FreeBSD/Linux Kernel Cross Reference
sys/kern/sys_pipe.c
1 /*-
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 * John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 * are met.
18 */
19
20 /*
21 * This file contains a high-performance replacement for the socket-based
22 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
23 * all features of sockets, but does do everything that pipes normally
24 * do.
25 */
26
27 /*
28 * This code has two modes of operation, a small write mode and a large
29 * write mode. The small write mode acts like conventional pipes with
30 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
31 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
32 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
33 * the receiving process can copy it directly from the pages in the sending
34 * process.
35 *
36 * If the sending process receives a signal, it is possible that it will
37 * go away, and certainly its address space can change, because control
38 * is returned back to the user-mode side. In that case, the pipe code
39 * arranges to copy the buffer supplied by the user process, to a pageable
40 * kernel buffer, and the receiving process will grab the data from the
41 * pageable kernel buffer. Since signals don't happen all that often,
42 * the copy operation is normally eliminated.
43 *
44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
45 * happen for small transfers so that the system will not spend all of
46 * its time context switching.
47 *
48 * In order to limit the resource use of pipes, two sysctls exist:
49 *
50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
51 * address space available to us in pipe_map. This value is normally
52 * autotuned, but may also be loader tuned.
53 *
54 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
55 * memory in use by pipes.
56 *
57 * Based on how large pipekva is relative to maxpipekva, the following
58 * will happen:
59 *
60 * 0% - 50%:
61 * New pipes are given 16K of memory backing, pipes may dynamically
62 * grow to as large as 64K where needed.
63 * 50% - 75%:
64 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
65 * existing pipes may NOT grow.
66 * 75% - 100%:
67 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
68 * existing pipes will be shrunk down to 4K whenever possible.
69 *
70 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If
71 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
72 * resize which MUST occur for reverse-direction pipes when they are
73 * first used.
74 *
75 * Additional information about the current state of pipes may be obtained
76 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
77 * and kern.ipc.piperesizefail.
78 *
79 * Locking rules: There are two locks present here: A mutex, used via
80 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via
81 * the flag, as mutexes can not persist over uiomove. The mutex
82 * exists only to guard access to the flag, and is not in itself a
83 * locking mechanism. Also note that there is only a single mutex for
84 * both directions of a pipe.
85 *
86 * As pipelock() may have to sleep before it can acquire the flag, it
87 * is important to reread all data after a call to pipelock(); everything
88 * in the structure may have changed.
89 */
90
91 #include <sys/cdefs.h>
92 __FBSDID("$FreeBSD$");
93
94 #include "opt_mac.h"
95
96 #include <sys/param.h>
97 #include <sys/systm.h>
98 #include <sys/fcntl.h>
99 #include <sys/file.h>
100 #include <sys/filedesc.h>
101 #include <sys/filio.h>
102 #include <sys/kernel.h>
103 #include <sys/lock.h>
104 #include <sys/mac.h>
105 #include <sys/mutex.h>
106 #include <sys/ttycom.h>
107 #include <sys/stat.h>
108 #include <sys/malloc.h>
109 #include <sys/poll.h>
110 #include <sys/selinfo.h>
111 #include <sys/signalvar.h>
112 #include <sys/sysctl.h>
113 #include <sys/sysproto.h>
114 #include <sys/pipe.h>
115 #include <sys/proc.h>
116 #include <sys/vnode.h>
117 #include <sys/uio.h>
118 #include <sys/event.h>
119
120 #include <vm/vm.h>
121 #include <vm/vm_param.h>
122 #include <vm/vm_object.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_extern.h>
125 #include <vm/pmap.h>
126 #include <vm/vm_map.h>
127 #include <vm/vm_page.h>
128 #include <vm/uma.h>
129
130 /*
131 * Use this define if you want to disable *fancy* VM things. Expect an
132 * approx 30% decrease in transfer rate. This could be useful for
133 * NetBSD or OpenBSD.
134 */
135 /* #define PIPE_NODIRECT */
136
137 /*
138 * interfaces to the outside world
139 */
140 static fo_rdwr_t pipe_read;
141 static fo_rdwr_t pipe_write;
142 static fo_ioctl_t pipe_ioctl;
143 static fo_poll_t pipe_poll;
144 static fo_kqfilter_t pipe_kqfilter;
145 static fo_stat_t pipe_stat;
146 static fo_close_t pipe_close;
147
148 static struct fileops pipeops = {
149 .fo_read = pipe_read,
150 .fo_write = pipe_write,
151 .fo_ioctl = pipe_ioctl,
152 .fo_poll = pipe_poll,
153 .fo_kqfilter = pipe_kqfilter,
154 .fo_stat = pipe_stat,
155 .fo_close = pipe_close,
156 .fo_flags = DFLAG_PASSABLE
157 };
158
159 static void filt_pipedetach(struct knote *kn);
160 static int filt_piperead(struct knote *kn, long hint);
161 static int filt_pipewrite(struct knote *kn, long hint);
162
163 static struct filterops pipe_rfiltops =
164 { 1, NULL, filt_pipedetach, filt_piperead };
165 static struct filterops pipe_wfiltops =
166 { 1, NULL, filt_pipedetach, filt_pipewrite };
167
168 /*
169 * Default pipe buffer size(s), this can be kind-of large now because pipe
170 * space is pageable. The pipe code will try to maintain locality of
171 * reference for performance reasons, so small amounts of outstanding I/O
172 * will not wipe the cache.
173 */
174 #define MINPIPESIZE (PIPE_SIZE/3)
175 #define MAXPIPESIZE (2*PIPE_SIZE/3)
176
177 static int amountpipes;
178 static int amountpipekva;
179 static int pipefragretry;
180 static int pipeallocfail;
181 static int piperesizefail;
182 static int piperesizeallowed = 1;
183
184 SYSCTL_DECL(_kern_ipc);
185
186 SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
187 &maxpipekva, 0, "Pipe KVA limit");
188 SYSCTL_INT(_kern_ipc, OID_AUTO, pipes, CTLFLAG_RD,
189 &amountpipes, 0, "Current # of pipes");
190 SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
191 &amountpipekva, 0, "Pipe KVA usage");
192 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
193 &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
194 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
195 &pipeallocfail, 0, "Pipe allocation failures");
196 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
197 &piperesizefail, 0, "Pipe resize failures");
198 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
199 &piperesizeallowed, 0, "Pipe resizing allowed");
200
201 static void pipeinit(void *dummy __unused);
202 static void pipeclose(struct pipe *cpipe);
203 static void pipe_free_kmem(struct pipe *cpipe);
204 static int pipe_create(struct pipe *pipe, int backing);
205 static __inline int pipelock(struct pipe *cpipe, int catch);
206 static __inline void pipeunlock(struct pipe *cpipe);
207 static __inline void pipeselwakeup(struct pipe *cpipe);
208 #ifndef PIPE_NODIRECT
209 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
210 static void pipe_destroy_write_buffer(struct pipe *wpipe);
211 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
212 static void pipe_clone_write_buffer(struct pipe *wpipe);
213 #endif
214 static int pipespace(struct pipe *cpipe, int size);
215 static int pipespace_new(struct pipe *cpipe, int size);
216
217 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags);
218 static void pipe_zone_dtor(void *mem, int size, void *arg);
219 static int pipe_zone_init(void *mem, int size, int flags);
220 static void pipe_zone_fini(void *mem, int size);
221
222 static uma_zone_t pipe_zone;
223
224 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
225
226 static void
227 pipeinit(void *dummy __unused)
228 {
229
230 pipe_zone = uma_zcreate("PIPE", sizeof(struct pipepair),
231 pipe_zone_ctor, pipe_zone_dtor, pipe_zone_init, pipe_zone_fini,
232 UMA_ALIGN_PTR, 0);
233 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
234 }
235
236 static int
237 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
238 {
239 struct pipepair *pp;
240 struct pipe *rpipe, *wpipe;
241
242 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
243
244 pp = (struct pipepair *)mem;
245
246 /*
247 * We zero both pipe endpoints to make sure all the kmem pointers
248 * are NULL, flag fields are zero'd, etc. We timestamp both
249 * endpoints with the same time.
250 */
251 rpipe = &pp->pp_rpipe;
252 bzero(rpipe, sizeof(*rpipe));
253 vfs_timestamp(&rpipe->pipe_ctime);
254 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
255
256 wpipe = &pp->pp_wpipe;
257 bzero(wpipe, sizeof(*wpipe));
258 wpipe->pipe_ctime = rpipe->pipe_ctime;
259 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
260
261 rpipe->pipe_peer = wpipe;
262 rpipe->pipe_pair = pp;
263 wpipe->pipe_peer = rpipe;
264 wpipe->pipe_pair = pp;
265
266 /*
267 * Mark both endpoints as present; they will later get free'd
268 * one at a time. When both are free'd, then the whole pair
269 * is released.
270 */
271 rpipe->pipe_present = 1;
272 wpipe->pipe_present = 1;
273
274 /*
275 * Eventually, the MAC Framework may initialize the label
276 * in ctor or init, but for now we do it elswhere to avoid
277 * blocking in ctor or init.
278 */
279 pp->pp_label = NULL;
280
281 atomic_add_int(&amountpipes, 2);
282 return (0);
283 }
284
285 static void
286 pipe_zone_dtor(void *mem, int size, void *arg)
287 {
288 struct pipepair *pp;
289
290 KASSERT(size == sizeof(*pp), ("pipe_zone_dtor: wrong size"));
291
292 pp = (struct pipepair *)mem;
293
294 atomic_subtract_int(&amountpipes, 2);
295 }
296
297 static int
298 pipe_zone_init(void *mem, int size, int flags)
299 {
300 struct pipepair *pp;
301
302 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
303
304 pp = (struct pipepair *)mem;
305
306 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
307 return (0);
308 }
309
310 static void
311 pipe_zone_fini(void *mem, int size)
312 {
313 struct pipepair *pp;
314
315 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
316
317 pp = (struct pipepair *)mem;
318
319 mtx_destroy(&pp->pp_mtx);
320 }
321
322 /*
323 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail,
324 * let the zone pick up the pieces via pipeclose().
325 */
326
327 /* ARGSUSED */
328 int
329 pipe(td, uap)
330 struct thread *td;
331 struct pipe_args /* {
332 int dummy;
333 } */ *uap;
334 {
335 struct filedesc *fdp = td->td_proc->p_fd;
336 struct file *rf, *wf;
337 struct pipepair *pp;
338 struct pipe *rpipe, *wpipe;
339 int fd, error;
340
341 pp = uma_zalloc(pipe_zone, M_WAITOK);
342 #ifdef MAC
343 /*
344 * The MAC label is shared between the connected endpoints. As a
345 * result mac_init_pipe() and mac_create_pipe() are called once
346 * for the pair, and not on the endpoints.
347 */
348 mac_init_pipe(pp);
349 mac_create_pipe(td->td_ucred, pp);
350 #endif
351 rpipe = &pp->pp_rpipe;
352 wpipe = &pp->pp_wpipe;
353
354 knlist_init(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
355 knlist_init(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
356
357 /* Only the forward direction pipe is backed by default */
358 if (pipe_create(rpipe, 1) || pipe_create(wpipe, 0)) {
359 pipeclose(rpipe);
360 pipeclose(wpipe);
361 return (ENFILE);
362 }
363
364 rpipe->pipe_state |= PIPE_DIRECTOK;
365 wpipe->pipe_state |= PIPE_DIRECTOK;
366
367 error = falloc(td, &rf, &fd);
368 if (error) {
369 pipeclose(rpipe);
370 pipeclose(wpipe);
371 return (error);
372 }
373 /* An extra reference on `rf' has been held for us by falloc(). */
374 td->td_retval[0] = fd;
375
376 /*
377 * Warning: once we've gotten past allocation of the fd for the
378 * read-side, we can only drop the read side via fdrop() in order
379 * to avoid races against processes which manage to dup() the read
380 * side while we are blocked trying to allocate the write side.
381 */
382 FILE_LOCK(rf);
383 rf->f_flag = FREAD | FWRITE;
384 rf->f_type = DTYPE_PIPE;
385 rf->f_data = rpipe;
386 rf->f_ops = &pipeops;
387 FILE_UNLOCK(rf);
388 error = falloc(td, &wf, &fd);
389 if (error) {
390 fdclose(fdp, rf, td->td_retval[0], td);
391 fdrop(rf, td);
392 /* rpipe has been closed by fdrop(). */
393 pipeclose(wpipe);
394 return (error);
395 }
396 /* An extra reference on `wf' has been held for us by falloc(). */
397 FILE_LOCK(wf);
398 wf->f_flag = FREAD | FWRITE;
399 wf->f_type = DTYPE_PIPE;
400 wf->f_data = wpipe;
401 wf->f_ops = &pipeops;
402 FILE_UNLOCK(wf);
403 fdrop(wf, td);
404 td->td_retval[1] = fd;
405 fdrop(rf, td);
406
407 return (0);
408 }
409
410 /*
411 * Allocate kva for pipe circular buffer, the space is pageable
412 * This routine will 'realloc' the size of a pipe safely, if it fails
413 * it will retain the old buffer.
414 * If it fails it will return ENOMEM.
415 */
416 static int
417 pipespace_new(cpipe, size)
418 struct pipe *cpipe;
419 int size;
420 {
421 caddr_t buffer;
422 int error, cnt, firstseg;
423 static int curfail = 0;
424 static struct timeval lastfail;
425
426 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
427 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
428 ("pipespace: resize of direct writes not allowed"));
429 retry:
430 cnt = cpipe->pipe_buffer.cnt;
431 if (cnt > size)
432 size = cnt;
433
434 size = round_page(size);
435 buffer = (caddr_t) vm_map_min(pipe_map);
436
437 error = vm_map_find(pipe_map, NULL, 0,
438 (vm_offset_t *) &buffer, size, 1,
439 VM_PROT_ALL, VM_PROT_ALL, 0);
440 if (error != KERN_SUCCESS) {
441 if ((cpipe->pipe_buffer.buffer == NULL) &&
442 (size > SMALL_PIPE_SIZE)) {
443 size = SMALL_PIPE_SIZE;
444 pipefragretry++;
445 goto retry;
446 }
447 if (cpipe->pipe_buffer.buffer == NULL) {
448 pipeallocfail++;
449 if (ppsratecheck(&lastfail, &curfail, 1))
450 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
451 } else {
452 piperesizefail++;
453 }
454 return (ENOMEM);
455 }
456
457 /* copy data, then free old resources if we're resizing */
458 if (cnt > 0) {
459 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
460 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
461 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
462 buffer, firstseg);
463 if ((cnt - firstseg) > 0)
464 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
465 cpipe->pipe_buffer.in);
466 } else {
467 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
468 buffer, cnt);
469 }
470 }
471 pipe_free_kmem(cpipe);
472 cpipe->pipe_buffer.buffer = buffer;
473 cpipe->pipe_buffer.size = size;
474 cpipe->pipe_buffer.in = cnt;
475 cpipe->pipe_buffer.out = 0;
476 cpipe->pipe_buffer.cnt = cnt;
477 atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size);
478 return (0);
479 }
480
481 /*
482 * Wrapper for pipespace_new() that performs locking assertions.
483 */
484 static int
485 pipespace(cpipe, size)
486 struct pipe *cpipe;
487 int size;
488 {
489
490 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
491 ("Unlocked pipe passed to pipespace"));
492 return (pipespace_new(cpipe, size));
493 }
494
495 /*
496 * lock a pipe for I/O, blocking other access
497 */
498 static __inline int
499 pipelock(cpipe, catch)
500 struct pipe *cpipe;
501 int catch;
502 {
503 int error;
504
505 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
506 while (cpipe->pipe_state & PIPE_LOCKFL) {
507 cpipe->pipe_state |= PIPE_LWANT;
508 error = msleep(cpipe, PIPE_MTX(cpipe),
509 catch ? (PRIBIO | PCATCH) : PRIBIO,
510 "pipelk", 0);
511 if (error != 0)
512 return (error);
513 }
514 cpipe->pipe_state |= PIPE_LOCKFL;
515 return (0);
516 }
517
518 /*
519 * unlock a pipe I/O lock
520 */
521 static __inline void
522 pipeunlock(cpipe)
523 struct pipe *cpipe;
524 {
525
526 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
527 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
528 ("Unlocked pipe passed to pipeunlock"));
529 cpipe->pipe_state &= ~PIPE_LOCKFL;
530 if (cpipe->pipe_state & PIPE_LWANT) {
531 cpipe->pipe_state &= ~PIPE_LWANT;
532 wakeup(cpipe);
533 }
534 }
535
536 static __inline void
537 pipeselwakeup(cpipe)
538 struct pipe *cpipe;
539 {
540
541 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
542 if (cpipe->pipe_state & PIPE_SEL) {
543 cpipe->pipe_state &= ~PIPE_SEL;
544 selwakeuppri(&cpipe->pipe_sel, PSOCK);
545 }
546 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
547 pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
548 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
549 }
550
551 /*
552 * Initialize and allocate VM and memory for pipe. The structure
553 * will start out zero'd from the ctor, so we just manage the kmem.
554 */
555 static int
556 pipe_create(pipe, backing)
557 struct pipe *pipe;
558 int backing;
559 {
560 int error;
561
562 if (backing) {
563 if (amountpipekva > maxpipekva / 2)
564 error = pipespace_new(pipe, SMALL_PIPE_SIZE);
565 else
566 error = pipespace_new(pipe, PIPE_SIZE);
567 } else {
568 /* If we're not backing this pipe, no need to do anything. */
569 error = 0;
570 }
571 return (error);
572 }
573
574 /* ARGSUSED */
575 static int
576 pipe_read(fp, uio, active_cred, flags, td)
577 struct file *fp;
578 struct uio *uio;
579 struct ucred *active_cred;
580 struct thread *td;
581 int flags;
582 {
583 struct pipe *rpipe = fp->f_data;
584 int error;
585 int nread = 0;
586 u_int size;
587
588 PIPE_LOCK(rpipe);
589 ++rpipe->pipe_busy;
590 error = pipelock(rpipe, 1);
591 if (error)
592 goto unlocked_error;
593
594 #ifdef MAC
595 error = mac_check_pipe_read(active_cred, rpipe->pipe_pair);
596 if (error)
597 goto locked_error;
598 #endif
599 if (amountpipekva > (3 * maxpipekva) / 4) {
600 if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
601 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
602 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
603 (piperesizeallowed == 1)) {
604 PIPE_UNLOCK(rpipe);
605 pipespace(rpipe, SMALL_PIPE_SIZE);
606 PIPE_LOCK(rpipe);
607 }
608 }
609
610 while (uio->uio_resid) {
611 /*
612 * normal pipe buffer receive
613 */
614 if (rpipe->pipe_buffer.cnt > 0) {
615 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
616 if (size > rpipe->pipe_buffer.cnt)
617 size = rpipe->pipe_buffer.cnt;
618 if (size > (u_int) uio->uio_resid)
619 size = (u_int) uio->uio_resid;
620
621 PIPE_UNLOCK(rpipe);
622 error = uiomove(
623 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
624 size, uio);
625 PIPE_LOCK(rpipe);
626 if (error)
627 break;
628
629 rpipe->pipe_buffer.out += size;
630 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
631 rpipe->pipe_buffer.out = 0;
632
633 rpipe->pipe_buffer.cnt -= size;
634
635 /*
636 * If there is no more to read in the pipe, reset
637 * its pointers to the beginning. This improves
638 * cache hit stats.
639 */
640 if (rpipe->pipe_buffer.cnt == 0) {
641 rpipe->pipe_buffer.in = 0;
642 rpipe->pipe_buffer.out = 0;
643 }
644 nread += size;
645 #ifndef PIPE_NODIRECT
646 /*
647 * Direct copy, bypassing a kernel buffer.
648 */
649 } else if ((size = rpipe->pipe_map.cnt) &&
650 (rpipe->pipe_state & PIPE_DIRECTW)) {
651 if (size > (u_int) uio->uio_resid)
652 size = (u_int) uio->uio_resid;
653
654 PIPE_UNLOCK(rpipe);
655 error = uiomove_fromphys(rpipe->pipe_map.ms,
656 rpipe->pipe_map.pos, size, uio);
657 PIPE_LOCK(rpipe);
658 if (error)
659 break;
660 nread += size;
661 rpipe->pipe_map.pos += size;
662 rpipe->pipe_map.cnt -= size;
663 if (rpipe->pipe_map.cnt == 0) {
664 rpipe->pipe_state &= ~PIPE_DIRECTW;
665 wakeup(rpipe);
666 }
667 #endif
668 } else {
669 /*
670 * detect EOF condition
671 * read returns 0 on EOF, no need to set error
672 */
673 if (rpipe->pipe_state & PIPE_EOF)
674 break;
675
676 /*
677 * If the "write-side" has been blocked, wake it up now.
678 */
679 if (rpipe->pipe_state & PIPE_WANTW) {
680 rpipe->pipe_state &= ~PIPE_WANTW;
681 wakeup(rpipe);
682 }
683
684 /*
685 * Break if some data was read.
686 */
687 if (nread > 0)
688 break;
689
690 /*
691 * Unlock the pipe buffer for our remaining processing.
692 * We will either break out with an error or we will
693 * sleep and relock to loop.
694 */
695 pipeunlock(rpipe);
696
697 /*
698 * Handle non-blocking mode operation or
699 * wait for more data.
700 */
701 if (fp->f_flag & FNONBLOCK) {
702 error = EAGAIN;
703 } else {
704 rpipe->pipe_state |= PIPE_WANTR;
705 if ((error = msleep(rpipe, PIPE_MTX(rpipe),
706 PRIBIO | PCATCH,
707 "piperd", 0)) == 0)
708 error = pipelock(rpipe, 1);
709 }
710 if (error)
711 goto unlocked_error;
712 }
713 }
714 #ifdef MAC
715 locked_error:
716 #endif
717 pipeunlock(rpipe);
718
719 /* XXX: should probably do this before getting any locks. */
720 if (error == 0)
721 vfs_timestamp(&rpipe->pipe_atime);
722 unlocked_error:
723 --rpipe->pipe_busy;
724
725 /*
726 * PIPE_WANT processing only makes sense if pipe_busy is 0.
727 */
728 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
729 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
730 wakeup(rpipe);
731 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
732 /*
733 * Handle write blocking hysteresis.
734 */
735 if (rpipe->pipe_state & PIPE_WANTW) {
736 rpipe->pipe_state &= ~PIPE_WANTW;
737 wakeup(rpipe);
738 }
739 }
740
741 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
742 pipeselwakeup(rpipe);
743
744 PIPE_UNLOCK(rpipe);
745 return (error);
746 }
747
748 #ifndef PIPE_NODIRECT
749 /*
750 * Map the sending processes' buffer into kernel space and wire it.
751 * This is similar to a physical write operation.
752 */
753 static int
754 pipe_build_write_buffer(wpipe, uio)
755 struct pipe *wpipe;
756 struct uio *uio;
757 {
758 pmap_t pmap;
759 u_int size;
760 int i, j;
761 vm_offset_t addr, endaddr;
762
763 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
764 KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
765 ("Clone attempt on non-direct write pipe!"));
766
767 size = (u_int) uio->uio_iov->iov_len;
768 if (size > wpipe->pipe_buffer.size)
769 size = wpipe->pipe_buffer.size;
770
771 pmap = vmspace_pmap(curproc->p_vmspace);
772 endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
773 addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
774 for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
775 /*
776 * vm_fault_quick() can sleep. Consequently,
777 * vm_page_lock_queue() and vm_page_unlock_queue()
778 * should not be performed outside of this loop.
779 */
780 race:
781 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) {
782 vm_page_lock_queues();
783 for (j = 0; j < i; j++)
784 vm_page_unhold(wpipe->pipe_map.ms[j]);
785 vm_page_unlock_queues();
786 return (EFAULT);
787 }
788 wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr,
789 VM_PROT_READ);
790 if (wpipe->pipe_map.ms[i] == NULL)
791 goto race;
792 }
793
794 /*
795 * set up the control block
796 */
797 wpipe->pipe_map.npages = i;
798 wpipe->pipe_map.pos =
799 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
800 wpipe->pipe_map.cnt = size;
801
802 /*
803 * and update the uio data
804 */
805
806 uio->uio_iov->iov_len -= size;
807 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
808 if (uio->uio_iov->iov_len == 0)
809 uio->uio_iov++;
810 uio->uio_resid -= size;
811 uio->uio_offset += size;
812 return (0);
813 }
814
815 /*
816 * unmap and unwire the process buffer
817 */
818 static void
819 pipe_destroy_write_buffer(wpipe)
820 struct pipe *wpipe;
821 {
822 int i;
823
824 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
825 vm_page_lock_queues();
826 for (i = 0; i < wpipe->pipe_map.npages; i++) {
827 vm_page_unhold(wpipe->pipe_map.ms[i]);
828 }
829 vm_page_unlock_queues();
830 wpipe->pipe_map.npages = 0;
831 }
832
833 /*
834 * In the case of a signal, the writing process might go away. This
835 * code copies the data into the circular buffer so that the source
836 * pages can be freed without loss of data.
837 */
838 static void
839 pipe_clone_write_buffer(wpipe)
840 struct pipe *wpipe;
841 {
842 struct uio uio;
843 struct iovec iov;
844 int size;
845 int pos;
846
847 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
848 size = wpipe->pipe_map.cnt;
849 pos = wpipe->pipe_map.pos;
850
851 wpipe->pipe_buffer.in = size;
852 wpipe->pipe_buffer.out = 0;
853 wpipe->pipe_buffer.cnt = size;
854 wpipe->pipe_state &= ~PIPE_DIRECTW;
855
856 PIPE_UNLOCK(wpipe);
857 iov.iov_base = wpipe->pipe_buffer.buffer;
858 iov.iov_len = size;
859 uio.uio_iov = &iov;
860 uio.uio_iovcnt = 1;
861 uio.uio_offset = 0;
862 uio.uio_resid = size;
863 uio.uio_segflg = UIO_SYSSPACE;
864 uio.uio_rw = UIO_READ;
865 uio.uio_td = curthread;
866 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
867 PIPE_LOCK(wpipe);
868 pipe_destroy_write_buffer(wpipe);
869 }
870
871 /*
872 * This implements the pipe buffer write mechanism. Note that only
873 * a direct write OR a normal pipe write can be pending at any given time.
874 * If there are any characters in the pipe buffer, the direct write will
875 * be deferred until the receiving process grabs all of the bytes from
876 * the pipe buffer. Then the direct mapping write is set-up.
877 */
878 static int
879 pipe_direct_write(wpipe, uio)
880 struct pipe *wpipe;
881 struct uio *uio;
882 {
883 int error;
884
885 retry:
886 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
887 error = pipelock(wpipe, 1);
888 if (wpipe->pipe_state & PIPE_EOF)
889 error = EPIPE;
890 if (error) {
891 pipeunlock(wpipe);
892 goto error1;
893 }
894 while (wpipe->pipe_state & PIPE_DIRECTW) {
895 if (wpipe->pipe_state & PIPE_WANTR) {
896 wpipe->pipe_state &= ~PIPE_WANTR;
897 wakeup(wpipe);
898 }
899 wpipe->pipe_state |= PIPE_WANTW;
900 pipeunlock(wpipe);
901 error = msleep(wpipe, PIPE_MTX(wpipe),
902 PRIBIO | PCATCH, "pipdww", 0);
903 if (error)
904 goto error1;
905 else
906 goto retry;
907 }
908 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */
909 if (wpipe->pipe_buffer.cnt > 0) {
910 if (wpipe->pipe_state & PIPE_WANTR) {
911 wpipe->pipe_state &= ~PIPE_WANTR;
912 wakeup(wpipe);
913 }
914 wpipe->pipe_state |= PIPE_WANTW;
915 pipeunlock(wpipe);
916 error = msleep(wpipe, PIPE_MTX(wpipe),
917 PRIBIO | PCATCH, "pipdwc", 0);
918 if (error)
919 goto error1;
920 else
921 goto retry;
922 }
923
924 wpipe->pipe_state |= PIPE_DIRECTW;
925
926 PIPE_UNLOCK(wpipe);
927 error = pipe_build_write_buffer(wpipe, uio);
928 PIPE_LOCK(wpipe);
929 if (error) {
930 wpipe->pipe_state &= ~PIPE_DIRECTW;
931 pipeunlock(wpipe);
932 goto error1;
933 }
934
935 error = 0;
936 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
937 if (wpipe->pipe_state & PIPE_EOF) {
938 pipe_destroy_write_buffer(wpipe);
939 pipeselwakeup(wpipe);
940 pipeunlock(wpipe);
941 error = EPIPE;
942 goto error1;
943 }
944 if (wpipe->pipe_state & PIPE_WANTR) {
945 wpipe->pipe_state &= ~PIPE_WANTR;
946 wakeup(wpipe);
947 }
948 pipeselwakeup(wpipe);
949 pipeunlock(wpipe);
950 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
951 "pipdwt", 0);
952 pipelock(wpipe, 0);
953 }
954
955 if (wpipe->pipe_state & PIPE_EOF)
956 error = EPIPE;
957 if (wpipe->pipe_state & PIPE_DIRECTW) {
958 /*
959 * this bit of trickery substitutes a kernel buffer for
960 * the process that might be going away.
961 */
962 pipe_clone_write_buffer(wpipe);
963 } else {
964 pipe_destroy_write_buffer(wpipe);
965 }
966 pipeunlock(wpipe);
967 return (error);
968
969 error1:
970 wakeup(wpipe);
971 return (error);
972 }
973 #endif
974
975 static int
976 pipe_write(fp, uio, active_cred, flags, td)
977 struct file *fp;
978 struct uio *uio;
979 struct ucred *active_cred;
980 struct thread *td;
981 int flags;
982 {
983 int error = 0;
984 int desiredsize, orig_resid;
985 struct pipe *wpipe, *rpipe;
986
987 rpipe = fp->f_data;
988 wpipe = rpipe->pipe_peer;
989
990 PIPE_LOCK(rpipe);
991 error = pipelock(wpipe, 1);
992 if (error) {
993 PIPE_UNLOCK(rpipe);
994 return (error);
995 }
996 /*
997 * detect loss of pipe read side, issue SIGPIPE if lost.
998 */
999 if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) {
1000 pipeunlock(wpipe);
1001 PIPE_UNLOCK(rpipe);
1002 return (EPIPE);
1003 }
1004 #ifdef MAC
1005 error = mac_check_pipe_write(active_cred, wpipe->pipe_pair);
1006 if (error) {
1007 pipeunlock(wpipe);
1008 PIPE_UNLOCK(rpipe);
1009 return (error);
1010 }
1011 #endif
1012 ++wpipe->pipe_busy;
1013
1014 /* Choose a larger size if it's advantageous */
1015 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1016 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1017 if (piperesizeallowed != 1)
1018 break;
1019 if (amountpipekva > maxpipekva / 2)
1020 break;
1021 if (desiredsize == BIG_PIPE_SIZE)
1022 break;
1023 desiredsize = desiredsize * 2;
1024 }
1025
1026 /* Choose a smaller size if we're in a OOM situation */
1027 if ((amountpipekva > (3 * maxpipekva) / 4) &&
1028 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1029 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1030 (piperesizeallowed == 1))
1031 desiredsize = SMALL_PIPE_SIZE;
1032
1033 /* Resize if the above determined that a new size was necessary */
1034 if ((desiredsize != wpipe->pipe_buffer.size) &&
1035 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1036 PIPE_UNLOCK(wpipe);
1037 pipespace(wpipe, desiredsize);
1038 PIPE_LOCK(wpipe);
1039 }
1040 if (wpipe->pipe_buffer.size == 0) {
1041 /*
1042 * This can only happen for reverse direction use of pipes
1043 * in a complete OOM situation.
1044 */
1045 error = ENOMEM;
1046 --wpipe->pipe_busy;
1047 pipeunlock(wpipe);
1048 PIPE_UNLOCK(wpipe);
1049 return (error);
1050 }
1051
1052 pipeunlock(wpipe);
1053
1054 orig_resid = uio->uio_resid;
1055
1056 while (uio->uio_resid) {
1057 int space;
1058
1059 pipelock(wpipe, 0);
1060 if (wpipe->pipe_state & PIPE_EOF) {
1061 pipeunlock(wpipe);
1062 error = EPIPE;
1063 break;
1064 }
1065 #ifndef PIPE_NODIRECT
1066 /*
1067 * If the transfer is large, we can gain performance if
1068 * we do process-to-process copies directly.
1069 * If the write is non-blocking, we don't use the
1070 * direct write mechanism.
1071 *
1072 * The direct write mechanism will detect the reader going
1073 * away on us.
1074 */
1075 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
1076 (wpipe->pipe_buffer.size >= PIPE_MINDIRECT) &&
1077 (fp->f_flag & FNONBLOCK) == 0) {
1078 pipeunlock(wpipe);
1079 error = pipe_direct_write(wpipe, uio);
1080 if (error)
1081 break;
1082 continue;
1083 }
1084 #endif
1085
1086 /*
1087 * Pipe buffered writes cannot be coincidental with
1088 * direct writes. We wait until the currently executing
1089 * direct write is completed before we start filling the
1090 * pipe buffer. We break out if a signal occurs or the
1091 * reader goes away.
1092 */
1093 if (wpipe->pipe_state & PIPE_DIRECTW) {
1094 if (wpipe->pipe_state & PIPE_WANTR) {
1095 wpipe->pipe_state &= ~PIPE_WANTR;
1096 wakeup(wpipe);
1097 }
1098 pipeunlock(wpipe);
1099 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1100 "pipbww", 0);
1101 if (error)
1102 break;
1103 else
1104 continue;
1105 }
1106
1107 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1108
1109 /* Writes of size <= PIPE_BUF must be atomic. */
1110 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1111 space = 0;
1112
1113 if (space > 0) {
1114 int size; /* Transfer size */
1115 int segsize; /* first segment to transfer */
1116
1117 /*
1118 * Transfer size is minimum of uio transfer
1119 * and free space in pipe buffer.
1120 */
1121 if (space > uio->uio_resid)
1122 size = uio->uio_resid;
1123 else
1124 size = space;
1125 /*
1126 * First segment to transfer is minimum of
1127 * transfer size and contiguous space in
1128 * pipe buffer. If first segment to transfer
1129 * is less than the transfer size, we've got
1130 * a wraparound in the buffer.
1131 */
1132 segsize = wpipe->pipe_buffer.size -
1133 wpipe->pipe_buffer.in;
1134 if (segsize > size)
1135 segsize = size;
1136
1137 /* Transfer first segment */
1138
1139 PIPE_UNLOCK(rpipe);
1140 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1141 segsize, uio);
1142 PIPE_LOCK(rpipe);
1143
1144 if (error == 0 && segsize < size) {
1145 KASSERT(wpipe->pipe_buffer.in + segsize ==
1146 wpipe->pipe_buffer.size,
1147 ("Pipe buffer wraparound disappeared"));
1148 /*
1149 * Transfer remaining part now, to
1150 * support atomic writes. Wraparound
1151 * happened.
1152 */
1153
1154 PIPE_UNLOCK(rpipe);
1155 error = uiomove(
1156 &wpipe->pipe_buffer.buffer[0],
1157 size - segsize, uio);
1158 PIPE_LOCK(rpipe);
1159 }
1160 if (error == 0) {
1161 wpipe->pipe_buffer.in += size;
1162 if (wpipe->pipe_buffer.in >=
1163 wpipe->pipe_buffer.size) {
1164 KASSERT(wpipe->pipe_buffer.in ==
1165 size - segsize +
1166 wpipe->pipe_buffer.size,
1167 ("Expected wraparound bad"));
1168 wpipe->pipe_buffer.in = size - segsize;
1169 }
1170
1171 wpipe->pipe_buffer.cnt += size;
1172 KASSERT(wpipe->pipe_buffer.cnt <=
1173 wpipe->pipe_buffer.size,
1174 ("Pipe buffer overflow"));
1175 }
1176 pipeunlock(wpipe);
1177 if (error != 0)
1178 break;
1179 } else {
1180 /*
1181 * If the "read-side" has been blocked, wake it up now.
1182 */
1183 if (wpipe->pipe_state & PIPE_WANTR) {
1184 wpipe->pipe_state &= ~PIPE_WANTR;
1185 wakeup(wpipe);
1186 }
1187
1188 /*
1189 * don't block on non-blocking I/O
1190 */
1191 if (fp->f_flag & FNONBLOCK) {
1192 error = EAGAIN;
1193 pipeunlock(wpipe);
1194 break;
1195 }
1196
1197 /*
1198 * We have no more space and have something to offer,
1199 * wake up select/poll.
1200 */
1201 pipeselwakeup(wpipe);
1202
1203 wpipe->pipe_state |= PIPE_WANTW;
1204 pipeunlock(wpipe);
1205 error = msleep(wpipe, PIPE_MTX(rpipe),
1206 PRIBIO | PCATCH, "pipewr", 0);
1207 if (error != 0)
1208 break;
1209 }
1210 }
1211
1212 pipelock(wpipe, 0);
1213 --wpipe->pipe_busy;
1214
1215 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1216 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1217 wakeup(wpipe);
1218 } else if (wpipe->pipe_buffer.cnt > 0) {
1219 /*
1220 * If we have put any characters in the buffer, we wake up
1221 * the reader.
1222 */
1223 if (wpipe->pipe_state & PIPE_WANTR) {
1224 wpipe->pipe_state &= ~PIPE_WANTR;
1225 wakeup(wpipe);
1226 }
1227 }
1228
1229 /*
1230 * Don't return EPIPE if I/O was successful
1231 */
1232 if ((wpipe->pipe_buffer.cnt == 0) &&
1233 (uio->uio_resid == 0) &&
1234 (error == EPIPE)) {
1235 error = 0;
1236 }
1237
1238 if (error == 0)
1239 vfs_timestamp(&wpipe->pipe_mtime);
1240
1241 /*
1242 * We have something to offer,
1243 * wake up select/poll.
1244 */
1245 if (wpipe->pipe_buffer.cnt)
1246 pipeselwakeup(wpipe);
1247
1248 pipeunlock(wpipe);
1249 PIPE_UNLOCK(rpipe);
1250 return (error);
1251 }
1252
1253 /*
1254 * we implement a very minimal set of ioctls for compatibility with sockets.
1255 */
1256 static int
1257 pipe_ioctl(fp, cmd, data, active_cred, td)
1258 struct file *fp;
1259 u_long cmd;
1260 void *data;
1261 struct ucred *active_cred;
1262 struct thread *td;
1263 {
1264 struct pipe *mpipe = fp->f_data;
1265 #ifdef MAC
1266 int error;
1267 #endif
1268
1269 PIPE_LOCK(mpipe);
1270
1271 #ifdef MAC
1272 error = mac_check_pipe_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1273 if (error) {
1274 PIPE_UNLOCK(mpipe);
1275 return (error);
1276 }
1277 #endif
1278
1279 switch (cmd) {
1280
1281 case FIONBIO:
1282 PIPE_UNLOCK(mpipe);
1283 return (0);
1284
1285 case FIOASYNC:
1286 if (*(int *)data) {
1287 mpipe->pipe_state |= PIPE_ASYNC;
1288 } else {
1289 mpipe->pipe_state &= ~PIPE_ASYNC;
1290 }
1291 PIPE_UNLOCK(mpipe);
1292 return (0);
1293
1294 case FIONREAD:
1295 if (mpipe->pipe_state & PIPE_DIRECTW)
1296 *(int *)data = mpipe->pipe_map.cnt;
1297 else
1298 *(int *)data = mpipe->pipe_buffer.cnt;
1299 PIPE_UNLOCK(mpipe);
1300 return (0);
1301
1302 case FIOSETOWN:
1303 PIPE_UNLOCK(mpipe);
1304 return (fsetown(*(int *)data, &mpipe->pipe_sigio));
1305
1306 case FIOGETOWN:
1307 PIPE_UNLOCK(mpipe);
1308 *(int *)data = fgetown(&mpipe->pipe_sigio);
1309 return (0);
1310
1311 /* This is deprecated, FIOSETOWN should be used instead. */
1312 case TIOCSPGRP:
1313 PIPE_UNLOCK(mpipe);
1314 return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
1315
1316 /* This is deprecated, FIOGETOWN should be used instead. */
1317 case TIOCGPGRP:
1318 PIPE_UNLOCK(mpipe);
1319 *(int *)data = -fgetown(&mpipe->pipe_sigio);
1320 return (0);
1321
1322 }
1323 PIPE_UNLOCK(mpipe);
1324 return (ENOTTY);
1325 }
1326
1327 static int
1328 pipe_poll(fp, events, active_cred, td)
1329 struct file *fp;
1330 int events;
1331 struct ucred *active_cred;
1332 struct thread *td;
1333 {
1334 struct pipe *rpipe = fp->f_data;
1335 struct pipe *wpipe;
1336 int revents = 0;
1337 #ifdef MAC
1338 int error;
1339 #endif
1340
1341 wpipe = rpipe->pipe_peer;
1342 PIPE_LOCK(rpipe);
1343 #ifdef MAC
1344 error = mac_check_pipe_poll(active_cred, rpipe->pipe_pair);
1345 if (error)
1346 goto locked_error;
1347 #endif
1348 if (events & (POLLIN | POLLRDNORM))
1349 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1350 (rpipe->pipe_buffer.cnt > 0) ||
1351 (rpipe->pipe_state & PIPE_EOF))
1352 revents |= events & (POLLIN | POLLRDNORM);
1353
1354 if (events & (POLLOUT | POLLWRNORM))
1355 if (!wpipe->pipe_present || (wpipe->pipe_state & PIPE_EOF) ||
1356 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1357 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1358 revents |= events & (POLLOUT | POLLWRNORM);
1359
1360 if ((rpipe->pipe_state & PIPE_EOF) ||
1361 (!wpipe->pipe_present) ||
1362 (wpipe->pipe_state & PIPE_EOF))
1363 revents |= POLLHUP;
1364
1365 if (revents == 0) {
1366 if (events & (POLLIN | POLLRDNORM)) {
1367 selrecord(td, &rpipe->pipe_sel);
1368 rpipe->pipe_state |= PIPE_SEL;
1369 }
1370
1371 if (events & (POLLOUT | POLLWRNORM)) {
1372 selrecord(td, &wpipe->pipe_sel);
1373 wpipe->pipe_state |= PIPE_SEL;
1374 }
1375 }
1376 #ifdef MAC
1377 locked_error:
1378 #endif
1379 PIPE_UNLOCK(rpipe);
1380
1381 return (revents);
1382 }
1383
1384 /*
1385 * We shouldn't need locks here as we're doing a read and this should
1386 * be a natural race.
1387 */
1388 static int
1389 pipe_stat(fp, ub, active_cred, td)
1390 struct file *fp;
1391 struct stat *ub;
1392 struct ucred *active_cred;
1393 struct thread *td;
1394 {
1395 struct pipe *pipe = fp->f_data;
1396 #ifdef MAC
1397 int error;
1398
1399 PIPE_LOCK(pipe);
1400 error = mac_check_pipe_stat(active_cred, pipe->pipe_pair);
1401 PIPE_UNLOCK(pipe);
1402 if (error)
1403 return (error);
1404 #endif
1405 bzero(ub, sizeof(*ub));
1406 ub->st_mode = S_IFIFO;
1407 ub->st_blksize = PAGE_SIZE;
1408 if (pipe->pipe_state & PIPE_DIRECTW)
1409 ub->st_size = pipe->pipe_map.cnt;
1410 else
1411 ub->st_size = pipe->pipe_buffer.cnt;
1412 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1413 ub->st_atimespec = pipe->pipe_atime;
1414 ub->st_mtimespec = pipe->pipe_mtime;
1415 ub->st_ctimespec = pipe->pipe_ctime;
1416 ub->st_uid = fp->f_cred->cr_uid;
1417 ub->st_gid = fp->f_cred->cr_gid;
1418 /*
1419 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1420 * XXX (st_dev, st_ino) should be unique.
1421 */
1422 return (0);
1423 }
1424
1425 /* ARGSUSED */
1426 static int
1427 pipe_close(fp, td)
1428 struct file *fp;
1429 struct thread *td;
1430 {
1431 struct pipe *cpipe = fp->f_data;
1432
1433 fp->f_ops = &badfileops;
1434 fp->f_data = NULL;
1435 funsetown(&cpipe->pipe_sigio);
1436 pipeclose(cpipe);
1437 return (0);
1438 }
1439
1440 static void
1441 pipe_free_kmem(cpipe)
1442 struct pipe *cpipe;
1443 {
1444
1445 KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1446 ("pipe_free_kmem: pipe mutex locked"));
1447
1448 if (cpipe->pipe_buffer.buffer != NULL) {
1449 atomic_subtract_int(&amountpipekva, cpipe->pipe_buffer.size);
1450 vm_map_remove(pipe_map,
1451 (vm_offset_t)cpipe->pipe_buffer.buffer,
1452 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1453 cpipe->pipe_buffer.buffer = NULL;
1454 }
1455 #ifndef PIPE_NODIRECT
1456 {
1457 cpipe->pipe_map.cnt = 0;
1458 cpipe->pipe_map.pos = 0;
1459 cpipe->pipe_map.npages = 0;
1460 }
1461 #endif
1462 }
1463
1464 /*
1465 * shutdown the pipe
1466 */
1467 static void
1468 pipeclose(cpipe)
1469 struct pipe *cpipe;
1470 {
1471 struct pipepair *pp;
1472 struct pipe *ppipe;
1473
1474 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1475
1476 PIPE_LOCK(cpipe);
1477 pipelock(cpipe, 0);
1478 pp = cpipe->pipe_pair;
1479
1480 pipeselwakeup(cpipe);
1481
1482 /*
1483 * If the other side is blocked, wake it up saying that
1484 * we want to close it down.
1485 */
1486 cpipe->pipe_state |= PIPE_EOF;
1487 while (cpipe->pipe_busy) {
1488 wakeup(cpipe);
1489 cpipe->pipe_state |= PIPE_WANT;
1490 pipeunlock(cpipe);
1491 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1492 pipelock(cpipe, 0);
1493 }
1494
1495
1496 /*
1497 * Disconnect from peer, if any.
1498 */
1499 ppipe = cpipe->pipe_peer;
1500 if (ppipe->pipe_present != 0) {
1501 pipeselwakeup(ppipe);
1502
1503 ppipe->pipe_state |= PIPE_EOF;
1504 wakeup(ppipe);
1505 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1506 }
1507
1508 /*
1509 * Mark this endpoint as free. Release kmem resources. We
1510 * don't mark this endpoint as unused until we've finished
1511 * doing that, or the pipe might disappear out from under
1512 * us.
1513 */
1514 PIPE_UNLOCK(cpipe);
1515 pipe_free_kmem(cpipe);
1516 PIPE_LOCK(cpipe);
1517 cpipe->pipe_present = 0;
1518 pipeunlock(cpipe);
1519 knlist_clear(&cpipe->pipe_sel.si_note, 1);
1520 knlist_destroy(&cpipe->pipe_sel.si_note);
1521
1522 /*
1523 * If both endpoints are now closed, release the memory for the
1524 * pipe pair. If not, unlock.
1525 */
1526 if (ppipe->pipe_present == 0) {
1527 PIPE_UNLOCK(cpipe);
1528 #ifdef MAC
1529 mac_destroy_pipe(pp);
1530 #endif
1531 uma_zfree(pipe_zone, cpipe->pipe_pair);
1532 } else
1533 PIPE_UNLOCK(cpipe);
1534 }
1535
1536 /*ARGSUSED*/
1537 static int
1538 pipe_kqfilter(struct file *fp, struct knote *kn)
1539 {
1540 struct pipe *cpipe;
1541
1542 cpipe = kn->kn_fp->f_data;
1543 PIPE_LOCK(cpipe);
1544 switch (kn->kn_filter) {
1545 case EVFILT_READ:
1546 kn->kn_fop = &pipe_rfiltops;
1547 break;
1548 case EVFILT_WRITE:
1549 kn->kn_fop = &pipe_wfiltops;
1550 if (!cpipe->pipe_peer->pipe_present) {
1551 /* other end of pipe has been closed */
1552 PIPE_UNLOCK(cpipe);
1553 return (EPIPE);
1554 }
1555 cpipe = cpipe->pipe_peer;
1556 break;
1557 default:
1558 PIPE_UNLOCK(cpipe);
1559 return (EINVAL);
1560 }
1561
1562 knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1563 PIPE_UNLOCK(cpipe);
1564 return (0);
1565 }
1566
1567 static void
1568 filt_pipedetach(struct knote *kn)
1569 {
1570 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1571
1572 PIPE_LOCK(cpipe);
1573 if (kn->kn_filter == EVFILT_WRITE) {
1574 if (!cpipe->pipe_peer->pipe_present) {
1575 PIPE_UNLOCK(cpipe);
1576 return;
1577 }
1578 cpipe = cpipe->pipe_peer;
1579 }
1580 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1581 PIPE_UNLOCK(cpipe);
1582 }
1583
1584 /*ARGSUSED*/
1585 static int
1586 filt_piperead(struct knote *kn, long hint)
1587 {
1588 struct pipe *rpipe = kn->kn_fp->f_data;
1589 struct pipe *wpipe = rpipe->pipe_peer;
1590 int ret;
1591
1592 PIPE_LOCK(rpipe);
1593 kn->kn_data = rpipe->pipe_buffer.cnt;
1594 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1595 kn->kn_data = rpipe->pipe_map.cnt;
1596
1597 if ((rpipe->pipe_state & PIPE_EOF) ||
1598 (!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) {
1599 kn->kn_flags |= EV_EOF;
1600 PIPE_UNLOCK(rpipe);
1601 return (1);
1602 }
1603 ret = kn->kn_data > 0;
1604 PIPE_UNLOCK(rpipe);
1605 return ret;
1606 }
1607
1608 /*ARGSUSED*/
1609 static int
1610 filt_pipewrite(struct knote *kn, long hint)
1611 {
1612 struct pipe *rpipe = kn->kn_fp->f_data;
1613 struct pipe *wpipe = rpipe->pipe_peer;
1614
1615 PIPE_LOCK(rpipe);
1616 if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) {
1617 kn->kn_data = 0;
1618 kn->kn_flags |= EV_EOF;
1619 PIPE_UNLOCK(rpipe);
1620 return (1);
1621 }
1622 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1623 if (wpipe->pipe_state & PIPE_DIRECTW)
1624 kn->kn_data = 0;
1625
1626 PIPE_UNLOCK(rpipe);
1627 return (kn->kn_data >= PIPE_BUF);
1628 }
Cache object: c969441d45b5c4d1712abe0c7a7b3e54
|