeup(wpipe);
974 }
975 pipeselwakeup(wpipe);
976 wpipe->pipe_state |= PIPE_WANTW;
977 pipeunlock(wpipe);
978 error = msleep(wpipe, PIPE_MTX(wpipe),
979 PRIBIO | PCATCH, "pipdwc", 0);
980 if (error)
981 goto error1;
982 else
983 goto retry;
984 }
985
986 wpipe->pipe_state |= PIPE_DIRECTW;
987
988 PIPE_UNLOCK(wpipe);
989 error = pipe_build_write_buffer(wpipe, uio);
990 PIPE_LOCK(wpipe);
991 if (error) {
992 wpipe->pipe_state &= ~PIPE_DIRECTW;
993 pipeunlock(wpipe);
994 goto error1;
995 }
996
997 error = 0;
998 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
999 if (wpipe->pipe_state & PIPE_EOF) {
1000 pipe_destroy_write_buffer(wpipe);
1001 pipeselwakeup(wpipe);
1002 pipeunlock(wpipe);
1003 error = EPIPE;
1004 goto error1;
1005 }
1006 if (wpipe->pipe_state & PIPE_WANTR) {
1007 wpipe->pipe_state &= ~PIPE_WANTR;
1008 wakeup(wpipe);
1009 }
1010 pipeselwakeup(wpipe);
1011 wpipe->pipe_state |= PIPE_WANTW;
1012 pipeunlock(wpipe);
1013 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1014 "pipdwt", 0);
1015 pipelock(wpipe, 0);
1016 }
1017
1018 if (wpipe->pipe_state & PIPE_EOF)
1019 error = EPIPE;
1020 if (wpipe->pipe_state & PIPE_DIRECTW) {
1021 /*
1022 * this bit of trickery substitutes a kernel buffer for
1023 * the process that might be going away.
1024 */
1025 pipe_clone_write_buffer(wpipe);
1026 } else {
1027 pipe_destroy_write_buffer(wpipe);
1028 }
1029 pipeunlock(wpipe);
1030 return (error);
1031
1032 error1:
1033 wakeup(wpipe);
1034 return (error);
1035 }
1036 #endif
1037
1038 static int
1039 pipe_write(fp, uio, active_cred, flags, td)
1040 struct file *fp;
1041 struct uio *uio;
1042 struct ucred *active_cred;
1043 struct thread *td;
1044 int flags;
1045 {
1046 int error = 0;
1047 int desiredsize;
1048 ssize_t orig_resid;
1049 struct pipe *wpipe, *rpipe;
1050
1051 rpipe = fp->f_data;
1052 wpipe = PIPE_PEER(rpipe);
1053 PIPE_LOCK(rpipe);
1054 error = pipelock(wpipe, 1);
1055 if (error) {
1056 PIPE_UNLOCK(rpipe);
1057 return (error);
1058 }
1059 /*
1060 * detect loss of pipe read side, issue SIGPIPE if lost.
1061 */
1062 if (wpipe->pipe_present != PIPE_ACTIVE ||
1063 (wpipe->pipe_state & PIPE_EOF)) {
1064 pipeunlock(wpipe);
1065 PIPE_UNLOCK(rpipe);
1066 return (EPIPE);
1067 }
1068 #ifdef MAC
1069 error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1070 if (error) {
1071 pipeunlock(wpipe);
1072 PIPE_UNLOCK(rpipe);
1073 return (error);
1074 }
1075 #endif
1076 ++wpipe->pipe_busy;
1077
1078 /* Choose a larger size if it's advantageous */
1079 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1080 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1081 if (piperesizeallowed != 1)
1082 break;
1083 if (amountpipekva > maxpipekva / 2)
1084 break;
1085 if (desiredsize == BIG_PIPE_SIZE)
1086 break;
1087 desiredsize = desiredsize * 2;
1088 }
1089
1090 /* Choose a smaller size if we're in a OOM situation */
1091 if ((amountpipekva > (3 * maxpipekva) / 4) &&
1092 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1093 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1094 (piperesizeallowed == 1))
1095 desiredsize = SMALL_PIPE_SIZE;
1096
1097 /* Resize if the above determined that a new size was necessary */
1098 if ((desiredsize != wpipe->pipe_buffer.size) &&
1099 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1100 PIPE_UNLOCK(wpipe);
1101 pipespace(wpipe, desiredsize);
1102 PIPE_LOCK(wpipe);
1103 }
1104 if (wpipe->pipe_buffer.size == 0) {
1105 /*
1106 * This can only happen for reverse direction use of pipes
1107 * in a complete OOM situation.
1108 */
1109 error = ENOMEM;
1110 --wpipe->pipe_busy;
1111 pipeunlock(wpipe);
1112 PIPE_UNLOCK(wpipe);
1113 return (error);
1114 }
1115
1116 pipeunlock(wpipe);
1117
1118 orig_resid = uio->uio_resid;
1119
1120 while (uio->uio_resid) {
1121 int space;
1122
1123 pipelock(wpipe, 0);
1124 if (wpipe->pipe_state & PIPE_EOF) {
1125 pipeunlock(wpipe);
1126 error = EPIPE;
1127 break;
1128 }
1129 #ifndef PIPE_NODIRECT
1130 /*
1131 * If the transfer is large, we can gain performance if
1132 * we do process-to-process copies directly.
1133 * If the write is non-blocking, we don't use the
1134 * direct write mechanism.
1135 *
1136 * The direct write mechanism will detect the reader going
1137 * away on us.
1138 */
1139 if (uio->uio_segflg == UIO_USERSPACE &&
1140 uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1141 wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1142 (fp->f_flag & FNONBLOCK) == 0) {
1143 pipeunlock(wpipe);
1144 error = pipe_direct_write(wpipe, uio);
1145 if (error)
1146 break;
1147 continue;
1148 }
1149 #endif
1150
1151 /*
1152 * Pipe buffered writes cannot be coincidental with
1153 * direct writes. We wait until the currently executing
1154 * direct write is completed before we start filling the
1155 * pipe buffer. We break out if a signal occurs or the
1156 * reader goes away.
1157 */
1158 if (wpipe->pipe_state & PIPE_DIRECTW) {
1159 if (wpipe->pipe_state & PIPE_WANTR) {
1160 wpipe->pipe_state &= ~PIPE_WANTR;
1161 wakeup(wpipe);
1162 }
1163 pipeselwakeup(wpipe);
1164 wpipe->pipe_state |= PIPE_WANTW;
1165 pipeunlock(wpipe);
1166 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1167 "pipbww", 0);
1168 if (error)
1169 break;
1170 else
1171 continue;
1172 }
1173
1174 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1175
1176 /* Writes of size <= PIPE_BUF must be atomic. */
1177 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1178 space = 0;
1179
1180 if (space > 0) {
1181 int size; /* Transfer size */
1182 int segsize; /* first segment to transfer */
1183
1184 /*
1185 * Transfer size is minimum of uio transfer
1186 * and free space in pipe buffer.
1187 */
1188 if (space > uio->uio_resid)
1189 size = uio->uio_resid;
1190 else
1191 size = space;
1192 /*
1193 * First segment to transfer is minimum of
1194 * transfer size and contiguous space in
1195 * pipe buffer. If first segment to transfer
1196 * is less than the transfer size, we've got
1197 * a wraparound in the buffer.
1198 */
1199 segsize = wpipe->pipe_buffer.size -
1200 wpipe->pipe_buffer.in;
1201 if (segsize > size)
1202 segsize = size;
1203
1204 /* Transfer first segment */
1205
1206 PIPE_UNLOCK(rpipe);
1207 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1208 segsize, uio);
1209 PIPE_LOCK(rpipe);
1210
1211 if (error == 0 && segsize < size) {
1212 KASSERT(wpipe->pipe_buffer.in + segsize ==
1213 wpipe->pipe_buffer.size,
1214 ("Pipe buffer wraparound disappeared"));
1215 /*
1216 * Transfer remaining part now, to
1217 * support atomic writes. Wraparound
1218 * happened.
1219 */
1220
1221 PIPE_UNLOCK(rpipe);
1222 error = uiomove(
1223 &wpipe->pipe_buffer.buffer[0],
1224 size - segsize, uio);
1225 PIPE_LOCK(rpipe);
1226 }
1227 if (error == 0) {
1228 wpipe->pipe_buffer.in += size;
1229 if (wpipe->pipe_buffer.in >=
1230 wpipe->pipe_buffer.size) {
1231 KASSERT(wpipe->pipe_buffer.in ==
1232 size - segsize +
1233 wpipe->pipe_buffer.size,
1234 ("Expected wraparound bad"));
1235 wpipe->pipe_buffer.in = size - segsize;
1236 }
1237
1238 wpipe->pipe_buffer.cnt += size;
1239 KASSERT(wpipe->pipe_buffer.cnt <=
1240 wpipe->pipe_buffer.size,
1241 ("Pipe buffer overflow"));
1242 }
1243 pipeunlock(wpipe);
1244 if (error != 0)
1245 break;
1246 } else {
1247 /*
1248 * If the "read-side" has been blocked, wake it up now.
1249 */
1250 if (wpipe->pipe_state & PIPE_WANTR) {
1251 wpipe->pipe_state &= ~PIPE_WANTR;
1252 wakeup(wpipe);
1253 }
1254
1255 /*
1256 * don't block on non-blocking I/O
1257 */
1258 if (fp->f_flag & FNONBLOCK) {
1259 error = EAGAIN;
1260 pipeunlock(wpipe);
1261 break;
1262 }
1263
1264 /*
1265 * We have no more space and have something to offer,
1266 * wake up select/poll.
1267 */
1268 pipeselwakeup(wpipe);
1269
1270 wpipe->pipe_state |= PIPE_WANTW;
1271 pipeunlock(wpipe);
1272 error = msleep(wpipe, PIPE_MTX(rpipe),
1273 PRIBIO | PCATCH, "pipewr", 0);
1274 if (error != 0)
1275 break;
1276 }
1277 }
1278
1279 pipelock(wpipe, 0);
1280 --wpipe->pipe_busy;
1281
1282 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1283 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1284 wakeup(wpipe);
1285 } else if (wpipe->pipe_buffer.cnt > 0) {
1286 /*
1287 * If we have put any characters in the buffer, we wake up
1288 * the reader.
1289 */
1290 if (wpipe->pipe_state & PIPE_WANTR) {
1291 wpipe->pipe_state &= ~PIPE_WANTR;
1292 wakeup(wpipe);
1293 }
1294 }
1295
1296 /*
1297 * Don't return EPIPE if any byte was written.
1298 * EINTR and other interrupts are handled by generic I/O layer.
1299 * Do not pretend that I/O succeeded for obvious user error
1300 * like EFAULT.
1301 */
1302 if (uio->uio_resid != orig_resid && error == EPIPE)
1303 error = 0;
1304
1305 if (error == 0)
1306 vfs_timestamp(&wpipe->pipe_mtime);
1307
1308 /*
1309 * We have something to offer,
1310 * wake up select/poll.
1311 */
1312 if (wpipe->pipe_buffer.cnt)
1313 pipeselwakeup(wpipe);
1314
1315 pipeunlock(wpipe);
1316 PIPE_UNLOCK(rpipe);
1317 return (error);
1318 }
1319
1320 /* ARGSUSED */
1321 static int
1322 pipe_truncate(fp, length, active_cred, td)
1323 struct file *fp;
1324 off_t length;
1325 struct ucred *active_cred;
1326 struct thread *td;
1327 {
1328 struct pipe *cpipe;
1329 int error;
1330
1331 cpipe = fp->f_data;
1332 if (cpipe->pipe_state & PIPE_NAMED)
1333 error = vnops.fo_truncate(fp, length, active_cred, td);
1334 else
1335 error = invfo_truncate(fp, length, active_cred, td);
1336 return (error);
1337 }
1338
1339 /*
1340 * we implement a very minimal set of ioctls for compatibility with sockets.
1341 */
1342 static int
1343 pipe_ioctl(fp, cmd, data, active_cred, td)
1344 struct file *fp;
1345 u_long cmd;
1346 void *data;
1347 struct ucred *active_cred;
1348 struct thread *td;
1349 {
1350 struct pipe *mpipe = fp->f_data;
1351 int error;
1352
1353 PIPE_LOCK(mpipe);
1354
1355 #ifdef MAC
1356 error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1357 if (error) {
1358 PIPE_UNLOCK(mpipe);
1359 return (error);
1360 }
1361 #endif
1362
1363 error = 0;
1364 switch (cmd) {
1365
1366 case FIONBIO:
1367 break;
1368
1369 case FIOASYNC:
1370 if (*(int *)data) {
1371 mpipe->pipe_state |= PIPE_ASYNC;
1372 } else {
1373 mpipe->pipe_state &= ~PIPE_ASYNC;
1374 }
1375 break;
1376
1377 case FIONREAD:
1378 if (!(fp->f_flag & FREAD)) {
1379 *(int *)data = 0;
1380 PIPE_UNLOCK(mpipe);
1381 return (0);
1382 }
1383 if (mpipe->pipe_state & PIPE_DIRECTW)
1384 *(int *)data = mpipe->pipe_map.cnt;
1385 else
1386 *(int *)data = mpipe->pipe_buffer.cnt;
1387 break;
1388
1389 case FIOSETOWN:
1390 PIPE_UNLOCK(mpipe);
1391 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1392 goto out_unlocked;
1393
1394 case FIOGETOWN:
1395 *(int *)data = fgetown(&mpipe->pipe_sigio);
1396 break;
1397
1398 /* This is deprecated, FIOSETOWN should be used instead. */
1399 case TIOCSPGRP:
1400 PIPE_UNLOCK(mpipe);
1401 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1402 goto out_unlocked;
1403
1404 /* This is deprecated, FIOGETOWN should be used instead. */
1405 case TIOCGPGRP:
1406 *(int *)data = -fgetown(&mpipe->pipe_sigio);
1407 break;
1408
1409 default:
1410 error = ENOTTY;
1411 break;
1412 }
1413 PIPE_UNLOCK(mpipe);
1414 out_unlocked:
1415 return (error);
1416 }
1417
1418 static int
1419 pipe_poll(fp, events, active_cred, td)
1420 struct file *fp;
1421 int events;
1422 struct ucred *active_cred;
1423 struct thread *td;
1424 {
1425 struct pipe *rpipe;
1426 struct pipe *wpipe;
1427 int levents, revents;
1428 #ifdef MAC
1429 int error;
1430 #endif
1431
1432 revents = 0;
1433 rpipe = fp->f_data;
1434 wpipe = PIPE_PEER(rpipe);
1435 PIPE_LOCK(rpipe);
1436 #ifdef MAC
1437 error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1438 if (error)
1439 goto locked_error;
1440 #endif
1441 if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1442 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1443 (rpipe->pipe_buffer.cnt > 0))
1444 revents |= events & (POLLIN | POLLRDNORM);
1445
1446 if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1447 if (wpipe->pipe_present != PIPE_ACTIVE ||
1448 (wpipe->pipe_state & PIPE_EOF) ||
1449 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1450 ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1451 wpipe->pipe_buffer.size == 0)))
1452 revents |= events & (POLLOUT | POLLWRNORM);
1453
1454 levents = events &
1455 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1456 if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents &&
1457 fp->f_seqcount == rpipe->pipe_wgen)
1458 events |= POLLINIGNEOF;
1459
1460 if ((events & POLLINIGNEOF) == 0) {
1461 if (rpipe->pipe_state & PIPE_EOF) {
1462 revents |= (events & (POLLIN | POLLRDNORM));
1463 if (wpipe->pipe_present != PIPE_ACTIVE ||
1464 (wpipe->pipe_state & PIPE_EOF))
1465 revents |= POLLHUP;
1466 }
1467 }
1468
1469 if (revents == 0) {
1470 if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) {
1471 selrecord(td, &rpipe->pipe_sel);
1472 if (SEL_WAITING(&rpipe->pipe_sel))
1473 rpipe->pipe_state |= PIPE_SEL;
1474 }
1475
1476 if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) {
1477 selrecord(td, &wpipe->pipe_sel);
1478 if (SEL_WAITING(&wpipe->pipe_sel))
1479 wpipe->pipe_state |= PIPE_SEL;
1480 }
1481 }
1482 #ifdef MAC
1483 locked_error:
1484 #endif
1485 PIPE_UNLOCK(rpipe);
1486
1487 return (revents);
1488 }
1489
1490 /*
1491 * We shouldn't need locks here as we're doing a read and this should
1492 * be a natural race.
1493 */
1494 static int
1495 pipe_stat(fp, ub, active_cred, td)
1496 struct file *fp;
1497 struct stat *ub;
1498 struct ucred *active_cred;
1499 struct thread *td;
1500 {
1501 struct pipe *pipe;
1502 int new_unr;
1503 #ifdef MAC
1504 int error;
1505 #endif
1506
1507 pipe = fp->f_data;
1508 PIPE_LOCK(pipe);
1509 #ifdef MAC
1510 error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1511 if (error) {
1512 PIPE_UNLOCK(pipe);
1513 return (error);
1514 }
1515 #endif
1516
1517 /* For named pipes ask the underlying filesystem. */
1518 if (pipe->pipe_state & PIPE_NAMED) {
1519 PIPE_UNLOCK(pipe);
1520 return (vnops.fo_stat(fp, ub, active_cred, td));
1521 }
1522
1523 /*
1524 * Lazily allocate an inode number for the pipe. Most pipe
1525 * users do not call fstat(2) on the pipe, which means that
1526 * postponing the inode allocation until it is must be
1527 * returned to userland is useful. If alloc_unr failed,
1528 * assign st_ino zero instead of returning an error.
1529 * Special pipe_ino values:
1530 * -1 - not yet initialized;
1531 * 0 - alloc_unr failed, return 0 as st_ino forever.
1532 */
1533 if (pipe->pipe_ino == (ino_t)-1) {
1534 new_unr = alloc_unr(pipeino_unr);
1535 if (new_unr != -1)
1536 pipe->pipe_ino = new_unr;
1537 else
1538 pipe->pipe_ino = 0;
1539 }
1540 PIPE_UNLOCK(pipe);
1541
1542 bzero(ub, sizeof(*ub));
1543 ub->st_mode = S_IFIFO;
1544 ub->st_blksize = PAGE_SIZE;
1545 if (pipe->pipe_state & PIPE_DIRECTW)
1546 ub->st_size = pipe->pipe_map.cnt;
1547 else
1548 ub->st_size = pipe->pipe_buffer.cnt;
1549 ub->st_blocks = howmany(ub->st_size, ub->st_blksize);
1550 ub->st_atim = pipe->pipe_atime;
1551 ub->st_mtim = pipe->pipe_mtime;
1552 ub->st_ctim = pipe->pipe_ctime;
1553 ub->st_uid = fp->f_cred->cr_uid;
1554 ub->st_gid = fp->f_cred->cr_gid;
1555 ub->st_dev = pipedev_ino;
1556 ub->st_ino = pipe->pipe_ino;
1557 /*
1558 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1559 */
1560 return (0);
1561 }
1562
1563 /* ARGSUSED */
1564 static int
1565 pipe_close(fp, td)
1566 struct file *fp;
1567 struct thread *td;
1568 {
1569
1570 if (fp->f_vnode != NULL)
1571 return vnops.fo_close(fp, td);
1572 fp->f_ops = &badfileops;
1573 pipe_dtor(fp->f_data);
1574 fp->f_data = NULL;
1575 return (0);
1576 }
1577
1578 static int
1579 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1580 {
1581 struct pipe *cpipe;
1582 int error;
1583
1584 cpipe = fp->f_data;
1585 if (cpipe->pipe_state & PIPE_NAMED)
1586 error = vn_chmod(fp, mode, active_cred, td);
1587 else
1588 error = invfo_chmod(fp, mode, active_cred, td);
1589 return (error);
1590 }
1591
1592 static int
1593 pipe_chown(fp, uid, gid, active_cred, td)
1594 struct file *fp;
1595 uid_t uid;
1596 gid_t gid;
1597 struct ucred *active_cred;
1598 struct thread *td;
1599 {
1600 struct pipe *cpipe;
1601 int error;
1602
1603 cpipe = fp->f_data;
1604 if (cpipe->pipe_state & PIPE_NAMED)
1605 error = vn_chown(fp, uid, gid, active_cred, td);
1606 else
1607 error = invfo_chown(fp, uid, gid, active_cred, td);
1608 return (error);
1609 }
1610
1611 static int
1612 pipe_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1613 {
1614 struct pipe *pi;
1615
1616 if (fp->f_type == DTYPE_FIFO)
1617 return (vn_fill_kinfo(fp, kif, fdp));
1618 kif->kf_type = KF_TYPE_PIPE;
1619 pi = fp->f_data;
1620 kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi;
1621 kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer;
1622 kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt;
1623 return (0);
1624 }
1625
1626 static void
1627 pipe_free_kmem(cpipe)
1628 struct pipe *cpipe;
1629 {
1630
1631 KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1632 ("pipe_free_kmem: pipe mutex locked"));
1633
1634 if (cpipe->pipe_buffer.buffer != NULL) {
1635 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1636 vm_map_remove(pipe_map,
1637 (vm_offset_t)cpipe->pipe_buffer.buffer,
1638 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1639 cpipe->pipe_buffer.buffer = NULL;
1640 }
1641 #ifndef PIPE_NODIRECT
1642 {
1643 cpipe->pipe_map.cnt = 0;
1644 cpipe->pipe_map.pos = 0;
1645 cpipe->pipe_map.npages = 0;
1646 }
1647 #endif
1648 }
1649
1650 /*
1651 * shutdown the pipe
1652 */
1653 static void
1654 pipeclose(cpipe)
1655 struct pipe *cpipe;
1656 {
1657 struct pipepair *pp;
1658 struct pipe *ppipe;
1659
1660 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1661
1662 PIPE_LOCK(cpipe);
1663 pipelock(cpipe, 0);
1664 pp = cpipe->pipe_pair;
1665
1666 pipeselwakeup(cpipe);
1667
1668 /*
1669 * If the other side is blocked, wake it up saying that
1670 * we want to close it down.
1671 */
1672 cpipe->pipe_state |= PIPE_EOF;
1673 while (cpipe->pipe_busy) {
1674 wakeup(cpipe);
1675 cpipe->pipe_state |= PIPE_WANT;
1676 pipeunlock(cpipe);
1677 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1678 pipelock(cpipe, 0);
1679 }
1680
1681
1682 /*
1683 * Disconnect from peer, if any.
1684 */
1685 ppipe = cpipe->pipe_peer;
1686 if (ppipe->pipe_present == PIPE_ACTIVE) {
1687 pipeselwakeup(ppipe);
1688
1689 ppipe->pipe_state |= PIPE_EOF;
1690 wakeup(ppipe);
1691 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1692 }
1693
1694 /*
1695 * Mark this endpoint as free. Release kmem resources. We
1696 * don't mark this endpoint as unused until we've finished
1697 * doing that, or the pipe might disappear out from under
1698 * us.
1699 */
1700 PIPE_UNLOCK(cpipe);
1701 pipe_free_kmem(cpipe);
1702 PIPE_LOCK(cpipe);
1703 cpipe->pipe_present = PIPE_CLOSING;
1704 pipeunlock(cpipe);
1705
1706 /*
1707 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1708 * PIPE_FINALIZED, that allows other end to free the
1709 * pipe_pair, only after the knotes are completely dismantled.
1710 */
1711 knlist_clear(&cpipe->pipe_sel.si_note, 1);
1712 cpipe->pipe_present = PIPE_FINALIZED;
1713 seldrain(&cpipe->pipe_sel);
1714 knlist_destroy(&cpipe->pipe_sel.si_note);
1715
1716 /*
1717 * If both endpoints are now closed, release the memory for the
1718 * pipe pair. If not, unlock.
1719 */
1720 if (ppipe->pipe_present == PIPE_FINALIZED) {
1721 PIPE_UNLOCK(cpipe);
1722 #ifdef MAC
1723 mac_pipe_destroy(pp);
1724 #endif
1725 uma_zfree(pipe_zone, cpipe->pipe_pair);
1726 } else
1727 PIPE_UNLOCK(cpipe);
1728 }
1729
1730 /*ARGSUSED*/
1731 static int
1732 pipe_kqfilter(struct file *fp, struct knote *kn)
1733 {
1734 struct pipe *cpipe;
1735
1736 /*
1737 * If a filter is requested that is not supported by this file
1738 * descriptor, don't return an error, but also don't ever generate an
1739 * event.
1740 */
1741 if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1742 kn->kn_fop = &pipe_nfiltops;
1743 return (0);
1744 }
1745 if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1746 kn->kn_fop = &pipe_nfiltops;
1747 return (0);
1748 }
1749 cpipe = fp->f_data;
1750 PIPE_LOCK(cpipe);
1751 switch (kn->kn_filter) {
1752 case EVFILT_READ:
1753 kn->kn_fop = &pipe_rfiltops;
1754 break;
1755 case EVFILT_WRITE:
1756 kn->kn_fop = &pipe_wfiltops;
1757 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1758 /* other end of pipe has been closed */
1759 PIPE_UNLOCK(cpipe);
1760 return (EPIPE);
1761 }
1762 cpipe = PIPE_PEER(cpipe);
1763 break;
1764 default:
1765 PIPE_UNLOCK(cpipe);
1766 return (EINVAL);
1767 }
1768
1769 kn->kn_hook = cpipe;
1770 knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1771 PIPE_UNLOCK(cpipe);
1772 return (0);
1773 }
1774
1775 static void
1776 filt_pipedetach(struct knote *kn)
1777 {
1778 struct pipe *cpipe = kn->kn_hook;
1779
1780 PIPE_LOCK(cpipe);
1781 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1782 PIPE_UNLOCK(cpipe);
1783 }
1784
1785 /*ARGSUSED*/
1786 static int
1787 filt_piperead(struct knote *kn, long hint)
1788 {
1789 struct pipe *rpipe = kn->kn_hook;
1790 struct pipe *wpipe = rpipe->pipe_peer;
1791 int ret;
1792
1793 PIPE_LOCK_ASSERT(rpipe, MA_OWNED);
1794 kn->kn_data = rpipe->pipe_buffer.cnt;
1795 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1796 kn->kn_data = rpipe->pipe_map.cnt;
1797
1798 if ((rpipe->pipe_state & PIPE_EOF) ||
1799 wpipe->pipe_present != PIPE_ACTIVE ||
1800 (wpipe->pipe_state & PIPE_EOF)) {
1801 kn->kn_flags |= EV_EOF;
1802 return (1);
1803 }
1804 ret = kn->kn_data > 0;
1805 return ret;
1806 }
1807
1808 /*ARGSUSED*/
1809 static int
1810 filt_pipewrite(struct knote *kn, long hint)
1811 {
1812 struct pipe *wpipe;
1813
1814 wpipe = kn->kn_hook;
1815 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1816 if (wpipe->pipe_present != PIPE_ACTIVE ||
1817 (wpipe->pipe_state & PIPE_EOF)) {
1818 kn->kn_data = 0;
1819 kn->kn_flags |= EV_EOF;
1820 return (1);
1821 }
1822 kn->kn_data = (wpipe->pipe_buffer.size > 0) ?
1823 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF;
1824 if (wpipe->pipe_state & PIPE_DIRECTW)
1825 kn->kn_data = 0;
1826
1827 return (kn->kn_data >= PIPE_BUF);
1828 }
1829
1830 static void
1831 filt_pipedetach_notsup(struct knote *kn)
1832 {
1833
1834 }
1835
1836 static int
1837 filt_pipenotsup(struct knote *kn, long hint)
1838 {
1839
1840 return (0);
1841 }
Cache object: 3ec9aec8e9f970fce7a8b26a56fb693f
|