FreeBSD/Linux Kernel Cross Reference
sys/kern/sys_pipe.c
1 /*
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 * John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 * are met.
18 *
19 * $FreeBSD: releng/5.0/sys/kern/sys_pipe.c 105132 2002-10-14 21:15:04Z alfred $
20 */
21
22 /*
23 * This file contains a high-performance replacement for the socket-based
24 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
25 * all features of sockets, but does do everything that pipes normally
26 * do.
27 */
28
29 /*
30 * This code has two modes of operation, a small write mode and a large
31 * write mode. The small write mode acts like conventional pipes with
32 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
33 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
34 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
35 * the receiving process can copy it directly from the pages in the sending
36 * process.
37 *
38 * If the sending process receives a signal, it is possible that it will
39 * go away, and certainly its address space can change, because control
40 * is returned back to the user-mode side. In that case, the pipe code
41 * arranges to copy the buffer supplied by the user process, to a pageable
42 * kernel buffer, and the receiving process will grab the data from the
43 * pageable kernel buffer. Since signals don't happen all that often,
44 * the copy operation is normally eliminated.
45 *
46 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
47 * happen for small transfers so that the system will not spend all of
48 * its time context switching. PIPE_SIZE is constrained by the
49 * amount of kernel virtual memory.
50 */
51
52 #include "opt_mac.h"
53
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/fcntl.h>
57 #include <sys/file.h>
58 #include <sys/filedesc.h>
59 #include <sys/filio.h>
60 #include <sys/kernel.h>
61 #include <sys/lock.h>
62 #include <sys/mac.h>
63 #include <sys/mutex.h>
64 #include <sys/ttycom.h>
65 #include <sys/stat.h>
66 #include <sys/malloc.h>
67 #include <sys/poll.h>
68 #include <sys/selinfo.h>
69 #include <sys/signalvar.h>
70 #include <sys/sysproto.h>
71 #include <sys/pipe.h>
72 #include <sys/proc.h>
73 #include <sys/vnode.h>
74 #include <sys/uio.h>
75 #include <sys/event.h>
76
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_extern.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_page.h>
85 #include <vm/uma.h>
86
87 /*
88 * Use this define if you want to disable *fancy* VM things. Expect an
89 * approx 30% decrease in transfer rate. This could be useful for
90 * NetBSD or OpenBSD.
91 */
92 /* #define PIPE_NODIRECT */
93
94 /*
95 * interfaces to the outside world
96 */
97 static int pipe_read(struct file *fp, struct uio *uio,
98 struct ucred *active_cred, int flags, struct thread *td);
99 static int pipe_write(struct file *fp, struct uio *uio,
100 struct ucred *active_cred, int flags, struct thread *td);
101 static int pipe_close(struct file *fp, struct thread *td);
102 static int pipe_poll(struct file *fp, int events, struct ucred *active_cred,
103 struct thread *td);
104 static int pipe_kqfilter(struct file *fp, struct knote *kn);
105 static int pipe_stat(struct file *fp, struct stat *sb,
106 struct ucred *active_cred, struct thread *td);
107 static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
108 struct ucred *active_cred, struct thread *td);
109
110 static struct fileops pipeops = {
111 pipe_read, pipe_write, pipe_ioctl, pipe_poll, pipe_kqfilter,
112 pipe_stat, pipe_close
113 };
114
115 static void filt_pipedetach(struct knote *kn);
116 static int filt_piperead(struct knote *kn, long hint);
117 static int filt_pipewrite(struct knote *kn, long hint);
118
119 static struct filterops pipe_rfiltops =
120 { 1, NULL, filt_pipedetach, filt_piperead };
121 static struct filterops pipe_wfiltops =
122 { 1, NULL, filt_pipedetach, filt_pipewrite };
123
124 #define PIPE_GET_GIANT(pipe) \
125 do { \
126 KASSERT(((pipe)->pipe_state & PIPE_LOCKFL) != 0, \
127 ("%s:%d PIPE_GET_GIANT: line pipe not locked", \
128 __FILE__, __LINE__)); \
129 PIPE_UNLOCK(pipe); \
130 mtx_lock(&Giant); \
131 } while (0)
132
133 #define PIPE_DROP_GIANT(pipe) \
134 do { \
135 mtx_unlock(&Giant); \
136 PIPE_LOCK(pipe); \
137 } while (0)
138
139 /*
140 * Default pipe buffer size(s), this can be kind-of large now because pipe
141 * space is pageable. The pipe code will try to maintain locality of
142 * reference for performance reasons, so small amounts of outstanding I/O
143 * will not wipe the cache.
144 */
145 #define MINPIPESIZE (PIPE_SIZE/3)
146 #define MAXPIPESIZE (2*PIPE_SIZE/3)
147
148 /*
149 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
150 * is there so that on large systems, we don't exhaust it.
151 */
152 #define MAXPIPEKVA (8*1024*1024)
153
154 /*
155 * Limit for direct transfers, we cannot, of course limit
156 * the amount of kva for pipes in general though.
157 */
158 #define LIMITPIPEKVA (16*1024*1024)
159
160 /*
161 * Limit the number of "big" pipes
162 */
163 #define LIMITBIGPIPES 32
164 static int nbigpipe;
165
166 static int amountpipekva;
167
168 static void pipeinit(void *dummy __unused);
169 static void pipeclose(struct pipe *cpipe);
170 static void pipe_free_kmem(struct pipe *cpipe);
171 static int pipe_create(struct pipe **cpipep);
172 static __inline int pipelock(struct pipe *cpipe, int catch);
173 static __inline void pipeunlock(struct pipe *cpipe);
174 static __inline void pipeselwakeup(struct pipe *cpipe);
175 #ifndef PIPE_NODIRECT
176 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
177 static void pipe_destroy_write_buffer(struct pipe *wpipe);
178 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
179 static void pipe_clone_write_buffer(struct pipe *wpipe);
180 #endif
181 static int pipespace(struct pipe *cpipe, int size);
182
183 static uma_zone_t pipe_zone;
184
185 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
186
187 static void
188 pipeinit(void *dummy __unused)
189 {
190 pipe_zone = uma_zcreate("PIPE", sizeof(struct pipe), NULL,
191 NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
192 }
193
194 /*
195 * The pipe system call for the DTYPE_PIPE type of pipes
196 */
197
198 /* ARGSUSED */
199 int
200 pipe(td, uap)
201 struct thread *td;
202 struct pipe_args /* {
203 int dummy;
204 } */ *uap;
205 {
206 struct filedesc *fdp = td->td_proc->p_fd;
207 struct file *rf, *wf;
208 struct pipe *rpipe, *wpipe;
209 struct mtx *pmtx;
210 int fd, error;
211
212 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
213
214 pmtx = malloc(sizeof(*pmtx), M_TEMP, M_WAITOK | M_ZERO);
215
216 rpipe = wpipe = NULL;
217 if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
218 pipeclose(rpipe);
219 pipeclose(wpipe);
220 free(pmtx, M_TEMP);
221 return (ENFILE);
222 }
223
224 rpipe->pipe_state |= PIPE_DIRECTOK;
225 wpipe->pipe_state |= PIPE_DIRECTOK;
226
227 error = falloc(td, &rf, &fd);
228 if (error) {
229 pipeclose(rpipe);
230 pipeclose(wpipe);
231 free(pmtx, M_TEMP);
232 return (error);
233 }
234 fhold(rf);
235 td->td_retval[0] = fd;
236
237 /*
238 * Warning: once we've gotten past allocation of the fd for the
239 * read-side, we can only drop the read side via fdrop() in order
240 * to avoid races against processes which manage to dup() the read
241 * side while we are blocked trying to allocate the write side.
242 */
243 FILE_LOCK(rf);
244 rf->f_flag = FREAD | FWRITE;
245 rf->f_type = DTYPE_PIPE;
246 rf->f_data = rpipe;
247 rf->f_ops = &pipeops;
248 FILE_UNLOCK(rf);
249 error = falloc(td, &wf, &fd);
250 if (error) {
251 FILEDESC_LOCK(fdp);
252 if (fdp->fd_ofiles[td->td_retval[0]] == rf) {
253 fdp->fd_ofiles[td->td_retval[0]] = NULL;
254 FILEDESC_UNLOCK(fdp);
255 fdrop(rf, td);
256 } else
257 FILEDESC_UNLOCK(fdp);
258 fdrop(rf, td);
259 /* rpipe has been closed by fdrop(). */
260 pipeclose(wpipe);
261 free(pmtx, M_TEMP);
262 return (error);
263 }
264 FILE_LOCK(wf);
265 wf->f_flag = FREAD | FWRITE;
266 wf->f_type = DTYPE_PIPE;
267 wf->f_data = wpipe;
268 wf->f_ops = &pipeops;
269 FILE_UNLOCK(wf);
270 td->td_retval[1] = fd;
271 rpipe->pipe_peer = wpipe;
272 wpipe->pipe_peer = rpipe;
273 #ifdef MAC
274 /*
275 * struct pipe represents a pipe endpoint. The MAC label is shared
276 * between the connected endpoints. As a result mac_init_pipe() and
277 * mac_create_pipe() should only be called on one of the endpoints
278 * after they have been connected.
279 */
280 mac_init_pipe(rpipe);
281 mac_create_pipe(td->td_ucred, rpipe);
282 #endif
283 mtx_init(pmtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
284 rpipe->pipe_mtxp = wpipe->pipe_mtxp = pmtx;
285 fdrop(rf, td);
286
287 return (0);
288 }
289
290 /*
291 * Allocate kva for pipe circular buffer, the space is pageable
292 * This routine will 'realloc' the size of a pipe safely, if it fails
293 * it will retain the old buffer.
294 * If it fails it will return ENOMEM.
295 */
296 static int
297 pipespace(cpipe, size)
298 struct pipe *cpipe;
299 int size;
300 {
301 struct vm_object *object;
302 caddr_t buffer;
303 int npages, error;
304
305 GIANT_REQUIRED;
306 KASSERT(cpipe->pipe_mtxp == NULL || !mtx_owned(PIPE_MTX(cpipe)),
307 ("pipespace: pipe mutex locked"));
308
309 npages = round_page(size)/PAGE_SIZE;
310 /*
311 * Create an object, I don't like the idea of paging to/from
312 * kernel_object.
313 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
314 */
315 object = vm_object_allocate(OBJT_DEFAULT, npages);
316 buffer = (caddr_t) vm_map_min(kernel_map);
317
318 /*
319 * Insert the object into the kernel map, and allocate kva for it.
320 * The map entry is, by default, pageable.
321 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
322 */
323 error = vm_map_find(kernel_map, object, 0,
324 (vm_offset_t *) &buffer, size, 1,
325 VM_PROT_ALL, VM_PROT_ALL, 0);
326
327 if (error != KERN_SUCCESS) {
328 vm_object_deallocate(object);
329 return (ENOMEM);
330 }
331
332 /* free old resources if we're resizing */
333 pipe_free_kmem(cpipe);
334 cpipe->pipe_buffer.object = object;
335 cpipe->pipe_buffer.buffer = buffer;
336 cpipe->pipe_buffer.size = size;
337 cpipe->pipe_buffer.in = 0;
338 cpipe->pipe_buffer.out = 0;
339 cpipe->pipe_buffer.cnt = 0;
340 amountpipekva += cpipe->pipe_buffer.size;
341 return (0);
342 }
343
344 /*
345 * initialize and allocate VM and memory for pipe
346 */
347 static int
348 pipe_create(cpipep)
349 struct pipe **cpipep;
350 {
351 struct pipe *cpipe;
352 int error;
353
354 *cpipep = uma_zalloc(pipe_zone, M_WAITOK);
355 if (*cpipep == NULL)
356 return (ENOMEM);
357
358 cpipe = *cpipep;
359
360 /* so pipespace()->pipe_free_kmem() doesn't follow junk pointer */
361 cpipe->pipe_buffer.object = NULL;
362 #ifndef PIPE_NODIRECT
363 cpipe->pipe_map.kva = 0;
364 #endif
365 /*
366 * protect so pipeclose() doesn't follow a junk pointer
367 * if pipespace() fails.
368 */
369 bzero(&cpipe->pipe_sel, sizeof(cpipe->pipe_sel));
370 cpipe->pipe_state = 0;
371 cpipe->pipe_peer = NULL;
372 cpipe->pipe_busy = 0;
373
374 #ifndef PIPE_NODIRECT
375 /*
376 * pipe data structure initializations to support direct pipe I/O
377 */
378 cpipe->pipe_map.cnt = 0;
379 cpipe->pipe_map.kva = 0;
380 cpipe->pipe_map.pos = 0;
381 cpipe->pipe_map.npages = 0;
382 /* cpipe->pipe_map.ms[] = invalid */
383 #endif
384
385 cpipe->pipe_mtxp = NULL; /* avoid pipespace assertion */
386 error = pipespace(cpipe, PIPE_SIZE);
387 if (error)
388 return (error);
389
390 vfs_timestamp(&cpipe->pipe_ctime);
391 cpipe->pipe_atime = cpipe->pipe_ctime;
392 cpipe->pipe_mtime = cpipe->pipe_ctime;
393
394 return (0);
395 }
396
397
398 /*
399 * lock a pipe for I/O, blocking other access
400 */
401 static __inline int
402 pipelock(cpipe, catch)
403 struct pipe *cpipe;
404 int catch;
405 {
406 int error;
407
408 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
409 while (cpipe->pipe_state & PIPE_LOCKFL) {
410 cpipe->pipe_state |= PIPE_LWANT;
411 error = msleep(cpipe, PIPE_MTX(cpipe),
412 catch ? (PRIBIO | PCATCH) : PRIBIO,
413 "pipelk", 0);
414 if (error != 0)
415 return (error);
416 }
417 cpipe->pipe_state |= PIPE_LOCKFL;
418 return (0);
419 }
420
421 /*
422 * unlock a pipe I/O lock
423 */
424 static __inline void
425 pipeunlock(cpipe)
426 struct pipe *cpipe;
427 {
428
429 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
430 cpipe->pipe_state &= ~PIPE_LOCKFL;
431 if (cpipe->pipe_state & PIPE_LWANT) {
432 cpipe->pipe_state &= ~PIPE_LWANT;
433 wakeup(cpipe);
434 }
435 }
436
437 static __inline void
438 pipeselwakeup(cpipe)
439 struct pipe *cpipe;
440 {
441
442 if (cpipe->pipe_state & PIPE_SEL) {
443 cpipe->pipe_state &= ~PIPE_SEL;
444 selwakeup(&cpipe->pipe_sel);
445 }
446 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
447 pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
448 KNOTE(&cpipe->pipe_sel.si_note, 0);
449 }
450
451 /* ARGSUSED */
452 static int
453 pipe_read(fp, uio, active_cred, flags, td)
454 struct file *fp;
455 struct uio *uio;
456 struct ucred *active_cred;
457 struct thread *td;
458 int flags;
459 {
460 struct pipe *rpipe = (struct pipe *) fp->f_data;
461 int error;
462 int nread = 0;
463 u_int size;
464
465 PIPE_LOCK(rpipe);
466 ++rpipe->pipe_busy;
467 error = pipelock(rpipe, 1);
468 if (error)
469 goto unlocked_error;
470
471 #ifdef MAC
472 error = mac_check_pipe_read(active_cred, rpipe);
473 if (error)
474 goto locked_error;
475 #endif
476
477 while (uio->uio_resid) {
478 /*
479 * normal pipe buffer receive
480 */
481 if (rpipe->pipe_buffer.cnt > 0) {
482 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
483 if (size > rpipe->pipe_buffer.cnt)
484 size = rpipe->pipe_buffer.cnt;
485 if (size > (u_int) uio->uio_resid)
486 size = (u_int) uio->uio_resid;
487
488 PIPE_UNLOCK(rpipe);
489 error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
490 size, uio);
491 PIPE_LOCK(rpipe);
492 if (error)
493 break;
494
495 rpipe->pipe_buffer.out += size;
496 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
497 rpipe->pipe_buffer.out = 0;
498
499 rpipe->pipe_buffer.cnt -= size;
500
501 /*
502 * If there is no more to read in the pipe, reset
503 * its pointers to the beginning. This improves
504 * cache hit stats.
505 */
506 if (rpipe->pipe_buffer.cnt == 0) {
507 rpipe->pipe_buffer.in = 0;
508 rpipe->pipe_buffer.out = 0;
509 }
510 nread += size;
511 #ifndef PIPE_NODIRECT
512 /*
513 * Direct copy, bypassing a kernel buffer.
514 */
515 } else if ((size = rpipe->pipe_map.cnt) &&
516 (rpipe->pipe_state & PIPE_DIRECTW)) {
517 caddr_t va;
518 if (size > (u_int) uio->uio_resid)
519 size = (u_int) uio->uio_resid;
520
521 va = (caddr_t) rpipe->pipe_map.kva +
522 rpipe->pipe_map.pos;
523 PIPE_UNLOCK(rpipe);
524 error = uiomove(va, size, uio);
525 PIPE_LOCK(rpipe);
526 if (error)
527 break;
528 nread += size;
529 rpipe->pipe_map.pos += size;
530 rpipe->pipe_map.cnt -= size;
531 if (rpipe->pipe_map.cnt == 0) {
532 rpipe->pipe_state &= ~PIPE_DIRECTW;
533 wakeup(rpipe);
534 }
535 #endif
536 } else {
537 /*
538 * detect EOF condition
539 * read returns 0 on EOF, no need to set error
540 */
541 if (rpipe->pipe_state & PIPE_EOF)
542 break;
543
544 /*
545 * If the "write-side" has been blocked, wake it up now.
546 */
547 if (rpipe->pipe_state & PIPE_WANTW) {
548 rpipe->pipe_state &= ~PIPE_WANTW;
549 wakeup(rpipe);
550 }
551
552 /*
553 * Break if some data was read.
554 */
555 if (nread > 0)
556 break;
557
558 /*
559 * Unlock the pipe buffer for our remaining processing. We
560 * will either break out with an error or we will sleep and
561 * relock to loop.
562 */
563 pipeunlock(rpipe);
564
565 /*
566 * Handle non-blocking mode operation or
567 * wait for more data.
568 */
569 if (fp->f_flag & FNONBLOCK) {
570 error = EAGAIN;
571 } else {
572 rpipe->pipe_state |= PIPE_WANTR;
573 if ((error = msleep(rpipe, PIPE_MTX(rpipe),
574 PRIBIO | PCATCH,
575 "piperd", 0)) == 0)
576 error = pipelock(rpipe, 1);
577 }
578 if (error)
579 goto unlocked_error;
580 }
581 }
582 #ifdef MAC
583 locked_error:
584 #endif
585 pipeunlock(rpipe);
586
587 /* XXX: should probably do this before getting any locks. */
588 if (error == 0)
589 vfs_timestamp(&rpipe->pipe_atime);
590 unlocked_error:
591 --rpipe->pipe_busy;
592
593 /*
594 * PIPE_WANT processing only makes sense if pipe_busy is 0.
595 */
596 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
597 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
598 wakeup(rpipe);
599 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
600 /*
601 * Handle write blocking hysteresis.
602 */
603 if (rpipe->pipe_state & PIPE_WANTW) {
604 rpipe->pipe_state &= ~PIPE_WANTW;
605 wakeup(rpipe);
606 }
607 }
608
609 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
610 pipeselwakeup(rpipe);
611
612 PIPE_UNLOCK(rpipe);
613 return (error);
614 }
615
616 #ifndef PIPE_NODIRECT
617 /*
618 * Map the sending processes' buffer into kernel space and wire it.
619 * This is similar to a physical write operation.
620 */
621 static int
622 pipe_build_write_buffer(wpipe, uio)
623 struct pipe *wpipe;
624 struct uio *uio;
625 {
626 u_int size;
627 int i;
628 vm_offset_t addr, endaddr, paddr;
629
630 GIANT_REQUIRED;
631 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
632
633 size = (u_int) uio->uio_iov->iov_len;
634 if (size > wpipe->pipe_buffer.size)
635 size = wpipe->pipe_buffer.size;
636
637 endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
638 addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
639 for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
640 vm_page_t m;
641
642 /*
643 * vm_fault_quick() can sleep. Consequently,
644 * vm_page_lock_queue() and vm_page_unlock_queue()
645 * should not be performed outside of this loop.
646 */
647 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0 ||
648 (paddr = pmap_extract(vmspace_pmap(curproc->p_vmspace),
649 addr)) == 0) {
650 int j;
651
652 vm_page_lock_queues();
653 for (j = 0; j < i; j++)
654 vm_page_unwire(wpipe->pipe_map.ms[j], 1);
655 vm_page_unlock_queues();
656 return (EFAULT);
657 }
658
659 m = PHYS_TO_VM_PAGE(paddr);
660 vm_page_lock_queues();
661 vm_page_wire(m);
662 vm_page_unlock_queues();
663 wpipe->pipe_map.ms[i] = m;
664 }
665
666 /*
667 * set up the control block
668 */
669 wpipe->pipe_map.npages = i;
670 wpipe->pipe_map.pos =
671 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
672 wpipe->pipe_map.cnt = size;
673
674 /*
675 * and map the buffer
676 */
677 if (wpipe->pipe_map.kva == 0) {
678 /*
679 * We need to allocate space for an extra page because the
680 * address range might (will) span pages at times.
681 */
682 wpipe->pipe_map.kva = kmem_alloc_pageable(kernel_map,
683 wpipe->pipe_buffer.size + PAGE_SIZE);
684 amountpipekva += wpipe->pipe_buffer.size + PAGE_SIZE;
685 }
686 pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms,
687 wpipe->pipe_map.npages);
688
689 /*
690 * and update the uio data
691 */
692
693 uio->uio_iov->iov_len -= size;
694 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
695 if (uio->uio_iov->iov_len == 0)
696 uio->uio_iov++;
697 uio->uio_resid -= size;
698 uio->uio_offset += size;
699 return (0);
700 }
701
702 /*
703 * unmap and unwire the process buffer
704 */
705 static void
706 pipe_destroy_write_buffer(wpipe)
707 struct pipe *wpipe;
708 {
709 int i;
710
711 GIANT_REQUIRED;
712 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
713
714 if (wpipe->pipe_map.kva) {
715 pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages);
716
717 if (amountpipekva > MAXPIPEKVA) {
718 vm_offset_t kva = wpipe->pipe_map.kva;
719 wpipe->pipe_map.kva = 0;
720 kmem_free(kernel_map, kva,
721 wpipe->pipe_buffer.size + PAGE_SIZE);
722 amountpipekva -= wpipe->pipe_buffer.size + PAGE_SIZE;
723 }
724 }
725 vm_page_lock_queues();
726 for (i = 0; i < wpipe->pipe_map.npages; i++)
727 vm_page_unwire(wpipe->pipe_map.ms[i], 1);
728 vm_page_unlock_queues();
729 wpipe->pipe_map.npages = 0;
730 }
731
732 /*
733 * In the case of a signal, the writing process might go away. This
734 * code copies the data into the circular buffer so that the source
735 * pages can be freed without loss of data.
736 */
737 static void
738 pipe_clone_write_buffer(wpipe)
739 struct pipe *wpipe;
740 {
741 int size;
742 int pos;
743
744 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
745 size = wpipe->pipe_map.cnt;
746 pos = wpipe->pipe_map.pos;
747
748 wpipe->pipe_buffer.in = size;
749 wpipe->pipe_buffer.out = 0;
750 wpipe->pipe_buffer.cnt = size;
751 wpipe->pipe_state &= ~PIPE_DIRECTW;
752
753 PIPE_GET_GIANT(wpipe);
754 bcopy((caddr_t) wpipe->pipe_map.kva + pos,
755 wpipe->pipe_buffer.buffer, size);
756 pipe_destroy_write_buffer(wpipe);
757 PIPE_DROP_GIANT(wpipe);
758 }
759
760 /*
761 * This implements the pipe buffer write mechanism. Note that only
762 * a direct write OR a normal pipe write can be pending at any given time.
763 * If there are any characters in the pipe buffer, the direct write will
764 * be deferred until the receiving process grabs all of the bytes from
765 * the pipe buffer. Then the direct mapping write is set-up.
766 */
767 static int
768 pipe_direct_write(wpipe, uio)
769 struct pipe *wpipe;
770 struct uio *uio;
771 {
772 int error;
773
774 retry:
775 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
776 while (wpipe->pipe_state & PIPE_DIRECTW) {
777 if (wpipe->pipe_state & PIPE_WANTR) {
778 wpipe->pipe_state &= ~PIPE_WANTR;
779 wakeup(wpipe);
780 }
781 wpipe->pipe_state |= PIPE_WANTW;
782 error = msleep(wpipe, PIPE_MTX(wpipe),
783 PRIBIO | PCATCH, "pipdww", 0);
784 if (error)
785 goto error1;
786 if (wpipe->pipe_state & PIPE_EOF) {
787 error = EPIPE;
788 goto error1;
789 }
790 }
791 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */
792 if (wpipe->pipe_buffer.cnt > 0) {
793 if (wpipe->pipe_state & PIPE_WANTR) {
794 wpipe->pipe_state &= ~PIPE_WANTR;
795 wakeup(wpipe);
796 }
797
798 wpipe->pipe_state |= PIPE_WANTW;
799 error = msleep(wpipe, PIPE_MTX(wpipe),
800 PRIBIO | PCATCH, "pipdwc", 0);
801 if (error)
802 goto error1;
803 if (wpipe->pipe_state & PIPE_EOF) {
804 error = EPIPE;
805 goto error1;
806 }
807 goto retry;
808 }
809
810 wpipe->pipe_state |= PIPE_DIRECTW;
811
812 pipelock(wpipe, 0);
813 PIPE_GET_GIANT(wpipe);
814 error = pipe_build_write_buffer(wpipe, uio);
815 PIPE_DROP_GIANT(wpipe);
816 pipeunlock(wpipe);
817 if (error) {
818 wpipe->pipe_state &= ~PIPE_DIRECTW;
819 goto error1;
820 }
821
822 error = 0;
823 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
824 if (wpipe->pipe_state & PIPE_EOF) {
825 pipelock(wpipe, 0);
826 PIPE_GET_GIANT(wpipe);
827 pipe_destroy_write_buffer(wpipe);
828 PIPE_DROP_GIANT(wpipe);
829 pipeunlock(wpipe);
830 pipeselwakeup(wpipe);
831 error = EPIPE;
832 goto error1;
833 }
834 if (wpipe->pipe_state & PIPE_WANTR) {
835 wpipe->pipe_state &= ~PIPE_WANTR;
836 wakeup(wpipe);
837 }
838 pipeselwakeup(wpipe);
839 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
840 "pipdwt", 0);
841 }
842
843 pipelock(wpipe,0);
844 if (wpipe->pipe_state & PIPE_DIRECTW) {
845 /*
846 * this bit of trickery substitutes a kernel buffer for
847 * the process that might be going away.
848 */
849 pipe_clone_write_buffer(wpipe);
850 } else {
851 PIPE_GET_GIANT(wpipe);
852 pipe_destroy_write_buffer(wpipe);
853 PIPE_DROP_GIANT(wpipe);
854 }
855 pipeunlock(wpipe);
856 return (error);
857
858 error1:
859 wakeup(wpipe);
860 return (error);
861 }
862 #endif
863
864 static int
865 pipe_write(fp, uio, active_cred, flags, td)
866 struct file *fp;
867 struct uio *uio;
868 struct ucred *active_cred;
869 struct thread *td;
870 int flags;
871 {
872 int error = 0;
873 int orig_resid;
874 struct pipe *wpipe, *rpipe;
875
876 rpipe = (struct pipe *) fp->f_data;
877 wpipe = rpipe->pipe_peer;
878
879 PIPE_LOCK(rpipe);
880 /*
881 * detect loss of pipe read side, issue SIGPIPE if lost.
882 */
883 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
884 PIPE_UNLOCK(rpipe);
885 return (EPIPE);
886 }
887 #ifdef MAC
888 error = mac_check_pipe_write(active_cred, wpipe);
889 if (error) {
890 PIPE_UNLOCK(rpipe);
891 return (error);
892 }
893 #endif
894 ++wpipe->pipe_busy;
895
896 /*
897 * If it is advantageous to resize the pipe buffer, do
898 * so.
899 */
900 if ((uio->uio_resid > PIPE_SIZE) &&
901 (nbigpipe < LIMITBIGPIPES) &&
902 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
903 (wpipe->pipe_buffer.size <= PIPE_SIZE) &&
904 (wpipe->pipe_buffer.cnt == 0)) {
905
906 if ((error = pipelock(wpipe, 1)) == 0) {
907 PIPE_GET_GIANT(wpipe);
908 if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
909 nbigpipe++;
910 PIPE_DROP_GIANT(wpipe);
911 pipeunlock(wpipe);
912 }
913 }
914
915 /*
916 * If an early error occured unbusy and return, waking up any pending
917 * readers.
918 */
919 if (error) {
920 --wpipe->pipe_busy;
921 if ((wpipe->pipe_busy == 0) &&
922 (wpipe->pipe_state & PIPE_WANT)) {
923 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
924 wakeup(wpipe);
925 }
926 PIPE_UNLOCK(rpipe);
927 return(error);
928 }
929
930 orig_resid = uio->uio_resid;
931
932 while (uio->uio_resid) {
933 int space;
934
935 #ifndef PIPE_NODIRECT
936 /*
937 * If the transfer is large, we can gain performance if
938 * we do process-to-process copies directly.
939 * If the write is non-blocking, we don't use the
940 * direct write mechanism.
941 *
942 * The direct write mechanism will detect the reader going
943 * away on us.
944 */
945 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
946 (fp->f_flag & FNONBLOCK) == 0 &&
947 (wpipe->pipe_map.kva || (amountpipekva < LIMITPIPEKVA)) &&
948 (uio->uio_iov->iov_len >= PIPE_MINDIRECT)) {
949 error = pipe_direct_write(wpipe, uio);
950 if (error)
951 break;
952 continue;
953 }
954 #endif
955
956 /*
957 * Pipe buffered writes cannot be coincidental with
958 * direct writes. We wait until the currently executing
959 * direct write is completed before we start filling the
960 * pipe buffer. We break out if a signal occurs or the
961 * reader goes away.
962 */
963 retrywrite:
964 while (wpipe->pipe_state & PIPE_DIRECTW) {
965 if (wpipe->pipe_state & PIPE_WANTR) {
966 wpipe->pipe_state &= ~PIPE_WANTR;
967 wakeup(wpipe);
968 }
969 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
970 "pipbww", 0);
971 if (wpipe->pipe_state & PIPE_EOF)
972 break;
973 if (error)
974 break;
975 }
976 if (wpipe->pipe_state & PIPE_EOF) {
977 error = EPIPE;
978 break;
979 }
980
981 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
982
983 /* Writes of size <= PIPE_BUF must be atomic. */
984 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
985 space = 0;
986
987 if (space > 0 && (wpipe->pipe_buffer.cnt < PIPE_SIZE)) {
988 if ((error = pipelock(wpipe,1)) == 0) {
989 int size; /* Transfer size */
990 int segsize; /* first segment to transfer */
991
992 /*
993 * It is possible for a direct write to
994 * slip in on us... handle it here...
995 */
996 if (wpipe->pipe_state & PIPE_DIRECTW) {
997 pipeunlock(wpipe);
998 goto retrywrite;
999 }
1000 /*
1001 * If a process blocked in uiomove, our
1002 * value for space might be bad.
1003 *
1004 * XXX will we be ok if the reader has gone
1005 * away here?
1006 */
1007 if (space > wpipe->pipe_buffer.size -
1008 wpipe->pipe_buffer.cnt) {
1009 pipeunlock(wpipe);
1010 goto retrywrite;
1011 }
1012
1013 /*
1014 * Transfer size is minimum of uio transfer
1015 * and free space in pipe buffer.
1016 */
1017 if (space > uio->uio_resid)
1018 size = uio->uio_resid;
1019 else
1020 size = space;
1021 /*
1022 * First segment to transfer is minimum of
1023 * transfer size and contiguous space in
1024 * pipe buffer. If first segment to transfer
1025 * is less than the transfer size, we've got
1026 * a wraparound in the buffer.
1027 */
1028 segsize = wpipe->pipe_buffer.size -
1029 wpipe->pipe_buffer.in;
1030 if (segsize > size)
1031 segsize = size;
1032
1033 /* Transfer first segment */
1034
1035 PIPE_UNLOCK(rpipe);
1036 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1037 segsize, uio);
1038 PIPE_LOCK(rpipe);
1039
1040 if (error == 0 && segsize < size) {
1041 /*
1042 * Transfer remaining part now, to
1043 * support atomic writes. Wraparound
1044 * happened.
1045 */
1046 if (wpipe->pipe_buffer.in + segsize !=
1047 wpipe->pipe_buffer.size)
1048 panic("Expected pipe buffer wraparound disappeared");
1049
1050 PIPE_UNLOCK(rpipe);
1051 error = uiomove(&wpipe->pipe_buffer.buffer[0],
1052 size - segsize, uio);
1053 PIPE_LOCK(rpipe);
1054 }
1055 if (error == 0) {
1056 wpipe->pipe_buffer.in += size;
1057 if (wpipe->pipe_buffer.in >=
1058 wpipe->pipe_buffer.size) {
1059 if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
1060 panic("Expected wraparound bad");
1061 wpipe->pipe_buffer.in = size - segsize;
1062 }
1063
1064 wpipe->pipe_buffer.cnt += size;
1065 if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
1066 panic("Pipe buffer overflow");
1067
1068 }
1069 pipeunlock(wpipe);
1070 }
1071 if (error)
1072 break;
1073
1074 } else {
1075 /*
1076 * If the "read-side" has been blocked, wake it up now.
1077 */
1078 if (wpipe->pipe_state & PIPE_WANTR) {
1079 wpipe->pipe_state &= ~PIPE_WANTR;
1080 wakeup(wpipe);
1081 }
1082
1083 /*
1084 * don't block on non-blocking I/O
1085 */
1086 if (fp->f_flag & FNONBLOCK) {
1087 error = EAGAIN;
1088 break;
1089 }
1090
1091 /*
1092 * We have no more space and have something to offer,
1093 * wake up select/poll.
1094 */
1095 pipeselwakeup(wpipe);
1096
1097 wpipe->pipe_state |= PIPE_WANTW;
1098 error = msleep(wpipe, PIPE_MTX(rpipe),
1099 PRIBIO | PCATCH, "pipewr", 0);
1100 if (error != 0)
1101 break;
1102 /*
1103 * If read side wants to go away, we just issue a signal
1104 * to ourselves.
1105 */
1106 if (wpipe->pipe_state & PIPE_EOF) {
1107 error = EPIPE;
1108 break;
1109 }
1110 }
1111 }
1112
1113 --wpipe->pipe_busy;
1114
1115 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1116 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1117 wakeup(wpipe);
1118 } else if (wpipe->pipe_buffer.cnt > 0) {
1119 /*
1120 * If we have put any characters in the buffer, we wake up
1121 * the reader.
1122 */
1123 if (wpipe->pipe_state & PIPE_WANTR) {
1124 wpipe->pipe_state &= ~PIPE_WANTR;
1125 wakeup(wpipe);
1126 }
1127 }
1128
1129 /*
1130 * Don't return EPIPE if I/O was successful
1131 */
1132 if ((wpipe->pipe_buffer.cnt == 0) &&
1133 (uio->uio_resid == 0) &&
1134 (error == EPIPE)) {
1135 error = 0;
1136 }
1137
1138 if (error == 0)
1139 vfs_timestamp(&wpipe->pipe_mtime);
1140
1141 /*
1142 * We have something to offer,
1143 * wake up select/poll.
1144 */
1145 if (wpipe->pipe_buffer.cnt)
1146 pipeselwakeup(wpipe);
1147
1148 PIPE_UNLOCK(rpipe);
1149 return (error);
1150 }
1151
1152 /*
1153 * we implement a very minimal set of ioctls for compatibility with sockets.
1154 */
1155 static int
1156 pipe_ioctl(fp, cmd, data, active_cred, td)
1157 struct file *fp;
1158 u_long cmd;
1159 void *data;
1160 struct ucred *active_cred;
1161 struct thread *td;
1162 {
1163 struct pipe *mpipe = (struct pipe *)fp->f_data;
1164 #ifdef MAC
1165 int error;
1166 #endif
1167
1168 PIPE_LOCK(mpipe);
1169
1170 #ifdef MAC
1171 error = mac_check_pipe_ioctl(active_cred, mpipe, cmd, data);
1172 if (error)
1173 return (error);
1174 #endif
1175
1176 switch (cmd) {
1177
1178 case FIONBIO:
1179 PIPE_UNLOCK(mpipe);
1180 return (0);
1181
1182 case FIOASYNC:
1183 if (*(int *)data) {
1184 mpipe->pipe_state |= PIPE_ASYNC;
1185 } else {
1186 mpipe->pipe_state &= ~PIPE_ASYNC;
1187 }
1188 PIPE_UNLOCK(mpipe);
1189 return (0);
1190
1191 case FIONREAD:
1192 if (mpipe->pipe_state & PIPE_DIRECTW)
1193 *(int *)data = mpipe->pipe_map.cnt;
1194 else
1195 *(int *)data = mpipe->pipe_buffer.cnt;
1196 PIPE_UNLOCK(mpipe);
1197 return (0);
1198
1199 case FIOSETOWN:
1200 PIPE_UNLOCK(mpipe);
1201 return (fsetown(*(int *)data, &mpipe->pipe_sigio));
1202
1203 case FIOGETOWN:
1204 PIPE_UNLOCK(mpipe);
1205 *(int *)data = fgetown(&mpipe->pipe_sigio);
1206 return (0);
1207
1208 /* This is deprecated, FIOSETOWN should be used instead. */
1209 case TIOCSPGRP:
1210 PIPE_UNLOCK(mpipe);
1211 return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
1212
1213 /* This is deprecated, FIOGETOWN should be used instead. */
1214 case TIOCGPGRP:
1215 PIPE_UNLOCK(mpipe);
1216 *(int *)data = -fgetown(&mpipe->pipe_sigio);
1217 return (0);
1218
1219 }
1220 PIPE_UNLOCK(mpipe);
1221 return (ENOTTY);
1222 }
1223
1224 static int
1225 pipe_poll(fp, events, active_cred, td)
1226 struct file *fp;
1227 int events;
1228 struct ucred *active_cred;
1229 struct thread *td;
1230 {
1231 struct pipe *rpipe = (struct pipe *)fp->f_data;
1232 struct pipe *wpipe;
1233 int revents = 0;
1234 #ifdef MAC
1235 int error;
1236 #endif
1237
1238 wpipe = rpipe->pipe_peer;
1239 PIPE_LOCK(rpipe);
1240 #ifdef MAC
1241 error = mac_check_pipe_poll(active_cred, rpipe);
1242 if (error)
1243 goto locked_error;
1244 #endif
1245 if (events & (POLLIN | POLLRDNORM))
1246 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1247 (rpipe->pipe_buffer.cnt > 0) ||
1248 (rpipe->pipe_state & PIPE_EOF))
1249 revents |= events & (POLLIN | POLLRDNORM);
1250
1251 if (events & (POLLOUT | POLLWRNORM))
1252 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
1253 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1254 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1255 revents |= events & (POLLOUT | POLLWRNORM);
1256
1257 if ((rpipe->pipe_state & PIPE_EOF) ||
1258 (wpipe == NULL) ||
1259 (wpipe->pipe_state & PIPE_EOF))
1260 revents |= POLLHUP;
1261
1262 if (revents == 0) {
1263 if (events & (POLLIN | POLLRDNORM)) {
1264 selrecord(td, &rpipe->pipe_sel);
1265 rpipe->pipe_state |= PIPE_SEL;
1266 }
1267
1268 if (events & (POLLOUT | POLLWRNORM)) {
1269 selrecord(td, &wpipe->pipe_sel);
1270 wpipe->pipe_state |= PIPE_SEL;
1271 }
1272 }
1273 #ifdef MAC
1274 locked_error:
1275 #endif
1276 PIPE_UNLOCK(rpipe);
1277
1278 return (revents);
1279 }
1280
1281 /*
1282 * We shouldn't need locks here as we're doing a read and this should
1283 * be a natural race.
1284 */
1285 static int
1286 pipe_stat(fp, ub, active_cred, td)
1287 struct file *fp;
1288 struct stat *ub;
1289 struct ucred *active_cred;
1290 struct thread *td;
1291 {
1292 struct pipe *pipe = (struct pipe *)fp->f_data;
1293 #ifdef MAC
1294 int error;
1295
1296 PIPE_LOCK(pipe);
1297 error = mac_check_pipe_stat(active_cred, pipe);
1298 PIPE_UNLOCK(pipe);
1299 if (error)
1300 return (error);
1301 #endif
1302 bzero(ub, sizeof(*ub));
1303 ub->st_mode = S_IFIFO;
1304 ub->st_blksize = pipe->pipe_buffer.size;
1305 ub->st_size = pipe->pipe_buffer.cnt;
1306 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1307 ub->st_atimespec = pipe->pipe_atime;
1308 ub->st_mtimespec = pipe->pipe_mtime;
1309 ub->st_ctimespec = pipe->pipe_ctime;
1310 ub->st_uid = fp->f_cred->cr_uid;
1311 ub->st_gid = fp->f_cred->cr_gid;
1312 /*
1313 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1314 * XXX (st_dev, st_ino) should be unique.
1315 */
1316 return (0);
1317 }
1318
1319 /* ARGSUSED */
1320 static int
1321 pipe_close(fp, td)
1322 struct file *fp;
1323 struct thread *td;
1324 {
1325 struct pipe *cpipe = (struct pipe *)fp->f_data;
1326
1327 fp->f_ops = &badfileops;
1328 fp->f_data = NULL;
1329 funsetown(&cpipe->pipe_sigio);
1330 pipeclose(cpipe);
1331 return (0);
1332 }
1333
1334 static void
1335 pipe_free_kmem(cpipe)
1336 struct pipe *cpipe;
1337 {
1338
1339 GIANT_REQUIRED;
1340 KASSERT(cpipe->pipe_mtxp == NULL || !mtx_owned(PIPE_MTX(cpipe)),
1341 ("pipespace: pipe mutex locked"));
1342
1343 if (cpipe->pipe_buffer.buffer != NULL) {
1344 if (cpipe->pipe_buffer.size > PIPE_SIZE)
1345 --nbigpipe;
1346 amountpipekva -= cpipe->pipe_buffer.size;
1347 kmem_free(kernel_map,
1348 (vm_offset_t)cpipe->pipe_buffer.buffer,
1349 cpipe->pipe_buffer.size);
1350 cpipe->pipe_buffer.buffer = NULL;
1351 }
1352 #ifndef PIPE_NODIRECT
1353 if (cpipe->pipe_map.kva != 0) {
1354 amountpipekva -= cpipe->pipe_buffer.size + PAGE_SIZE;
1355 kmem_free(kernel_map,
1356 cpipe->pipe_map.kva,
1357 cpipe->pipe_buffer.size + PAGE_SIZE);
1358 cpipe->pipe_map.cnt = 0;
1359 cpipe->pipe_map.kva = 0;
1360 cpipe->pipe_map.pos = 0;
1361 cpipe->pipe_map.npages = 0;
1362 }
1363 #endif
1364 }
1365
1366 /*
1367 * shutdown the pipe
1368 */
1369 static void
1370 pipeclose(cpipe)
1371 struct pipe *cpipe;
1372 {
1373 struct pipe *ppipe;
1374 int hadpeer;
1375
1376 if (cpipe == NULL)
1377 return;
1378
1379 hadpeer = 0;
1380
1381 /* partially created pipes won't have a valid mutex. */
1382 if (PIPE_MTX(cpipe) != NULL)
1383 PIPE_LOCK(cpipe);
1384
1385 pipeselwakeup(cpipe);
1386
1387 /*
1388 * If the other side is blocked, wake it up saying that
1389 * we want to close it down.
1390 */
1391 while (cpipe->pipe_busy) {
1392 wakeup(cpipe);
1393 cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
1394 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1395 }
1396
1397 #ifdef MAC
1398 if (cpipe->pipe_label != NULL && cpipe->pipe_peer == NULL)
1399 mac_destroy_pipe(cpipe);
1400 #endif
1401
1402 /*
1403 * Disconnect from peer
1404 */
1405 if ((ppipe = cpipe->pipe_peer) != NULL) {
1406 hadpeer++;
1407 pipeselwakeup(ppipe);
1408
1409 ppipe->pipe_state |= PIPE_EOF;
1410 wakeup(ppipe);
1411 KNOTE(&ppipe->pipe_sel.si_note, 0);
1412 ppipe->pipe_peer = NULL;
1413 }
1414 /*
1415 * free resources
1416 */
1417 if (PIPE_MTX(cpipe) != NULL) {
1418 PIPE_UNLOCK(cpipe);
1419 if (!hadpeer) {
1420 mtx_destroy(PIPE_MTX(cpipe));
1421 free(PIPE_MTX(cpipe), M_TEMP);
1422 }
1423 }
1424 mtx_lock(&Giant);
1425 pipe_free_kmem(cpipe);
1426 uma_zfree(pipe_zone, cpipe);
1427 mtx_unlock(&Giant);
1428 }
1429
1430 /*ARGSUSED*/
1431 static int
1432 pipe_kqfilter(struct file *fp, struct knote *kn)
1433 {
1434 struct pipe *cpipe;
1435
1436 cpipe = (struct pipe *)kn->kn_fp->f_data;
1437 switch (kn->kn_filter) {
1438 case EVFILT_READ:
1439 kn->kn_fop = &pipe_rfiltops;
1440 break;
1441 case EVFILT_WRITE:
1442 kn->kn_fop = &pipe_wfiltops;
1443 cpipe = cpipe->pipe_peer;
1444 if (cpipe == NULL)
1445 /* other end of pipe has been closed */
1446 return (EBADF);
1447 break;
1448 default:
1449 return (1);
1450 }
1451 kn->kn_hook = cpipe;
1452
1453 PIPE_LOCK(cpipe);
1454 SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1455 PIPE_UNLOCK(cpipe);
1456 return (0);
1457 }
1458
1459 static void
1460 filt_pipedetach(struct knote *kn)
1461 {
1462 struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1463
1464 PIPE_LOCK(cpipe);
1465 SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1466 PIPE_UNLOCK(cpipe);
1467 }
1468
1469 /*ARGSUSED*/
1470 static int
1471 filt_piperead(struct knote *kn, long hint)
1472 {
1473 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1474 struct pipe *wpipe = rpipe->pipe_peer;
1475
1476 PIPE_LOCK(rpipe);
1477 kn->kn_data = rpipe->pipe_buffer.cnt;
1478 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1479 kn->kn_data = rpipe->pipe_map.cnt;
1480
1481 if ((rpipe->pipe_state & PIPE_EOF) ||
1482 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1483 kn->kn_flags |= EV_EOF;
1484 PIPE_UNLOCK(rpipe);
1485 return (1);
1486 }
1487 PIPE_UNLOCK(rpipe);
1488 return (kn->kn_data > 0);
1489 }
1490
1491 /*ARGSUSED*/
1492 static int
1493 filt_pipewrite(struct knote *kn, long hint)
1494 {
1495 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1496 struct pipe *wpipe = rpipe->pipe_peer;
1497
1498 PIPE_LOCK(rpipe);
1499 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1500 kn->kn_data = 0;
1501 kn->kn_flags |= EV_EOF;
1502 PIPE_UNLOCK(rpipe);
1503 return (1);
1504 }
1505 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1506 if (wpipe->pipe_state & PIPE_DIRECTW)
1507 kn->kn_data = 0;
1508
1509 PIPE_UNLOCK(rpipe);
1510 return (kn->kn_data >= PIPE_BUF);
1511 }
Cache object: b4c43087ef33d34d40ef5e67da15fa82
|