FreeBSD/Linux Kernel Cross Reference
sys/kern/sys_pipe.c
1 /*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1996 John S. Dyson
5 * Copyright (c) 2012 Giovanni Trematerra
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice immediately at the beginning of the file, without modification,
13 * this list of conditions, and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Absolutely no warranty of function or purpose is made by the author
18 * John S. Dyson.
19 * 4. Modifications may be freely made to this file if the above conditions
20 * are met.
21 */
22
23 /*
24 * This file contains a high-performance replacement for the socket-based
25 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
26 * all features of sockets, but does do everything that pipes normally
27 * do.
28 */
29
30 /*
31 * This code has two modes of operation, a small write mode and a large
32 * write mode. The small write mode acts like conventional pipes with
33 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
34 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
35 * and PIPE_SIZE in size, the sending process pins the underlying pages in
36 * memory, and the receiving process copies directly from these pinned pages
37 * in the sending process.
38 *
39 * If the sending process receives a signal, it is possible that it will
40 * go away, and certainly its address space can change, because control
41 * is returned back to the user-mode side. In that case, the pipe code
42 * arranges to copy the buffer supplied by the user process, to a pageable
43 * kernel buffer, and the receiving process will grab the data from the
44 * pageable kernel buffer. Since signals don't happen all that often,
45 * the copy operation is normally eliminated.
46 *
47 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48 * happen for small transfers so that the system will not spend all of
49 * its time context switching.
50 *
51 * In order to limit the resource use of pipes, two sysctls exist:
52 *
53 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
54 * address space available to us in pipe_map. This value is normally
55 * autotuned, but may also be loader tuned.
56 *
57 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
58 * memory in use by pipes.
59 *
60 * Based on how large pipekva is relative to maxpipekva, the following
61 * will happen:
62 *
63 * 0% - 50%:
64 * New pipes are given 16K of memory backing, pipes may dynamically
65 * grow to as large as 64K where needed.
66 * 50% - 75%:
67 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
68 * existing pipes may NOT grow.
69 * 75% - 100%:
70 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
71 * existing pipes will be shrunk down to 4K whenever possible.
72 *
73 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If
74 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
75 * resize which MUST occur for reverse-direction pipes when they are
76 * first used.
77 *
78 * Additional information about the current state of pipes may be obtained
79 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
80 * and kern.ipc.piperesizefail.
81 *
82 * Locking rules: There are two locks present here: A mutex, used via
83 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via
84 * the flag, as mutexes can not persist over uiomove. The mutex
85 * exists only to guard access to the flag, and is not in itself a
86 * locking mechanism. Also note that there is only a single mutex for
87 * both directions of a pipe.
88 *
89 * As pipelock() may have to sleep before it can acquire the flag, it
90 * is important to reread all data after a call to pipelock(); everything
91 * in the structure may have changed.
92 */
93
94 #include <sys/cdefs.h>
95 __FBSDID("$FreeBSD$");
96
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/fcntl.h>
101 #include <sys/file.h>
102 #include <sys/filedesc.h>
103 #include <sys/filio.h>
104 #include <sys/kernel.h>
105 #include <sys/lock.h>
106 #include <sys/mutex.h>
107 #include <sys/ttycom.h>
108 #include <sys/stat.h>
109 #include <sys/malloc.h>
110 #include <sys/poll.h>
111 #include <sys/selinfo.h>
112 #include <sys/signalvar.h>
113 #include <sys/syscallsubr.h>
114 #include <sys/sysctl.h>
115 #include <sys/sysproto.h>
116 #include <sys/pipe.h>
117 #include <sys/proc.h>
118 #include <sys/vnode.h>
119 #include <sys/uio.h>
120 #include <sys/user.h>
121 #include <sys/event.h>
122
123 #include <security/mac/mac_framework.h>
124
125 #include <vm/vm.h>
126 #include <vm/vm_param.h>
127 #include <vm/vm_object.h>
128 #include <vm/vm_kern.h>
129 #include <vm/vm_extern.h>
130 #include <vm/pmap.h>
131 #include <vm/vm_map.h>
132 #include <vm/vm_page.h>
133 #include <vm/uma.h>
134
135 /*
136 * Use this define if you want to disable *fancy* VM things. Expect an
137 * approx 30% decrease in transfer rate. This could be useful for
138 * NetBSD or OpenBSD.
139 */
140 /* #define PIPE_NODIRECT */
141
142 #define PIPE_PEER(pipe) \
143 (((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
144
145 /*
146 * interfaces to the outside world
147 */
148 static fo_rdwr_t pipe_read;
149 static fo_rdwr_t pipe_write;
150 static fo_truncate_t pipe_truncate;
151 static fo_ioctl_t pipe_ioctl;
152 static fo_poll_t pipe_poll;
153 static fo_kqfilter_t pipe_kqfilter;
154 static fo_stat_t pipe_stat;
155 static fo_close_t pipe_close;
156 static fo_chmod_t pipe_chmod;
157 static fo_chown_t pipe_chown;
158 static fo_fill_kinfo_t pipe_fill_kinfo;
159
160 struct fileops pipeops = {
161 .fo_read = pipe_read,
162 .fo_write = pipe_write,
163 .fo_truncate = pipe_truncate,
164 .fo_ioctl = pipe_ioctl,
165 .fo_poll = pipe_poll,
166 .fo_kqfilter = pipe_kqfilter,
167 .fo_stat = pipe_stat,
168 .fo_close = pipe_close,
169 .fo_chmod = pipe_chmod,
170 .fo_chown = pipe_chown,
171 .fo_sendfile = invfo_sendfile,
172 .fo_fill_kinfo = pipe_fill_kinfo,
173 .fo_flags = DFLAG_PASSABLE
174 };
175
176 static void filt_pipedetach(struct knote *kn);
177 static void filt_pipedetach_notsup(struct knote *kn);
178 static int filt_pipenotsup(struct knote *kn, long hint);
179 static int filt_piperead(struct knote *kn, long hint);
180 static int filt_pipewrite(struct knote *kn, long hint);
181
182 static struct filterops pipe_nfiltops = {
183 .f_isfd = 1,
184 .f_detach = filt_pipedetach_notsup,
185 .f_event = filt_pipenotsup
186 };
187 static struct filterops pipe_rfiltops = {
188 .f_isfd = 1,
189 .f_detach = filt_pipedetach,
190 .f_event = filt_piperead
191 };
192 static struct filterops pipe_wfiltops = {
193 .f_isfd = 1,
194 .f_detach = filt_pipedetach,
195 .f_event = filt_pipewrite
196 };
197
198 /*
199 * Default pipe buffer size(s), this can be kind-of large now because pipe
200 * space is pageable. The pipe code will try to maintain locality of
201 * reference for performance reasons, so small amounts of outstanding I/O
202 * will not wipe the cache.
203 */
204 #define MINPIPESIZE (PIPE_SIZE/3)
205 #define MAXPIPESIZE (2*PIPE_SIZE/3)
206
207 static long amountpipekva;
208 static int pipefragretry;
209 static int pipeallocfail;
210 static int piperesizefail;
211 static int piperesizeallowed = 1;
212
213 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
214 &maxpipekva, 0, "Pipe KVA limit");
215 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
216 &amountpipekva, 0, "Pipe KVA usage");
217 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
218 &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
219 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
220 &pipeallocfail, 0, "Pipe allocation failures");
221 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
222 &piperesizefail, 0, "Pipe resize failures");
223 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
224 &piperesizeallowed, 0, "Pipe resizing allowed");
225
226 static void pipeinit(void *dummy __unused);
227 static void pipeclose(struct pipe *cpipe);
228 static void pipe_free_kmem(struct pipe *cpipe);
229 static int pipe_create(struct pipe *pipe, bool backing);
230 static int pipe_paircreate(struct thread *td, struct pipepair **p_pp);
231 static __inline int pipelock(struct pipe *cpipe, int catch);
232 static __inline void pipeunlock(struct pipe *cpipe);
233 #ifndef PIPE_NODIRECT
234 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
235 static void pipe_destroy_write_buffer(struct pipe *wpipe);
236 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
237 static void pipe_clone_write_buffer(struct pipe *wpipe);
238 #endif
239 static int pipespace(struct pipe *cpipe, int size);
240 static int pipespace_new(struct pipe *cpipe, int size);
241
242 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags);
243 static int pipe_zone_init(void *mem, int size, int flags);
244 static void pipe_zone_fini(void *mem, int size);
245
246 static uma_zone_t pipe_zone;
247 static struct unrhdr64 pipeino_unr;
248 static dev_t pipedev_ino;
249
250 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
251
252 static void
253 pipeinit(void *dummy __unused)
254 {
255
256 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
257 pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
258 UMA_ALIGN_PTR, 0);
259 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
260 new_unrhdr64(&pipeino_unr, 1);
261 pipedev_ino = devfs_alloc_cdp_inode();
262 KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
263 }
264
265 static int
266 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
267 {
268 struct pipepair *pp;
269 struct pipe *rpipe, *wpipe;
270
271 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
272
273 pp = (struct pipepair *)mem;
274
275 /*
276 * We zero both pipe endpoints to make sure all the kmem pointers
277 * are NULL, flag fields are zero'd, etc. We timestamp both
278 * endpoints with the same time.
279 */
280 rpipe = &pp->pp_rpipe;
281 bzero(rpipe, sizeof(*rpipe));
282 vfs_timestamp(&rpipe->pipe_ctime);
283 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
284
285 wpipe = &pp->pp_wpipe;
286 bzero(wpipe, sizeof(*wpipe));
287 wpipe->pipe_ctime = rpipe->pipe_ctime;
288 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
289
290 rpipe->pipe_peer = wpipe;
291 rpipe->pipe_pair = pp;
292 wpipe->pipe_peer = rpipe;
293 wpipe->pipe_pair = pp;
294
295 /*
296 * Mark both endpoints as present; they will later get free'd
297 * one at a time. When both are free'd, then the whole pair
298 * is released.
299 */
300 rpipe->pipe_present = PIPE_ACTIVE;
301 wpipe->pipe_present = PIPE_ACTIVE;
302
303 /*
304 * Eventually, the MAC Framework may initialize the label
305 * in ctor or init, but for now we do it elswhere to avoid
306 * blocking in ctor or init.
307 */
308 pp->pp_label = NULL;
309
310 return (0);
311 }
312
313 static int
314 pipe_zone_init(void *mem, int size, int flags)
315 {
316 struct pipepair *pp;
317
318 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
319
320 pp = (struct pipepair *)mem;
321
322 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_NEW);
323 return (0);
324 }
325
326 static void
327 pipe_zone_fini(void *mem, int size)
328 {
329 struct pipepair *pp;
330
331 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
332
333 pp = (struct pipepair *)mem;
334
335 mtx_destroy(&pp->pp_mtx);
336 }
337
338 static int
339 pipe_paircreate(struct thread *td, struct pipepair **p_pp)
340 {
341 struct pipepair *pp;
342 struct pipe *rpipe, *wpipe;
343 int error;
344
345 *p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
346 #ifdef MAC
347 /*
348 * The MAC label is shared between the connected endpoints. As a
349 * result mac_pipe_init() and mac_pipe_create() are called once
350 * for the pair, and not on the endpoints.
351 */
352 mac_pipe_init(pp);
353 mac_pipe_create(td->td_ucred, pp);
354 #endif
355 rpipe = &pp->pp_rpipe;
356 wpipe = &pp->pp_wpipe;
357
358 knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
359 knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
360
361 /*
362 * Only the forward direction pipe is backed by big buffer by
363 * default.
364 */
365 error = pipe_create(rpipe, true);
366 if (error != 0)
367 goto fail;
368 error = pipe_create(wpipe, false);
369 if (error != 0) {
370 /*
371 * This cleanup leaves the pipe inode number for rpipe
372 * still allocated, but never used. We do not free
373 * inode numbers for opened pipes, which is required
374 * for correctness because numbers must be unique.
375 * But also it avoids any memory use by the unr
376 * allocator, so stashing away the transient inode
377 * number is reasonable.
378 */
379 pipe_free_kmem(rpipe);
380 goto fail;
381 }
382
383 rpipe->pipe_state |= PIPE_DIRECTOK;
384 wpipe->pipe_state |= PIPE_DIRECTOK;
385 return (0);
386
387 fail:
388 knlist_destroy(&rpipe->pipe_sel.si_note);
389 knlist_destroy(&wpipe->pipe_sel.si_note);
390 #ifdef MAC
391 mac_pipe_destroy(pp);
392 #endif
393 return (error);
394 }
395
396 int
397 pipe_named_ctor(struct pipe **ppipe, struct thread *td)
398 {
399 struct pipepair *pp;
400 int error;
401
402 error = pipe_paircreate(td, &pp);
403 if (error != 0)
404 return (error);
405 pp->pp_rpipe.pipe_state |= PIPE_NAMED;
406 *ppipe = &pp->pp_rpipe;
407 return (0);
408 }
409
410 void
411 pipe_dtor(struct pipe *dpipe)
412 {
413 struct pipe *peer;
414 ino_t ino;
415
416 ino = dpipe->pipe_ino;
417 peer = (dpipe->pipe_state & PIPE_NAMED) != 0 ? dpipe->pipe_peer : NULL;
418 funsetown(&dpipe->pipe_sigio);
419 pipeclose(dpipe);
420 if (peer != NULL) {
421 funsetown(&peer->pipe_sigio);
422 pipeclose(peer);
423 }
424 }
425
426 /*
427 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let
428 * the zone pick up the pieces via pipeclose().
429 */
430 int
431 kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1,
432 struct filecaps *fcaps2)
433 {
434 struct file *rf, *wf;
435 struct pipe *rpipe, *wpipe;
436 struct pipepair *pp;
437 int fd, fflags, error;
438
439 error = pipe_paircreate(td, &pp);
440 if (error != 0)
441 return (error);
442 rpipe = &pp->pp_rpipe;
443 wpipe = &pp->pp_wpipe;
444 error = falloc_caps(td, &rf, &fd, flags, fcaps1);
445 if (error) {
446 pipeclose(rpipe);
447 pipeclose(wpipe);
448 return (error);
449 }
450 /* An extra reference on `rf' has been held for us by falloc_caps(). */
451 fildes[0] = fd;
452
453 fflags = FREAD | FWRITE;
454 if ((flags & O_NONBLOCK) != 0)
455 fflags |= FNONBLOCK;
456
457 /*
458 * Warning: once we've gotten past allocation of the fd for the
459 * read-side, we can only drop the read side via fdrop() in order
460 * to avoid races against processes which manage to dup() the read
461 * side while we are blocked trying to allocate the write side.
462 */
463 finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
464 error = falloc_caps(td, &wf, &fd, flags, fcaps2);
465 if (error) {
466 fdclose(td, rf, fildes[0]);
467 fdrop(rf, td);
468 /* rpipe has been closed by fdrop(). */
469 pipeclose(wpipe);
470 return (error);
471 }
472 /* An extra reference on `wf' has been held for us by falloc_caps(). */
473 finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
474 fdrop(wf, td);
475 fildes[1] = fd;
476 fdrop(rf, td);
477
478 return (0);
479 }
480
481 #ifdef COMPAT_FREEBSD10
482 /* ARGSUSED */
483 int
484 freebsd10_pipe(struct thread *td, struct freebsd10_pipe_args *uap __unused)
485 {
486 int error;
487 int fildes[2];
488
489 error = kern_pipe(td, fildes, 0, NULL, NULL);
490 if (error)
491 return (error);
492
493 td->td_retval[0] = fildes[0];
494 td->td_retval[1] = fildes[1];
495
496 return (0);
497 }
498 #endif
499
500 int
501 sys_pipe2(struct thread *td, struct pipe2_args *uap)
502 {
503 int error, fildes[2];
504
505 if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
506 return (EINVAL);
507 error = kern_pipe(td, fildes, uap->flags, NULL, NULL);
508 if (error)
509 return (error);
510 error = copyout(fildes, uap->fildes, 2 * sizeof(int));
511 if (error) {
512 (void)kern_close(td, fildes[0]);
513 (void)kern_close(td, fildes[1]);
514 }
515 return (error);
516 }
517
518 /*
519 * Allocate kva for pipe circular buffer, the space is pageable
520 * This routine will 'realloc' the size of a pipe safely, if it fails
521 * it will retain the old buffer.
522 * If it fails it will return ENOMEM.
523 */
524 static int
525 pipespace_new(struct pipe *cpipe, int size)
526 {
527 caddr_t buffer;
528 int error, cnt, firstseg;
529 static int curfail = 0;
530 static struct timeval lastfail;
531
532 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
533 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
534 ("pipespace: resize of direct writes not allowed"));
535 retry:
536 cnt = cpipe->pipe_buffer.cnt;
537 if (cnt > size)
538 size = cnt;
539
540 size = round_page(size);
541 buffer = (caddr_t) vm_map_min(pipe_map);
542
543 error = vm_map_find(pipe_map, NULL, 0, (vm_offset_t *)&buffer, size, 0,
544 VMFS_ANY_SPACE, VM_PROT_RW, VM_PROT_RW, 0);
545 if (error != KERN_SUCCESS) {
546 if (cpipe->pipe_buffer.buffer == NULL &&
547 size > SMALL_PIPE_SIZE) {
548 size = SMALL_PIPE_SIZE;
549 pipefragretry++;
550 goto retry;
551 }
552 if (cpipe->pipe_buffer.buffer == NULL) {
553 pipeallocfail++;
554 if (ppsratecheck(&lastfail, &curfail, 1))
555 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
556 } else {
557 piperesizefail++;
558 }
559 return (ENOMEM);
560 }
561
562 /* copy data, then free old resources if we're resizing */
563 if (cnt > 0) {
564 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
565 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
566 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
567 buffer, firstseg);
568 if ((cnt - firstseg) > 0)
569 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
570 cpipe->pipe_buffer.in);
571 } else {
572 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
573 buffer, cnt);
574 }
575 }
576 pipe_free_kmem(cpipe);
577 cpipe->pipe_buffer.buffer = buffer;
578 cpipe->pipe_buffer.size = size;
579 cpipe->pipe_buffer.in = cnt;
580 cpipe->pipe_buffer.out = 0;
581 cpipe->pipe_buffer.cnt = cnt;
582 atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
583 return (0);
584 }
585
586 /*
587 * Wrapper for pipespace_new() that performs locking assertions.
588 */
589 static int
590 pipespace(struct pipe *cpipe, int size)
591 {
592
593 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
594 ("Unlocked pipe passed to pipespace"));
595 return (pipespace_new(cpipe, size));
596 }
597
598 /*
599 * lock a pipe for I/O, blocking other access
600 */
601 static __inline int
602 pipelock(struct pipe *cpipe, int catch)
603 {
604 int error;
605
606 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
607 while (cpipe->pipe_state & PIPE_LOCKFL) {
608 cpipe->pipe_state |= PIPE_LWANT;
609 error = msleep(cpipe, PIPE_MTX(cpipe),
610 catch ? (PRIBIO | PCATCH) : PRIBIO,
611 "pipelk", 0);
612 if (error != 0)
613 return (error);
614 }
615 cpipe->pipe_state |= PIPE_LOCKFL;
616 return (0);
617 }
618
619 /*
620 * unlock a pipe I/O lock
621 */
622 static __inline void
623 pipeunlock(struct pipe *cpipe)
624 {
625
626 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
627 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
628 ("Unlocked pipe passed to pipeunlock"));
629 cpipe->pipe_state &= ~PIPE_LOCKFL;
630 if (cpipe->pipe_state & PIPE_LWANT) {
631 cpipe->pipe_state &= ~PIPE_LWANT;
632 wakeup(cpipe);
633 }
634 }
635
636 void
637 pipeselwakeup(struct pipe *cpipe)
638 {
639
640 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
641 if (cpipe->pipe_state & PIPE_SEL) {
642 selwakeuppri(&cpipe->pipe_sel, PSOCK);
643 if (!SEL_WAITING(&cpipe->pipe_sel))
644 cpipe->pipe_state &= ~PIPE_SEL;
645 }
646 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
647 pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
648 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
649 }
650
651 /*
652 * Initialize and allocate VM and memory for pipe. The structure
653 * will start out zero'd from the ctor, so we just manage the kmem.
654 */
655 static int
656 pipe_create(struct pipe *pipe, bool large_backing)
657 {
658 int error;
659
660 error = pipespace_new(pipe, !large_backing || amountpipekva >
661 maxpipekva / 2 ? SMALL_PIPE_SIZE : PIPE_SIZE);
662 if (error == 0)
663 pipe->pipe_ino = alloc_unr64(&pipeino_unr);
664 return (error);
665 }
666
667 /* ARGSUSED */
668 static int
669 pipe_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
670 int flags, struct thread *td)
671 {
672 struct pipe *rpipe;
673 int error;
674 int nread = 0;
675 int size;
676
677 rpipe = fp->f_data;
678 PIPE_LOCK(rpipe);
679 ++rpipe->pipe_busy;
680 error = pipelock(rpipe, 1);
681 if (error)
682 goto unlocked_error;
683
684 #ifdef MAC
685 error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
686 if (error)
687 goto locked_error;
688 #endif
689 if (amountpipekva > (3 * maxpipekva) / 4) {
690 if ((rpipe->pipe_state & PIPE_DIRECTW) == 0 &&
691 rpipe->pipe_buffer.size > SMALL_PIPE_SIZE &&
692 rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE &&
693 piperesizeallowed == 1) {
694 PIPE_UNLOCK(rpipe);
695 pipespace(rpipe, SMALL_PIPE_SIZE);
696 PIPE_LOCK(rpipe);
697 }
698 }
699
700 while (uio->uio_resid) {
701 /*
702 * normal pipe buffer receive
703 */
704 if (rpipe->pipe_buffer.cnt > 0) {
705 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
706 if (size > rpipe->pipe_buffer.cnt)
707 size = rpipe->pipe_buffer.cnt;
708 if (size > uio->uio_resid)
709 size = uio->uio_resid;
710
711 PIPE_UNLOCK(rpipe);
712 error = uiomove(
713 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
714 size, uio);
715 PIPE_LOCK(rpipe);
716 if (error)
717 break;
718
719 rpipe->pipe_buffer.out += size;
720 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
721 rpipe->pipe_buffer.out = 0;
722
723 rpipe->pipe_buffer.cnt -= size;
724
725 /*
726 * If there is no more to read in the pipe, reset
727 * its pointers to the beginning. This improves
728 * cache hit stats.
729 */
730 if (rpipe->pipe_buffer.cnt == 0) {
731 rpipe->pipe_buffer.in = 0;
732 rpipe->pipe_buffer.out = 0;
733 }
734 nread += size;
735 #ifndef PIPE_NODIRECT
736 /*
737 * Direct copy, bypassing a kernel buffer.
738 */
739 } else if ((size = rpipe->pipe_pages.cnt) != 0) {
740 if (size > uio->uio_resid)
741 size = (u_int) uio->uio_resid;
742 PIPE_UNLOCK(rpipe);
743 error = uiomove_fromphys(rpipe->pipe_pages.ms,
744 rpipe->pipe_pages.pos, size, uio);
745 PIPE_LOCK(rpipe);
746 if (error)
747 break;
748 nread += size;
749 rpipe->pipe_pages.pos += size;
750 rpipe->pipe_pages.cnt -= size;
751 if (rpipe->pipe_pages.cnt == 0) {
752 rpipe->pipe_state &= ~PIPE_WANTW;
753 wakeup(rpipe);
754 }
755 #endif
756 } else {
757 /*
758 * detect EOF condition
759 * read returns 0 on EOF, no need to set error
760 */
761 if (rpipe->pipe_state & PIPE_EOF)
762 break;
763
764 /*
765 * If the "write-side" has been blocked, wake it up now.
766 */
767 if (rpipe->pipe_state & PIPE_WANTW) {
768 rpipe->pipe_state &= ~PIPE_WANTW;
769 wakeup(rpipe);
770 }
771
772 /*
773 * Break if some data was read.
774 */
775 if (nread > 0)
776 break;
777
778 /*
779 * Unlock the pipe buffer for our remaining processing.
780 * We will either break out with an error or we will
781 * sleep and relock to loop.
782 */
783 pipeunlock(rpipe);
784
785 /*
786 * Handle non-blocking mode operation or
787 * wait for more data.
788 */
789 if (fp->f_flag & FNONBLOCK) {
790 error = EAGAIN;
791 } else {
792 rpipe->pipe_state |= PIPE_WANTR;
793 if ((error = msleep(rpipe, PIPE_MTX(rpipe),
794 PRIBIO | PCATCH,
795 "piperd", 0)) == 0)
796 error = pipelock(rpipe, 1);
797 }
798 if (error)
799 goto unlocked_error;
800 }
801 }
802 #ifdef MAC
803 locked_error:
804 #endif
805 pipeunlock(rpipe);
806
807 /* XXX: should probably do this before getting any locks. */
808 if (error == 0)
809 vfs_timestamp(&rpipe->pipe_atime);
810 unlocked_error:
811 --rpipe->pipe_busy;
812
813 /*
814 * PIPE_WANT processing only makes sense if pipe_busy is 0.
815 */
816 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
817 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
818 wakeup(rpipe);
819 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
820 /*
821 * Handle write blocking hysteresis.
822 */
823 if (rpipe->pipe_state & PIPE_WANTW) {
824 rpipe->pipe_state &= ~PIPE_WANTW;
825 wakeup(rpipe);
826 }
827 }
828
829 /*
830 * Only wake up writers if there was actually something read.
831 * Otherwise, when calling read(2) at EOF, a spurious wakeup occurs.
832 */
833 if (nread > 0 &&
834 rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt >= PIPE_BUF)
835 pipeselwakeup(rpipe);
836
837 PIPE_UNLOCK(rpipe);
838 return (error);
839 }
840
841 #ifndef PIPE_NODIRECT
842 /*
843 * Map the sending processes' buffer into kernel space and wire it.
844 * This is similar to a physical write operation.
845 */
846 static int
847 pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio)
848 {
849 u_int size;
850 int i;
851
852 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
853 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0,
854 ("%s: PIPE_DIRECTW set on %p", __func__, wpipe));
855 KASSERT(wpipe->pipe_pages.cnt == 0,
856 ("%s: pipe map for %p contains residual data", __func__, wpipe));
857
858 if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
859 size = wpipe->pipe_buffer.size;
860 else
861 size = uio->uio_iov->iov_len;
862
863 wpipe->pipe_state |= PIPE_DIRECTW;
864 PIPE_UNLOCK(wpipe);
865 i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
866 (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
867 wpipe->pipe_pages.ms, PIPENPAGES);
868 PIPE_LOCK(wpipe);
869 if (i < 0) {
870 wpipe->pipe_state &= ~PIPE_DIRECTW;
871 return (EFAULT);
872 }
873
874 wpipe->pipe_pages.npages = i;
875 wpipe->pipe_pages.pos =
876 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
877 wpipe->pipe_pages.cnt = size;
878
879 uio->uio_iov->iov_len -= size;
880 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
881 if (uio->uio_iov->iov_len == 0)
882 uio->uio_iov++;
883 uio->uio_resid -= size;
884 uio->uio_offset += size;
885 return (0);
886 }
887
888 /*
889 * Unwire the process buffer.
890 */
891 static void
892 pipe_destroy_write_buffer(struct pipe *wpipe)
893 {
894
895 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
896 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0,
897 ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe));
898 KASSERT(wpipe->pipe_pages.cnt == 0,
899 ("%s: pipe map for %p contains residual data", __func__, wpipe));
900
901 wpipe->pipe_state &= ~PIPE_DIRECTW;
902 vm_page_unhold_pages(wpipe->pipe_pages.ms, wpipe->pipe_pages.npages);
903 wpipe->pipe_pages.npages = 0;
904 }
905
906 /*
907 * In the case of a signal, the writing process might go away. This
908 * code copies the data into the circular buffer so that the source
909 * pages can be freed without loss of data.
910 */
911 static void
912 pipe_clone_write_buffer(struct pipe *wpipe)
913 {
914 struct uio uio;
915 struct iovec iov;
916 int size;
917 int pos;
918
919 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
920 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0,
921 ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe));
922
923 size = wpipe->pipe_pages.cnt;
924 pos = wpipe->pipe_pages.pos;
925 wpipe->pipe_pages.cnt = 0;
926
927 wpipe->pipe_buffer.in = size;
928 wpipe->pipe_buffer.out = 0;
929 wpipe->pipe_buffer.cnt = size;
930
931 PIPE_UNLOCK(wpipe);
932 iov.iov_base = wpipe->pipe_buffer.buffer;
933 iov.iov_len = size;
934 uio.uio_iov = &iov;
935 uio.uio_iovcnt = 1;
936 uio.uio_offset = 0;
937 uio.uio_resid = size;
938 uio.uio_segflg = UIO_SYSSPACE;
939 uio.uio_rw = UIO_READ;
940 uio.uio_td = curthread;
941 uiomove_fromphys(wpipe->pipe_pages.ms, pos, size, &uio);
942 PIPE_LOCK(wpipe);
943 pipe_destroy_write_buffer(wpipe);
944 }
945
946 /*
947 * This implements the pipe buffer write mechanism. Note that only
948 * a direct write OR a normal pipe write can be pending at any given time.
949 * If there are any characters in the pipe buffer, the direct write will
950 * be deferred until the receiving process grabs all of the bytes from
951 * the pipe buffer. Then the direct mapping write is set-up.
952 */
953 static int
954 pipe_direct_write(struct pipe *wpipe, struct uio *uio)
955 {
956 int error;
957
958 retry:
959 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
960 error = pipelock(wpipe, 1);
961 if (error != 0)
962 goto error1;
963 if ((wpipe->pipe_state & PIPE_EOF) != 0) {
964 error = EPIPE;
965 pipeunlock(wpipe);
966 goto error1;
967 }
968 if (wpipe->pipe_state & PIPE_DIRECTW) {
969 if (wpipe->pipe_state & PIPE_WANTR) {
970 wpipe->pipe_state &= ~PIPE_WANTR;
971 wakeup(wpipe);
972 }
973 pipeselwakeup(wpipe);
974 wpipe->pipe_state |= PIPE_WANTW;
975 pipeunlock(wpipe);
976 error = msleep(wpipe, PIPE_MTX(wpipe),
977 PRIBIO | PCATCH, "pipdww", 0);
978 if (error)
979 goto error1;
980 else
981 goto retry;
982 }
983 if (wpipe->pipe_buffer.cnt > 0) {
984 if (wpipe->pipe_state & PIPE_WANTR) {
985 wpipe->pipe_state &= ~PIPE_WANTR;
986 wakeup(wpipe);
987 }
988 pipeselwakeup(wpipe);
989 wpipe->pipe_state |= PIPE_WANTW;
990 pipeunlock(wpipe);
991 error = msleep(wpipe, PIPE_MTX(wpipe),
992 PRIBIO | PCATCH, "pipdwc", 0);
993 if (error)
994 goto error1;
995 else
996 goto retry;
997 }
998
999 error = pipe_build_write_buffer(wpipe, uio);
1000 if (error) {
1001 pipeunlock(wpipe);
1002 goto error1;
1003 }
1004
1005 while (wpipe->pipe_pages.cnt != 0 &&
1006 (wpipe->pipe_state & PIPE_EOF) == 0) {
1007 if (wpipe->pipe_state & PIPE_WANTR) {
1008 wpipe->pipe_state &= ~PIPE_WANTR;
1009 wakeup(wpipe);
1010 }
1011 pipeselwakeup(wpipe);
1012 wpipe->pipe_state |= PIPE_WANTW;
1013 pipeunlock(wpipe);
1014 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1015 "pipdwt", 0);
1016 pipelock(wpipe, 0);
1017 if (error != 0)
1018 break;
1019 }
1020
1021 if ((wpipe->pipe_state & PIPE_EOF) != 0) {
1022 wpipe->pipe_pages.cnt = 0;
1023 pipe_destroy_write_buffer(wpipe);
1024 pipeselwakeup(wpipe);
1025 error = EPIPE;
1026 } else if (error == EINTR || error == ERESTART) {
1027 pipe_clone_write_buffer(wpipe);
1028 } else {
1029 pipe_destroy_write_buffer(wpipe);
1030 }
1031 pipeunlock(wpipe);
1032 KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0,
1033 ("pipe %p leaked PIPE_DIRECTW", wpipe));
1034 return (error);
1035
1036 error1:
1037 wakeup(wpipe);
1038 return (error);
1039 }
1040 #endif
1041
1042 static int
1043 pipe_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1044 int flags, struct thread *td)
1045 {
1046 struct pipe *wpipe, *rpipe;
1047 ssize_t orig_resid;
1048 int desiredsize, error;
1049
1050 rpipe = fp->f_data;
1051 wpipe = PIPE_PEER(rpipe);
1052 PIPE_LOCK(rpipe);
1053 error = pipelock(wpipe, 1);
1054 if (error) {
1055 PIPE_UNLOCK(rpipe);
1056 return (error);
1057 }
1058 /*
1059 * detect loss of pipe read side, issue SIGPIPE if lost.
1060 */
1061 if (wpipe->pipe_present != PIPE_ACTIVE ||
1062 (wpipe->pipe_state & PIPE_EOF)) {
1063 pipeunlock(wpipe);
1064 PIPE_UNLOCK(rpipe);
1065 return (EPIPE);
1066 }
1067 #ifdef MAC
1068 error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1069 if (error) {
1070 pipeunlock(wpipe);
1071 PIPE_UNLOCK(rpipe);
1072 return (error);
1073 }
1074 #endif
1075 ++wpipe->pipe_busy;
1076
1077 /* Choose a larger size if it's advantageous */
1078 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1079 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1080 if (piperesizeallowed != 1)
1081 break;
1082 if (amountpipekva > maxpipekva / 2)
1083 break;
1084 if (desiredsize == BIG_PIPE_SIZE)
1085 break;
1086 desiredsize = desiredsize * 2;
1087 }
1088
1089 /* Choose a smaller size if we're in a OOM situation */
1090 if (amountpipekva > (3 * maxpipekva) / 4 &&
1091 wpipe->pipe_buffer.size > SMALL_PIPE_SIZE &&
1092 wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE &&
1093 piperesizeallowed == 1)
1094 desiredsize = SMALL_PIPE_SIZE;
1095
1096 /* Resize if the above determined that a new size was necessary */
1097 if (desiredsize != wpipe->pipe_buffer.size &&
1098 (wpipe->pipe_state & PIPE_DIRECTW) == 0) {
1099 PIPE_UNLOCK(wpipe);
1100 pipespace(wpipe, desiredsize);
1101 PIPE_LOCK(wpipe);
1102 }
1103 MPASS(wpipe->pipe_buffer.size != 0);
1104
1105 pipeunlock(wpipe);
1106
1107 orig_resid = uio->uio_resid;
1108
1109 while (uio->uio_resid) {
1110 int space;
1111
1112 pipelock(wpipe, 0);
1113 if (wpipe->pipe_state & PIPE_EOF) {
1114 pipeunlock(wpipe);
1115 error = EPIPE;
1116 break;
1117 }
1118 #ifndef PIPE_NODIRECT
1119 /*
1120 * If the transfer is large, we can gain performance if
1121 * we do process-to-process copies directly.
1122 * If the write is non-blocking, we don't use the
1123 * direct write mechanism.
1124 *
1125 * The direct write mechanism will detect the reader going
1126 * away on us.
1127 */
1128 if (uio->uio_segflg == UIO_USERSPACE &&
1129 uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1130 wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1131 (fp->f_flag & FNONBLOCK) == 0) {
1132 pipeunlock(wpipe);
1133 error = pipe_direct_write(wpipe, uio);
1134 if (error)
1135 break;
1136 continue;
1137 }
1138 #endif
1139
1140 /*
1141 * Pipe buffered writes cannot be coincidental with
1142 * direct writes. We wait until the currently executing
1143 * direct write is completed before we start filling the
1144 * pipe buffer. We break out if a signal occurs or the
1145 * reader goes away.
1146 */
1147 if (wpipe->pipe_pages.cnt != 0) {
1148 if (wpipe->pipe_state & PIPE_WANTR) {
1149 wpipe->pipe_state &= ~PIPE_WANTR;
1150 wakeup(wpipe);
1151 }
1152 pipeselwakeup(wpipe);
1153 wpipe->pipe_state |= PIPE_WANTW;
1154 pipeunlock(wpipe);
1155 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1156 "pipbww", 0);
1157 if (error)
1158 break;
1159 else
1160 continue;
1161 }
1162
1163 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1164
1165 /* Writes of size <= PIPE_BUF must be atomic. */
1166 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1167 space = 0;
1168
1169 if (space > 0) {
1170 int size; /* Transfer size */
1171 int segsize; /* first segment to transfer */
1172
1173 /*
1174 * Transfer size is minimum of uio transfer
1175 * and free space in pipe buffer.
1176 */
1177 if (space > uio->uio_resid)
1178 size = uio->uio_resid;
1179 else
1180 size = space;
1181 /*
1182 * First segment to transfer is minimum of
1183 * transfer size and contiguous space in
1184 * pipe buffer. If first segment to transfer
1185 * is less than the transfer size, we've got
1186 * a wraparound in the buffer.
1187 */
1188 segsize = wpipe->pipe_buffer.size -
1189 wpipe->pipe_buffer.in;
1190 if (segsize > size)
1191 segsize = size;
1192
1193 /* Transfer first segment */
1194
1195 PIPE_UNLOCK(rpipe);
1196 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1197 segsize, uio);
1198 PIPE_LOCK(rpipe);
1199
1200 if (error == 0 && segsize < size) {
1201 KASSERT(wpipe->pipe_buffer.in + segsize ==
1202 wpipe->pipe_buffer.size,
1203 ("Pipe buffer wraparound disappeared"));
1204 /*
1205 * Transfer remaining part now, to
1206 * support atomic writes. Wraparound
1207 * happened.
1208 */
1209
1210 PIPE_UNLOCK(rpipe);
1211 error = uiomove(
1212 &wpipe->pipe_buffer.buffer[0],
1213 size - segsize, uio);
1214 PIPE_LOCK(rpipe);
1215 }
1216 if (error == 0) {
1217 wpipe->pipe_buffer.in += size;
1218 if (wpipe->pipe_buffer.in >=
1219 wpipe->pipe_buffer.size) {
1220 KASSERT(wpipe->pipe_buffer.in ==
1221 size - segsize +
1222 wpipe->pipe_buffer.size,
1223 ("Expected wraparound bad"));
1224 wpipe->pipe_buffer.in = size - segsize;
1225 }
1226
1227 wpipe->pipe_buffer.cnt += size;
1228 KASSERT(wpipe->pipe_buffer.cnt <=
1229 wpipe->pipe_buffer.size,
1230 ("Pipe buffer overflow"));
1231 }
1232 pipeunlock(wpipe);
1233 if (error != 0)
1234 break;
1235 } else {
1236 /*
1237 * If the "read-side" has been blocked, wake it up now.
1238 */
1239 if (wpipe->pipe_state & PIPE_WANTR) {
1240 wpipe->pipe_state &= ~PIPE_WANTR;
1241 wakeup(wpipe);
1242 }
1243
1244 /*
1245 * don't block on non-blocking I/O
1246 */
1247 if (fp->f_flag & FNONBLOCK) {
1248 error = EAGAIN;
1249 pipeunlock(wpipe);
1250 break;
1251 }
1252
1253 /*
1254 * We have no more space and have something to offer,
1255 * wake up select/poll.
1256 */
1257 pipeselwakeup(wpipe);
1258
1259 wpipe->pipe_state |= PIPE_WANTW;
1260 pipeunlock(wpipe);
1261 error = msleep(wpipe, PIPE_MTX(rpipe),
1262 PRIBIO | PCATCH, "pipewr", 0);
1263 if (error != 0)
1264 break;
1265 }
1266 }
1267
1268 pipelock(wpipe, 0);
1269 --wpipe->pipe_busy;
1270
1271 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1272 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1273 wakeup(wpipe);
1274 } else if (wpipe->pipe_buffer.cnt > 0) {
1275 /*
1276 * If we have put any characters in the buffer, we wake up
1277 * the reader.
1278 */
1279 if (wpipe->pipe_state & PIPE_WANTR) {
1280 wpipe->pipe_state &= ~PIPE_WANTR;
1281 wakeup(wpipe);
1282 }
1283 }
1284
1285 /*
1286 * Don't return EPIPE if any byte was written.
1287 * EINTR and other interrupts are handled by generic I/O layer.
1288 * Do not pretend that I/O succeeded for obvious user error
1289 * like EFAULT.
1290 */
1291 if (uio->uio_resid != orig_resid && error == EPIPE)
1292 error = 0;
1293
1294 if (error == 0)
1295 vfs_timestamp(&wpipe->pipe_mtime);
1296
1297 /*
1298 * We have something to offer,
1299 * wake up select/poll.
1300 */
1301 if (wpipe->pipe_buffer.cnt)
1302 pipeselwakeup(wpipe);
1303
1304 pipeunlock(wpipe);
1305 PIPE_UNLOCK(rpipe);
1306 return (error);
1307 }
1308
1309 /* ARGSUSED */
1310 static int
1311 pipe_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1312 struct thread *td)
1313 {
1314 struct pipe *cpipe;
1315 int error;
1316
1317 cpipe = fp->f_data;
1318 if (cpipe->pipe_state & PIPE_NAMED)
1319 error = vnops.fo_truncate(fp, length, active_cred, td);
1320 else
1321 error = invfo_truncate(fp, length, active_cred, td);
1322 return (error);
1323 }
1324
1325 /*
1326 * we implement a very minimal set of ioctls for compatibility with sockets.
1327 */
1328 static int
1329 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred,
1330 struct thread *td)
1331 {
1332 struct pipe *mpipe = fp->f_data;
1333 int error;
1334
1335 PIPE_LOCK(mpipe);
1336
1337 #ifdef MAC
1338 error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1339 if (error) {
1340 PIPE_UNLOCK(mpipe);
1341 return (error);
1342 }
1343 #endif
1344
1345 error = 0;
1346 switch (cmd) {
1347
1348 case FIONBIO:
1349 break;
1350
1351 case FIOASYNC:
1352 if (*(int *)data) {
1353 mpipe->pipe_state |= PIPE_ASYNC;
1354 } else {
1355 mpipe->pipe_state &= ~PIPE_ASYNC;
1356 }
1357 break;
1358
1359 case FIONREAD:
1360 if (!(fp->f_flag & FREAD)) {
1361 *(int *)data = 0;
1362 PIPE_UNLOCK(mpipe);
1363 return (0);
1364 }
1365 if (mpipe->pipe_pages.cnt != 0)
1366 *(int *)data = mpipe->pipe_pages.cnt;
1367 else
1368 *(int *)data = mpipe->pipe_buffer.cnt;
1369 break;
1370
1371 case FIOSETOWN:
1372 PIPE_UNLOCK(mpipe);
1373 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1374 goto out_unlocked;
1375
1376 case FIOGETOWN:
1377 *(int *)data = fgetown(&mpipe->pipe_sigio);
1378 break;
1379
1380 /* This is deprecated, FIOSETOWN should be used instead. */
1381 case TIOCSPGRP:
1382 PIPE_UNLOCK(mpipe);
1383 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1384 goto out_unlocked;
1385
1386 /* This is deprecated, FIOGETOWN should be used instead. */
1387 case TIOCGPGRP:
1388 *(int *)data = -fgetown(&mpipe->pipe_sigio);
1389 break;
1390
1391 default:
1392 error = ENOTTY;
1393 break;
1394 }
1395 PIPE_UNLOCK(mpipe);
1396 out_unlocked:
1397 return (error);
1398 }
1399
1400 static int
1401 pipe_poll(struct file *fp, int events, struct ucred *active_cred,
1402 struct thread *td)
1403 {
1404 struct pipe *rpipe;
1405 struct pipe *wpipe;
1406 int levents, revents;
1407 #ifdef MAC
1408 int error;
1409 #endif
1410
1411 revents = 0;
1412 rpipe = fp->f_data;
1413 wpipe = PIPE_PEER(rpipe);
1414 PIPE_LOCK(rpipe);
1415 #ifdef MAC
1416 error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1417 if (error)
1418 goto locked_error;
1419 #endif
1420 if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1421 if (rpipe->pipe_pages.cnt > 0 || rpipe->pipe_buffer.cnt > 0)
1422 revents |= events & (POLLIN | POLLRDNORM);
1423
1424 if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1425 if (wpipe->pipe_present != PIPE_ACTIVE ||
1426 (wpipe->pipe_state & PIPE_EOF) ||
1427 ((wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1428 ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1429 wpipe->pipe_buffer.size == 0)))
1430 revents |= events & (POLLOUT | POLLWRNORM);
1431
1432 levents = events &
1433 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1434 if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents &&
1435 fp->f_pipegen == rpipe->pipe_wgen)
1436 events |= POLLINIGNEOF;
1437
1438 if ((events & POLLINIGNEOF) == 0) {
1439 if (rpipe->pipe_state & PIPE_EOF) {
1440 if (fp->f_flag & FREAD)
1441 revents |= (events & (POLLIN | POLLRDNORM));
1442 if (wpipe->pipe_present != PIPE_ACTIVE ||
1443 (wpipe->pipe_state & PIPE_EOF))
1444 revents |= POLLHUP;
1445 }
1446 }
1447
1448 if (revents == 0) {
1449 /*
1450 * Add ourselves regardless of eventmask as we have to return
1451 * POLLHUP even if it was not asked for.
1452 */
1453 if ((fp->f_flag & FREAD) != 0) {
1454 selrecord(td, &rpipe->pipe_sel);
1455 if (SEL_WAITING(&rpipe->pipe_sel))
1456 rpipe->pipe_state |= PIPE_SEL;
1457 }
1458
1459 if ((fp->f_flag & FWRITE) != 0 &&
1460 wpipe->pipe_present == PIPE_ACTIVE) {
1461 selrecord(td, &wpipe->pipe_sel);
1462 if (SEL_WAITING(&wpipe->pipe_sel))
1463 wpipe->pipe_state |= PIPE_SEL;
1464 }
1465 }
1466 #ifdef MAC
1467 locked_error:
1468 #endif
1469 PIPE_UNLOCK(rpipe);
1470
1471 return (revents);
1472 }
1473
1474 /*
1475 * We shouldn't need locks here as we're doing a read and this should
1476 * be a natural race.
1477 */
1478 static int
1479 pipe_stat(struct file *fp, struct stat *ub, struct ucred *active_cred,
1480 struct thread *td)
1481 {
1482 struct pipe *pipe;
1483 #ifdef MAC
1484 int error;
1485 #endif
1486
1487 pipe = fp->f_data;
1488 PIPE_LOCK(pipe);
1489 #ifdef MAC
1490 error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1491 if (error) {
1492 PIPE_UNLOCK(pipe);
1493 return (error);
1494 }
1495 #endif
1496
1497 /* For named pipes ask the underlying filesystem. */
1498 if (pipe->pipe_state & PIPE_NAMED) {
1499 PIPE_UNLOCK(pipe);
1500 return (vnops.fo_stat(fp, ub, active_cred, td));
1501 }
1502
1503 PIPE_UNLOCK(pipe);
1504
1505 bzero(ub, sizeof(*ub));
1506 ub->st_mode = S_IFIFO;
1507 ub->st_blksize = PAGE_SIZE;
1508 if (pipe->pipe_pages.cnt != 0)
1509 ub->st_size = pipe->pipe_pages.cnt;
1510 else
1511 ub->st_size = pipe->pipe_buffer.cnt;
1512 ub->st_blocks = howmany(ub->st_size, ub->st_blksize);
1513 ub->st_atim = pipe->pipe_atime;
1514 ub->st_mtim = pipe->pipe_mtime;
1515 ub->st_ctim = pipe->pipe_ctime;
1516 ub->st_uid = fp->f_cred->cr_uid;
1517 ub->st_gid = fp->f_cred->cr_gid;
1518 ub->st_dev = pipedev_ino;
1519 ub->st_ino = pipe->pipe_ino;
1520 /*
1521 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1522 */
1523 return (0);
1524 }
1525
1526 /* ARGSUSED */
1527 static int
1528 pipe_close(struct file *fp, struct thread *td)
1529 {
1530
1531 if (fp->f_vnode != NULL)
1532 return vnops.fo_close(fp, td);
1533 fp->f_ops = &badfileops;
1534 pipe_dtor(fp->f_data);
1535 fp->f_data = NULL;
1536 return (0);
1537 }
1538
1539 static int
1540 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1541 {
1542 struct pipe *cpipe;
1543 int error;
1544
1545 cpipe = fp->f_data;
1546 if (cpipe->pipe_state & PIPE_NAMED)
1547 error = vn_chmod(fp, mode, active_cred, td);
1548 else
1549 error = invfo_chmod(fp, mode, active_cred, td);
1550 return (error);
1551 }
1552
1553 static int
1554 pipe_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1555 struct thread *td)
1556 {
1557 struct pipe *cpipe;
1558 int error;
1559
1560 cpipe = fp->f_data;
1561 if (cpipe->pipe_state & PIPE_NAMED)
1562 error = vn_chown(fp, uid, gid, active_cred, td);
1563 else
1564 error = invfo_chown(fp, uid, gid, active_cred, td);
1565 return (error);
1566 }
1567
1568 static int
1569 pipe_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1570 {
1571 struct pipe *pi;
1572
1573 if (fp->f_type == DTYPE_FIFO)
1574 return (vn_fill_kinfo(fp, kif, fdp));
1575 kif->kf_type = KF_TYPE_PIPE;
1576 pi = fp->f_data;
1577 kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi;
1578 kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer;
1579 kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt;
1580 return (0);
1581 }
1582
1583 static void
1584 pipe_free_kmem(struct pipe *cpipe)
1585 {
1586
1587 KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1588 ("pipe_free_kmem: pipe mutex locked"));
1589
1590 if (cpipe->pipe_buffer.buffer != NULL) {
1591 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1592 vm_map_remove(pipe_map,
1593 (vm_offset_t)cpipe->pipe_buffer.buffer,
1594 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1595 cpipe->pipe_buffer.buffer = NULL;
1596 }
1597 #ifndef PIPE_NODIRECT
1598 {
1599 cpipe->pipe_pages.cnt = 0;
1600 cpipe->pipe_pages.pos = 0;
1601 cpipe->pipe_pages.npages = 0;
1602 }
1603 #endif
1604 }
1605
1606 /*
1607 * shutdown the pipe
1608 */
1609 static void
1610 pipeclose(struct pipe *cpipe)
1611 {
1612 struct pipepair *pp;
1613 struct pipe *ppipe;
1614
1615 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1616
1617 PIPE_LOCK(cpipe);
1618 pipelock(cpipe, 0);
1619 pp = cpipe->pipe_pair;
1620
1621 /*
1622 * If the other side is blocked, wake it up saying that
1623 * we want to close it down.
1624 */
1625 cpipe->pipe_state |= PIPE_EOF;
1626 while (cpipe->pipe_busy) {
1627 wakeup(cpipe);
1628 cpipe->pipe_state |= PIPE_WANT;
1629 pipeunlock(cpipe);
1630 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1631 pipelock(cpipe, 0);
1632 }
1633
1634 pipeselwakeup(cpipe);
1635
1636 /*
1637 * Disconnect from peer, if any.
1638 */
1639 ppipe = cpipe->pipe_peer;
1640 if (ppipe->pipe_present == PIPE_ACTIVE) {
1641 ppipe->pipe_state |= PIPE_EOF;
1642 wakeup(ppipe);
1643 pipeselwakeup(ppipe);
1644 }
1645
1646 /*
1647 * Mark this endpoint as free. Release kmem resources. We
1648 * don't mark this endpoint as unused until we've finished
1649 * doing that, or the pipe might disappear out from under
1650 * us.
1651 */
1652 PIPE_UNLOCK(cpipe);
1653 pipe_free_kmem(cpipe);
1654 PIPE_LOCK(cpipe);
1655 cpipe->pipe_present = PIPE_CLOSING;
1656 pipeunlock(cpipe);
1657
1658 /*
1659 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1660 * PIPE_FINALIZED, that allows other end to free the
1661 * pipe_pair, only after the knotes are completely dismantled.
1662 */
1663 knlist_clear(&cpipe->pipe_sel.si_note, 1);
1664 cpipe->pipe_present = PIPE_FINALIZED;
1665 seldrain(&cpipe->pipe_sel);
1666 knlist_destroy(&cpipe->pipe_sel.si_note);
1667
1668 /*
1669 * If both endpoints are now closed, release the memory for the
1670 * pipe pair. If not, unlock.
1671 */
1672 if (ppipe->pipe_present == PIPE_FINALIZED) {
1673 PIPE_UNLOCK(cpipe);
1674 #ifdef MAC
1675 mac_pipe_destroy(pp);
1676 #endif
1677 uma_zfree(pipe_zone, cpipe->pipe_pair);
1678 } else
1679 PIPE_UNLOCK(cpipe);
1680 }
1681
1682 /*ARGSUSED*/
1683 static int
1684 pipe_kqfilter(struct file *fp, struct knote *kn)
1685 {
1686 struct pipe *cpipe;
1687
1688 /*
1689 * If a filter is requested that is not supported by this file
1690 * descriptor, don't return an error, but also don't ever generate an
1691 * event.
1692 */
1693 if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1694 kn->kn_fop = &pipe_nfiltops;
1695 return (0);
1696 }
1697 if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1698 kn->kn_fop = &pipe_nfiltops;
1699 return (0);
1700 }
1701 cpipe = fp->f_data;
1702 PIPE_LOCK(cpipe);
1703 switch (kn->kn_filter) {
1704 case EVFILT_READ:
1705 kn->kn_fop = &pipe_rfiltops;
1706 break;
1707 case EVFILT_WRITE:
1708 kn->kn_fop = &pipe_wfiltops;
1709 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1710 /* other end of pipe has been closed */
1711 PIPE_UNLOCK(cpipe);
1712 return (EPIPE);
1713 }
1714 cpipe = PIPE_PEER(cpipe);
1715 break;
1716 default:
1717 PIPE_UNLOCK(cpipe);
1718 return (EINVAL);
1719 }
1720
1721 kn->kn_hook = cpipe;
1722 knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1723 PIPE_UNLOCK(cpipe);
1724 return (0);
1725 }
1726
1727 static void
1728 filt_pipedetach(struct knote *kn)
1729 {
1730 struct pipe *cpipe = kn->kn_hook;
1731
1732 PIPE_LOCK(cpipe);
1733 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1734 PIPE_UNLOCK(cpipe);
1735 }
1736
1737 /*ARGSUSED*/
1738 static int
1739 filt_piperead(struct knote *kn, long hint)
1740 {
1741 struct file *fp = kn->kn_fp;
1742 struct pipe *rpipe = kn->kn_hook;
1743
1744 PIPE_LOCK_ASSERT(rpipe, MA_OWNED);
1745 kn->kn_data = rpipe->pipe_buffer.cnt;
1746 if (kn->kn_data == 0)
1747 kn->kn_data = rpipe->pipe_pages.cnt;
1748
1749 if ((rpipe->pipe_state & PIPE_EOF) != 0 &&
1750 ((rpipe->pipe_state & PIPE_NAMED) == 0 ||
1751 fp->f_pipegen != rpipe->pipe_wgen)) {
1752 kn->kn_flags |= EV_EOF;
1753 return (1);
1754 }
1755 kn->kn_flags &= ~EV_EOF;
1756 return (kn->kn_data > 0);
1757 }
1758
1759 /*ARGSUSED*/
1760 static int
1761 filt_pipewrite(struct knote *kn, long hint)
1762 {
1763 struct pipe *wpipe = kn->kn_hook;
1764
1765 /*
1766 * If this end of the pipe is closed, the knote was removed from the
1767 * knlist and the list lock (i.e., the pipe lock) is therefore not held.
1768 */
1769 if (wpipe->pipe_present == PIPE_ACTIVE ||
1770 (wpipe->pipe_state & PIPE_NAMED) != 0) {
1771 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1772
1773 if (wpipe->pipe_state & PIPE_DIRECTW) {
1774 kn->kn_data = 0;
1775 } else if (wpipe->pipe_buffer.size > 0) {
1776 kn->kn_data = wpipe->pipe_buffer.size -
1777 wpipe->pipe_buffer.cnt;
1778 } else {
1779 kn->kn_data = PIPE_BUF;
1780 }
1781 }
1782
1783 if (wpipe->pipe_present != PIPE_ACTIVE ||
1784 (wpipe->pipe_state & PIPE_EOF)) {
1785 kn->kn_flags |= EV_EOF;
1786 return (1);
1787 }
1788 kn->kn_flags &= ~EV_EOF;
1789 return (kn->kn_data >= PIPE_BUF);
1790 }
1791
1792 static void
1793 filt_pipedetach_notsup(struct knote *kn)
1794 {
1795
1796 }
1797
1798 static int
1799 filt_pipenotsup(struct knote *kn, long hint)
1800 {
1801
1802 return (0);
1803 }
Cache object: 1b5365fe5cbd8a69d907eadaa4ab01a1
|