FreeBSD/Linux Kernel Cross Reference
sys/kern/sys_pipe.c
1 /*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1996 John S. Dyson
5 * Copyright (c) 2012 Giovanni Trematerra
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice immediately at the beginning of the file, without modification,
13 * this list of conditions, and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Absolutely no warranty of function or purpose is made by the author
18 * John S. Dyson.
19 * 4. Modifications may be freely made to this file if the above conditions
20 * are met.
21 */
22
23 /*
24 * This file contains a high-performance replacement for the socket-based
25 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
26 * all features of sockets, but does do everything that pipes normally
27 * do.
28 */
29
30 /*
31 * This code has two modes of operation, a small write mode and a large
32 * write mode. The small write mode acts like conventional pipes with
33 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
34 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
35 * and PIPE_SIZE in size, the sending process pins the underlying pages in
36 * memory, and the receiving process copies directly from these pinned pages
37 * in the sending process.
38 *
39 * If the sending process receives a signal, it is possible that it will
40 * go away, and certainly its address space can change, because control
41 * is returned back to the user-mode side. In that case, the pipe code
42 * arranges to copy the buffer supplied by the user process, to a pageable
43 * kernel buffer, and the receiving process will grab the data from the
44 * pageable kernel buffer. Since signals don't happen all that often,
45 * the copy operation is normally eliminated.
46 *
47 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48 * happen for small transfers so that the system will not spend all of
49 * its time context switching.
50 *
51 * In order to limit the resource use of pipes, two sysctls exist:
52 *
53 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
54 * address space available to us in pipe_map. This value is normally
55 * autotuned, but may also be loader tuned.
56 *
57 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
58 * memory in use by pipes.
59 *
60 * Based on how large pipekva is relative to maxpipekva, the following
61 * will happen:
62 *
63 * 0% - 50%:
64 * New pipes are given 16K of memory backing, pipes may dynamically
65 * grow to as large as 64K where needed.
66 * 50% - 75%:
67 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
68 * existing pipes may NOT grow.
69 * 75% - 100%:
70 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
71 * existing pipes will be shrunk down to 4K whenever possible.
72 *
73 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If
74 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
75 * resize which MUST occur for reverse-direction pipes when they are
76 * first used.
77 *
78 * Additional information about the current state of pipes may be obtained
79 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
80 * and kern.ipc.piperesizefail.
81 *
82 * Locking rules: There are two locks present here: A mutex, used via
83 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via
84 * the flag, as mutexes can not persist over uiomove. The mutex
85 * exists only to guard access to the flag, and is not in itself a
86 * locking mechanism. Also note that there is only a single mutex for
87 * both directions of a pipe.
88 *
89 * As pipelock() may have to sleep before it can acquire the flag, it
90 * is important to reread all data after a call to pipelock(); everything
91 * in the structure may have changed.
92 */
93
94 #include <sys/cdefs.h>
95 __FBSDID("$FreeBSD: releng/12.0/sys/kern/sys_pipe.c 334486 2018-06-01 13:26:45Z emaste $");
96
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/fcntl.h>
101 #include <sys/file.h>
102 #include <sys/filedesc.h>
103 #include <sys/filio.h>
104 #include <sys/kernel.h>
105 #include <sys/lock.h>
106 #include <sys/mutex.h>
107 #include <sys/ttycom.h>
108 #include <sys/stat.h>
109 #include <sys/malloc.h>
110 #include <sys/poll.h>
111 #include <sys/selinfo.h>
112 #include <sys/signalvar.h>
113 #include <sys/syscallsubr.h>
114 #include <sys/sysctl.h>
115 #include <sys/sysproto.h>
116 #include <sys/pipe.h>
117 #include <sys/proc.h>
118 #include <sys/vnode.h>
119 #include <sys/uio.h>
120 #include <sys/user.h>
121 #include <sys/event.h>
122
123 #include <security/mac/mac_framework.h>
124
125 #include <vm/vm.h>
126 #include <vm/vm_param.h>
127 #include <vm/vm_object.h>
128 #include <vm/vm_kern.h>
129 #include <vm/vm_extern.h>
130 #include <vm/pmap.h>
131 #include <vm/vm_map.h>
132 #include <vm/vm_page.h>
133 #include <vm/uma.h>
134
135 /*
136 * Use this define if you want to disable *fancy* VM things. Expect an
137 * approx 30% decrease in transfer rate. This could be useful for
138 * NetBSD or OpenBSD.
139 */
140 /* #define PIPE_NODIRECT */
141
142 #define PIPE_PEER(pipe) \
143 (((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
144
145 /*
146 * interfaces to the outside world
147 */
148 static fo_rdwr_t pipe_read;
149 static fo_rdwr_t pipe_write;
150 static fo_truncate_t pipe_truncate;
151 static fo_ioctl_t pipe_ioctl;
152 static fo_poll_t pipe_poll;
153 static fo_kqfilter_t pipe_kqfilter;
154 static fo_stat_t pipe_stat;
155 static fo_close_t pipe_close;
156 static fo_chmod_t pipe_chmod;
157 static fo_chown_t pipe_chown;
158 static fo_fill_kinfo_t pipe_fill_kinfo;
159
160 struct fileops pipeops = {
161 .fo_read = pipe_read,
162 .fo_write = pipe_write,
163 .fo_truncate = pipe_truncate,
164 .fo_ioctl = pipe_ioctl,
165 .fo_poll = pipe_poll,
166 .fo_kqfilter = pipe_kqfilter,
167 .fo_stat = pipe_stat,
168 .fo_close = pipe_close,
169 .fo_chmod = pipe_chmod,
170 .fo_chown = pipe_chown,
171 .fo_sendfile = invfo_sendfile,
172 .fo_fill_kinfo = pipe_fill_kinfo,
173 .fo_flags = DFLAG_PASSABLE
174 };
175
176 static void filt_pipedetach(struct knote *kn);
177 static void filt_pipedetach_notsup(struct knote *kn);
178 static int filt_pipenotsup(struct knote *kn, long hint);
179 static int filt_piperead(struct knote *kn, long hint);
180 static int filt_pipewrite(struct knote *kn, long hint);
181
182 static struct filterops pipe_nfiltops = {
183 .f_isfd = 1,
184 .f_detach = filt_pipedetach_notsup,
185 .f_event = filt_pipenotsup
186 };
187 static struct filterops pipe_rfiltops = {
188 .f_isfd = 1,
189 .f_detach = filt_pipedetach,
190 .f_event = filt_piperead
191 };
192 static struct filterops pipe_wfiltops = {
193 .f_isfd = 1,
194 .f_detach = filt_pipedetach,
195 .f_event = filt_pipewrite
196 };
197
198 /*
199 * Default pipe buffer size(s), this can be kind-of large now because pipe
200 * space is pageable. The pipe code will try to maintain locality of
201 * reference for performance reasons, so small amounts of outstanding I/O
202 * will not wipe the cache.
203 */
204 #define MINPIPESIZE (PIPE_SIZE/3)
205 #define MAXPIPESIZE (2*PIPE_SIZE/3)
206
207 static long amountpipekva;
208 static int pipefragretry;
209 static int pipeallocfail;
210 static int piperesizefail;
211 static int piperesizeallowed = 1;
212
213 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
214 &maxpipekva, 0, "Pipe KVA limit");
215 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
216 &amountpipekva, 0, "Pipe KVA usage");
217 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
218 &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
219 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
220 &pipeallocfail, 0, "Pipe allocation failures");
221 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
222 &piperesizefail, 0, "Pipe resize failures");
223 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
224 &piperesizeallowed, 0, "Pipe resizing allowed");
225
226 static void pipeinit(void *dummy __unused);
227 static void pipeclose(struct pipe *cpipe);
228 static void pipe_free_kmem(struct pipe *cpipe);
229 static void pipe_create(struct pipe *pipe, int backing);
230 static void pipe_paircreate(struct thread *td, struct pipepair **p_pp);
231 static __inline int pipelock(struct pipe *cpipe, int catch);
232 static __inline void pipeunlock(struct pipe *cpipe);
233 #ifndef PIPE_NODIRECT
234 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
235 static void pipe_destroy_write_buffer(struct pipe *wpipe);
236 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
237 static void pipe_clone_write_buffer(struct pipe *wpipe);
238 #endif
239 static int pipespace(struct pipe *cpipe, int size);
240 static int pipespace_new(struct pipe *cpipe, int size);
241
242 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags);
243 static int pipe_zone_init(void *mem, int size, int flags);
244 static void pipe_zone_fini(void *mem, int size);
245
246 static uma_zone_t pipe_zone;
247 static struct unrhdr *pipeino_unr;
248 static dev_t pipedev_ino;
249
250 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
251
252 static void
253 pipeinit(void *dummy __unused)
254 {
255
256 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
257 pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
258 UMA_ALIGN_PTR, 0);
259 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
260 pipeino_unr = new_unrhdr(1, INT32_MAX, NULL);
261 KASSERT(pipeino_unr != NULL, ("pipe fake inodes not initialized"));
262 pipedev_ino = devfs_alloc_cdp_inode();
263 KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
264 }
265
266 static int
267 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
268 {
269 struct pipepair *pp;
270 struct pipe *rpipe, *wpipe;
271
272 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
273
274 pp = (struct pipepair *)mem;
275
276 /*
277 * We zero both pipe endpoints to make sure all the kmem pointers
278 * are NULL, flag fields are zero'd, etc. We timestamp both
279 * endpoints with the same time.
280 */
281 rpipe = &pp->pp_rpipe;
282 bzero(rpipe, sizeof(*rpipe));
283 vfs_timestamp(&rpipe->pipe_ctime);
284 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
285
286 wpipe = &pp->pp_wpipe;
287 bzero(wpipe, sizeof(*wpipe));
288 wpipe->pipe_ctime = rpipe->pipe_ctime;
289 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
290
291 rpipe->pipe_peer = wpipe;
292 rpipe->pipe_pair = pp;
293 wpipe->pipe_peer = rpipe;
294 wpipe->pipe_pair = pp;
295
296 /*
297 * Mark both endpoints as present; they will later get free'd
298 * one at a time. When both are free'd, then the whole pair
299 * is released.
300 */
301 rpipe->pipe_present = PIPE_ACTIVE;
302 wpipe->pipe_present = PIPE_ACTIVE;
303
304 /*
305 * Eventually, the MAC Framework may initialize the label
306 * in ctor or init, but for now we do it elswhere to avoid
307 * blocking in ctor or init.
308 */
309 pp->pp_label = NULL;
310
311 return (0);
312 }
313
314 static int
315 pipe_zone_init(void *mem, int size, int flags)
316 {
317 struct pipepair *pp;
318
319 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
320
321 pp = (struct pipepair *)mem;
322
323 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_NEW);
324 return (0);
325 }
326
327 static void
328 pipe_zone_fini(void *mem, int size)
329 {
330 struct pipepair *pp;
331
332 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
333
334 pp = (struct pipepair *)mem;
335
336 mtx_destroy(&pp->pp_mtx);
337 }
338
339 static void
340 pipe_paircreate(struct thread *td, struct pipepair **p_pp)
341 {
342 struct pipepair *pp;
343 struct pipe *rpipe, *wpipe;
344
345 *p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
346 #ifdef MAC
347 /*
348 * The MAC label is shared between the connected endpoints. As a
349 * result mac_pipe_init() and mac_pipe_create() are called once
350 * for the pair, and not on the endpoints.
351 */
352 mac_pipe_init(pp);
353 mac_pipe_create(td->td_ucred, pp);
354 #endif
355 rpipe = &pp->pp_rpipe;
356 wpipe = &pp->pp_wpipe;
357
358 knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
359 knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
360
361 /* Only the forward direction pipe is backed by default */
362 pipe_create(rpipe, 1);
363 pipe_create(wpipe, 0);
364
365 rpipe->pipe_state |= PIPE_DIRECTOK;
366 wpipe->pipe_state |= PIPE_DIRECTOK;
367 }
368
369 void
370 pipe_named_ctor(struct pipe **ppipe, struct thread *td)
371 {
372 struct pipepair *pp;
373
374 pipe_paircreate(td, &pp);
375 pp->pp_rpipe.pipe_state |= PIPE_NAMED;
376 *ppipe = &pp->pp_rpipe;
377 }
378
379 void
380 pipe_dtor(struct pipe *dpipe)
381 {
382 struct pipe *peer;
383 ino_t ino;
384
385 ino = dpipe->pipe_ino;
386 peer = (dpipe->pipe_state & PIPE_NAMED) != 0 ? dpipe->pipe_peer : NULL;
387 funsetown(&dpipe->pipe_sigio);
388 pipeclose(dpipe);
389 if (peer != NULL) {
390 funsetown(&peer->pipe_sigio);
391 pipeclose(peer);
392 }
393 if (ino != 0 && ino != (ino_t)-1)
394 free_unr(pipeino_unr, ino);
395 }
396
397 /*
398 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let
399 * the zone pick up the pieces via pipeclose().
400 */
401 int
402 kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1,
403 struct filecaps *fcaps2)
404 {
405 struct file *rf, *wf;
406 struct pipe *rpipe, *wpipe;
407 struct pipepair *pp;
408 int fd, fflags, error;
409
410 pipe_paircreate(td, &pp);
411 rpipe = &pp->pp_rpipe;
412 wpipe = &pp->pp_wpipe;
413 error = falloc_caps(td, &rf, &fd, flags, fcaps1);
414 if (error) {
415 pipeclose(rpipe);
416 pipeclose(wpipe);
417 return (error);
418 }
419 /* An extra reference on `rf' has been held for us by falloc_caps(). */
420 fildes[0] = fd;
421
422 fflags = FREAD | FWRITE;
423 if ((flags & O_NONBLOCK) != 0)
424 fflags |= FNONBLOCK;
425
426 /*
427 * Warning: once we've gotten past allocation of the fd for the
428 * read-side, we can only drop the read side via fdrop() in order
429 * to avoid races against processes which manage to dup() the read
430 * side while we are blocked trying to allocate the write side.
431 */
432 finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
433 error = falloc_caps(td, &wf, &fd, flags, fcaps2);
434 if (error) {
435 fdclose(td, rf, fildes[0]);
436 fdrop(rf, td);
437 /* rpipe has been closed by fdrop(). */
438 pipeclose(wpipe);
439 return (error);
440 }
441 /* An extra reference on `wf' has been held for us by falloc_caps(). */
442 finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
443 fdrop(wf, td);
444 fildes[1] = fd;
445 fdrop(rf, td);
446
447 return (0);
448 }
449
450 #ifdef COMPAT_FREEBSD10
451 /* ARGSUSED */
452 int
453 freebsd10_pipe(struct thread *td, struct freebsd10_pipe_args *uap __unused)
454 {
455 int error;
456 int fildes[2];
457
458 error = kern_pipe(td, fildes, 0, NULL, NULL);
459 if (error)
460 return (error);
461
462 td->td_retval[0] = fildes[0];
463 td->td_retval[1] = fildes[1];
464
465 return (0);
466 }
467 #endif
468
469 int
470 sys_pipe2(struct thread *td, struct pipe2_args *uap)
471 {
472 int error, fildes[2];
473
474 if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
475 return (EINVAL);
476 error = kern_pipe(td, fildes, uap->flags, NULL, NULL);
477 if (error)
478 return (error);
479 error = copyout(fildes, uap->fildes, 2 * sizeof(int));
480 if (error) {
481 (void)kern_close(td, fildes[0]);
482 (void)kern_close(td, fildes[1]);
483 }
484 return (error);
485 }
486
487 /*
488 * Allocate kva for pipe circular buffer, the space is pageable
489 * This routine will 'realloc' the size of a pipe safely, if it fails
490 * it will retain the old buffer.
491 * If it fails it will return ENOMEM.
492 */
493 static int
494 pipespace_new(struct pipe *cpipe, int size)
495 {
496 caddr_t buffer;
497 int error, cnt, firstseg;
498 static int curfail = 0;
499 static struct timeval lastfail;
500
501 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
502 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
503 ("pipespace: resize of direct writes not allowed"));
504 retry:
505 cnt = cpipe->pipe_buffer.cnt;
506 if (cnt > size)
507 size = cnt;
508
509 size = round_page(size);
510 buffer = (caddr_t) vm_map_min(pipe_map);
511
512 error = vm_map_find(pipe_map, NULL, 0,
513 (vm_offset_t *) &buffer, size, 0, VMFS_ANY_SPACE,
514 VM_PROT_ALL, VM_PROT_ALL, 0);
515 if (error != KERN_SUCCESS) {
516 if ((cpipe->pipe_buffer.buffer == NULL) &&
517 (size > SMALL_PIPE_SIZE)) {
518 size = SMALL_PIPE_SIZE;
519 pipefragretry++;
520 goto retry;
521 }
522 if (cpipe->pipe_buffer.buffer == NULL) {
523 pipeallocfail++;
524 if (ppsratecheck(&lastfail, &curfail, 1))
525 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
526 } else {
527 piperesizefail++;
528 }
529 return (ENOMEM);
530 }
531
532 /* copy data, then free old resources if we're resizing */
533 if (cnt > 0) {
534 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
535 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
536 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
537 buffer, firstseg);
538 if ((cnt - firstseg) > 0)
539 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
540 cpipe->pipe_buffer.in);
541 } else {
542 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
543 buffer, cnt);
544 }
545 }
546 pipe_free_kmem(cpipe);
547 cpipe->pipe_buffer.buffer = buffer;
548 cpipe->pipe_buffer.size = size;
549 cpipe->pipe_buffer.in = cnt;
550 cpipe->pipe_buffer.out = 0;
551 cpipe->pipe_buffer.cnt = cnt;
552 atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
553 return (0);
554 }
555
556 /*
557 * Wrapper for pipespace_new() that performs locking assertions.
558 */
559 static int
560 pipespace(struct pipe *cpipe, int size)
561 {
562
563 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
564 ("Unlocked pipe passed to pipespace"));
565 return (pipespace_new(cpipe, size));
566 }
567
568 /*
569 * lock a pipe for I/O, blocking other access
570 */
571 static __inline int
572 pipelock(struct pipe *cpipe, int catch)
573 {
574 int error;
575
576 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
577 while (cpipe->pipe_state & PIPE_LOCKFL) {
578 cpipe->pipe_state |= PIPE_LWANT;
579 error = msleep(cpipe, PIPE_MTX(cpipe),
580 catch ? (PRIBIO | PCATCH) : PRIBIO,
581 "pipelk", 0);
582 if (error != 0)
583 return (error);
584 }
585 cpipe->pipe_state |= PIPE_LOCKFL;
586 return (0);
587 }
588
589 /*
590 * unlock a pipe I/O lock
591 */
592 static __inline void
593 pipeunlock(struct pipe *cpipe)
594 {
595
596 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
597 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
598 ("Unlocked pipe passed to pipeunlock"));
599 cpipe->pipe_state &= ~PIPE_LOCKFL;
600 if (cpipe->pipe_state & PIPE_LWANT) {
601 cpipe->pipe_state &= ~PIPE_LWANT;
602 wakeup(cpipe);
603 }
604 }
605
606 void
607 pipeselwakeup(struct pipe *cpipe)
608 {
609
610 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
611 if (cpipe->pipe_state & PIPE_SEL) {
612 selwakeuppri(&cpipe->pipe_sel, PSOCK);
613 if (!SEL_WAITING(&cpipe->pipe_sel))
614 cpipe->pipe_state &= ~PIPE_SEL;
615 }
616 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
617 pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
618 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
619 }
620
621 /*
622 * Initialize and allocate VM and memory for pipe. The structure
623 * will start out zero'd from the ctor, so we just manage the kmem.
624 */
625 static void
626 pipe_create(struct pipe *pipe, int backing)
627 {
628
629 if (backing) {
630 /*
631 * Note that these functions can fail if pipe map is exhausted
632 * (as a result of too many pipes created), but we ignore the
633 * error as it is not fatal and could be provoked by
634 * unprivileged users. The only consequence is worse performance
635 * with given pipe.
636 */
637 if (amountpipekva > maxpipekva / 2)
638 (void)pipespace_new(pipe, SMALL_PIPE_SIZE);
639 else
640 (void)pipespace_new(pipe, PIPE_SIZE);
641 }
642
643 pipe->pipe_ino = -1;
644 }
645
646 /* ARGSUSED */
647 static int
648 pipe_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
649 int flags, struct thread *td)
650 {
651 struct pipe *rpipe;
652 int error;
653 int nread = 0;
654 int size;
655
656 rpipe = fp->f_data;
657 PIPE_LOCK(rpipe);
658 ++rpipe->pipe_busy;
659 error = pipelock(rpipe, 1);
660 if (error)
661 goto unlocked_error;
662
663 #ifdef MAC
664 error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
665 if (error)
666 goto locked_error;
667 #endif
668 if (amountpipekva > (3 * maxpipekva) / 4) {
669 if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
670 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
671 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
672 (piperesizeallowed == 1)) {
673 PIPE_UNLOCK(rpipe);
674 pipespace(rpipe, SMALL_PIPE_SIZE);
675 PIPE_LOCK(rpipe);
676 }
677 }
678
679 while (uio->uio_resid) {
680 /*
681 * normal pipe buffer receive
682 */
683 if (rpipe->pipe_buffer.cnt > 0) {
684 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
685 if (size > rpipe->pipe_buffer.cnt)
686 size = rpipe->pipe_buffer.cnt;
687 if (size > uio->uio_resid)
688 size = uio->uio_resid;
689
690 PIPE_UNLOCK(rpipe);
691 error = uiomove(
692 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
693 size, uio);
694 PIPE_LOCK(rpipe);
695 if (error)
696 break;
697
698 rpipe->pipe_buffer.out += size;
699 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
700 rpipe->pipe_buffer.out = 0;
701
702 rpipe->pipe_buffer.cnt -= size;
703
704 /*
705 * If there is no more to read in the pipe, reset
706 * its pointers to the beginning. This improves
707 * cache hit stats.
708 */
709 if (rpipe->pipe_buffer.cnt == 0) {
710 rpipe->pipe_buffer.in = 0;
711 rpipe->pipe_buffer.out = 0;
712 }
713 nread += size;
714 #ifndef PIPE_NODIRECT
715 /*
716 * Direct copy, bypassing a kernel buffer.
717 */
718 } else if ((size = rpipe->pipe_map.cnt) &&
719 (rpipe->pipe_state & PIPE_DIRECTW)) {
720 if (size > uio->uio_resid)
721 size = (u_int) uio->uio_resid;
722
723 PIPE_UNLOCK(rpipe);
724 error = uiomove_fromphys(rpipe->pipe_map.ms,
725 rpipe->pipe_map.pos, size, uio);
726 PIPE_LOCK(rpipe);
727 if (error)
728 break;
729 nread += size;
730 rpipe->pipe_map.pos += size;
731 rpipe->pipe_map.cnt -= size;
732 if (rpipe->pipe_map.cnt == 0) {
733 rpipe->pipe_state &= ~(PIPE_DIRECTW|PIPE_WANTW);
734 wakeup(rpipe);
735 }
736 #endif
737 } else {
738 /*
739 * detect EOF condition
740 * read returns 0 on EOF, no need to set error
741 */
742 if (rpipe->pipe_state & PIPE_EOF)
743 break;
744
745 /*
746 * If the "write-side" has been blocked, wake it up now.
747 */
748 if (rpipe->pipe_state & PIPE_WANTW) {
749 rpipe->pipe_state &= ~PIPE_WANTW;
750 wakeup(rpipe);
751 }
752
753 /*
754 * Break if some data was read.
755 */
756 if (nread > 0)
757 break;
758
759 /*
760 * Unlock the pipe buffer for our remaining processing.
761 * We will either break out with an error or we will
762 * sleep and relock to loop.
763 */
764 pipeunlock(rpipe);
765
766 /*
767 * Handle non-blocking mode operation or
768 * wait for more data.
769 */
770 if (fp->f_flag & FNONBLOCK) {
771 error = EAGAIN;
772 } else {
773 rpipe->pipe_state |= PIPE_WANTR;
774 if ((error = msleep(rpipe, PIPE_MTX(rpipe),
775 PRIBIO | PCATCH,
776 "piperd", 0)) == 0)
777 error = pipelock(rpipe, 1);
778 }
779 if (error)
780 goto unlocked_error;
781 }
782 }
783 #ifdef MAC
784 locked_error:
785 #endif
786 pipeunlock(rpipe);
787
788 /* XXX: should probably do this before getting any locks. */
789 if (error == 0)
790 vfs_timestamp(&rpipe->pipe_atime);
791 unlocked_error:
792 --rpipe->pipe_busy;
793
794 /*
795 * PIPE_WANT processing only makes sense if pipe_busy is 0.
796 */
797 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
798 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
799 wakeup(rpipe);
800 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
801 /*
802 * Handle write blocking hysteresis.
803 */
804 if (rpipe->pipe_state & PIPE_WANTW) {
805 rpipe->pipe_state &= ~PIPE_WANTW;
806 wakeup(rpipe);
807 }
808 }
809
810 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
811 pipeselwakeup(rpipe);
812
813 PIPE_UNLOCK(rpipe);
814 return (error);
815 }
816
817 #ifndef PIPE_NODIRECT
818 /*
819 * Map the sending processes' buffer into kernel space and wire it.
820 * This is similar to a physical write operation.
821 */
822 static int
823 pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio)
824 {
825 u_int size;
826 int i;
827
828 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
829 KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
830 ("Clone attempt on non-direct write pipe!"));
831
832 if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
833 size = wpipe->pipe_buffer.size;
834 else
835 size = uio->uio_iov->iov_len;
836
837 if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
838 (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
839 wpipe->pipe_map.ms, PIPENPAGES)) < 0)
840 return (EFAULT);
841
842 /*
843 * set up the control block
844 */
845 wpipe->pipe_map.npages = i;
846 wpipe->pipe_map.pos =
847 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
848 wpipe->pipe_map.cnt = size;
849
850 /*
851 * and update the uio data
852 */
853
854 uio->uio_iov->iov_len -= size;
855 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
856 if (uio->uio_iov->iov_len == 0)
857 uio->uio_iov++;
858 uio->uio_resid -= size;
859 uio->uio_offset += size;
860 return (0);
861 }
862
863 /*
864 * unmap and unwire the process buffer
865 */
866 static void
867 pipe_destroy_write_buffer(struct pipe *wpipe)
868 {
869
870 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
871 vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
872 wpipe->pipe_map.npages = 0;
873 }
874
875 /*
876 * In the case of a signal, the writing process might go away. This
877 * code copies the data into the circular buffer so that the source
878 * pages can be freed without loss of data.
879 */
880 static void
881 pipe_clone_write_buffer(struct pipe *wpipe)
882 {
883 struct uio uio;
884 struct iovec iov;
885 int size;
886 int pos;
887
888 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
889 size = wpipe->pipe_map.cnt;
890 pos = wpipe->pipe_map.pos;
891
892 wpipe->pipe_buffer.in = size;
893 wpipe->pipe_buffer.out = 0;
894 wpipe->pipe_buffer.cnt = size;
895 wpipe->pipe_state &= ~PIPE_DIRECTW;
896
897 PIPE_UNLOCK(wpipe);
898 iov.iov_base = wpipe->pipe_buffer.buffer;
899 iov.iov_len = size;
900 uio.uio_iov = &iov;
901 uio.uio_iovcnt = 1;
902 uio.uio_offset = 0;
903 uio.uio_resid = size;
904 uio.uio_segflg = UIO_SYSSPACE;
905 uio.uio_rw = UIO_READ;
906 uio.uio_td = curthread;
907 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
908 PIPE_LOCK(wpipe);
909 pipe_destroy_write_buffer(wpipe);
910 }
911
912 /*
913 * This implements the pipe buffer write mechanism. Note that only
914 * a direct write OR a normal pipe write can be pending at any given time.
915 * If there are any characters in the pipe buffer, the direct write will
916 * be deferred until the receiving process grabs all of the bytes from
917 * the pipe buffer. Then the direct mapping write is set-up.
918 */
919 static int
920 pipe_direct_write(struct pipe *wpipe, struct uio *uio)
921 {
922 int error;
923
924 retry:
925 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
926 error = pipelock(wpipe, 1);
927 if (error != 0)
928 goto error1;
929 if ((wpipe->pipe_state & PIPE_EOF) != 0) {
930 error = EPIPE;
931 pipeunlock(wpipe);
932 goto error1;
933 }
934 while (wpipe->pipe_state & PIPE_DIRECTW) {
935 if (wpipe->pipe_state & PIPE_WANTR) {
936 wpipe->pipe_state &= ~PIPE_WANTR;
937 wakeup(wpipe);
938 }
939 pipeselwakeup(wpipe);
940 wpipe->pipe_state |= PIPE_WANTW;
941 pipeunlock(wpipe);
942 error = msleep(wpipe, PIPE_MTX(wpipe),
943 PRIBIO | PCATCH, "pipdww", 0);
944 if (error)
945 goto error1;
946 else
947 goto retry;
948 }
949 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */
950 if (wpipe->pipe_buffer.cnt > 0) {
951 if (wpipe->pipe_state & PIPE_WANTR) {
952 wpipe->pipe_state &= ~PIPE_WANTR;
953 wakeup(wpipe);
954 }
955 pipeselwakeup(wpipe);
956 wpipe->pipe_state |= PIPE_WANTW;
957 pipeunlock(wpipe);
958 error = msleep(wpipe, PIPE_MTX(wpipe),
959 PRIBIO | PCATCH, "pipdwc", 0);
960 if (error)
961 goto error1;
962 else
963 goto retry;
964 }
965
966 wpipe->pipe_state |= PIPE_DIRECTW;
967
968 PIPE_UNLOCK(wpipe);
969 error = pipe_build_write_buffer(wpipe, uio);
970 PIPE_LOCK(wpipe);
971 if (error) {
972 wpipe->pipe_state &= ~PIPE_DIRECTW;
973 pipeunlock(wpipe);
974 goto error1;
975 }
976
977 error = 0;
978 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
979 if (wpipe->pipe_state & PIPE_EOF) {
980 pipe_destroy_write_buffer(wpipe);
981 pipeselwakeup(wpipe);
982 pipeunlock(wpipe);
983 error = EPIPE;
984 goto error1;
985 }
986 if (wpipe->pipe_state & PIPE_WANTR) {
987 wpipe->pipe_state &= ~PIPE_WANTR;
988 wakeup(wpipe);
989 }
990 pipeselwakeup(wpipe);
991 wpipe->pipe_state |= PIPE_WANTW;
992 pipeunlock(wpipe);
993 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
994 "pipdwt", 0);
995 pipelock(wpipe, 0);
996 }
997
998 if (wpipe->pipe_state & PIPE_EOF)
999 error = EPIPE;
1000 if (wpipe->pipe_state & PIPE_DIRECTW) {
1001 /*
1002 * this bit of trickery substitutes a kernel buffer for
1003 * the process that might be going away.
1004 */
1005 pipe_clone_write_buffer(wpipe);
1006 } else {
1007 pipe_destroy_write_buffer(wpipe);
1008 }
1009 pipeunlock(wpipe);
1010 return (error);
1011
1012 error1:
1013 wakeup(wpipe);
1014 return (error);
1015 }
1016 #endif
1017
1018 static int
1019 pipe_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1020 int flags, struct thread *td)
1021 {
1022 int error = 0;
1023 int desiredsize;
1024 ssize_t orig_resid;
1025 struct pipe *wpipe, *rpipe;
1026
1027 rpipe = fp->f_data;
1028 wpipe = PIPE_PEER(rpipe);
1029 PIPE_LOCK(rpipe);
1030 error = pipelock(wpipe, 1);
1031 if (error) {
1032 PIPE_UNLOCK(rpipe);
1033 return (error);
1034 }
1035 /*
1036 * detect loss of pipe read side, issue SIGPIPE if lost.
1037 */
1038 if (wpipe->pipe_present != PIPE_ACTIVE ||
1039 (wpipe->pipe_state & PIPE_EOF)) {
1040 pipeunlock(wpipe);
1041 PIPE_UNLOCK(rpipe);
1042 return (EPIPE);
1043 }
1044 #ifdef MAC
1045 error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1046 if (error) {
1047 pipeunlock(wpipe);
1048 PIPE_UNLOCK(rpipe);
1049 return (error);
1050 }
1051 #endif
1052 ++wpipe->pipe_busy;
1053
1054 /* Choose a larger size if it's advantageous */
1055 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1056 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1057 if (piperesizeallowed != 1)
1058 break;
1059 if (amountpipekva > maxpipekva / 2)
1060 break;
1061 if (desiredsize == BIG_PIPE_SIZE)
1062 break;
1063 desiredsize = desiredsize * 2;
1064 }
1065
1066 /* Choose a smaller size if we're in a OOM situation */
1067 if ((amountpipekva > (3 * maxpipekva) / 4) &&
1068 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1069 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1070 (piperesizeallowed == 1))
1071 desiredsize = SMALL_PIPE_SIZE;
1072
1073 /* Resize if the above determined that a new size was necessary */
1074 if ((desiredsize != wpipe->pipe_buffer.size) &&
1075 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1076 PIPE_UNLOCK(wpipe);
1077 pipespace(wpipe, desiredsize);
1078 PIPE_LOCK(wpipe);
1079 }
1080 if (wpipe->pipe_buffer.size == 0) {
1081 /*
1082 * This can only happen for reverse direction use of pipes
1083 * in a complete OOM situation.
1084 */
1085 error = ENOMEM;
1086 --wpipe->pipe_busy;
1087 pipeunlock(wpipe);
1088 PIPE_UNLOCK(wpipe);
1089 return (error);
1090 }
1091
1092 pipeunlock(wpipe);
1093
1094 orig_resid = uio->uio_resid;
1095
1096 while (uio->uio_resid) {
1097 int space;
1098
1099 pipelock(wpipe, 0);
1100 if (wpipe->pipe_state & PIPE_EOF) {
1101 pipeunlock(wpipe);
1102 error = EPIPE;
1103 break;
1104 }
1105 #ifndef PIPE_NODIRECT
1106 /*
1107 * If the transfer is large, we can gain performance if
1108 * we do process-to-process copies directly.
1109 * If the write is non-blocking, we don't use the
1110 * direct write mechanism.
1111 *
1112 * The direct write mechanism will detect the reader going
1113 * away on us.
1114 */
1115 if (uio->uio_segflg == UIO_USERSPACE &&
1116 uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1117 wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1118 (fp->f_flag & FNONBLOCK) == 0) {
1119 pipeunlock(wpipe);
1120 error = pipe_direct_write(wpipe, uio);
1121 if (error)
1122 break;
1123 continue;
1124 }
1125 #endif
1126
1127 /*
1128 * Pipe buffered writes cannot be coincidental with
1129 * direct writes. We wait until the currently executing
1130 * direct write is completed before we start filling the
1131 * pipe buffer. We break out if a signal occurs or the
1132 * reader goes away.
1133 */
1134 if (wpipe->pipe_state & PIPE_DIRECTW) {
1135 if (wpipe->pipe_state & PIPE_WANTR) {
1136 wpipe->pipe_state &= ~PIPE_WANTR;
1137 wakeup(wpipe);
1138 }
1139 pipeselwakeup(wpipe);
1140 wpipe->pipe_state |= PIPE_WANTW;
1141 pipeunlock(wpipe);
1142 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1143 "pipbww", 0);
1144 if (error)
1145 break;
1146 else
1147 continue;
1148 }
1149
1150 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1151
1152 /* Writes of size <= PIPE_BUF must be atomic. */
1153 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1154 space = 0;
1155
1156 if (space > 0) {
1157 int size; /* Transfer size */
1158 int segsize; /* first segment to transfer */
1159
1160 /*
1161 * Transfer size is minimum of uio transfer
1162 * and free space in pipe buffer.
1163 */
1164 if (space > uio->uio_resid)
1165 size = uio->uio_resid;
1166 else
1167 size = space;
1168 /*
1169 * First segment to transfer is minimum of
1170 * transfer size and contiguous space in
1171 * pipe buffer. If first segment to transfer
1172 * is less than the transfer size, we've got
1173 * a wraparound in the buffer.
1174 */
1175 segsize = wpipe->pipe_buffer.size -
1176 wpipe->pipe_buffer.in;
1177 if (segsize > size)
1178 segsize = size;
1179
1180 /* Transfer first segment */
1181
1182 PIPE_UNLOCK(rpipe);
1183 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1184 segsize, uio);
1185 PIPE_LOCK(rpipe);
1186
1187 if (error == 0 && segsize < size) {
1188 KASSERT(wpipe->pipe_buffer.in + segsize ==
1189 wpipe->pipe_buffer.size,
1190 ("Pipe buffer wraparound disappeared"));
1191 /*
1192 * Transfer remaining part now, to
1193 * support atomic writes. Wraparound
1194 * happened.
1195 */
1196
1197 PIPE_UNLOCK(rpipe);
1198 error = uiomove(
1199 &wpipe->pipe_buffer.buffer[0],
1200 size - segsize, uio);
1201 PIPE_LOCK(rpipe);
1202 }
1203 if (error == 0) {
1204 wpipe->pipe_buffer.in += size;
1205 if (wpipe->pipe_buffer.in >=
1206 wpipe->pipe_buffer.size) {
1207 KASSERT(wpipe->pipe_buffer.in ==
1208 size - segsize +
1209 wpipe->pipe_buffer.size,
1210 ("Expected wraparound bad"));
1211 wpipe->pipe_buffer.in = size - segsize;
1212 }
1213
1214 wpipe->pipe_buffer.cnt += size;
1215 KASSERT(wpipe->pipe_buffer.cnt <=
1216 wpipe->pipe_buffer.size,
1217 ("Pipe buffer overflow"));
1218 }
1219 pipeunlock(wpipe);
1220 if (error != 0)
1221 break;
1222 } else {
1223 /*
1224 * If the "read-side" has been blocked, wake it up now.
1225 */
1226 if (wpipe->pipe_state & PIPE_WANTR) {
1227 wpipe->pipe_state &= ~PIPE_WANTR;
1228 wakeup(wpipe);
1229 }
1230
1231 /*
1232 * don't block on non-blocking I/O
1233 */
1234 if (fp->f_flag & FNONBLOCK) {
1235 error = EAGAIN;
1236 pipeunlock(wpipe);
1237 break;
1238 }
1239
1240 /*
1241 * We have no more space and have something to offer,
1242 * wake up select/poll.
1243 */
1244 pipeselwakeup(wpipe);
1245
1246 wpipe->pipe_state |= PIPE_WANTW;
1247 pipeunlock(wpipe);
1248 error = msleep(wpipe, PIPE_MTX(rpipe),
1249 PRIBIO | PCATCH, "pipewr", 0);
1250 if (error != 0)
1251 break;
1252 }
1253 }
1254
1255 pipelock(wpipe, 0);
1256 --wpipe->pipe_busy;
1257
1258 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1259 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1260 wakeup(wpipe);
1261 } else if (wpipe->pipe_buffer.cnt > 0) {
1262 /*
1263 * If we have put any characters in the buffer, we wake up
1264 * the reader.
1265 */
1266 if (wpipe->pipe_state & PIPE_WANTR) {
1267 wpipe->pipe_state &= ~PIPE_WANTR;
1268 wakeup(wpipe);
1269 }
1270 }
1271
1272 /*
1273 * Don't return EPIPE if any byte was written.
1274 * EINTR and other interrupts are handled by generic I/O layer.
1275 * Do not pretend that I/O succeeded for obvious user error
1276 * like EFAULT.
1277 */
1278 if (uio->uio_resid != orig_resid && error == EPIPE)
1279 error = 0;
1280
1281 if (error == 0)
1282 vfs_timestamp(&wpipe->pipe_mtime);
1283
1284 /*
1285 * We have something to offer,
1286 * wake up select/poll.
1287 */
1288 if (wpipe->pipe_buffer.cnt)
1289 pipeselwakeup(wpipe);
1290
1291 pipeunlock(wpipe);
1292 PIPE_UNLOCK(rpipe);
1293 return (error);
1294 }
1295
1296 /* ARGSUSED */
1297 static int
1298 pipe_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1299 struct thread *td)
1300 {
1301 struct pipe *cpipe;
1302 int error;
1303
1304 cpipe = fp->f_data;
1305 if (cpipe->pipe_state & PIPE_NAMED)
1306 error = vnops.fo_truncate(fp, length, active_cred, td);
1307 else
1308 error = invfo_truncate(fp, length, active_cred, td);
1309 return (error);
1310 }
1311
1312 /*
1313 * we implement a very minimal set of ioctls for compatibility with sockets.
1314 */
1315 static int
1316 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred,
1317 struct thread *td)
1318 {
1319 struct pipe *mpipe = fp->f_data;
1320 int error;
1321
1322 PIPE_LOCK(mpipe);
1323
1324 #ifdef MAC
1325 error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1326 if (error) {
1327 PIPE_UNLOCK(mpipe);
1328 return (error);
1329 }
1330 #endif
1331
1332 error = 0;
1333 switch (cmd) {
1334
1335 case FIONBIO:
1336 break;
1337
1338 case FIOASYNC:
1339 if (*(int *)data) {
1340 mpipe->pipe_state |= PIPE_ASYNC;
1341 } else {
1342 mpipe->pipe_state &= ~PIPE_ASYNC;
1343 }
1344 break;
1345
1346 case FIONREAD:
1347 if (!(fp->f_flag & FREAD)) {
1348 *(int *)data = 0;
1349 PIPE_UNLOCK(mpipe);
1350 return (0);
1351 }
1352 if (mpipe->pipe_state & PIPE_DIRECTW)
1353 *(int *)data = mpipe->pipe_map.cnt;
1354 else
1355 *(int *)data = mpipe->pipe_buffer.cnt;
1356 break;
1357
1358 case FIOSETOWN:
1359 PIPE_UNLOCK(mpipe);
1360 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1361 goto out_unlocked;
1362
1363 case FIOGETOWN:
1364 *(int *)data = fgetown(&mpipe->pipe_sigio);
1365 break;
1366
1367 /* This is deprecated, FIOSETOWN should be used instead. */
1368 case TIOCSPGRP:
1369 PIPE_UNLOCK(mpipe);
1370 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1371 goto out_unlocked;
1372
1373 /* This is deprecated, FIOGETOWN should be used instead. */
1374 case TIOCGPGRP:
1375 *(int *)data = -fgetown(&mpipe->pipe_sigio);
1376 break;
1377
1378 default:
1379 error = ENOTTY;
1380 break;
1381 }
1382 PIPE_UNLOCK(mpipe);
1383 out_unlocked:
1384 return (error);
1385 }
1386
1387 static int
1388 pipe_poll(struct file *fp, int events, struct ucred *active_cred,
1389 struct thread *td)
1390 {
1391 struct pipe *rpipe;
1392 struct pipe *wpipe;
1393 int levents, revents;
1394 #ifdef MAC
1395 int error;
1396 #endif
1397
1398 revents = 0;
1399 rpipe = fp->f_data;
1400 wpipe = PIPE_PEER(rpipe);
1401 PIPE_LOCK(rpipe);
1402 #ifdef MAC
1403 error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1404 if (error)
1405 goto locked_error;
1406 #endif
1407 if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1408 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1409 (rpipe->pipe_buffer.cnt > 0))
1410 revents |= events & (POLLIN | POLLRDNORM);
1411
1412 if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1413 if (wpipe->pipe_present != PIPE_ACTIVE ||
1414 (wpipe->pipe_state & PIPE_EOF) ||
1415 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1416 ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1417 wpipe->pipe_buffer.size == 0)))
1418 revents |= events & (POLLOUT | POLLWRNORM);
1419
1420 levents = events &
1421 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1422 if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents &&
1423 fp->f_seqcount == rpipe->pipe_wgen)
1424 events |= POLLINIGNEOF;
1425
1426 if ((events & POLLINIGNEOF) == 0) {
1427 if (rpipe->pipe_state & PIPE_EOF) {
1428 revents |= (events & (POLLIN | POLLRDNORM));
1429 if (wpipe->pipe_present != PIPE_ACTIVE ||
1430 (wpipe->pipe_state & PIPE_EOF))
1431 revents |= POLLHUP;
1432 }
1433 }
1434
1435 if (revents == 0) {
1436 if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) {
1437 selrecord(td, &rpipe->pipe_sel);
1438 if (SEL_WAITING(&rpipe->pipe_sel))
1439 rpipe->pipe_state |= PIPE_SEL;
1440 }
1441
1442 if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) {
1443 selrecord(td, &wpipe->pipe_sel);
1444 if (SEL_WAITING(&wpipe->pipe_sel))
1445 wpipe->pipe_state |= PIPE_SEL;
1446 }
1447 }
1448 #ifdef MAC
1449 locked_error:
1450 #endif
1451 PIPE_UNLOCK(rpipe);
1452
1453 return (revents);
1454 }
1455
1456 /*
1457 * We shouldn't need locks here as we're doing a read and this should
1458 * be a natural race.
1459 */
1460 static int
1461 pipe_stat(struct file *fp, struct stat *ub, struct ucred *active_cred,
1462 struct thread *td)
1463 {
1464 struct pipe *pipe;
1465 int new_unr;
1466 #ifdef MAC
1467 int error;
1468 #endif
1469
1470 pipe = fp->f_data;
1471 PIPE_LOCK(pipe);
1472 #ifdef MAC
1473 error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1474 if (error) {
1475 PIPE_UNLOCK(pipe);
1476 return (error);
1477 }
1478 #endif
1479
1480 /* For named pipes ask the underlying filesystem. */
1481 if (pipe->pipe_state & PIPE_NAMED) {
1482 PIPE_UNLOCK(pipe);
1483 return (vnops.fo_stat(fp, ub, active_cred, td));
1484 }
1485
1486 /*
1487 * Lazily allocate an inode number for the pipe. Most pipe
1488 * users do not call fstat(2) on the pipe, which means that
1489 * postponing the inode allocation until it is must be
1490 * returned to userland is useful. If alloc_unr failed,
1491 * assign st_ino zero instead of returning an error.
1492 * Special pipe_ino values:
1493 * -1 - not yet initialized;
1494 * 0 - alloc_unr failed, return 0 as st_ino forever.
1495 */
1496 if (pipe->pipe_ino == (ino_t)-1) {
1497 new_unr = alloc_unr(pipeino_unr);
1498 if (new_unr != -1)
1499 pipe->pipe_ino = new_unr;
1500 else
1501 pipe->pipe_ino = 0;
1502 }
1503 PIPE_UNLOCK(pipe);
1504
1505 bzero(ub, sizeof(*ub));
1506 ub->st_mode = S_IFIFO;
1507 ub->st_blksize = PAGE_SIZE;
1508 if (pipe->pipe_state & PIPE_DIRECTW)
1509 ub->st_size = pipe->pipe_map.cnt;
1510 else
1511 ub->st_size = pipe->pipe_buffer.cnt;
1512 ub->st_blocks = howmany(ub->st_size, ub->st_blksize);
1513 ub->st_atim = pipe->pipe_atime;
1514 ub->st_mtim = pipe->pipe_mtime;
1515 ub->st_ctim = pipe->pipe_ctime;
1516 ub->st_uid = fp->f_cred->cr_uid;
1517 ub->st_gid = fp->f_cred->cr_gid;
1518 ub->st_dev = pipedev_ino;
1519 ub->st_ino = pipe->pipe_ino;
1520 /*
1521 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1522 */
1523 return (0);
1524 }
1525
1526 /* ARGSUSED */
1527 static int
1528 pipe_close(struct file *fp, struct thread *td)
1529 {
1530
1531 if (fp->f_vnode != NULL)
1532 return vnops.fo_close(fp, td);
1533 fp->f_ops = &badfileops;
1534 pipe_dtor(fp->f_data);
1535 fp->f_data = NULL;
1536 return (0);
1537 }
1538
1539 static int
1540 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1541 {
1542 struct pipe *cpipe;
1543 int error;
1544
1545 cpipe = fp->f_data;
1546 if (cpipe->pipe_state & PIPE_NAMED)
1547 error = vn_chmod(fp, mode, active_cred, td);
1548 else
1549 error = invfo_chmod(fp, mode, active_cred, td);
1550 return (error);
1551 }
1552
1553 static int
1554 pipe_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1555 struct thread *td)
1556 {
1557 struct pipe *cpipe;
1558 int error;
1559
1560 cpipe = fp->f_data;
1561 if (cpipe->pipe_state & PIPE_NAMED)
1562 error = vn_chown(fp, uid, gid, active_cred, td);
1563 else
1564 error = invfo_chown(fp, uid, gid, active_cred, td);
1565 return (error);
1566 }
1567
1568 static int
1569 pipe_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1570 {
1571 struct pipe *pi;
1572
1573 if (fp->f_type == DTYPE_FIFO)
1574 return (vn_fill_kinfo(fp, kif, fdp));
1575 kif->kf_type = KF_TYPE_PIPE;
1576 pi = fp->f_data;
1577 kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi;
1578 kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer;
1579 kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt;
1580 return (0);
1581 }
1582
1583 static void
1584 pipe_free_kmem(struct pipe *cpipe)
1585 {
1586
1587 KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1588 ("pipe_free_kmem: pipe mutex locked"));
1589
1590 if (cpipe->pipe_buffer.buffer != NULL) {
1591 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1592 vm_map_remove(pipe_map,
1593 (vm_offset_t)cpipe->pipe_buffer.buffer,
1594 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1595 cpipe->pipe_buffer.buffer = NULL;
1596 }
1597 #ifndef PIPE_NODIRECT
1598 {
1599 cpipe->pipe_map.cnt = 0;
1600 cpipe->pipe_map.pos = 0;
1601 cpipe->pipe_map.npages = 0;
1602 }
1603 #endif
1604 }
1605
1606 /*
1607 * shutdown the pipe
1608 */
1609 static void
1610 pipeclose(struct pipe *cpipe)
1611 {
1612 struct pipepair *pp;
1613 struct pipe *ppipe;
1614
1615 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1616
1617 PIPE_LOCK(cpipe);
1618 pipelock(cpipe, 0);
1619 pp = cpipe->pipe_pair;
1620
1621 pipeselwakeup(cpipe);
1622
1623 /*
1624 * If the other side is blocked, wake it up saying that
1625 * we want to close it down.
1626 */
1627 cpipe->pipe_state |= PIPE_EOF;
1628 while (cpipe->pipe_busy) {
1629 wakeup(cpipe);
1630 cpipe->pipe_state |= PIPE_WANT;
1631 pipeunlock(cpipe);
1632 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1633 pipelock(cpipe, 0);
1634 }
1635
1636
1637 /*
1638 * Disconnect from peer, if any.
1639 */
1640 ppipe = cpipe->pipe_peer;
1641 if (ppipe->pipe_present == PIPE_ACTIVE) {
1642 pipeselwakeup(ppipe);
1643
1644 ppipe->pipe_state |= PIPE_EOF;
1645 wakeup(ppipe);
1646 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1647 }
1648
1649 /*
1650 * Mark this endpoint as free. Release kmem resources. We
1651 * don't mark this endpoint as unused until we've finished
1652 * doing that, or the pipe might disappear out from under
1653 * us.
1654 */
1655 PIPE_UNLOCK(cpipe);
1656 pipe_free_kmem(cpipe);
1657 PIPE_LOCK(cpipe);
1658 cpipe->pipe_present = PIPE_CLOSING;
1659 pipeunlock(cpipe);
1660
1661 /*
1662 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1663 * PIPE_FINALIZED, that allows other end to free the
1664 * pipe_pair, only after the knotes are completely dismantled.
1665 */
1666 knlist_clear(&cpipe->pipe_sel.si_note, 1);
1667 cpipe->pipe_present = PIPE_FINALIZED;
1668 seldrain(&cpipe->pipe_sel);
1669 knlist_destroy(&cpipe->pipe_sel.si_note);
1670
1671 /*
1672 * If both endpoints are now closed, release the memory for the
1673 * pipe pair. If not, unlock.
1674 */
1675 if (ppipe->pipe_present == PIPE_FINALIZED) {
1676 PIPE_UNLOCK(cpipe);
1677 #ifdef MAC
1678 mac_pipe_destroy(pp);
1679 #endif
1680 uma_zfree(pipe_zone, cpipe->pipe_pair);
1681 } else
1682 PIPE_UNLOCK(cpipe);
1683 }
1684
1685 /*ARGSUSED*/
1686 static int
1687 pipe_kqfilter(struct file *fp, struct knote *kn)
1688 {
1689 struct pipe *cpipe;
1690
1691 /*
1692 * If a filter is requested that is not supported by this file
1693 * descriptor, don't return an error, but also don't ever generate an
1694 * event.
1695 */
1696 if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1697 kn->kn_fop = &pipe_nfiltops;
1698 return (0);
1699 }
1700 if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1701 kn->kn_fop = &pipe_nfiltops;
1702 return (0);
1703 }
1704 cpipe = fp->f_data;
1705 PIPE_LOCK(cpipe);
1706 switch (kn->kn_filter) {
1707 case EVFILT_READ:
1708 kn->kn_fop = &pipe_rfiltops;
1709 break;
1710 case EVFILT_WRITE:
1711 kn->kn_fop = &pipe_wfiltops;
1712 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1713 /* other end of pipe has been closed */
1714 PIPE_UNLOCK(cpipe);
1715 return (EPIPE);
1716 }
1717 cpipe = PIPE_PEER(cpipe);
1718 break;
1719 default:
1720 PIPE_UNLOCK(cpipe);
1721 return (EINVAL);
1722 }
1723
1724 kn->kn_hook = cpipe;
1725 knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1726 PIPE_UNLOCK(cpipe);
1727 return (0);
1728 }
1729
1730 static void
1731 filt_pipedetach(struct knote *kn)
1732 {
1733 struct pipe *cpipe = kn->kn_hook;
1734
1735 PIPE_LOCK(cpipe);
1736 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1737 PIPE_UNLOCK(cpipe);
1738 }
1739
1740 /*ARGSUSED*/
1741 static int
1742 filt_piperead(struct knote *kn, long hint)
1743 {
1744 struct pipe *rpipe = kn->kn_hook;
1745 struct pipe *wpipe = rpipe->pipe_peer;
1746 int ret;
1747
1748 PIPE_LOCK_ASSERT(rpipe, MA_OWNED);
1749 kn->kn_data = rpipe->pipe_buffer.cnt;
1750 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1751 kn->kn_data = rpipe->pipe_map.cnt;
1752
1753 if ((rpipe->pipe_state & PIPE_EOF) ||
1754 wpipe->pipe_present != PIPE_ACTIVE ||
1755 (wpipe->pipe_state & PIPE_EOF)) {
1756 kn->kn_flags |= EV_EOF;
1757 return (1);
1758 }
1759 ret = kn->kn_data > 0;
1760 return ret;
1761 }
1762
1763 /*ARGSUSED*/
1764 static int
1765 filt_pipewrite(struct knote *kn, long hint)
1766 {
1767 struct pipe *wpipe;
1768
1769 wpipe = kn->kn_hook;
1770 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1771 if (wpipe->pipe_present != PIPE_ACTIVE ||
1772 (wpipe->pipe_state & PIPE_EOF)) {
1773 kn->kn_data = 0;
1774 kn->kn_flags |= EV_EOF;
1775 return (1);
1776 }
1777 kn->kn_data = (wpipe->pipe_buffer.size > 0) ?
1778 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF;
1779 if (wpipe->pipe_state & PIPE_DIRECTW)
1780 kn->kn_data = 0;
1781
1782 return (kn->kn_data >= PIPE_BUF);
1783 }
1784
1785 static void
1786 filt_pipedetach_notsup(struct knote *kn)
1787 {
1788
1789 }
1790
1791 static int
1792 filt_pipenotsup(struct knote *kn, long hint)
1793 {
1794
1795 return (0);
1796 }
Cache object: f781329e459b518569cc909fd2f0bc36
|