FreeBSD/Linux Kernel Cross Reference
sys/kern/sys_pipe.c
1 /*
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 * John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 * are met.
18 *
19 * $FreeBSD$
20 */
21
22 /*
23 * This file contains a high-performance replacement for the socket-based
24 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
25 * all features of sockets, but does do everything that pipes normally
26 * do.
27 */
28
29 /*
30 * This code has two modes of operation, a small write mode and a large
31 * write mode. The small write mode acts like conventional pipes with
32 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
33 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
34 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
35 * the receiving process can copy it directly from the pages in the sending
36 * process.
37 *
38 * If the sending process receives a signal, it is possible that it will
39 * go away, and certainly its address space can change, because control
40 * is returned back to the user-mode side. In that case, the pipe code
41 * arranges to copy the buffer supplied by the user process, to a pageable
42 * kernel buffer, and the receiving process will grab the data from the
43 * pageable kernel buffer. Since signals don't happen all that often,
44 * the copy operation is normally eliminated.
45 *
46 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
47 * happen for small transfers so that the system will not spend all of
48 * its time context switching. PIPE_SIZE is constrained by the
49 * amount of kernel virtual memory.
50 */
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/proc.h>
55 #include <sys/fcntl.h>
56 #include <sys/file.h>
57 #include <sys/filedesc.h>
58 #include <sys/filio.h>
59 #include <sys/ttycom.h>
60 #include <sys/stat.h>
61 #include <sys/poll.h>
62 #include <sys/select.h>
63 #include <sys/signalvar.h>
64 #include <sys/sysproto.h>
65 #include <sys/pipe.h>
66 #include <sys/vnode.h>
67 #include <sys/uio.h>
68 #include <sys/event.h>
69
70 #include <vm/vm.h>
71 #include <vm/vm_param.h>
72 #include <sys/lock.h>
73 #include <vm/vm_object.h>
74 #include <vm/vm_kern.h>
75 #include <vm/vm_extern.h>
76 #include <vm/pmap.h>
77 #include <vm/vm_map.h>
78 #include <vm/vm_page.h>
79 #include <vm/vm_zone.h>
80
81 /*
82 * Use this define if you want to disable *fancy* VM things. Expect an
83 * approx 30% decrease in transfer rate. This could be useful for
84 * NetBSD or OpenBSD.
85 */
86 /* #define PIPE_NODIRECT */
87
88 /*
89 * interfaces to the outside world
90 */
91 static int pipe_read __P((struct file *fp, struct uio *uio,
92 struct ucred *cred, int flags, struct proc *p));
93 static int pipe_write __P((struct file *fp, struct uio *uio,
94 struct ucred *cred, int flags, struct proc *p));
95 static int pipe_close __P((struct file *fp, struct proc *p));
96 static int pipe_poll __P((struct file *fp, int events, struct ucred *cred,
97 struct proc *p));
98 static int pipe_kqfilter __P((struct file *fp, struct knote *kn));
99 static int pipe_stat __P((struct file *fp, struct stat *sb, struct proc *p));
100 static int pipe_ioctl __P((struct file *fp, u_long cmd, caddr_t data, struct proc *p));
101
102 static struct fileops pipeops = {
103 pipe_read, pipe_write, pipe_ioctl, pipe_poll, pipe_kqfilter,
104 pipe_stat, pipe_close
105 };
106
107 static void filt_pipedetach(struct knote *kn);
108 static int filt_piperead(struct knote *kn, long hint);
109 static int filt_pipewrite(struct knote *kn, long hint);
110
111 static struct filterops pipe_rfiltops =
112 { 1, NULL, filt_pipedetach, filt_piperead };
113 static struct filterops pipe_wfiltops =
114 { 1, NULL, filt_pipedetach, filt_pipewrite };
115
116
117 /*
118 * Default pipe buffer size(s), this can be kind-of large now because pipe
119 * space is pageable. The pipe code will try to maintain locality of
120 * reference for performance reasons, so small amounts of outstanding I/O
121 * will not wipe the cache.
122 */
123 #define MINPIPESIZE (PIPE_SIZE/3)
124 #define MAXPIPESIZE (2*PIPE_SIZE/3)
125
126 /*
127 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
128 * is there so that on large systems, we don't exhaust it.
129 */
130 #define MAXPIPEKVA (8*1024*1024)
131
132 /*
133 * Limit for direct transfers, we cannot, of course limit
134 * the amount of kva for pipes in general though.
135 */
136 #define LIMITPIPEKVA (16*1024*1024)
137
138 /*
139 * Limit the number of "big" pipes
140 */
141 #define LIMITBIGPIPES 32
142 static int nbigpipe;
143
144 static int amountpipekva;
145
146 static void pipeclose __P((struct pipe *cpipe));
147 static void pipe_free_kmem __P((struct pipe *cpipe));
148 static int pipe_create __P((struct pipe **cpipep));
149 static __inline int pipelock __P((struct pipe *cpipe, int catch));
150 static __inline void pipeunlock __P((struct pipe *cpipe));
151 static __inline void pipeselwakeup __P((struct pipe *cpipe));
152 #ifndef PIPE_NODIRECT
153 static int pipe_build_write_buffer __P((struct pipe *wpipe, struct uio *uio));
154 static void pipe_destroy_write_buffer __P((struct pipe *wpipe));
155 static int pipe_direct_write __P((struct pipe *wpipe, struct uio *uio));
156 static void pipe_clone_write_buffer __P((struct pipe *wpipe));
157 #endif
158 static int pipespace __P((struct pipe *cpipe, int size));
159
160 static vm_zone_t pipe_zone;
161
162 /*
163 * The pipe system call for the DTYPE_PIPE type of pipes
164 */
165
166 /* ARGSUSED */
167 int
168 pipe(p, uap)
169 struct proc *p;
170 struct pipe_args /* {
171 int dummy;
172 } */ *uap;
173 {
174 struct filedesc *fdp = p->p_fd;
175 struct file *rf, *wf;
176 struct pipe *rpipe, *wpipe;
177 int fd, error;
178
179 if (pipe_zone == NULL)
180 pipe_zone = zinit("PIPE", sizeof(struct pipe), 0, 0, 4);
181
182 rpipe = wpipe = NULL;
183 if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
184 pipeclose(rpipe);
185 pipeclose(wpipe);
186 return (ENFILE);
187 }
188
189 rpipe->pipe_state |= PIPE_DIRECTOK;
190 wpipe->pipe_state |= PIPE_DIRECTOK;
191
192 error = falloc(p, &rf, &fd);
193 if (error) {
194 pipeclose(rpipe);
195 pipeclose(wpipe);
196 return (error);
197 }
198 fhold(rf);
199 p->p_retval[0] = fd;
200
201 /*
202 * Warning: once we've gotten past allocation of the fd for the
203 * read-side, we can only drop the read side via fdrop() in order
204 * to avoid races against processes which manage to dup() the read
205 * side while we are blocked trying to allocate the write side.
206 */
207 rf->f_flag = FREAD | FWRITE;
208 rf->f_type = DTYPE_PIPE;
209 rf->f_data = (caddr_t)rpipe;
210 rf->f_ops = &pipeops;
211 error = falloc(p, &wf, &fd);
212 if (error) {
213 if (fdp->fd_ofiles[p->p_retval[0]] == rf) {
214 fdp->fd_ofiles[p->p_retval[0]] = NULL;
215 fdrop(rf, p);
216 }
217 fdrop(rf, p);
218 /* rpipe has been closed by fdrop(). */
219 pipeclose(wpipe);
220 return (error);
221 }
222 wf->f_flag = FREAD | FWRITE;
223 wf->f_type = DTYPE_PIPE;
224 wf->f_data = (caddr_t)wpipe;
225 wf->f_ops = &pipeops;
226 p->p_retval[1] = fd;
227
228 rpipe->pipe_peer = wpipe;
229 wpipe->pipe_peer = rpipe;
230 fdrop(rf, p);
231
232 return (0);
233 }
234
235 /*
236 * Allocate kva for pipe circular buffer, the space is pageable
237 * This routine will 'realloc' the size of a pipe safely, if it fails
238 * it will retain the old buffer.
239 * If it fails it will return ENOMEM.
240 */
241 static int
242 pipespace(cpipe, size)
243 struct pipe *cpipe;
244 int size;
245 {
246 struct vm_object *object;
247 caddr_t buffer;
248 int npages, error;
249
250 npages = round_page(size)/PAGE_SIZE;
251 /*
252 * Create an object, I don't like the idea of paging to/from
253 * kernel_object.
254 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
255 */
256 object = vm_object_allocate(OBJT_DEFAULT, npages);
257 buffer = (caddr_t) vm_map_min(kernel_map);
258
259 /*
260 * Insert the object into the kernel map, and allocate kva for it.
261 * The map entry is, by default, pageable.
262 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
263 */
264 error = vm_map_find(kernel_map, object, 0,
265 (vm_offset_t *) &buffer, size, 1,
266 VM_PROT_ALL, VM_PROT_ALL, 0);
267
268 if (error != KERN_SUCCESS) {
269 vm_object_deallocate(object);
270 return (ENOMEM);
271 }
272
273 /* free old resources if we're resizing */
274 pipe_free_kmem(cpipe);
275 cpipe->pipe_buffer.object = object;
276 cpipe->pipe_buffer.buffer = buffer;
277 cpipe->pipe_buffer.size = size;
278 cpipe->pipe_buffer.in = 0;
279 cpipe->pipe_buffer.out = 0;
280 cpipe->pipe_buffer.cnt = 0;
281 amountpipekva += cpipe->pipe_buffer.size;
282 return (0);
283 }
284
285 /*
286 * initialize and allocate VM and memory for pipe
287 */
288 static int
289 pipe_create(cpipep)
290 struct pipe **cpipep;
291 {
292 struct pipe *cpipe;
293 int error;
294
295 *cpipep = zalloc(pipe_zone);
296 if (*cpipep == NULL)
297 return (ENOMEM);
298
299 cpipe = *cpipep;
300
301 /* so pipespace()->pipe_free_kmem() doesn't follow junk pointer */
302 cpipe->pipe_buffer.object = NULL;
303 #ifndef PIPE_NODIRECT
304 cpipe->pipe_map.kva = NULL;
305 #endif
306 /*
307 * protect so pipeclose() doesn't follow a junk pointer
308 * if pipespace() fails.
309 */
310 bzero(&cpipe->pipe_sel, sizeof(cpipe->pipe_sel));
311 cpipe->pipe_state = 0;
312 cpipe->pipe_peer = NULL;
313 cpipe->pipe_busy = 0;
314
315 #ifndef PIPE_NODIRECT
316 /*
317 * pipe data structure initializations to support direct pipe I/O
318 */
319 cpipe->pipe_map.cnt = 0;
320 cpipe->pipe_map.kva = 0;
321 cpipe->pipe_map.pos = 0;
322 cpipe->pipe_map.npages = 0;
323 /* cpipe->pipe_map.ms[] = invalid */
324 #endif
325
326 error = pipespace(cpipe, PIPE_SIZE);
327 if (error)
328 return (error);
329
330 vfs_timestamp(&cpipe->pipe_ctime);
331 cpipe->pipe_atime = cpipe->pipe_ctime;
332 cpipe->pipe_mtime = cpipe->pipe_ctime;
333
334 return (0);
335 }
336
337
338 /*
339 * lock a pipe for I/O, blocking other access
340 */
341 static __inline int
342 pipelock(cpipe, catch)
343 struct pipe *cpipe;
344 int catch;
345 {
346 int error;
347
348 while (cpipe->pipe_state & PIPE_LOCK) {
349 cpipe->pipe_state |= PIPE_LWANT;
350 error = tsleep(cpipe, catch ? (PRIBIO | PCATCH) : PRIBIO,
351 "pipelk", 0);
352 if (error != 0)
353 return (error);
354 }
355 cpipe->pipe_state |= PIPE_LOCK;
356 return (0);
357 }
358
359 /*
360 * unlock a pipe I/O lock
361 */
362 static __inline void
363 pipeunlock(cpipe)
364 struct pipe *cpipe;
365 {
366
367 cpipe->pipe_state &= ~PIPE_LOCK;
368 if (cpipe->pipe_state & PIPE_LWANT) {
369 cpipe->pipe_state &= ~PIPE_LWANT;
370 wakeup(cpipe);
371 }
372 }
373
374 static __inline void
375 pipeselwakeup(cpipe)
376 struct pipe *cpipe;
377 {
378
379 if (cpipe->pipe_state & PIPE_SEL) {
380 cpipe->pipe_state &= ~PIPE_SEL;
381 selwakeup(&cpipe->pipe_sel);
382 }
383 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
384 pgsigio(cpipe->pipe_sigio, SIGIO, 0);
385 KNOTE(&cpipe->pipe_sel.si_note, 0);
386 }
387
388 /* ARGSUSED */
389 static int
390 pipe_read(fp, uio, cred, flags, p)
391 struct file *fp;
392 struct uio *uio;
393 struct ucred *cred;
394 struct proc *p;
395 int flags;
396 {
397 struct pipe *rpipe = (struct pipe *) fp->f_data;
398 int error;
399 int nread = 0;
400 u_int size;
401
402 ++rpipe->pipe_busy;
403 error = pipelock(rpipe, 1);
404 if (error)
405 goto unlocked_error;
406
407 while (uio->uio_resid) {
408 /*
409 * normal pipe buffer receive
410 */
411 if (rpipe->pipe_buffer.cnt > 0) {
412 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
413 if (size > rpipe->pipe_buffer.cnt)
414 size = rpipe->pipe_buffer.cnt;
415 if (size > (u_int) uio->uio_resid)
416 size = (u_int) uio->uio_resid;
417
418 error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
419 size, uio);
420 if (error)
421 break;
422
423 rpipe->pipe_buffer.out += size;
424 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
425 rpipe->pipe_buffer.out = 0;
426
427 rpipe->pipe_buffer.cnt -= size;
428
429 /*
430 * If there is no more to read in the pipe, reset
431 * its pointers to the beginning. This improves
432 * cache hit stats.
433 */
434 if (rpipe->pipe_buffer.cnt == 0) {
435 rpipe->pipe_buffer.in = 0;
436 rpipe->pipe_buffer.out = 0;
437 }
438 nread += size;
439 #ifndef PIPE_NODIRECT
440 /*
441 * Direct copy, bypassing a kernel buffer.
442 */
443 } else if ((size = rpipe->pipe_map.cnt) &&
444 (rpipe->pipe_state & PIPE_DIRECTW)) {
445 caddr_t va;
446 if (size > (u_int) uio->uio_resid)
447 size = (u_int) uio->uio_resid;
448
449 va = (caddr_t) rpipe->pipe_map.kva +
450 rpipe->pipe_map.pos;
451 error = uiomove(va, size, uio);
452 if (error)
453 break;
454 nread += size;
455 rpipe->pipe_map.pos += size;
456 rpipe->pipe_map.cnt -= size;
457 if (rpipe->pipe_map.cnt == 0) {
458 rpipe->pipe_state &= ~PIPE_DIRECTW;
459 wakeup(rpipe);
460 }
461 #endif
462 } else {
463 /*
464 * detect EOF condition
465 * read returns 0 on EOF, no need to set error
466 */
467 if (rpipe->pipe_state & PIPE_EOF)
468 break;
469
470 /*
471 * If the "write-side" has been blocked, wake it up now.
472 */
473 if (rpipe->pipe_state & PIPE_WANTW) {
474 rpipe->pipe_state &= ~PIPE_WANTW;
475 wakeup(rpipe);
476 }
477
478 /*
479 * Break if some data was read.
480 */
481 if (nread > 0)
482 break;
483
484 /*
485 * Unlock the pipe buffer for our remaining processing. We
486 * will either break out with an error or we will sleep and
487 * relock to loop.
488 */
489 pipeunlock(rpipe);
490
491 /*
492 * Handle non-blocking mode operation or
493 * wait for more data.
494 */
495 if (fp->f_flag & FNONBLOCK) {
496 error = EAGAIN;
497 } else {
498 rpipe->pipe_state |= PIPE_WANTR;
499 if ((error = tsleep(rpipe, PRIBIO | PCATCH,
500 "piperd", 0)) == 0)
501 error = pipelock(rpipe, 1);
502 }
503 if (error)
504 goto unlocked_error;
505 }
506 }
507 pipeunlock(rpipe);
508
509 if (error == 0)
510 vfs_timestamp(&rpipe->pipe_atime);
511 unlocked_error:
512 --rpipe->pipe_busy;
513
514 /*
515 * PIPE_WANT processing only makes sense if pipe_busy is 0.
516 */
517 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
518 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
519 wakeup(rpipe);
520 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
521 /*
522 * Handle write blocking hysteresis.
523 */
524 if (rpipe->pipe_state & PIPE_WANTW) {
525 rpipe->pipe_state &= ~PIPE_WANTW;
526 wakeup(rpipe);
527 }
528 }
529
530 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
531 pipeselwakeup(rpipe);
532
533 return (error);
534 }
535
536 #ifndef PIPE_NODIRECT
537 /*
538 * Map the sending processes' buffer into kernel space and wire it.
539 * This is similar to a physical write operation.
540 */
541 static int
542 pipe_build_write_buffer(wpipe, uio)
543 struct pipe *wpipe;
544 struct uio *uio;
545 {
546 u_int size;
547 int i;
548 vm_offset_t addr, endaddr;
549 vm_paddr_t paddr;
550
551 size = (u_int) uio->uio_iov->iov_len;
552 if (size > wpipe->pipe_buffer.size)
553 size = wpipe->pipe_buffer.size;
554
555 endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
556 addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
557 for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
558 vm_page_t m;
559
560 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0 ||
561 (paddr = pmap_kextract(addr)) == 0) {
562 int j;
563
564 for (j = 0; j < i; j++)
565 vm_page_unhold(wpipe->pipe_map.ms[j]);
566 return (EFAULT);
567 }
568
569 m = PHYS_TO_VM_PAGE(paddr);
570 vm_page_hold(m);
571 wpipe->pipe_map.ms[i] = m;
572 }
573
574 /*
575 * set up the control block
576 */
577 wpipe->pipe_map.npages = i;
578 wpipe->pipe_map.pos =
579 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
580 wpipe->pipe_map.cnt = size;
581
582 /*
583 * and map the buffer
584 */
585 if (wpipe->pipe_map.kva == 0) {
586 /*
587 * We need to allocate space for an extra page because the
588 * address range might (will) span pages at times.
589 */
590 wpipe->pipe_map.kva = kmem_alloc_pageable(kernel_map,
591 wpipe->pipe_buffer.size + PAGE_SIZE);
592 amountpipekva += wpipe->pipe_buffer.size + PAGE_SIZE;
593 }
594 pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms,
595 wpipe->pipe_map.npages);
596
597 /*
598 * and update the uio data
599 */
600
601 uio->uio_iov->iov_len -= size;
602 uio->uio_iov->iov_base += size;
603 if (uio->uio_iov->iov_len == 0)
604 uio->uio_iov++;
605 uio->uio_resid -= size;
606 uio->uio_offset += size;
607 return (0);
608 }
609
610 /*
611 * unmap and unwire the process buffer
612 */
613 static void
614 pipe_destroy_write_buffer(wpipe)
615 struct pipe *wpipe;
616 {
617 int i;
618
619 if (wpipe->pipe_map.kva) {
620 pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages);
621
622 if (amountpipekva > MAXPIPEKVA) {
623 vm_offset_t kva = wpipe->pipe_map.kva;
624 wpipe->pipe_map.kva = 0;
625 kmem_free(kernel_map, kva,
626 wpipe->pipe_buffer.size + PAGE_SIZE);
627 amountpipekva -= wpipe->pipe_buffer.size + PAGE_SIZE;
628 }
629 }
630 for (i = 0; i < wpipe->pipe_map.npages; i++)
631 vm_page_unhold(wpipe->pipe_map.ms[i]);
632 wpipe->pipe_map.npages = 0;
633 }
634
635 /*
636 * In the case of a signal, the writing process might go away. This
637 * code copies the data into the circular buffer so that the source
638 * pages can be freed without loss of data.
639 */
640 static void
641 pipe_clone_write_buffer(wpipe)
642 struct pipe *wpipe;
643 {
644 int size;
645 int pos;
646
647 size = wpipe->pipe_map.cnt;
648 pos = wpipe->pipe_map.pos;
649 bcopy((caddr_t) wpipe->pipe_map.kva + pos,
650 (caddr_t) wpipe->pipe_buffer.buffer, size);
651
652 wpipe->pipe_buffer.in = size;
653 wpipe->pipe_buffer.out = 0;
654 wpipe->pipe_buffer.cnt = size;
655 wpipe->pipe_state &= ~PIPE_DIRECTW;
656
657 pipe_destroy_write_buffer(wpipe);
658 }
659
660 /*
661 * This implements the pipe buffer write mechanism. Note that only
662 * a direct write OR a normal pipe write can be pending at any given time.
663 * If there are any characters in the pipe buffer, the direct write will
664 * be deferred until the receiving process grabs all of the bytes from
665 * the pipe buffer. Then the direct mapping write is set-up.
666 */
667 static int
668 pipe_direct_write(wpipe, uio)
669 struct pipe *wpipe;
670 struct uio *uio;
671 {
672 int error;
673
674 retry:
675 while (wpipe->pipe_state & PIPE_DIRECTW) {
676 if (wpipe->pipe_state & PIPE_WANTR) {
677 wpipe->pipe_state &= ~PIPE_WANTR;
678 wakeup(wpipe);
679 }
680 wpipe->pipe_state |= PIPE_WANTW;
681 error = tsleep(wpipe, PRIBIO | PCATCH, "pipdww", 0);
682 if (error)
683 goto error1;
684 if (wpipe->pipe_state & PIPE_EOF) {
685 error = EPIPE;
686 goto error1;
687 }
688 }
689 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */
690 if (wpipe->pipe_buffer.cnt > 0) {
691 if (wpipe->pipe_state & PIPE_WANTR) {
692 wpipe->pipe_state &= ~PIPE_WANTR;
693 wakeup(wpipe);
694 }
695
696 wpipe->pipe_state |= PIPE_WANTW;
697 error = tsleep(wpipe, PRIBIO | PCATCH, "pipdwc", 0);
698 if (error)
699 goto error1;
700 if (wpipe->pipe_state & PIPE_EOF) {
701 error = EPIPE;
702 goto error1;
703 }
704 goto retry;
705 }
706
707 wpipe->pipe_state |= PIPE_DIRECTW;
708
709 error = pipe_build_write_buffer(wpipe, uio);
710 if (error) {
711 wpipe->pipe_state &= ~PIPE_DIRECTW;
712 goto error1;
713 }
714
715 error = 0;
716 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
717 if (wpipe->pipe_state & PIPE_EOF) {
718 pipelock(wpipe, 0);
719 pipe_destroy_write_buffer(wpipe);
720 pipeunlock(wpipe);
721 pipeselwakeup(wpipe);
722 error = EPIPE;
723 goto error1;
724 }
725 if (wpipe->pipe_state & PIPE_WANTR) {
726 wpipe->pipe_state &= ~PIPE_WANTR;
727 wakeup(wpipe);
728 }
729 pipeselwakeup(wpipe);
730 error = tsleep(wpipe, PRIBIO | PCATCH, "pipdwt", 0);
731 }
732
733 pipelock(wpipe,0);
734 if (wpipe->pipe_state & PIPE_DIRECTW) {
735 /*
736 * this bit of trickery substitutes a kernel buffer for
737 * the process that might be going away.
738 */
739 pipe_clone_write_buffer(wpipe);
740 } else {
741 pipe_destroy_write_buffer(wpipe);
742 }
743 pipeunlock(wpipe);
744 return (error);
745
746 error1:
747 wakeup(wpipe);
748 return (error);
749 }
750 #endif
751
752 static int
753 pipe_write(fp, uio, cred, flags, p)
754 struct file *fp;
755 struct uio *uio;
756 struct ucred *cred;
757 struct proc *p;
758 int flags;
759 {
760 int error = 0;
761 int orig_resid;
762 struct pipe *wpipe, *rpipe;
763
764 rpipe = (struct pipe *) fp->f_data;
765 wpipe = rpipe->pipe_peer;
766
767 /*
768 * detect loss of pipe read side, issue SIGPIPE if lost.
769 */
770 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
771 return (EPIPE);
772 }
773 ++wpipe->pipe_busy;
774
775 /*
776 * If it is advantageous to resize the pipe buffer, do
777 * so.
778 */
779 if ((uio->uio_resid > PIPE_SIZE) &&
780 (nbigpipe < LIMITBIGPIPES) &&
781 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
782 (wpipe->pipe_buffer.size <= PIPE_SIZE) &&
783 (wpipe->pipe_buffer.cnt == 0)) {
784
785 if ((error = pipelock(wpipe,1)) == 0) {
786 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
787 nbigpipe++;
788 pipeunlock(wpipe);
789 }
790 }
791
792 /*
793 * If an early error occured unbusy and return, waking up any pending
794 * readers.
795 */
796 if (error) {
797 --wpipe->pipe_busy;
798 if ((wpipe->pipe_busy == 0) &&
799 (wpipe->pipe_state & PIPE_WANT)) {
800 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
801 wakeup(wpipe);
802 }
803 return(error);
804 }
805
806 KASSERT(wpipe->pipe_buffer.buffer != NULL, ("pipe buffer gone"));
807
808 orig_resid = uio->uio_resid;
809
810 while (uio->uio_resid) {
811 int space;
812
813 #ifndef PIPE_NODIRECT
814 /*
815 * If the transfer is large, we can gain performance if
816 * we do process-to-process copies directly.
817 * If the write is non-blocking, we don't use the
818 * direct write mechanism.
819 *
820 * The direct write mechanism will detect the reader going
821 * away on us.
822 */
823 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
824 (fp->f_flag & FNONBLOCK) == 0 &&
825 (wpipe->pipe_map.kva || (amountpipekva < LIMITPIPEKVA)) &&
826 (uio->uio_iov->iov_len >= PIPE_MINDIRECT)) {
827 error = pipe_direct_write( wpipe, uio);
828 if (error)
829 break;
830 continue;
831 }
832 #endif
833
834 /*
835 * Pipe buffered writes cannot be coincidental with
836 * direct writes. We wait until the currently executing
837 * direct write is completed before we start filling the
838 * pipe buffer. We break out if a signal occurs or the
839 * reader goes away.
840 */
841 retrywrite:
842 while (wpipe->pipe_state & PIPE_DIRECTW) {
843 if (wpipe->pipe_state & PIPE_WANTR) {
844 wpipe->pipe_state &= ~PIPE_WANTR;
845 wakeup(wpipe);
846 }
847 error = tsleep(wpipe, PRIBIO | PCATCH, "pipbww", 0);
848 if (wpipe->pipe_state & PIPE_EOF)
849 break;
850 if (error)
851 break;
852 }
853 if (wpipe->pipe_state & PIPE_EOF) {
854 error = EPIPE;
855 break;
856 }
857
858 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
859
860 /* Writes of size <= PIPE_BUF must be atomic. */
861 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
862 space = 0;
863
864 if (space > 0) {
865 if ((error = pipelock(wpipe,1)) == 0) {
866 int size; /* Transfer size */
867 int segsize; /* first segment to transfer */
868
869 /*
870 * It is possible for a direct write to
871 * slip in on us... handle it here...
872 */
873 if (wpipe->pipe_state & PIPE_DIRECTW) {
874 pipeunlock(wpipe);
875 goto retrywrite;
876 }
877 /*
878 * If a process blocked in uiomove, our
879 * value for space might be bad.
880 *
881 * XXX will we be ok if the reader has gone
882 * away here?
883 */
884 if (space > wpipe->pipe_buffer.size -
885 wpipe->pipe_buffer.cnt) {
886 pipeunlock(wpipe);
887 goto retrywrite;
888 }
889
890 /*
891 * Transfer size is minimum of uio transfer
892 * and free space in pipe buffer.
893 */
894 if (space > uio->uio_resid)
895 size = uio->uio_resid;
896 else
897 size = space;
898 /*
899 * First segment to transfer is minimum of
900 * transfer size and contiguous space in
901 * pipe buffer. If first segment to transfer
902 * is less than the transfer size, we've got
903 * a wraparound in the buffer.
904 */
905 segsize = wpipe->pipe_buffer.size -
906 wpipe->pipe_buffer.in;
907 if (segsize > size)
908 segsize = size;
909
910 /* Transfer first segment */
911
912 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
913 segsize, uio);
914
915 if (error == 0 && segsize < size) {
916 /*
917 * Transfer remaining part now, to
918 * support atomic writes. Wraparound
919 * happened.
920 */
921 if (wpipe->pipe_buffer.in + segsize !=
922 wpipe->pipe_buffer.size)
923 panic("Expected pipe buffer wraparound disappeared");
924
925 error = uiomove(&wpipe->pipe_buffer.buffer[0],
926 size - segsize, uio);
927 }
928 if (error == 0) {
929 wpipe->pipe_buffer.in += size;
930 if (wpipe->pipe_buffer.in >=
931 wpipe->pipe_buffer.size) {
932 if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
933 panic("Expected wraparound bad");
934 wpipe->pipe_buffer.in = size - segsize;
935 }
936
937 wpipe->pipe_buffer.cnt += size;
938 if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
939 panic("Pipe buffer overflow");
940
941 }
942 pipeunlock(wpipe);
943 }
944 if (error)
945 break;
946
947 } else {
948 /*
949 * If the "read-side" has been blocked, wake it up now.
950 */
951 if (wpipe->pipe_state & PIPE_WANTR) {
952 wpipe->pipe_state &= ~PIPE_WANTR;
953 wakeup(wpipe);
954 }
955
956 /*
957 * don't block on non-blocking I/O
958 */
959 if (fp->f_flag & FNONBLOCK) {
960 error = EAGAIN;
961 break;
962 }
963
964 /*
965 * We have no more space and have something to offer,
966 * wake up select/poll.
967 */
968 pipeselwakeup(wpipe);
969
970 wpipe->pipe_state |= PIPE_WANTW;
971 error = tsleep(wpipe, PRIBIO | PCATCH, "pipewr", 0);
972 if (error != 0)
973 break;
974 /*
975 * If read side wants to go away, we just issue a signal
976 * to ourselves.
977 */
978 if (wpipe->pipe_state & PIPE_EOF) {
979 error = EPIPE;
980 break;
981 }
982 }
983 }
984
985 --wpipe->pipe_busy;
986
987 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
988 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
989 wakeup(wpipe);
990 } else if (wpipe->pipe_buffer.cnt > 0) {
991 /*
992 * If we have put any characters in the buffer, we wake up
993 * the reader.
994 */
995 if (wpipe->pipe_state & PIPE_WANTR) {
996 wpipe->pipe_state &= ~PIPE_WANTR;
997 wakeup(wpipe);
998 }
999 }
1000
1001 /*
1002 * Don't return EPIPE if I/O was successful
1003 */
1004 if ((wpipe->pipe_buffer.cnt == 0) &&
1005 (uio->uio_resid == 0) &&
1006 (error == EPIPE)) {
1007 error = 0;
1008 }
1009
1010 if (error == 0)
1011 vfs_timestamp(&wpipe->pipe_mtime);
1012
1013 /*
1014 * We have something to offer,
1015 * wake up select/poll.
1016 */
1017 if (wpipe->pipe_buffer.cnt)
1018 pipeselwakeup(wpipe);
1019
1020 return (error);
1021 }
1022
1023 /*
1024 * we implement a very minimal set of ioctls for compatibility with sockets.
1025 */
1026 int
1027 pipe_ioctl(fp, cmd, data, p)
1028 struct file *fp;
1029 u_long cmd;
1030 caddr_t data;
1031 struct proc *p;
1032 {
1033 struct pipe *mpipe = (struct pipe *)fp->f_data;
1034
1035 switch (cmd) {
1036
1037 case FIONBIO:
1038 return (0);
1039
1040 case FIOASYNC:
1041 if (*(int *)data) {
1042 mpipe->pipe_state |= PIPE_ASYNC;
1043 } else {
1044 mpipe->pipe_state &= ~PIPE_ASYNC;
1045 }
1046 return (0);
1047
1048 case FIONREAD:
1049 if (mpipe->pipe_state & PIPE_DIRECTW)
1050 *(int *)data = mpipe->pipe_map.cnt;
1051 else
1052 *(int *)data = mpipe->pipe_buffer.cnt;
1053 return (0);
1054
1055 case FIOSETOWN:
1056 return (fsetown(*(int *)data, &mpipe->pipe_sigio));
1057
1058 case FIOGETOWN:
1059 *(int *)data = fgetown(mpipe->pipe_sigio);
1060 return (0);
1061
1062 /* This is deprecated, FIOSETOWN should be used instead. */
1063 case TIOCSPGRP:
1064 return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
1065
1066 /* This is deprecated, FIOGETOWN should be used instead. */
1067 case TIOCGPGRP:
1068 *(int *)data = -fgetown(mpipe->pipe_sigio);
1069 return (0);
1070
1071 }
1072 return (ENOTTY);
1073 }
1074
1075 int
1076 pipe_poll(fp, events, cred, p)
1077 struct file *fp;
1078 int events;
1079 struct ucred *cred;
1080 struct proc *p;
1081 {
1082 struct pipe *rpipe = (struct pipe *)fp->f_data;
1083 struct pipe *wpipe;
1084 int revents = 0;
1085
1086 wpipe = rpipe->pipe_peer;
1087 if (events & (POLLIN | POLLRDNORM))
1088 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1089 (rpipe->pipe_buffer.cnt > 0) ||
1090 (rpipe->pipe_state & PIPE_EOF))
1091 revents |= events & (POLLIN | POLLRDNORM);
1092
1093 if (events & (POLLOUT | POLLWRNORM))
1094 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
1095 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1096 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1097 revents |= events & (POLLOUT | POLLWRNORM);
1098
1099 if ((rpipe->pipe_state & PIPE_EOF) ||
1100 (wpipe == NULL) ||
1101 (wpipe->pipe_state & PIPE_EOF))
1102 revents |= POLLHUP;
1103
1104 if (revents == 0) {
1105 if (events & (POLLIN | POLLRDNORM)) {
1106 selrecord(p, &rpipe->pipe_sel);
1107 rpipe->pipe_state |= PIPE_SEL;
1108 }
1109
1110 if (events & (POLLOUT | POLLWRNORM)) {
1111 selrecord(p, &wpipe->pipe_sel);
1112 wpipe->pipe_state |= PIPE_SEL;
1113 }
1114 }
1115
1116 return (revents);
1117 }
1118
1119 static int
1120 pipe_stat(fp, ub, p)
1121 struct file *fp;
1122 struct stat *ub;
1123 struct proc *p;
1124 {
1125 struct pipe *pipe = (struct pipe *)fp->f_data;
1126
1127 bzero((caddr_t)ub, sizeof(*ub));
1128 ub->st_mode = S_IFIFO;
1129 ub->st_blksize = pipe->pipe_buffer.size;
1130 ub->st_size = pipe->pipe_buffer.cnt;
1131 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1132 ub->st_atimespec = pipe->pipe_atime;
1133 ub->st_mtimespec = pipe->pipe_mtime;
1134 ub->st_ctimespec = pipe->pipe_ctime;
1135 /*
1136 * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev,
1137 * st_flags, st_gen.
1138 * XXX (st_dev, st_ino) should be unique.
1139 */
1140 return (0);
1141 }
1142
1143 /* ARGSUSED */
1144 static int
1145 pipe_close(fp, p)
1146 struct file *fp;
1147 struct proc *p;
1148 {
1149 struct pipe *cpipe = (struct pipe *)fp->f_data;
1150
1151 fp->f_ops = &badfileops;
1152 fp->f_data = NULL;
1153 funsetown(cpipe->pipe_sigio);
1154 pipeclose(cpipe);
1155 return (0);
1156 }
1157
1158 static void
1159 pipe_free_kmem(cpipe)
1160 struct pipe *cpipe;
1161 {
1162
1163 if (cpipe->pipe_buffer.buffer != NULL) {
1164 if (cpipe->pipe_buffer.size > PIPE_SIZE)
1165 --nbigpipe;
1166 amountpipekva -= cpipe->pipe_buffer.size;
1167 kmem_free(kernel_map,
1168 (vm_offset_t)cpipe->pipe_buffer.buffer,
1169 cpipe->pipe_buffer.size);
1170 cpipe->pipe_buffer.buffer = NULL;
1171 }
1172 #ifndef PIPE_NODIRECT
1173 if (cpipe->pipe_map.kva != NULL) {
1174 amountpipekva -= cpipe->pipe_buffer.size + PAGE_SIZE;
1175 kmem_free(kernel_map,
1176 cpipe->pipe_map.kva,
1177 cpipe->pipe_buffer.size + PAGE_SIZE);
1178 cpipe->pipe_map.cnt = 0;
1179 cpipe->pipe_map.kva = 0;
1180 cpipe->pipe_map.pos = 0;
1181 cpipe->pipe_map.npages = 0;
1182 }
1183 #endif
1184 }
1185
1186 /*
1187 * shutdown the pipe
1188 */
1189 static void
1190 pipeclose(cpipe)
1191 struct pipe *cpipe;
1192 {
1193 struct pipe *ppipe;
1194
1195 if (cpipe) {
1196
1197 pipeselwakeup(cpipe);
1198
1199 /*
1200 * If the other side is blocked, wake it up saying that
1201 * we want to close it down.
1202 */
1203 while (cpipe->pipe_busy) {
1204 wakeup(cpipe);
1205 cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
1206 tsleep(cpipe, PRIBIO, "pipecl", 0);
1207 }
1208
1209 /*
1210 * Disconnect from peer
1211 */
1212 if ((ppipe = cpipe->pipe_peer) != NULL) {
1213 pipeselwakeup(ppipe);
1214
1215 ppipe->pipe_state |= PIPE_EOF;
1216 wakeup(ppipe);
1217 KNOTE(&ppipe->pipe_sel.si_note, 0);
1218 ppipe->pipe_peer = NULL;
1219 }
1220 /*
1221 * free resources
1222 */
1223 pipe_free_kmem(cpipe);
1224 zfree(pipe_zone, cpipe);
1225 }
1226 }
1227
1228 /*ARGSUSED*/
1229 static int
1230 pipe_kqfilter(struct file *fp, struct knote *kn)
1231 {
1232 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1233
1234 switch (kn->kn_filter) {
1235 case EVFILT_READ:
1236 kn->kn_fop = &pipe_rfiltops;
1237 break;
1238 case EVFILT_WRITE:
1239 kn->kn_fop = &pipe_wfiltops;
1240 cpipe = cpipe->pipe_peer;
1241 if (cpipe == NULL)
1242 /* other end of pipe has been closed */
1243 return (EPIPE);
1244 break;
1245 default:
1246 return (1);
1247 }
1248
1249 SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1250 return (0);
1251 }
1252
1253 static void
1254 filt_pipedetach(struct knote *kn)
1255 {
1256 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1257
1258 if (kn->kn_filter == EVFILT_WRITE) {
1259 if (cpipe->pipe_peer == NULL)
1260 return;
1261 cpipe = cpipe->pipe_peer;
1262 }
1263
1264 SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1265 }
1266
1267 /*ARGSUSED*/
1268 static int
1269 filt_piperead(struct knote *kn, long hint)
1270 {
1271 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1272 struct pipe *wpipe = rpipe->pipe_peer;
1273
1274 kn->kn_data = rpipe->pipe_buffer.cnt;
1275 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1276 kn->kn_data = rpipe->pipe_map.cnt;
1277
1278 if ((rpipe->pipe_state & PIPE_EOF) ||
1279 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1280 kn->kn_flags |= EV_EOF;
1281 return (1);
1282 }
1283 return (kn->kn_data > 0);
1284 }
1285
1286 /*ARGSUSED*/
1287 static int
1288 filt_pipewrite(struct knote *kn, long hint)
1289 {
1290 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1291 struct pipe *wpipe = rpipe->pipe_peer;
1292
1293 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1294 kn->kn_data = 0;
1295 kn->kn_flags |= EV_EOF;
1296 return (1);
1297 }
1298 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1299 if (wpipe->pipe_state & PIPE_DIRECTW)
1300 kn->kn_data = 0;
1301
1302 return (kn->kn_data >= PIPE_BUF);
1303 }
Cache object: 96066b36d8fdb095c1db76859e5d3333
|